JP4119501B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4119501B2
JP4119501B2 JP18485197A JP18485197A JP4119501B2 JP 4119501 B2 JP4119501 B2 JP 4119501B2 JP 18485197 A JP18485197 A JP 18485197A JP 18485197 A JP18485197 A JP 18485197A JP 4119501 B2 JP4119501 B2 JP 4119501B2
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
light emitting
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18485197A
Other languages
Japanese (ja)
Other versions
JPH1131842A (en
Inventor
毅 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP18485197A priority Critical patent/JP4119501B2/en
Priority to KR1019980026376A priority patent/KR100615122B1/en
Priority to US09/110,940 priority patent/US6060730A/en
Priority to TW087111037A priority patent/TW437110B/en
Priority to DE19830838A priority patent/DE19830838B4/en
Publication of JPH1131842A publication Critical patent/JPH1131842A/en
Application granted granted Critical
Publication of JP4119501B2 publication Critical patent/JP4119501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Description

【0001】
【発明の属する技術分野】
本発明は基板上にチッ化ガリウム系化合物半導体層が積層される半導体発光素子に関する。さらに詳しくは、n側電極とn形層とのオーミックコンタクトを良好にして順方向電圧を下げ得る半導体発光素子に関する。
【0002】
【従来の技術】
たとえば青色系の半導体発光素子は、図4にその発光素子チップ(以下、LEDチップという)の一例の概略図が示されるように、サファイアからなる絶縁性の基板21上に、たとえばn形のGaNがエピタキシャル成長されたn形層(クラッド層)23と、バンドギャップエネルギーがクラッド層のそれよりも小さくなる材料、たとえばInGaN系(InとGaの比率が種々変わり得ることを意味する、以下同じ)化合物半導体からなる活性層24と、p形のGaNからなるp形層(クラッド層)25とが積層されている。そして、その表面に図示しない拡散メタル層などを介してp形層25に電気的に接続するようにp側電極28が設けられている。そして、積層された半導体層の一部がエッチングされて露出するn形層23と電気的に接続するようにn側電極29が設けられることにより、LEDチップが形成されている。
【0003】
この種の半導体発光素子は、活性層24を挟持するn形層23およびp形層25は、活性層24へのキャリアの閉込め効果などの点から、そのキャリア濃度が最適になるように設定されており、たとえばn形層23のキャリア濃度は1018cm-3オーダの一定のキャリア濃度でn形層23が形成されている。
【0004】
【発明が解決しようとする課題】
前述のように、従来のチッ化ガリウム系化合物半導体を用いた半導体発光素子では、そのn形層のキャリア濃度は発光特性に最適なキャリア濃度に設定されて、n形層の下から上まで一様なキャリア濃度に形成されている。そしてエッチングにより露出するn形層の一部に接続するようにn側電極が設けられている。しかし、n側電極が設けられるn形層のキャリア濃度は、電極とのオーミックコンタクトを得るためには大きいほど好ましく、1×1019cm-3程度以上が好ましい。そのため、前述のように発光特性から制限されたキャリア濃度の半導体層に電極を形成すると、充分なオーミックコンタクトを得ることができず、順方向電圧の上昇の一因になっている。
【0005】
従来のたとえばAlGaInP系化合物半導体などからなる半導体発光素子においては、半導体基板上に発光層を形成すべく半導体積層部が設けられるため、n形層がキャリア濃度の大きい半導体基板と接続されて半導体基板に電極が設けられるため、発光特性に最適なキャリア濃度に合わせてn形層が形成されても何等の問題がないが、チッ化ガリウム系化合物半導体はサファイア基板上に積層されるため、そのn形層に直接電極が設けられ、前述のようにオーミック接触が充分に得られないという問題がある。しかも、良好なオーミックコンタクトを得にくい中で少しでもオーミックコンタクトを良好にするため、電極材料も限定されて、その選択余地が少ないという問題もある。
【0006】
本発明は、このような問題を解決するためになされたもので、絶縁基板上にチッ化ガリウム系化合物半導体が積層される半導体発光素子においても、発光層に接する部分では発光特性に最適なキャリア濃度を維持しながら、n形層とn側電極とのオーミックコンタクト特性を向上させて順方向電圧を低下させ、発光効率を向上させると共に、電極材料の選択余地を拡大することができる半導体発光素子を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による半導体発光素子は、基板と、該基板上に発光層を形成すべくn形層およびp形層を含むチッ化ガリウム系化合物半導体層が積層される半導体積層部と、該半導体積層部のn形層およびp形層にそれぞれ電気的に接続して設けられるn側電極およびp側電極とを有し、前記基板は、前記半導体積層部表面側の全面に設けられる前記p側電極表面に貼り付けられたAl板からなり、前記半導体積層部はサファイア基板上にチッ化ガリウム系化合物半導体層を積層して形成された後に前記サファイア基板が除去されたものであり、前記n形層は、前記サファイア基板を全面的に除去して露出する部分のキャリア濃度が1×10 19 〜5×10 19 cm -3 で、前記発光層に接する部分のキャリア濃度1×10 18 〜3×10 18 cm -3 より大きくなるように形成され、該露出するキャリア濃度の大きいn形層の一部に前記n側電極が設けられている。この構造にすることにより、発光特性に影響を及ぼすことなくn形層とn側電極とのオーミックコンタクトを良好にとることができ、順方向電圧を下げることができる。
【0008】
ここにチッ化ガリウム系化合物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物からなる半導体をいう。また、発光層とは活性層をn形層とp形層とで挟持するダブルへテロ接合構造にあっては活性層を、pn接合構造ではpn接合近傍の発光部を意味する。
【0010】
【発明の実施の形態】
つぎに、図面を参照しながら本発明の半導体発光素子について説明をする。
【0011】
本発明の半導体発光素子は、たとえば図1に示されるように、サファイア(Al2 3 単結晶)などからなる絶縁性の基板1の表面に発光層を形成する半導体積層部10が形成されて、その表面側のp形層5に、図示しない拡散メタル層を介してp側電極8が電気的に接続されている。また、半導体積層部10の一部が除去されて露出するn形層3に電気的に接続されるようにn側電極9が形成されている。本発明では、たとえば図1に示されるように、n形層3が、発光特性に適したキャリア濃度で活性層4に接するn形第1層3aと、オーミックコンタクトに適するキャリア濃度の大きいn+ 形第2層3bと、キャリア濃度が任意のn形第3層3cとからなっており、活性層4(発光層)に接するn形第1層3aのキャリア濃度よりキャリア濃度が大きいn+ 形第2層3bにn側電極9が設けられていることに特徴がある。
【0012】
このようなn形層3を形成するには、n形層3をエピタキシャル成長する際に、導入するドーパントの量を調整することにより得られる。すなわち、たとえばMOCVD法により半導体層を積層する場合、所望の半導体層にするための反応ガスと共に導入するドーパントガスのたとえばSiH4 の流量を多くすればキャリア濃度を大きくすることができ、SiH4 の流量を少なくすることによりキャリア濃度を小さくすることができる。そのため、バッファ層2上にたとえばキャリア濃度が1×1017cm-3程度になるようにn形第3層3cを1〜2μm程度エピタキシャル成長した後に、ドーパントガスSiH4 の流量を多くしてさらに成長を続け、キャリア濃度が1×1019〜5×1019cm-3程度のn+ 形第2層3bを2〜3μm程度成長し、さらにドーパントガスSiH4 の流量を減らして成長を続け、キャリア濃度が1×1018〜3×1018cm-3程度のn形第1層3aを1〜2μm程度成長することにより得られる。
【0013】
なお、n形第1層3aの厚さは、キャリアの閉込め作用をする程度に設けられればよく、少なくとも0.5μm程度あればよい。また、n+ 形第2層3bは、エッチングにより露出させた表面にオーミックコンタクトが得られるように電極を設ける必要があるため、2μm程度以上設けられることが好ましい。n形第3層3cのキャリア濃度は大きくても小さくてもよく、ドーパントがドープされていなくてもよい。したがって、このn形第3層はなくてn形第1層3aと、n+ 形第2層3bとからのみなっていても、n形第1層3aが活性層4に接しており、n+ 形第2層3bにn側電極9が設けられる構造になっておればよい。
【0014】
半導体積層部10は、たとえばGaNからなる低温バッファ層2が0.01〜0.2μm程度、クラッド層となるn形のGaNおよび/またはAlGaN系(AlとGaの比率が種々変わり得ることを意味する、以下同じ)化合物半導体からなり、少なくともn形第1層3aおよびn+ 形第2層3bを有する前述の構造のn形層3、バンドギャップエネルギーがクラッド層のそれよりも小さくなる材料、たとえばInGaN系化合物半導体からなる活性層4が0.05〜0.3μm程度、およびp形のAlGaN系化合物半導体層および/またはGaN層からなるp形層(クラッド層)5が0.2〜1μm程度、基板1上にそれぞれ順次積層されることにより構成されている。なお、AlGaN系化合物半導体は、キャリアの閉込め効果を向上させるため、n形およびp形のクラッド層の活性層4側に設けられる場合がある。したがって、n形第1層3aをAlGaN系化合物半導体層で、n+ 形第2層をGaN層で形成することもできる。
【0015】
半導体積層部10のp形層5に図示しない拡散メタル層を介して電気的に接続されるように、たとえばTiとAuの積層構造からなるp側電極8が設けられ、半導体積層部10の一部がエッチングにより除去されて露出するn+ 形第2層3bに、たとえばTiとAlの合金層からなるn側電極9が設けられ、ウェハからチップ化されて本発明のLEDチップが形成されている。
【0016】
この半導体発光素子を製造するには、たとえば有機金属化学気相成長法(MOCVD法)により、キャリアガスのH2 と共にトリメチリガリウム(TMG)、アンモニア(以下、NH3 という)などの反応ガスおよびn形のドーパントガスとしてのSiH4 などを供給して、まず、たとえばサファイアからなる絶縁基板1上に、たとえば400〜600℃程度の低温で、GaN層からなる低温バッファ層2を0.01〜0.2μm程度、ドーパントガスSiH4 の流量を全体のガス量に対して0〜1×10-4vol%程度にして同じ組成でキャリア濃度が1×1017cm-3程度のn形第3層3cを2μm程度成長し、ついでSiH4 の流量を1×10-2vol%程度にしてキャリア濃度が1×1019cm-3程度のn+ 形第2層3bを3μm程度、さらにSiH4 の流量を1×10-3vol%程度にしてキャリア濃度が1×1018cm-3程度のn形第1層3aを2μm程度それぞれ成長する。さらに反応ガスとしてトリメチルインジウム(TMIn)を追加し、InGaN系化合物半導体からなる活性層4を0.05〜0.3μm程度成膜する。
【0017】
ついで、反応ガスのTMInをトリメチルアルミニウム(TMA)に変更し、ドーパントガスとしてたとえばジメチル亜鉛(DMZnを導入して、キャリア濃度が1×1017〜1×1018cm-3程度のp形のAlGaN系化合物半導体層およびTMAを止めてp形のGaN層をそれぞれ0.1〜0.5μm程度づつ積層し、p形層5を形成する。
【0018】
その後、たとえばNiおよびAuを蒸着してシンターすることにより拡散メタル層を2〜100nm程度形成する。ついで、n側電極9を形成するためn+ 形第2層3bが露出するように、積層された半導体積層部10の一部を塩素ガスなどによる反応性イオンエッチングによりエッチングをする。そして、真空蒸着などにより金属膜を設け、シンターすることによりp側電極8およびn側電極9を形成し、チップ化する。その結果、図1に示される半導体発光素子が得られる。
【0019】
本発明の半導体発光素子によれば、発光層(図1の例では活性層4)側のn形層はそのキャリア閉込めに最適なキャリア濃度のn形第1層で形成されながら、n側電極が設けられる部分はキャリア濃度が大きいn+ 形第2層により形成されているため、優れた発光特性を有しながら良好なオーミックコンタクトで電極を設けることができる。なお、p側電極は拡散メタル層を介して設けられるため、オーミックコンタクトのためのp形層のキャリア濃度は余り問題にならない。その結果、接触抵抗が下がり、順方向電圧Vf の低い半導体発光素子が得られ、発光効率が向上すると共に、電源電圧を低くすることができる。
【0020】
前述の例では、n側電極9としてTiとAlとの合金層を用いたが、n側電極9が設けられるn形層3の部分のキャリア濃度が大きく、オーミックコンタクト特性が向上するため、他のTi-Au、Ni-Au、Ti-Pt、Au、Ptなどを用いることもできる。
【0021】
図2は図1の変形例を示す半導体発光素子のチップの断面形状を示す図である。すなわち、この例はn側電極9を半導体積層部10の一部をエッチング除去してn形層3を露出させるのではなく、基板1の一部をエッチングにより除去してn+ 形第2層3bを露出させ、基板1側にn側電極9が設けられている。この場合、n形第3層はない方が好ましいが、キャリア濃度が小さいn形第3層が設けられている場合は、基板1のエッチングの際にn形第3層までエッチングをしてn+ 形第2層3bが露出するようにコンタクト孔1aを設ければよい。なお、図1と同じ部分には同じ符号を付してその説明を省略する。
【0022】
図3はさらに他の変形例を示す図で、この例はp側電極8側にAlなどからなる金属板11が設けられて新たな基板とされると共に、半導体層を積層する際のサファイア基板は研磨などにより除去され、その除去により露出したn+ 形第2層3bにn側電極9が設けられているものである。このような構造の半導体発光素子においても、n形層3が活性層4側にキャリア濃度が発光特性に合わせて形成されたn形第1層3aと、n側電極9が設けられる側にキャリア濃度が大きいn+ 形第2層3bが設けられることにより、前述と同様の効果が得られる。なお、図1と同じ部分には同じ符号を付してその説明を省略する。
【0023】
以上の各例では、n形層3とp形層5とで活性層4が挟持され、活性層4を発光層としたダブルヘテロ接合構造であるが、n形層とp形層とが直接接合するpn接合構造の半導体発光素子でも同様である。この場合、pn接合部に発光層が形成され、pn接合部分側に発光特性に合わせたキャリア濃度のn形第1層で形成され、電極が形成される部分がn+ 形第2層になるようにn形層が形成される。また、前述の各例において積層される半導体層の材料も一例であって、その材料には限定されない。
【0024】
【発明の効果】
本発明によれば、発光特性を維持しながら電極と半導体層とのオーミックコンタクト特性が向上し、動作電圧が低く発光効率の優れた半導体発光素子が得られる。さらに、良好なオーミックコンタクトが得られやすいため、n側の電極金属材料の制限が緩和され、電極金属の選択範囲が広がるという効果がある。
【図面の簡単な説明】
【図1】本発明の半導体発光素子の一実施形態のLEDチップの断面説明図である。
【図2】図1の半導体発光素子の変形例を示すLEDチップの断面説明図である。
【図3】図1の半導体発光素子の他の変形例を示すLEDチップの断面説明図である。
【図4】従来の半導体発光素子のLEDチップの一例の斜視説明図である。
【符号の説明】
1 基板
3 n形層
3a n形第1層
3b n+ 形第2層
4 活性層
5 p形層
8 p側電極
9 n側電極
10 半導体積層部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device in which a gallium nitride compound semiconductor layer is stacked on a substrate. More specifically, the present invention relates to a semiconductor light emitting device capable of reducing the forward voltage by improving the ohmic contact between the n-side electrode and the n-type layer.
[0002]
[Prior art]
For example, a blue semiconductor light-emitting element is formed on an insulating substrate 21 made of sapphire, for example, n-type GaN, as shown in a schematic diagram of an example of the light-emitting element chip (hereinafter referred to as an LED chip) in FIG. Epitaxially grown n-type layer (cladding layer) 23 and a material whose band gap energy is smaller than that of the cladding layer, for example, an InGaN-based compound (meaning that the ratio of In and Ga can be changed variously, the same applies hereinafter) An active layer 24 made of a semiconductor and a p-type layer (clad layer) 25 made of p-type GaN are stacked. A p-side electrode 28 is provided on the surface so as to be electrically connected to the p-type layer 25 via a diffusion metal layer (not shown). Then, an n-side electrode 29 is provided so as to be electrically connected to the n-type layer 23 exposed by etching a part of the laminated semiconductor layer, thereby forming an LED chip.
[0003]
In this type of semiconductor light emitting device, the n-type layer 23 and the p-type layer 25 sandwiching the active layer 24 are set so that the carrier concentration is optimal in view of the effect of confining carriers in the active layer 24. For example, the n-type layer 23 is formed at a constant carrier concentration of the order of 10 18 cm −3 in the n-type layer 23.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional semiconductor light emitting device using a gallium nitride compound semiconductor, the carrier concentration of the n-type layer is set to the optimum carrier concentration for the light emission characteristics, and is uniform from the bottom to the top of the n-type layer. It is formed at various carrier concentrations. An n-side electrode is provided so as to be connected to a part of the n-type layer exposed by etching. However, the carrier concentration of the n-type layer on which the n-side electrode is provided is preferably as large as possible to obtain an ohmic contact with the electrode, and preferably about 1 × 10 19 cm −3 or more. For this reason, when an electrode is formed on a semiconductor layer having a carrier concentration limited from the light emission characteristics as described above, a sufficient ohmic contact cannot be obtained, which causes an increase in forward voltage.
[0005]
In a conventional semiconductor light emitting device made of, for example, an AlGaInP-based compound semiconductor, a semiconductor laminated portion is provided on a semiconductor substrate to form a light emitting layer. Therefore, the n-type layer is connected to a semiconductor substrate having a high carrier concentration, and the semiconductor substrate Since the n-type layer is formed in accordance with the optimal carrier concentration for the light emission characteristics, there is no problem. However, since the gallium nitride compound semiconductor is stacked on the sapphire substrate, the n-type layer is formed. There is a problem that electrodes are directly provided on the shape layer, and sufficient ohmic contact cannot be obtained as described above. In addition, in order to improve the ohmic contact even if it is difficult to obtain a good ohmic contact, the electrode material is also limited, and there is a problem that there is little room for selection.
[0006]
The present invention has been made to solve such a problem, and even in a semiconductor light emitting device in which a gallium nitride compound semiconductor is stacked on an insulating substrate, a carrier optimal for light emitting characteristics in a portion in contact with the light emitting layer. Semiconductor light-emitting device capable of improving ohmic contact characteristics between the n-type layer and the n-side electrode, reducing the forward voltage, improving the light emission efficiency, and expanding the choice of electrode material while maintaining the concentration The purpose is to provide.
[0007]
[Means for Solving the Problems]
A semiconductor light emitting device according to the present invention includes a substrate, a semiconductor stacked portion in which a gallium nitride compound semiconductor layer including an n-type layer and a p-type layer is stacked to form a light emitting layer on the substrate, and the semiconductor stacked portion The n-side electrode and the p-side electrode provided in electrical connection with the n-type layer and the p-type layer, respectively, and the substrate is provided on the entire surface of the semiconductor laminate surface side. The semiconductor laminate is formed by laminating a gallium nitride compound semiconductor layer on a sapphire substrate, and then the sapphire substrate is removed, and the n-type layer is The carrier concentration of the portion exposed by removing the sapphire substrate entirely is 1 × 10 19 to 5 × 10 19 cm −3 , and the carrier concentration of the portion in contact with the light emitting layer is 1 × 10 18 to 3 × 10 18. greater than cm -3 It is formed on so that, the n-side electrode is provided in a part of a large n-type layer of the carrier concentration of said exposed. With this structure, the ohmic contact between the n-type layer and the n-side electrode can be satisfactorily performed without affecting the light emission characteristics, and the forward voltage can be lowered.
[0008]
Here, the gallium nitride compound semiconductor is a compound in which a group III element Ga and a group V element N or a part of the group III element Ga is substituted with another group III element such as Al or In, and A semiconductor composed of a compound in which a part of N of the group V element is substituted with another group V element such as P or As. The light emitting layer means an active layer in a double heterojunction structure in which an active layer is sandwiched between an n-type layer and a p-type layer, and a light emitting portion in the vicinity of a pn junction in a pn junction structure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the semiconductor light emitting device of the present invention will be described with reference to the drawings.
[0011]
In the semiconductor light emitting device of the present invention, as shown in FIG. 1, for example, a semiconductor laminated portion 10 for forming a light emitting layer is formed on the surface of an insulating substrate 1 made of sapphire (Al 2 O 3 single crystal). The p-side electrode 8 is electrically connected to the p-type layer 5 on the surface side through a diffusion metal layer (not shown). Further, the n-side electrode 9 is formed so as to be electrically connected to the n-type layer 3 exposed by removing a part of the semiconductor stacked portion 10. In the present invention, for example, as shown in FIG. 1, the n-type layer 3 includes an n-type first layer 3a that is in contact with the active layer 4 at a carrier concentration suitable for light emission characteristics, and an n + having a high carrier concentration suitable for ohmic contact. form a second layer 3b, and the carrier concentration becomes from any n-type third layer 3c, the active layer 4 n + form larger carrier concentration than the carrier concentration of the first layer 3a n-type in contact with the (light emitting layer) The n-side electrode 9 is provided in the second layer 3b.
[0012]
Such an n-type layer 3 can be formed by adjusting the amount of dopant to be introduced when epitaxially growing the n-type layer 3. That is, for example, when stacking the semiconductor layers by MOCVD, it is possible to increase the carrier concentration if many, for example the flow rate of SiH 4 dopant gas to be introduced together with the reaction gas to the desired semiconductor layer, the SiH 4 The carrier concentration can be reduced by reducing the flow rate. Therefore, after the n-type third layer 3c is epitaxially grown on the buffer layer 2 so as to have a carrier concentration of, for example, about 1 × 10 17 cm −3 by about 1 to 2 μm, it is further grown by increasing the flow rate of the dopant gas SiH 4. Then, the n + -type second layer 3b having a carrier concentration of about 1 × 10 19 to 5 × 10 19 cm −3 is grown to about 2 to 3 μm, and further the flow rate of the dopant gas SiH 4 is reduced to continue the growth. The n-type first layer 3a having a concentration of about 1 × 10 18 to 3 × 10 18 cm −3 is obtained by growing about 1 to 2 μm.
[0013]
Note that the thickness of the n-type first layer 3a only needs to be provided so as to have a carrier confinement effect, and may be at least about 0.5 μm. In addition, since it is necessary to provide an electrode so that an ohmic contact can be obtained on the surface exposed by etching, the n + -type second layer 3b is preferably provided with a thickness of about 2 μm or more. The n-type third layer 3c may have a high or low carrier concentration and may not be doped with a dopant. Therefore, the n-type first layer 3a is in contact with the active layer 4 even if the n-type first layer 3a and the n + -type second layer 3b are not provided. It suffices if the n-side electrode 9 is provided on the + -type second layer 3b.
[0014]
The semiconductor laminated portion 10 is, for example, a low temperature buffer layer 2 made of GaN of about 0.01 to 0.2 μm, and n-type GaN and / or AlGaN-based (a ratio of Al and Ga can be variously changed as a cladding layer) The same applies hereinafter) n-type layer 3 of the above-mentioned structure comprising a compound semiconductor and having at least n-type first layer 3a and n + -type second layer 3b, a material whose band gap energy is smaller than that of the cladding layer, For example, the active layer 4 made of an InGaN compound semiconductor is about 0.05 to 0.3 μm, and the p-type AlGaN compound semiconductor layer and / or the p-type layer (cladding layer) 5 made of a GaN layer is 0.2 to 1 μm. To the extent, they are configured by being sequentially laminated on the substrate 1. Note that the AlGaN-based compound semiconductor may be provided on the active layer 4 side of the n-type and p-type cladding layers in order to improve the carrier confinement effect. Therefore, the n-type first layer 3a can be formed of an AlGaN-based compound semiconductor layer, and the n + -type second layer can be formed of a GaN layer.
[0015]
For example, a p-side electrode 8 having a laminated structure of Ti and Au is provided so as to be electrically connected to the p-type layer 5 of the semiconductor laminated portion 10 via a diffusion metal layer (not shown). the n + -type second layer 3b which part is exposed is removed by etching, for example, n-side electrode 9 is provided an alloy layer of Ti and Al, is LED chip formation of the present invention are chips from a wafer Yes.
[0016]
In order to manufacture this semiconductor light emitting device, for example, by a metal organic chemical vapor deposition method (MOCVD method), a reactive gas such as trimethyl gallium (TMG), ammonia (hereinafter referred to as NH 3 ) and a carrier gas H 2 and By supplying SiH 4 or the like as an n-type dopant gas, first, a low-temperature buffer layer 2 made of a GaN layer is formed on an insulating substrate 1 made of sapphire, for example, at a low temperature of about 400 to 600 ° C. N-type third having the same composition and carrier concentration of about 1 × 10 17 cm −3 with a flow rate of about 0.2 μm and a dopant gas SiH 4 flow rate of about 0 to 1 × 10 −4 vol% with respect to the total gas amount. the layers 3c grow about 2 [mu] m, then the flow rate of 1 × 10 -2 is the carrier concentration in the order of vol% 3 [mu] m about the approximately 1 × 10 19 cm -3 of n + -type second layer 3b of SiH 4, further The flow rate of SiH 4 carrier concentration in the order of 1 × 10 -3 vol% growth respectively about 2μm to about 1 × 10 18 cm -3 of n-type first layer 3a. Further, trimethylindium (TMIn) is added as a reaction gas, and an active layer 4 made of an InGaN compound semiconductor is formed to a thickness of about 0.05 to 0.3 μm.
[0017]
Then, a TMIn reaction gas was changed to trimethylaluminum (TMA), by introducing, for example dimethyl zinc (DMZn as a dopant gas, the carrier concentration of the p-type of about 1 × 10 17 ~1 × 10 18 cm -3 AlGaN The p-type layer 5 is formed by stopping the system compound semiconductor layer and the TMA and laminating p-type GaN layers by about 0.1 to 0.5 μm.
[0018]
Thereafter, for example, Ni and Au are deposited and sintered to form a diffusion metal layer of about 2 to 100 nm. Next, in order to form the n-side electrode 9, a part of the stacked semiconductor stacked portion 10 is etched by reactive ion etching using chlorine gas or the like so that the n + -type second layer 3 b is exposed. Then, a metal film is provided by vacuum deposition or the like, and by sintering, the p-side electrode 8 and the n-side electrode 9 are formed to form a chip. As a result, the semiconductor light emitting device shown in FIG. 1 is obtained.
[0019]
According to the semiconductor light emitting device of the present invention, the n-type layer on the side of the light emitting layer (active layer 4 in the example of FIG. 1) is formed of the n-type first layer having the optimum carrier concentration for the carrier confinement. Since the portion where the electrode is provided is formed by the n + -type second layer having a high carrier concentration, the electrode can be provided with a good ohmic contact while having excellent light emission characteristics. Since the p-side electrode is provided via the diffusion metal layer, the carrier concentration of the p-type layer for ohmic contact is not a problem. As a result, a semiconductor light emitting device having a low contact resistance and a low forward voltage Vf can be obtained, and the light emission efficiency can be improved and the power supply voltage can be lowered.
[0020]
In the above-described example, an alloy layer of Ti and Al is used as the n-side electrode 9, but the carrier concentration in the portion of the n-type layer 3 where the n-side electrode 9 is provided is large and the ohmic contact characteristics are improved. Ti—Au, Ni—Au, Ti—Pt, Au, Pt, and the like can also be used.
[0021]
FIG. 2 is a diagram showing a cross-sectional shape of a chip of a semiconductor light emitting device showing a modification of FIG. That is, in this example, the n-side electrode 9 is not removed by etching a part of the semiconductor stacked portion 10 to expose the n-type layer 3, but a part of the substrate 1 is removed by etching and the n + -type second layer is removed. 3b is exposed and an n-side electrode 9 is provided on the substrate 1 side. In this case, it is preferable not to have the n-type third layer. However, when the n-type third layer having a low carrier concentration is provided, the n-type third layer is etched when the substrate 1 is etched. The contact hole 1a may be provided so that the + -type second layer 3b is exposed. In addition, the same code | symbol is attached | subjected to the same part as FIG. 1, and the description is abbreviate | omitted.
[0022]
FIG. 3 is a diagram showing still another modified example. In this example, the metal plate 11 made of Al or the like is provided on the p-side electrode 8 side to form a new substrate, and the sapphire substrate when the semiconductor layers are stacked. Is removed by polishing or the like, and an n-side electrode 9 is provided on the n + -type second layer 3b exposed by the removal. Also in the semiconductor light emitting device having such a structure, the n-type layer 3 is formed on the active layer 4 side with the n-type first layer 3a having the carrier concentration matched to the light emission characteristics, and the carrier on the side where the n-side electrode 9 is provided. By providing the n + -type second layer 3b having a high concentration, the same effect as described above can be obtained. In addition, the same code | symbol is attached | subjected to the same part as FIG. 1, and the description is abbreviate | omitted.
[0023]
In each of the above examples, the active layer 4 is sandwiched between the n-type layer 3 and the p-type layer 5 and the active layer 4 is the light emitting layer, but the n-type layer and the p-type layer are directly connected. The same applies to a semiconductor light emitting device having a pn junction structure to be joined. In this case, the light emitting layer is formed at the pn junction, the n-type first layer having a carrier concentration matched to the light emission characteristics is formed on the pn junction portion side, and the portion where the electrode is formed becomes the n + -type second layer. Thus, an n-type layer is formed. Moreover, the material of the semiconductor layer laminated | stacked in each above-mentioned example is an example, Comprising: It is not limited to the material.
[0024]
【The invention's effect】
According to the present invention, the ohmic contact characteristic between the electrode and the semiconductor layer is improved while maintaining the light emission characteristic, and a semiconductor light emitting device having a low operating voltage and excellent light emission efficiency can be obtained. Furthermore, since a good ohmic contact can be easily obtained, the limitation of the n-side electrode metal material is relaxed, and the selection range of the electrode metal is widened.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view of an LED chip of an embodiment of a semiconductor light emitting device of the present invention.
2 is an explanatory cross-sectional view of an LED chip showing a modification of the semiconductor light emitting device of FIG. 1. FIG.
FIG. 3 is a cross-sectional explanatory view of an LED chip showing another modification of the semiconductor light emitting device of FIG. 1;
FIG. 4 is a perspective explanatory view of an example of an LED chip of a conventional semiconductor light emitting element.
[Explanation of symbols]
1 substrate 3 n-type layer 3a n-type first layer 3b n + -type second layer 4 active layer 5 p-type layer 8 p-side electrode 9 n-side electrode 10 semiconductor stacked portion

Claims (1)

基板と、該基板上に発光層を形成すべくn形層およびp形層を含むチッ化ガリウム系化合物半導体層が積層される半導体積層部と、該半導体積層部のn形層およびp形層にそれぞれ電気的に接続して設けられるn側電極およびp側電極とを有し、前記基板は、前記半導体積層部表面側の全面に設けられる前記p側電極表面に貼り付けられたAl板からなり、前記半導体積層部はサファイア基板上にチッ化ガリウム系化合物半導体層を積層して形成された後に前記サファイア基板が除去されたものであり、前記n形層は、前記サファイア基板を全面的に除去して露出する部分のキャリア濃度が1×10 19 〜5×10 19 cm -3 で、前記発光層に接する部分のキャリア濃度1×10 18 〜3×10 18 cm -3 より大きくなるように形成され、該露出するキャリア濃度の大きいn形層の一部に前記n側電極が設けられてなる半導体発光素子。A substrate, a semiconductor stacked portion in which a gallium nitride compound semiconductor layer including an n-type layer and a p-type layer is formed to form a light emitting layer on the substrate, and an n-type layer and a p-type layer of the semiconductor stacked portion And an n-side electrode and a p-side electrode that are electrically connected to each other, and the substrate is made of an Al plate that is attached to the surface of the p-side electrode that is provided on the entire surface of the semiconductor stacked portion. The semiconductor stack is formed by stacking a gallium nitride compound semiconductor layer on a sapphire substrate, and then the sapphire substrate is removed, and the n-type layer covers the sapphire substrate entirely. The carrier concentration in the portion exposed by removal is 1 × 10 19 to 5 × 10 19 cm −3 , and the carrier concentration in the portion in contact with the light emitting layer is higher than 1 × 10 18 to 3 × 10 18 cm −3. Formed and exposed The semiconductor light-emitting device comprising the n-side electrode is provided on a portion of Yaria concentration greater n-type layer of.
JP18485197A 1997-07-10 1997-07-10 Semiconductor light emitting device Expired - Lifetime JP4119501B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18485197A JP4119501B2 (en) 1997-07-10 1997-07-10 Semiconductor light emitting device
KR1019980026376A KR100615122B1 (en) 1997-07-10 1998-07-01 Semiconductor light emitting device
US09/110,940 US6060730A (en) 1997-07-10 1998-07-07 Semiconductor light emitting device
TW087111037A TW437110B (en) 1997-07-10 1998-07-08 Semiconductor light emitting device
DE19830838A DE19830838B4 (en) 1997-07-10 1998-07-09 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18485197A JP4119501B2 (en) 1997-07-10 1997-07-10 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH1131842A JPH1131842A (en) 1999-02-02
JP4119501B2 true JP4119501B2 (en) 2008-07-16

Family

ID=16160424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18485197A Expired - Lifetime JP4119501B2 (en) 1997-07-10 1997-07-10 Semiconductor light emitting device

Country Status (5)

Country Link
US (1) US6060730A (en)
JP (1) JP4119501B2 (en)
KR (1) KR100615122B1 (en)
DE (1) DE19830838B4 (en)
TW (1) TW437110B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270854A (en) * 1991-02-26 1992-09-28 Hitachi Ltd Controlling method for air conditioner
DE69835216T2 (en) * 1997-07-25 2007-05-31 Nichia Corp., Anan SEMICONDUCTOR DEVICE OF A NITRIDE CONNECTION
JP3589000B2 (en) * 1997-12-26 2004-11-17 松下電器産業株式会社 Gallium nitride based compound semiconductor light emitting device
US6841800B2 (en) 1997-12-26 2005-01-11 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
CN1292494C (en) * 2000-04-26 2006-12-27 奥斯兰姆奥普托半导体有限责任公司 Radiation-emitting semiconductor element and method for producing same
DE10051465A1 (en) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Method for producing a GaN-based semiconductor component
DE10020464A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor element has a semiconductor body formed by a stack of different semiconductor layers based on gallium nitride
JP5523277B2 (en) * 2000-04-26 2014-06-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting semiconductor device and method for manufacturing light emitting semiconductor device
US7319247B2 (en) * 2000-04-26 2008-01-15 Osram Gmbh Light emitting-diode chip and a method for producing same
TWI292227B (en) 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
DE10040448A1 (en) * 2000-08-18 2002-03-07 Osram Opto Semiconductors Gmbh Semiconductor chip and method for its production
US6611002B2 (en) * 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
JP3912044B2 (en) * 2001-06-06 2007-05-09 豊田合成株式会社 Method for manufacturing group III nitride compound semiconductor light emitting device
US20030198795A1 (en) * 2002-04-17 2003-10-23 Grant William K. Modular material design system and method
JP4233268B2 (en) * 2002-04-23 2009-03-04 シャープ株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
TWI392107B (en) * 2004-08-31 2013-04-01 Sumitomo Chemical Co Compound semiconductor luminescent device
US7875474B2 (en) * 2005-09-06 2011-01-25 Show A Denko K.K. Gallium nitride-based compound semiconductor light-emitting device and production method thereof
JP2009105123A (en) * 2007-10-22 2009-05-14 Showa Denko Kk Light-emitting diode, and manufacturing method thereof
DE102007057756B4 (en) * 2007-11-30 2022-03-10 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Process for producing an optoelectronic semiconductor body
JP5440674B1 (en) 2012-09-18 2014-03-12 ウシオ電機株式会社 LED element and manufacturing method thereof
US9960127B2 (en) 2016-05-18 2018-05-01 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US10134658B2 (en) 2016-08-10 2018-11-20 Macom Technology Solutions Holdings, Inc. High power transistors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2328905A1 (en) * 1973-06-06 1974-12-12 Siemens Ag PROCESS FOR PRODUCING METAL CONTACTS ON GALLIUM PHOSPHIDE LUMINESCENT DIODES WITH LOW ABSORPTION LOSS
JPH06291367A (en) * 1993-04-02 1994-10-18 Toyoda Gosei Co Ltd Light emitting element of nitrogen-group iii element compound semiconductor
JP3753747B2 (en) * 1993-12-27 2006-03-08 豊田合成株式会社 Gallium nitride compound semiconductor laser diode
US5909040A (en) * 1994-03-09 1999-06-01 Kabushiki Kaisha Toshiba Semiconductor device including quaternary buffer layer with pinholes
US5838029A (en) * 1994-08-22 1998-11-17 Rohm Co., Ltd. GaN-type light emitting device formed on a silicon substrate
US5825052A (en) * 1994-08-26 1998-10-20 Rohm Co., Ltd. Semiconductor light emmitting device
JP3538275B2 (en) * 1995-02-23 2004-06-14 日亜化学工業株式会社 Nitride semiconductor light emitting device
JPH08255926A (en) * 1995-03-16 1996-10-01 Rohm Co Ltd Semiconductor light emitting element and fabrication thereof
DE69637304T2 (en) * 1995-03-17 2008-08-07 Toyoda Gosei Co., Ltd. A semiconductor light-emitting device consisting of a III-V nitride compound
KR100267839B1 (en) * 1995-11-06 2000-10-16 오가와 에이지 Nitride semiconductor device
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH09246670A (en) * 1996-03-04 1997-09-19 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting element
US5981980A (en) * 1996-04-22 1999-11-09 Sony Corporation Semiconductor laminating structure
JP3644191B2 (en) * 1996-06-25 2005-04-27 住友電気工業株式会社 Semiconductor element

Also Published As

Publication number Publication date
DE19830838B4 (en) 2009-09-24
KR19990013507A (en) 1999-02-25
TW437110B (en) 2001-05-28
DE19830838A1 (en) 1999-01-14
KR100615122B1 (en) 2007-04-25
JPH1131842A (en) 1999-02-02
US6060730A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP4119501B2 (en) Semiconductor light emitting device
JP3952210B2 (en) Nitride-based semiconductor device and manufacturing method thereof
WO2005029588A1 (en) Nitride semiconductor device and method for manufacturing same
US20020045286A1 (en) Semiconductor light-emitting device and method of manufacturing the same
JP3713118B2 (en) Manufacturing method of semiconductor light emitting device
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP4058595B2 (en) Semiconductor light emitting device and manufacturing method thereof
WO2005060013A1 (en) Semiconductor light-emitting device and method for manufacturing same
JP3776538B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JP3504976B2 (en) Semiconductor light emitting device
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3713124B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2006024913A (en) Translucent positive electrode for compound semiconductor light-emitting device of gallium nitride series, and the light-emitting device
JP4553457B2 (en) III-V compound semiconductor device having pn junction
JP3577463B2 (en) III-nitride semiconductor light emitting diode
JP4058592B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4058593B2 (en) Semiconductor light emitting device
JP4041906B2 (en) Semiconductor light emitting device
JP3723314B2 (en) Semiconductor light emitting device
JP3881470B2 (en) Manufacturing method of semiconductor light emitting device
JP4058594B2 (en) Semiconductor light emitting device
JPH11214750A (en) Manufacture of gallium nitride compound semiconductor light-emitting device
JP3978581B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2004193498A (en) Semiconductor light-emitting element and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060803

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term