JP4116872B2 - Vacuum terminal - Google Patents

Vacuum terminal Download PDF

Info

Publication number
JP4116872B2
JP4116872B2 JP2002346361A JP2002346361A JP4116872B2 JP 4116872 B2 JP4116872 B2 JP 4116872B2 JP 2002346361 A JP2002346361 A JP 2002346361A JP 2002346361 A JP2002346361 A JP 2002346361A JP 4116872 B2 JP4116872 B2 JP 4116872B2
Authority
JP
Japan
Prior art keywords
insulator
metal sleeve
thickness
metal
lead pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002346361A
Other languages
Japanese (ja)
Other versions
JP2004179083A (en
Inventor
晃一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002346361A priority Critical patent/JP4116872B2/en
Publication of JP2004179083A publication Critical patent/JP2004179083A/en
Application granted granted Critical
Publication of JP4116872B2 publication Critical patent/JP4116872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子顕微鏡等の真空容器を備えた理化学機器において真空容器内外の装置間で電気信号を伝達するのに用いられる真空端子に関する。
【0002】
【従来の技術】
従来、電子顕微鏡等の真空容器を備えた理化学機器では、真空容器内外の装置間で電気信号を伝達するのに真空端子が用いられている。この真空端子は、通常、酸化アルミニウム質焼結体からなり、一端が真空容器に固定され、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金等から成る金属スリーブと、一端に鍔部が形成されるとともに中心軸に沿って貫通孔が形成され、鍔部がロウ付けされた絶縁体と、その絶縁体の貫通孔に両端を突出させて挿入固定されたFe−Ni−Co合金から成るリードピンとを具備している。そして、真空容器に金属スリーブの一端を固定し、真空容器内外の装置とリードピンの両端とをそれぞれ電気的に接続することによって、両装置間で電気信号の伝達が可能となる。
【0003】
なお、金属スリーブおよびリードピンと絶縁体との接着は、絶縁体の鍔部の外周面、貫通孔の内面およびその開口周囲付近に、モリブデン−マンガン等から成るメタライズ金属層とニッケルメッキ層の2層構造を有する金属層をそれぞれ被着しておき、それらの金属層と金属スリーブおよびリードピンとを銀ロウ(銀−銅合金から成るロウ材)等のロウ材でロウ付けすることによって行われる。
【0004】
また、加速器等の理化学機器においては、マグネットにより強力な磁場が発生する真空装置があり、非磁性の真空端子が必要となる場合があった。そこで、非磁性の真空端子として、金属スリーブが非磁性のチタンから成り、真空容器に固定される一端側にステンレススチールが拡散接合されているもの提案されている(特許文献1参照)。
【0005】
【特許文献1】
特開平6−223902号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1の真空端子においては、チタンおよび拡散接合材を用いるため金属スリーブの製造コストが非常に高くなるとともに、チタン製の金属スリーブと絶縁体とのロウ付けは、厳密な条件管理を行わないとチタンと銀ロウとの間に金属間化合物が生成し、これによって接合強度が極端に小さくなる。その結果、真空端子として必要な強度や気密性が得られず、強度不良および気密不良が発生しやすいという問題点があった。
【0007】
従って、本発明は上記従来技術における問題点に鑑みて完成されたものであり、その目的は、ステンレススチール製等の真空容器との溶接性が良く非磁性であり、またロウ付け強度および気密性の高い真空端子を提供することにある。
【0008】
【課題を解決するための手段】
本発明の真空端子は、筒状の金属スリーブと、中心軸に沿って貫通孔が形成されるとともに一端に鍔部が形成された略柱状とされ、前記鍔部が前記金属スリーブの内周面の一部に全周にわたってロウ付けされたセラミックスから成る絶縁体と、該絶縁体の前記貫通孔に両端を突出させて挿入固定されたリードピンと、一端が開放された有底筒状とされているとともに底面の中央部に貫通穴が形成され、該貫通穴に前記リードピンが挿通されるとともに一端面が前記絶縁体の他端面にロウ付けされた金属部材とを具備しており、前記金属スリーブおよび前記金属部材はステンレススチールまたは耐食耐熱超合金(JIS G 4901)から成り、前記リードピンは前記ステンレススチール、前記耐食耐熱超合金または無酸素銅から成り、前記金属スリーブと前記絶縁体とのロウ付け部で、前記金属スリーブの外周面の一部が凹状とされて、前記ロウ付け部で前記金属スリーブの厚みが残部より薄肉化されていることを特徴とする真空端子。また、前記金属部材の肉厚が前記金属スリーブの前記ロウ付け部の厚みと略同じとされていることが好ましい。前記金属スリーブの前記ロウ付け部の厚みおよび前記金属部材の肉厚が0.1乃至0.35mmとされていることが好ましい。
【0009】
本発明の真空端子は、金属スリーブおよび金属部材はステンレススチールまたは耐食耐熱超合金(JIS G 4901)から成り、リードピンはステンレススチール、耐食耐熱超合金または無酸素銅から成ることから、非磁性でかつステンレススチール製等の真空容器との溶接性が良く、ロウ付け強度が大きくなるとともに、安価に製造できるものとなる。
【0010】
また、金属スリーブと絶縁体とのロウ付け部で金属スリーブの厚みが残部よりも薄くされていることから、金属スリーブと絶縁体とのロウ付け後の降温時にロウ材が固化した状態で、金属スリーブと絶縁体との熱膨張率差により発生し絶縁体に働く応力が、金属スリーブのロウ付け部である薄い部分の変形により軽減される。その結果、絶縁体にクラックや欠け等の破損を発生させることなくロウ付けができることとなる。
【0011】
さらに、金属部材の肉厚が金属スリーブのロウ付け部の厚みと略同じとされていることから、金属部材およびリードピンと絶縁体とのロウ付け後の降温時にロウ材が固化した状態で、金属部材およびリードピンと絶縁体との熱膨張率差により発生し絶縁体に働く応力が、金属部材の変形により軽減される。その結果、金属部材を用いずにリードピンと絶縁体とを直接ロウ付けする場合と比較して、絶縁体にクラックや欠け等の破損を発生させることなくロウ付けができることとなる。
【0012】
本発明の真空端子において、好ましくは、前記金属スリーブの前記ロウ付け部の厚みおよび前記金属部材の肉厚が0.1乃至0.35mmとされていることを特徴とする。
【0013】
本発明の真空端子は、好ましくは金属スリーブのロウ付け部の厚みおよび金属部材の肉厚が0.1乃至0.35mmとされていることから、ロウ付け後の降温時に絶縁体にクラックや欠け等の破損が発生するのをより効果的に防ぐことができる。
【0014】
【発明の実施の形態】
本発明の真空端子を以下に詳細に説明する。図1は本発明の真空端子について実施の形態の例を示す断面図である。図1において、1は絶縁体、1aは絶縁体1の鍔部、1bは絶縁体1の貫通孔、2は金属スリーブ、3はリードピン、4,7,9はロウ材、5,6はメタライズ金属層、8は金属部材である。
【0015】
本発明の真空端子は、筒状の金属スリーブ2と、中心軸に沿って貫通孔1bが形成されるとともに一端に鍔部1aが形成された略柱状とされ、鍔部1aが金属スリーブ2の内周面の一部に全周にわたってロウ付けされたセラミックスから成る絶縁体1と、絶縁体1の貫通孔1bに両端を突出させて挿入固定されたリードピン3と、一端が開放された有底筒状とされているとともに底面の中央部に貫通穴が形成され、貫通穴にリードピン3が挿通されて一端面が絶縁体1の他端面にロウ付けされた金属部材8とを具備し、金属スリーブ2および金属部材8はステンレススチール(JIS G 4303等)または耐食耐熱超合金(JIS G4901:インコネル)から成り、リードピン3はステンレススチール、耐食耐熱超合金または無酸素銅(JIS H 3100等)から成り、金属スリーブ2と絶縁体1とのロウ付け部で金属スリーブ2の厚みが残部よりも薄くされており、金属部材8の肉厚が金属スリーブ2のロウ付け部の厚みと略同じとされている。
【0016】
なお、金属部材8の肉厚と金属スリーブ2のロウ付け部の厚みとが略同じであるとは、それらの差が0.2mm程度以下の範囲内にあることを意味するものである。
【0017】
本発明の絶縁体1は、酸化アルミニウム質焼結体(アルミナセラミックス)等の電気絶縁材料から成り、リードピン3を電気的絶縁をもって保持するためのものである。この絶縁体1は、鍔部1aが筒状の金属スリーブ2の内周面の一部にロウ材4を介してロウ付けされ、貫通孔1bの他端面側の開口の周囲に金属部材8がロウ材7を介してロウ付けされている。また、絶縁体1は、鍔部1aの外周面にメタライズ層5が被着されており、メタライズ層5には金属スリーブ2がロウ材4を介してロウ付けされる。また、リードピン3と金属部材8とがロウ材9を介してロウ付けされている。
【0018】
上記のメタライズ金属層5は、表面をニッケルメッキ層で被覆したモリブデン−マンガンからなり、例えばモリブデン−マンガンの粉末に適当な有機溶剤、溶媒を添加混合して得た金属ペーストを従来周知のスクリーン印刷法により絶縁体1の鍔部1aの外周面に約50μmの厚みに印刷塗布してこれを約1500℃の温度で焼成し、しかる後、モリブデン−マンガンから成るメタライズ層の表面に電解メッキ法や無電解メッキ法によってニッケルを約10μmの厚みで被着させることによって形成される。
【0019】
本発明の金属スリーブ2は、真空端子を理化学機器の真空容器に取着するためのものであり、ステンレススチール(以下、ステンレスともいう)または耐食耐熱超合金から成ることによって、一般にステンレスから成る真空容器に対して、良好かつ容易に溶接を行なうことができる。上記のステンレスと耐食耐熱超合金は、ビッカース硬度(Hv)がいずれも約160と硬いこと、および、例えば絶縁体1を構成する酸化アルミニウム焼結体の熱膨張係数(約7.0×10-6/℃)とステンレスの熱膨張係数(約17.5×10-6/℃)および耐食耐熱超合金の熱膨張係数(約16.2×10-6/℃)とが大きく相違することから、絶縁体1の鍔部1aに金属スリーブ2をロウ材4を介して接合する際、両者の接合部に熱膨張係数の相違に起因して大きな応力が発生しやすいため、金属スリーブ2と絶縁体1とのロウ付け部で金属スリーブ2の厚みが0.1乃至0.35mmであることが好ましい。
【0020】
金属スリーブ2の厚みが0.1mm未満では、真空端子として片側が真空状態で片側が大気圧環境下で使用した場合に金属スリーブ2自体が変形し、場合によっては破壊されてしまうこととなる。0.35mmを超えると、絶縁体1と金属スリーブ2との熱膨張係数差に起因して発生する応力が金属スリーブ2において緩和されにくくなり、絶縁体1にクラックが生じ気密不良が生じやすい。
【0021】
絶縁体1はその中心軸に沿って形成された貫通孔1bにリードピン3が両端を突出させた状態で金属部材8を介して固定されている。このリードピン3は、真空容器内外の装置を電気的に接続させるものであり、上記ステンレス、上記耐食耐熱超合金または無酸素銅から成る。この金属部材8は、一端が開放された有底筒状(キャップ状)とされているとともに底面の中央部に貫通穴が形成され、その貫通穴にリードピン3が挿通されるとともに一端面が絶縁体1の他端面にロウ付けされる。即ち、金属部材8は、貫通孔1bの絶縁体1の他端面側開口の周囲に被着されたメタライズ金属層6に、ロウ材7を介してロウ付けすることによって絶縁体1に取着される。また、金属部材8の底面の貫通穴にリードピン3が挿通されてロウ材9を介してロウ付けされる。
【0022】
金属部材8を成すステンレスまたは耐食耐熱超合金は、ビッカース硬度がいずれも約160と硬いこと、および、例えば絶縁体1を構成する酸化アルミニウム焼結体の熱膨張係数(約7.0×10-6/℃)とステンレスの熱膨張係数(約17.5×10-6/℃)および耐食耐熱超合金の熱膨張係数(約16.2×10-6/℃)とが大きく相違することから、絶縁体1の貫通孔1bの開口の周囲にリードピン3をロウ材7を介して接合する際、両者の接合部に両者の熱膨張係数の相違に起因して大きな熱応力が発生しやすいので、金属部材8の肉厚は0.1乃至0.35mmであることが好ましい。
【0023】
金属部材8の厚みが0.1mm未満では、真空端子として片側が真空状態で片側が大気圧環境下で使用した場合に金属部材8自体が変形し、場合によっては破壊されてしまうこととなる。0.35mmを超えると、絶縁体1と金属部材8との熱膨張係数差に起因して発生する応力を金属部材8において緩和しにくくなり、絶縁体1にクラックが生じ気密不良が生じやすい。
【0024】
本発明のリードピン3は、ステンレス、耐食耐熱超合金または無酸素銅から成り、これにより、リードピン3が非磁性のものとなり、加速器等のマグネットにより強力な磁場が発生する真空装置を備えた理化学機器において、リードピン3が磁化されたりリードピン3の残留磁場が生じることがなく、支障なく使用することができる。
【0025】
本発明において、金属スリーブ2および金属部材8を成すステンレス、耐食耐熱超合金、リードピン3を成すステンレス、耐食耐熱超合金、無酸素銅は、それらの透磁率が1.1以下の材料であることから、リードピン3に電気信号を伝達させた際、金属スリーブ2、リードピン3および金属部材8に電気信号の伝達に伴う磁場が残留することはなく、残留磁場で電気信号にノイズが入り込むこともなくなる。その結果、リードピン3で伝達される電気信号のS/N比(信号と雑音との比)が小さくなる。
【0026】
かくして、本発明の真空端子は、金属スリーブ2を理化学機器の真空容器に取着し、真空容器内外の装置をリードピン3の突出した両端にそれぞれ電気的に接続することによって、真空容器内外の装置間で電気信号を伝達させる真空端子として機能する。
【0027】
【実施例】
本発明の真空端子の実施例について以下に説明する。
【0028】
図1の構成のものを以下のようにして製作した。純度約99.5重量%の酸化アルミニウム質焼結体から成り、一端に形成された鍔部1aの直径が7.5mm、鍔部1aの軸方向の長さが2.5mm、鍔部1a以外の部分の直径が2.5mm、全体の軸方向の長さが5mmであり、中心軸に沿って直径1.8mmの円形の貫通孔1bが形成された絶縁体1を用意した。絶縁体1の鍔部1aの外周面および貫通孔1bの絶縁体1の他端面側開口の周囲には、Mo粉末とMn粉末と酸化ケイ素(SiO2)粉末とに有機バインダや溶剤を混合してなる金属ペーストを、約10μmの厚さとなるように印刷塗布し、乾燥後加湿したフォーミングガス中で約1400℃の温度で焼成して、絶縁体1にMo−Mn合金からなるメタライズ層を被着した。その後、メタライズ層上にNiメッキ層を電解メッキ法により約2μmの厚さで被着してメタライズ金属層5とメタライズ金属層6を形成した。
【0029】
次に、絶縁体1の鍔部1aに金属スリーブ2を、貫通孔1bの上記開口の周囲に金属部材8を、金属部材8の底面の貫通穴にリードピン3を、それぞれロウ付けした。これらの金属スリーブ2、リードピン3、金属部材8は、ステンレスからなるものとした。金属スリーブ2は外径8.1mm、内径7.5mmの円筒形で、軸方向の長さは6.5mmであり、リードピン3は、断面が直径1.8mmの円形で長さが41mmである。
【0030】
このとき、ロウ材4,7,9としてAg−Cu合金からなる線状のプリフォームを接合部に設置し、真空端子全体を約820℃に加熱して、全ての部品をロウ付けした。
【0031】
次に、作製した真空端子の気密性について調べた。比較のため、金属部材8の肉厚を0.3mmとし、金属スリーブ2の肉厚を0.09mm、0.1mm、0.3mm、0.35mm、0.4mmにした5種類の真空端子を製作した。また、金属スリーブ2の肉厚を0.3mmとし、金属部材8も肉厚を0.09mm、0.1mm、0.3mm、0.35m、0.4mmにした5種類の真空端子を製作し、合計10種類の真空端子を得た。気密性の調査は、各部品をロウ付け後に内部を真空状態にし、外側からヘリウムガスを吹き付けた際に内部へのヘリウムガスの侵入がないかどうかを検出する方法で気密試験を行い、外観を観察することによって行った。その結果を表1に示す。
【0032】
【表1】

Figure 0004116872
【0033】
表1より、金属スリーブ2、金属部材8の肉厚が0.1mm未満では、真空端子を真空容器に設けて片側が真空状態、片側が大気圧下となるようにして使用した場合に、金属スリーブ2、金属部材8が変形し割れが生じ、絶縁体1にクラックが生じ易いことが判った。また、金属スリーブ2、金属部材8の肉厚が0.35mmを超えると、絶縁体1にクラックが生じ易いことが判った。
【0034】
なお、本発明は上記実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で変更を施すことは何ら差し支えない。
【0035】
【発明の効果】
本発明の真空端子は、金属スリーブおよび金属部材はステンレスまたは耐食耐熱超合金(JIS G 4901)から成り、リードピンはステンレス、耐食耐熱超合金または無酸素銅から成ることにより、非磁性でかつステンレス製等の真空容器との溶接性が良く、ロウ付け強度が大きくなるとともに、安価に製造できるものとなる。
【0036】
また、金属スリーブと絶縁体とのロウ付け部で金属スリーブの厚みが残部よりも薄くされていることにより、金属スリーブと絶縁体とのロウ付け後の降温時にロウ材が固化した状態で、金属スリーブと絶縁体との熱膨張率差により発生し絶縁体に働く応力が、金属スリーブのロウ付け部である薄い部分の変形により軽減される。その結果、絶縁体にクラックや欠け等の破損を発生させることなくロウ付けができることとなる。
【0037】
さらに、金属部材の肉厚が金属スリーブのロウ付け部の厚みと略同じとされていることにより、金属部材およびリードピンと絶縁体とのロウ付け後の降温時にロウ材が固化した状態で、金属部材およびリードピンと絶縁体との熱膨張率差により発生し絶縁体に働く応力が、金属部材の変形により軽減される。その結果、金属部材を用いずにリードピンと絶縁体とを直接ロウ付けする場合と比較して、絶縁体にクラックや欠け等の破損を発生させることなくロウ付けができることとなる。
【0038】
また本発明の真空端子は、好ましくは金属スリーブのロウ付け部の厚みおよび金属部材の肉厚が0.1乃至0.35mmとされていることから、ロウ付け後の降温時に絶縁体にクラックや欠け等の破損が発生するのをより効果的に防ぐことができる。
【図面の簡単な説明】
【図1】本発明の真空端子について実施の形態の例を示す断面図である。
【符号の説明】
1:絶縁体
1a:鍔部
1b:貫通孔
2:金属スリーブ
3:リードピン
4:ロウ材
5:メタライズ金属層
6:メタライズ金属層
7:ロウ材
8:金属部材
9:ロウ材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum terminal used for transmitting an electrical signal between devices inside and outside a vacuum vessel in a physics and chemistry instrument equipped with a vacuum vessel such as an electron microscope.
[0002]
[Prior art]
Conventionally, in a physics and chemistry instrument equipped with a vacuum vessel such as an electron microscope, a vacuum terminal is used to transmit an electric signal between devices inside and outside the vacuum vessel. This vacuum terminal is usually made of an aluminum oxide sintered body, one end of which is fixed to a vacuum vessel, a metal sleeve made of iron (Fe) -nickel (Ni) -cobalt (Co) alloy, and the like, and a collar at one end. And an insulator in which a through hole is formed along the central axis and the flange portion is brazed, and an Fe-Ni-Co alloy inserted and fixed with both ends protruding into the through hole of the insulator And a lead pin. Then, by fixing one end of the metal sleeve to the vacuum vessel and electrically connecting the inside and outside devices of the vacuum vessel and both ends of the lead pins, an electric signal can be transmitted between the two devices.
[0003]
The metal sleeve and the lead pin are bonded to the insulator by two layers of a metallized metal layer made of molybdenum-manganese and the like and a nickel plating layer on the outer peripheral surface of the flange portion of the insulator, the inner surface of the through hole, and the vicinity of the opening. Each of the metal layers having a structure is deposited, and the metal layer, the metal sleeve, and the lead pin are brazed with a brazing material such as silver brazing (a brazing material composed of a silver-copper alloy).
[0004]
Further, in physics and chemistry equipment such as an accelerator, there is a vacuum device that generates a strong magnetic field by a magnet, and a non-magnetic vacuum terminal may be required. Therefore, a nonmagnetic vacuum terminal has been proposed in which a metal sleeve is made of nonmagnetic titanium, and stainless steel is diffusion bonded to one end fixed to a vacuum vessel (see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-6-223902 [0006]
[Problems to be solved by the invention]
However, since the vacuum terminal of Patent Document 1 uses titanium and a diffusion bonding material, the manufacturing cost of the metal sleeve is very high, and brazing between the titanium metal sleeve and the insulator is strictly controlled. Otherwise, an intermetallic compound is formed between the titanium and the silver brazing, thereby extremely reducing the bonding strength. As a result, the strength and hermeticity required for a vacuum terminal cannot be obtained, and there is a problem in that strength failure and airtightness are likely to occur.
[0007]
Accordingly, the present invention has been completed in view of the above-mentioned problems in the prior art, and its purpose is good non-magnetic weldability with a vacuum vessel made of stainless steel or the like, and brazing strength and airtightness. It is to provide a high vacuum terminal.
[0008]
[Means for Solving the Problems]
The vacuum terminal of the present invention has a cylindrical metal sleeve and a substantially columnar shape in which a through hole is formed along the central axis and a flange is formed at one end, and the flange is an inner peripheral surface of the metal sleeve. An insulator made of ceramics brazed to a part of the entire body, a lead pin inserted and fixed with both ends protruding into the through-hole of the insulator, and a bottomed cylindrical shape with one end opened A metal member having a through hole formed in the center of the bottom surface, the lead pin being inserted into the through hole, and one end surface brazed to the other end surface of the insulator, And the metal member is made of stainless steel or a corrosion-resistant heat-resistant superalloy (JIS G 4901), and the lead pin is made of the stainless steel, the corrosion-resistant heat-resistant superalloy, or oxygen-free copper, and the gold In brazed portion between the sleeve and the insulator, part of the outer peripheral surface of the metal sleeve is concave, the thickness of the metal sleeve in the brazed portion is characterized in that it is thinner than the remainder Vacuum terminal. Moreover, it is preferable that the thickness of the metal member is substantially the same as the thickness of the brazing portion of the metal sleeve. It is preferable that a thickness of the brazing portion of the metal sleeve and a thickness of the metal member are 0.1 to 0.35 mm.
[0009]
The vacuum terminal of the present invention is non-magnetic because the metal sleeve and the metal member are made of stainless steel or corrosion-resistant heat-resistant superalloy (JIS G 4901), and the lead pin is made of stainless steel, corrosion-resistant heat-resistant superalloy or oxygen-free copper. It has good weldability with a vacuum vessel made of stainless steel or the like, increases brazing strength, and can be manufactured at low cost.
[0010]
In addition, since the thickness of the metal sleeve is thinner than the remaining portion at the brazed portion between the metal sleeve and the insulator, the brazing material is solidified when the temperature is lowered after the brazing between the metal sleeve and the insulator. The stress generated by the difference in thermal expansion coefficient between the sleeve and the insulator and acting on the insulator is reduced by deformation of a thin portion that is a brazed portion of the metal sleeve. As a result, brazing can be performed without causing damage such as cracks and chips to the insulator.
[0011]
Furthermore, since the thickness of the metal member is substantially the same as the thickness of the brazing portion of the metal sleeve, the brazing material is solidified when the temperature of the metal member and the lead pin and the insulator is lowered after brazing. Stress generated by the difference in thermal expansion coefficient between the member and the lead pin and the insulator and acting on the insulator is reduced by deformation of the metal member. As a result, brazing can be performed without causing breakage such as cracks or chips in the insulator as compared with the case where the lead pin and the insulator are brazed directly without using a metal member.
[0012]
In the vacuum terminal according to the present invention, preferably, the thickness of the brazing portion of the metal sleeve and the thickness of the metal member are 0.1 to 0.35 mm.
[0013]
In the vacuum terminal of the present invention, the thickness of the brazed portion of the metal sleeve and the thickness of the metal member are preferably 0.1 to 0.35 mm, so that the insulator is damaged such as cracks and chips when the temperature is lowered after brazing. Can be effectively prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The vacuum terminal of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of a vacuum terminal according to the present invention. In FIG. 1, 1 is an insulator, 1a is a flange portion of the insulator 1, 1b is a through hole of the insulator 1, 2 is a metal sleeve, 3 is a lead pin, 4, 7, and 9 are brazing materials, and 5 and 6 are metallized. A metal layer 8 is a metal member.
[0015]
The vacuum terminal of the present invention has a cylindrical metal sleeve 2 and a substantially columnar shape in which a through hole 1b is formed along the central axis and a flange portion 1a is formed at one end. An insulator 1 made of ceramics brazed to a part of the inner peripheral surface, a lead pin 3 inserted and fixed by protruding both ends of the through-hole 1b of the insulator 1, and a bottomed one end opened A metal member 8 having a cylindrical shape and having a through hole formed in the center of the bottom surface, the lead pin 3 being inserted into the through hole, and having one end surface brazed to the other end surface of the insulator 1; The sleeve 2 and the metal member 8 are made of stainless steel (JIS G 4303 or the like) or a corrosion-resistant heat-resistant superalloy (JIS G4901: Inconel), and the lead pin 3 is stainless steel, corrosion-resistant heat-resistant superalloy or oxygen-free copper ( HI 3100 etc.), the thickness of the metal sleeve 2 is made thinner than the remaining portion at the brazed portion of the metal sleeve 2 and the insulator 1, and the thickness of the metal member 8 is the same as that of the brazed portion of the metal sleeve 2. It is almost the same as the thickness.
[0016]
Note that that the thickness of the metal member 8 and the thickness of the brazed portion of the metal sleeve 2 are substantially the same means that the difference between them is in the range of about 0.2 mm or less.
[0017]
The insulator 1 of the present invention is made of an electrically insulating material such as an aluminum oxide sintered body (alumina ceramic), and holds the lead pin 3 with electrical insulation. In this insulator 1, the flange 1a is brazed to a part of the inner peripheral surface of the cylindrical metal sleeve 2 via a brazing material 4, and a metal member 8 is formed around the opening on the other end surface side of the through hole 1b. It is brazed via a brazing material 7. Further, the insulator 1 has a metallized layer 5 attached to the outer peripheral surface of the flange portion 1 a, and a metal sleeve 2 is brazed to the metallized layer 5 via a brazing material 4. Further, the lead pin 3 and the metal member 8 are brazed via a brazing material 9.
[0018]
The metallized metal layer 5 is made of molybdenum-manganese whose surface is coated with a nickel plating layer. For example, a metal paste obtained by adding and mixing a suitable organic solvent and solvent to molybdenum-manganese powder is conventionally well-known screen printing. Is printed on the outer peripheral surface of the flange 1a of the insulator 1 to a thickness of about 50 μm and fired at a temperature of about 1500 ° C., and then the surface of the metallized layer made of molybdenum-manganese is electroplated or It is formed by depositing nickel with a thickness of about 10 μm by an electroless plating method.
[0019]
The metal sleeve 2 of the present invention is for attaching a vacuum terminal to a vacuum vessel of a physics and chemistry instrument, and is generally made of stainless steel by being made of stainless steel (hereinafter also referred to as stainless steel) or a corrosion-resistant heat-resistant superalloy. Good and easy welding can be performed on the container. Both the stainless steel and the corrosion-resistant heat-resistant superalloy have a Vickers hardness (Hv) of about 160, and, for example, the thermal expansion coefficient of the aluminum oxide sintered body constituting the insulator 1 (about 7.0 × 10 −6 / ) And the thermal expansion coefficient of stainless steel (about 17.5 × 10 -6 / ° C) and the thermal expansion coefficient of corrosion-resistant heat-resistant superalloy (about 16.2 × 10 -6 / ° C). When the metal sleeve 2 is joined to the part 1a via the brazing material 4, a large stress is likely to be generated due to the difference in thermal expansion coefficient between the two, so that the metal sleeve 2 and the insulator 1 are brazed. The thickness of the metal sleeve 2 is preferably 0.1 to 0.35 mm.
[0020]
If the thickness of the metal sleeve 2 is less than 0.1 mm, the metal sleeve 2 itself is deformed and destroyed in some cases when the one side is used in a vacuum state and one side is used in an atmospheric pressure environment as a vacuum terminal. If it exceeds 0.35 mm, the stress generated due to the difference in thermal expansion coefficient between the insulator 1 and the metal sleeve 2 becomes difficult to be relaxed in the metal sleeve 2, and the insulator 1 is cracked and airtight defects are likely to occur.
[0021]
The insulator 1 is fixed to the through hole 1b formed along the central axis through the metal member 8 with the lead pins 3 protruding at both ends. The lead pin 3 is for electrically connecting devices inside and outside the vacuum vessel, and is made of the stainless steel, the corrosion-resistant heat-resistant superalloy, or oxygen-free copper. The metal member 8 has a bottomed cylindrical shape (cap shape) with one end open, a through hole is formed in the center of the bottom surface, the lead pin 3 is inserted into the through hole, and one end surface is insulated. The other end surface of the body 1 is brazed. That is, the metal member 8 is attached to the insulator 1 by brazing the metallized metal layer 6 deposited around the opening of the other end surface side of the insulator 1 in the through hole 1b through the brazing material 7. The Further, the lead pin 3 is inserted into the through hole on the bottom surface of the metal member 8 and brazed via the brazing material 9.
[0022]
The stainless steel or the corrosion-resistant heat-resistant superalloy forming the metal member 8 has a Vickers hardness of about 160, and, for example, the thermal expansion coefficient of the aluminum oxide sintered body constituting the insulator 1 (about 7.0 × 10 −6 / ° C.) and thermal expansion coefficient of stainless steel (approximately 17.5 × 10 -6 / ℃) and thermal expansion coefficient of the corrosion resistant superalloys (about 16.2 × 10 -6 / ℃) and since it is largely different, the through insulator 1 When the lead pin 3 is joined to the periphery of the opening of the hole 1b via the brazing material 7, a large thermal stress is likely to be generated due to the difference in thermal expansion coefficient between the two, so that the thickness of the metal member 8 is increased. The thickness is preferably 0.1 to 0.35 mm.
[0023]
If the thickness of the metal member 8 is less than 0.1 mm, the metal member 8 itself is deformed and destroyed in some cases as a vacuum terminal when one side is used in a vacuum state and one side is used in an atmospheric pressure environment. If it exceeds 0.35 mm, the stress generated due to the difference in thermal expansion coefficient between the insulator 1 and the metal member 8 becomes difficult to be relaxed in the metal member 8, and the insulator 1 is cracked and airtight defects are likely to occur.
[0024]
The lead pin 3 of the present invention is made of stainless steel, a corrosion-resistant heat-resistant superalloy, or oxygen-free copper. As a result, the lead pin 3 becomes non-magnetic, and a physics and chemistry instrument equipped with a vacuum device that generates a strong magnetic field by a magnet such as an accelerator. The lead pin 3 is not magnetized and the residual magnetic field of the lead pin 3 is not generated, and can be used without any trouble.
[0025]
In the present invention, the stainless steel forming the metal sleeve 2 and the metal member 8, the corrosion-resistant heat-resistant superalloy, the stainless steel forming the lead pin 3, the corrosion-resistant heat-resistant superalloy, and oxygen-free copper are materials having a magnetic permeability of 1.1 or less. When an electrical signal is transmitted to the lead pin 3, a magnetic field accompanying the transmission of the electrical signal does not remain in the metal sleeve 2, the lead pin 3, and the metal member 8, and noise does not enter the electrical signal due to the residual magnetic field. As a result, the S / N ratio (ratio of signal to noise) of the electrical signal transmitted by the lead pin 3 is reduced.
[0026]
Thus, in the vacuum terminal of the present invention, the metal sleeve 2 is attached to the vacuum vessel of the physics and chemistry equipment, and the devices inside and outside the vacuum vessel are electrically connected to the projecting ends of the lead pins 3, respectively. It functions as a vacuum terminal that transmits electrical signals between them.
[0027]
【Example】
Examples of the vacuum terminal of the present invention will be described below.
[0028]
The thing of the structure of FIG. 1 was manufactured as follows. It consists of an aluminum oxide sintered body with a purity of about 99.5% by weight. The diameter of the flange 1a formed at one end is 7.5mm, the axial length of the flange 1a is 2.5mm, and the diameter of the portion other than the flange 1a. 2.5 mm, the total axial length was 5 mm, and an insulator 1 was prepared in which a circular through hole 1b having a diameter of 1.8 mm was formed along the central axis. An organic binder and a solvent are mixed with Mo powder, Mn powder, and silicon oxide (SiO 2 ) powder around the outer peripheral surface of the flange 1a of the insulator 1 and the opening on the other end surface side of the insulator 1 in the through hole 1b. The metal paste is printed and applied to a thickness of about 10 μm, dried and fired in a humidified forming gas at a temperature of about 1400 ° C., and the insulator 1 is coated with a metallized layer made of a Mo—Mn alloy. I wore it. Thereafter, a Ni plating layer was deposited on the metallized layer to a thickness of about 2 μm by electrolytic plating to form a metallized metal layer 5 and a metallized metal layer 6.
[0029]
Next, the metal sleeve 2 was brazed to the flange portion 1a of the insulator 1, the metal member 8 was brazed around the opening of the through hole 1b, and the lead pin 3 was brazed to the through hole in the bottom surface of the metal member 8. These metal sleeve 2, lead pin 3, and metal member 8 are made of stainless steel. The metal sleeve 2 has a cylindrical shape with an outer diameter of 8.1 mm and an inner diameter of 7.5 mm, the axial length is 6.5 mm, and the lead pin 3 has a circular section with a diameter of 1.8 mm and a length of 41 mm.
[0030]
At this time, a linear preform made of an Ag—Cu alloy was placed as a brazing material 4, 7, 9 at the joint, and the entire vacuum terminal was heated to about 820 ° C. to braze all parts.
[0031]
Next, the airtightness of the produced vacuum terminal was examined. For comparison, five types of vacuum terminals were manufactured in which the thickness of the metal member 8 was 0.3 mm and the thickness of the metal sleeve 2 was 0.09 mm, 0.1 mm, 0.3 mm, 0.35 mm, and 0.4 mm. In addition, the metal sleeve 2 has a thickness of 0.3 mm, and the metal member 8 has a thickness of 0.09 mm, 0.1 mm, 0.3 mm, 0.35 m, and 0.4 mm. Got the terminal. The airtightness investigation is performed by brazing each part and then vacuuming the interior, and when helium gas is blown from the outside, an airtight test is performed to detect whether or not helium gas has entered the interior. This was done by observing. The results are shown in Table 1.
[0032]
[Table 1]
Figure 0004116872
[0033]
From Table 1, when the thickness of the metal sleeve 2 and the metal member 8 is less than 0.1 mm, the metal sleeve is used when the vacuum terminal is provided in a vacuum vessel and is used with one side under vacuum and one side under atmospheric pressure. 2. It was found that the metal member 8 was deformed and cracked, and the insulator 1 was easily cracked. Further, it has been found that when the thickness of the metal sleeve 2 and the metal member 8 exceeds 0.35 mm, the insulator 1 is easily cracked.
[0034]
In addition, this invention is not limited to the said embodiment and Example, It does not interfere at all within the range which does not deviate from the summary of this invention.
[0035]
【The invention's effect】
In the vacuum terminal of the present invention, the metal sleeve and the metal member are made of stainless steel or corrosion-resistant heat-resistant superalloy (JIS G 4901), and the lead pin is made of stainless steel, corrosion-resistant heat-resistant superalloy or oxygen-free copper, so that it is nonmagnetic and made of stainless steel. The weldability with a vacuum vessel such as the above is good, the brazing strength is increased, and it can be manufactured at a low cost.
[0036]
In addition, since the thickness of the metal sleeve is thinner than the remaining portion at the brazed portion between the metal sleeve and the insulator, the brazing material is solidified when the temperature is lowered after brazing between the metal sleeve and the insulator. The stress generated by the difference in thermal expansion coefficient between the sleeve and the insulator and acting on the insulator is reduced by deformation of a thin portion that is a brazed portion of the metal sleeve. As a result, brazing can be performed without causing damage such as cracks and chips to the insulator.
[0037]
Further, since the thickness of the metal member is substantially the same as the thickness of the brazed portion of the metal sleeve, the brazing material is solidified when the temperature of the metal member and the lead pin and the insulator is lowered after brazing. Stress generated by the difference in thermal expansion coefficient between the member and the lead pin and the insulator and acting on the insulator is reduced by deformation of the metal member. As a result, brazing can be performed without causing breakage such as cracks or chips in the insulator as compared with the case where the lead pin and the insulator are brazed directly without using a metal member.
[0038]
The vacuum terminal of the present invention preferably has a thickness of the brazing portion of the metal sleeve and a thickness of the metal member of 0.1 to 0.35 mm, so that the insulator is free from cracks and chips when the temperature is lowered after brazing. It is possible to prevent damage from occurring more effectively.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a vacuum terminal of the present invention.
[Explanation of symbols]
1: Insulator 1a: collar 1b: through hole 2: metal sleeve 3: lead pin 4: brazing material 5: metallized metal layer 6: metallized metal layer 7: brazing material 8: metal member 9: brazing material

Claims (3)

筒状の金属スリーブと、中心軸に沿って貫通孔が形成されるとともに一端に鍔部が形成された略柱状とされ、前記鍔部が前記金属スリーブの内周面の一部に全周にわたってロウ付けされたセラミックスから成る絶縁体と、該絶縁体の前記貫通孔に両端を突出させて挿入固定されたリードピンと、一端が開放された有底筒状とされているとともに底面の中央部に貫通穴が形成され、該貫通穴に前記リードピンが挿通されるとともに一端面が前記絶縁体の他端面にロウ付けされた金属部材とを具備しており、前記金属スリーブおよび前記金属部材はステンレススチールまたは耐食耐熱超合金(JIS G 4901)から成り、前記リードピンは前記ステンレススチール、前記耐食耐熱超合金または無酸素銅から成り、
前記金属スリーブと前記絶縁体とのロウ付け部で、前記金属スリーブの外周面の一部が凹状とされて、前記ロウ付け部で前記金属スリーブの厚みが残部より薄肉化されていることを特徴とする真空端子。
A cylindrical metal sleeve and a substantially columnar shape in which a through hole is formed along the central axis and a flange is formed at one end, and the flange extends over a part of the inner circumferential surface of the metal sleeve. An insulator made of brazed ceramic, a lead pin that is inserted and fixed by projecting both ends into the through-hole of the insulator, a bottomed cylindrical shape with one end open, and at the center of the bottom surface A through hole is formed, and the lead pin is inserted into the through hole, and one end surface is brazed to the other end surface of the insulator, and the metal sleeve and the metal member are made of stainless steel. Or made of a corrosion-resistant heat-resistant superalloy (JIS G 4901), and the lead pin is made of the stainless steel, the corrosion-resistant heat-resistant superalloy, or oxygen-free copper,
A part of the outer peripheral surface of the metal sleeve is concave at the brazed portion of the metal sleeve and the insulator, and the thickness of the metal sleeve is thinner than the remaining portion at the brazed portion. Vacuum terminal.
前記金属部材の肉厚が前記金属スリーブの前記ロウ付け部の厚みと略同じとされていることを特徴とする請求項1記載の真空端子。  2. The vacuum terminal according to claim 1, wherein the thickness of the metal member is substantially the same as the thickness of the brazing portion of the metal sleeve. 前記金属スリーブの前記ロウ付け部の厚みおよび前記金属部材の肉厚が0.1乃至0.35mmとされていることを特徴とする請求項1または2記載の真空端子。 3. The vacuum terminal according to claim 1, wherein a thickness of the brazing portion of the metal sleeve and a thickness of the metal member are 0.1 to 0.35 mm.
JP2002346361A 2002-11-28 2002-11-28 Vacuum terminal Expired - Fee Related JP4116872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346361A JP4116872B2 (en) 2002-11-28 2002-11-28 Vacuum terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346361A JP4116872B2 (en) 2002-11-28 2002-11-28 Vacuum terminal

Publications (2)

Publication Number Publication Date
JP2004179083A JP2004179083A (en) 2004-06-24
JP4116872B2 true JP4116872B2 (en) 2008-07-09

Family

ID=32707294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346361A Expired - Fee Related JP4116872B2 (en) 2002-11-28 2002-11-28 Vacuum terminal

Country Status (1)

Country Link
JP (1) JP4116872B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789766B2 (en) * 2006-09-28 2011-10-12 京セラ株式会社 Airtight terminal and electric device using the same
JP5375741B2 (en) * 2010-05-24 2013-12-25 住友電装株式会社 connector

Also Published As

Publication number Publication date
JP2004179083A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4765538B2 (en) Vacuum valve, vacuum valve manufacturing method
JP2003212669A (en) Joined product of different kinds of materials and its manufacturing process
US6436545B1 (en) Joint body of ceramic member and metal member and method of producing the same
JP4116872B2 (en) Vacuum terminal
US6156978A (en) Electrical feedthrough and its preparation
KR100459748B1 (en) Electrostatic chuck and method for the fabrication thereof
JP5289242B2 (en) Ceramic structure and semiconductor device
JP7311447B2 (en) airtight terminal
JP2007201335A (en) Airtight terminal
JP4012764B2 (en) Through terminal and X-ray tube
JP4210087B2 (en) Current introduction terminal
JP2005235577A (en) Airtight terminal
JP3866009B2 (en) Package for electrostatic chuck and semiconductor element storage
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JP3012082B2 (en) Airtight terminal
CN108461451A (en) sealing structure and preparation method thereof
JP2902891B2 (en) Vacuum terminal
JP2005216641A (en) Airtight terminal
JP3881606B2 (en) Semiconductor element storage package and semiconductor device
JP4578033B2 (en) Insulation joint
JP4189173B2 (en) Insulator
JP2002042920A (en) Airtight terminal
JP2004228535A (en) Semiconductor element housing package and semiconductor device
JP3752424B2 (en) Insulation joint
EP3701547B1 (en) Electrical connector with ceramic insulator and aluminum sleeve and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees