JP4115828B2 - Preparation of 2- (alkylidene) cycloalkanone - Google Patents

Preparation of 2- (alkylidene) cycloalkanone Download PDF

Info

Publication number
JP4115828B2
JP4115828B2 JP2002378007A JP2002378007A JP4115828B2 JP 4115828 B2 JP4115828 B2 JP 4115828B2 JP 2002378007 A JP2002378007 A JP 2002378007A JP 2002378007 A JP2002378007 A JP 2002378007A JP 4115828 B2 JP4115828 B2 JP 4115828B2
Authority
JP
Japan
Prior art keywords
compound
formula
reaction
represented
cycloalkanone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002378007A
Other languages
Japanese (ja)
Other versions
JP2004203844A (en
Inventor
博貢 西村
久憲 羽木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002378007A priority Critical patent/JP4115828B2/en
Publication of JP2004203844A publication Critical patent/JP2004203844A/en
Application granted granted Critical
Publication of JP4115828B2 publication Critical patent/JP4115828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は香料素材として有用なジヒドロジャスモン酸メチル、δ−ラクトン等の中間体である2−(アルキリデン)シクロアルカノンの製法、並びにそれを用いた、アルキル(3−オキソ−2−アルキルシクロアルキル)アセテート及び5−アルキル−5−アルカノリドの製法に関する。
【0002】
【従来の技術】
従来、2−(1−ヒドロキシアルキル)シクロアルカノンから2−(アルキリデン)シクロアルカノンを製造する際には、脱水反応触媒として均一系の酸触媒が一般的に用いられている。
【0003】
例えば特許文献1では、2−(アルキリデン)シクロアルカノンを得るために、アルドール縮合体にシュウ酸を添加して脱水反応を行っているが、反応後にアルカリによる中和、分層が必要であり、工程が多く、排水も生じる。また、酸により設備が腐食したり、アルカリによる中和時に2−(アルキリデン)シクロアルカノンが重合および分解し収率が低下する場合もある。
【0004】
さらに、このような重合および分解のため、これを用いて合成されるアルキル(3−オキソ−2−アルキルシクロアルキル)アセテートや5−アルキル−5−アルカノリドの匂いの低下が生じる場合がある。
【0005】
【特許文献1】
特開昭56−147740号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、2−(アルキリデン)シクロアルカノンを効率的に高収率で製造する方法、並びにそれを用いた香料素材や生理活性物質として有用なアルキル(3−オキソ−2−アルキルシクロアルキル)アセテート及び5−アルキル−5−アルカノリドの製法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、式(1)
【0008】
【化7】

Figure 0004115828
【0009】
(式中、nは1又は2の整数、R1及びR2はそれぞれ、水素原子又は炭素数1〜8の直鎖もしくは分岐鎖のアルキル基を示すか、あるいはR1とR2が一緒になって隣接する炭素原子と共にシクロペンタン環もしくはシクロヘキサン環を形成してもよい。)
で表される2−(1−ヒドロキシアルキル)シクロアルカノン(以下化合物(1)という)を、固体酸触媒を用いて脱水反応させる、式(2)
【0010】
【化8】
Figure 0004115828
【0011】
(式中、n、R1及びR2は前記の意味を示す。)
で表される2−(アルキリデン)シクロアルカノン(以下化合物(2)という)の製法を提供する。
【0012】
また、本発明は、上記の製法で得られた化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、式(3)
【0013】
【化9】
Figure 0004115828
【0014】
(式中、n、R1及びR2は前記の意味を示す。)
で表される2−(アルキル)シクロアルケノン(以下化合物(3)という)とし、次いで式(4)
【0015】
【化10】
Figure 0004115828
【0016】
(式中、R3は炭素数1〜3の直鎖又は分岐鎖のアルキル基を示し、2個のR3は同一でも異なっていてもよい。)
で表されるマロン酸ジエステル(以下化合物(4)という)とを反応させ、次いで水を反応させる、式(5)
【0017】
【化11】
Figure 0004115828
【0018】
(式中、n、R1、R2及びR3は前記の意味を示す。)
で表されるアルキル(3−オキソ−2−アルキルシクロアルキル)アセテート(以下化合物(5)という)の製法、並びに上記製法で得られた化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)とし、次いで水素還元させた後、バイヤービリガー酸化させる、式(6)で表される5−アルキル−5−アルカノリド(以下化合物(6)という)の製法を提供する。
【0019】
【化12】
Figure 0004115828
【0020】
(式中、n、R1及びR2は前記の意味を示す。)
【0021】
【発明の実施の形態】
[化合物(2)の製法]
本発明の原料として用いられる、化合物(1)において、1−ヒドロキシアルキル基を構成するアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、ヘプチル基等が挙げられる。
【0022】
この化合物(1)は、一般的に公知の方法により製造でき、例えば炭素数5又は6のシクロアルカノンと、式(7)
【0023】
【化13】
Figure 0004115828
【0024】
(式中、R1及びR2は前記の意味を示す。)
で表されるアルデヒド又はケトンを反応させることにより得ることができる。本発明では、このような方法で得られる化合物(1)を蒸留せずに用いることもできるが、固体酸触媒の活性が低下する場合は蒸留精製して使用してもよい。
【0025】
本発明に用いられる固体酸触媒としては、AlPO4、Al23、活性アルミナ、硫酸ジルコニア、トリポリリン酸二水素アルミニウム、TiO2等の無機金属固体触媒や、カチオン交換樹脂、SiO2−TiO2、SiO2−CaO、SiO2−MgO、ゼオライト等を用いることができ、AlPO4、TiO2、カチオン交換樹脂から選ばれる少なくとも1種が好ましい。
【0026】
固体酸触媒の形状は、粉末でも成型したものでもよい。さらに、固体酸触媒の使用方法も、懸濁床でも固定床でもよいが、固定床の場合には、触媒と反応終了物との分離工程がいらないことから、大量生産する際には有効である。また、この脱水反応は回分式でも連続式でもよい。
【0027】
固体酸触媒の使用量は、反応形式により適宜最適化すればよいが、回分式の場合は、反応性、経済性の面から原料である化合物(1)に対して0.5〜20重量%が好ましく、1〜10重量%がより好ましい。
【0028】
また、例えば化合物(3)を得るために脱水反応後に異性化反応を行う場合は、脱水反応転化率が低すぎると、異性化反応中に脱水反応を同時に行わなければならず、異性化反応を効率的に行える温度(80℃〜200℃)を維持することが困難となり、また、脱水反応転化率が高すぎると、脱水反応の原料の化合物(1)や生成物の化合物(2)が重合および分解し、収率の低下を招くので、脱水反応転化率は40〜90%が好ましく、50〜80%がより好ましい。
ここで、脱水反応転化率は、以下の式(I)で定義される値である。
【0029】
【数1】
Figure 0004115828
【0030】
脱水反応の温度は、反応を短時間で終わらせ、化合物(2)の重合および分解を防いで収率の低下を防ぐという観点から、70〜150℃が好ましく、90〜120℃が更に好ましい。また、反応圧力は、常圧でも反応は進行するが、生成する水を効率的に系外へ留去させ、原料および反応生成物を留出させないで効率的に反応させるために、20〜101kPaが好ましく、20〜80kPaの減圧下で反応させることが更に好ましい。
【0031】
本発明の脱水反応においては、生成する水を留去しながら反応を行うことが好ましい。反応後は、固体酸触媒を濾過等により、反応液と容易に分離することができ、リサイクルすることも可能である。
【0032】
[化合物(5)の製法]
上記製法により得られた化合物(2)、又は化合物(1)を含有する化合物(2)を原料とし、例えば特開昭56−147740号公報に記載の方法により香料素材や生理活性剤として有用な化合物(5)を得ることができる。
【0033】
具体的には、まず化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)を得る。
【0034】
この脱水反応及び異性化反応は、既知の方法を用いることができ、例えば特開2001−328965号公報に記載されているように、化合物(2)、又は化合物(1)を含有する化合物(2)に、アミンとハロゲン化水素からなる触媒を作用させて行う。
【0035】
ここで用いるアミンとしては、アニリン、ジフェニルアミン、ピリジン、ピコリン、キノリン、ポリビニルピリジン等の芳香族アミン又は複素芳香環アミンが好ましく、特にピリジン、ピコリン及びキノリンが好ましい。ハロゲン化水素としては、塩化水素、臭化水素又はヨウ化水素等が挙げられ、特に塩化水素又は臭化水素が好ましい。
【0036】
反応は、アルコール溶媒中又は無溶媒下で行うのが好ましい。アルコール溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、ペンタノール、ヘキサノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、1,8−オクタンジオール、グリセリン、ポリエチレングリコール等が挙げられ、炭素数1〜8の低級アルコール類が特に好ましい。反応温度は80〜200℃、特に100〜180℃が好ましい。
【0037】
次いで、得られる化合物(3)と化合物(4)とを塩基性触媒存在下に反応させて、式(8)で表される化合物(以下化合物(8)という)を得る。
【0038】
【化14】
Figure 0004115828
【0039】
(式中、n、R1、R2及びR3は前記の意味を示す。)
化合物(3)に対して化合物(4)を、好ましくは1〜5モル倍、更に好ましくは1.2〜2モル倍の割合で反応させる。
【0040】
塩基性触媒としては、ナトリウム、カリウム等のアルカリ金属、ナトリウムアルコキシド、カリウムアルコキシド等のアルカリ金属アルコキシド等が挙げられる。触媒の使用量は化合物(3)に対して0.02〜0.2モル倍が好ましい。溶媒としてはアルコール類等の極性溶媒が好ましい。反応温度は−10〜30℃の範囲が好ましく、0〜20℃の範囲が更に好ましい。
【0041】
次に、得られた化合物(8)と水とを反応させることにより、化合物(5)を製造することができる。水は、化合物(8)に対して1〜3モル倍量を反応系中に滴下しながら反応させることが好ましい。反応温度は150〜220℃の範囲が好ましい。
【0042】
このようにして得られた化合物(5)は、脱水反応において均一系の酸触媒を用いた場合に比べ、収率がよく、不純物が少ないので、化合物(5)を高純度で得るための精留負荷が低減でき、香料素材として優れたものである。
【0043】
[化合物(6)の製法]
上記製法により得られた化合物(2)、又は化合物(1)を含有する化合物(2)を原料とし、既知の一般的な方法により、香料素材や生理活性剤として有用な化合物(6)を得ることができる。
【0044】
例えば、上記のように化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)を得る。次いで、Pd/C等の触媒存在下で水素還元させ、式(9)で表される化合物(以下化合物(9)という)を得る。
【0045】
【化15】
Figure 0004115828
【0046】
(式中、n、R1及びR2は前記の意味を示す。)
得られた化合物(9)を、例えば特開平9−104681号公報に記載されているように、過酢酸等を酸化剤として用い、バイヤービリガー(Baeyer-Villiger)酸化させて、化合物(6)を得る。
【0047】
このようにして得られた化合物(6)は、脱水反応において均一系の酸触媒を用いた場合に比べ、収率がよく、不純物が少ないので、化合物(6)を高純度で得るための精留負荷が低減でき、香料素材として優れたものである。
【0048】
【実施例】
以下の例において、生成物の定量はガスクロマトグラフィーによる内部標準法(内標は、カルビトール又はウンデカン)によって行った。
【0049】
製造例1
滴下槽を備えた6m3の反応槽に、シクロペンタノン2241kg(26.6kmol)、水1007kg、48%NaOH11kgを仕込み、撹拌しながら15℃に冷却した後、同温度でバレルアルデヒド985kg(11.4kmol)を5時間かけて滴下した。滴下終了後、同温度で1時間撹拌した。反応終了後、中和し、過剰のシクロペンタノンを蒸留回収した後、有機層を分析した結果、反応終了品1868kg中には、2−(1−ヒドロキシペンチル)−シクロペンタノンが1706kg含まれていた。
【0050】
実施例1
脱水管を備えた300mlの4つ口フラスコに、製造例1と同様に製造した反応終了品を精留して得られた2−(1−ヒドロキシペンチル)−シクロペンタノン170g(0.99mol)、TiO2(球状成型品、直径1.5mm)8.5gを加え、100℃、53kPaになるように加熱し混合した。反応6時間後には、留分が16.7g得られ、反応終了物を分析すると、2−ペンチリデンシクロペンタノンが141g含まれていることがわかった。収率は93%であった。
【0051】
実施例2
実施例1と同様の装置に、2−(1−ヒドロキシペンチル)−シクロペンタノン170g(0.99mol)、AlPO4(ヌードル状成型品、直径0.8mm、長さ<5mm)8.5gを加え、120℃、101kPaになるように加熱し混合した。反応5時間後には、留分が16.7g得られ、反応終了物を分析すると、2−ペンチリデンシクロペンタノンが141g含まれていることがわかった。収率は93%であった。
【0052】
実施例3
固体酸触媒としてNafion NR−50(デュポン(株)、ヌードル状成型品)1.7gを用いる以外は実施例2と同様にして、反応を行った結果、2−ペンチリデンシクロペンタノンが121g得られた。収率は80%であった。
【0053】
実施例4
固体酸触媒としてDIAION RCP160M(三菱化学(株)、球状成型品、直径約1mm)8.5gを用い、圧力26.7kPa、温度100℃とする以外は実施例2と同様にして、反応を行った結果、2−ペンチリデンシクロペンタノンが94g得られた。収率は62%であった。
【0054】
実施例5
実施例1と同様にして得られた反応終了物中の固体酸触媒を濾過し、153gの濾過終了物を得た。この中に含まれる2−ペンチリデンシクロペンタノンは141g(0.93mol)であった。この濾過終了物をn−ブタノール153gに溶かし、130℃に昇温した後、同温度で3−ピコリン14.5g(0.15mol)と35%塩酸10.5g(0.1mol)の混合液を30分で滴下した。滴下終了後、同温度で3.5時間加熱攪拌した。反応終了後、室温まで冷却し、水酸化ナトリウム水溶液で中和した後、有機層を分析した結果、反応終了品中には、2−ペンチル−2−シクロペンテノンが118g含まれていることがわかった。この異性化反応の収率は83%であった。
【0055】
この反応終了品を精留し、2−ペンチル−2−シクロペンテノンを95g(0.6mol)得た。さらに、窒素雰囲気下にてマロン酸ジメチル118g(0.9mol)を無水メタノール38gに溶解し、0℃に冷却して、ナトリウムメトキシド(30%メタノール溶液)6.5g(0.036mol)を添加したものに、上記で得られた2−ペンチル−2−シクロペンテノン95g(0.6mol)を0℃で、2時間かけて滴下した。滴下終了後、未反応のマロン酸ジメチルを減圧留去し、160gのマイケル付加物を得た。
【0056】
蒸留留出管をつけた反応装置に、上記で得られたマイケル付加物を加え、215℃に加熱し、水を3.2g/h(2%/h)の速度で滴下した。発生する二酸化炭素とメタノールを留出させながら、215℃で、4時間滴下反応を行った。反応終了後、粗生成物126g中に、3−オキソ−2−ペンチルシクロペンチル酢酸メチル123gを得た。
【0057】
粗生成物を精留して得られた3−オキソ−2−ペンチルシクロペンチル酢酸メチルは、フルーティでジャスミン様の香気を有しており、香料素材としても優れたものであった。
【0058】
【発明の効果】
本発明の方法によれば、脱水反応触媒として均一系触媒を用いる場合のように反応後に中和/分層等の工程がなく、設備の腐食の可能性もなく、高収率かつ高生産性で2−(アルキリデン)シクロアルカノンを製造することができる。更に、得られた2−(アルキリデン)シクロアルカノンを用い、香料素材や生理活性物質として有用なアルキル(3−オキソ−2−アルキルシクロアルキル)アセテート及び5−アルキル−5−アルカノリドを高収率、高純度で製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 2- (alkylidene) cycloalkanone which is an intermediate such as methyl dihydrojasmonate and δ-lactone useful as a perfume material, and alkyl (3-oxo-2-alkylcycloalkyl) using the same. ) It relates to a process for the production of acetate and 5-alkyl-5-alkanolides.
[0002]
[Prior art]
Conventionally, when producing 2- (alkylidene) cycloalkanone from 2- (1-hydroxyalkyl) cycloalkanone, a homogeneous acid catalyst is generally used as a dehydration reaction catalyst.
[0003]
For example, in Patent Document 1, in order to obtain 2- (alkylidene) cycloalkanone, oxalic acid is added to the aldol condensate to perform a dehydration reaction. However, neutralization with an alkali and layer separation are necessary after the reaction. There are many processes and wastewater is also generated. In addition, the equipment may be corroded by an acid, or 2- (alkylidene) cycloalkanone may be polymerized and decomposed during neutralization with an alkali to lower the yield.
[0004]
Furthermore, due to such polymerization and decomposition, the odor of alkyl (3-oxo-2-alkylcycloalkyl) acetate and 5-alkyl-5-alkanolide synthesized using the same may be lowered.
[0005]
[Patent Document 1]
JP-A-56-147740 [0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing 2- (alkylidene) cycloalkanone in high yield, and alkyl (3-oxo-2-alkylcyclohexane) useful as a fragrance material or a physiologically active substance using the method. It is to provide a process for the preparation of (alkyl) acetates and 5-alkyl-5-alkanolides.
[0007]
[Means for Solving the Problems]
The present invention relates to formula (1)
[0008]
[Chemical 7]
Figure 0004115828
[0009]
(Wherein n represents an integer of 1 or 2, R 1 and R 2 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 together And may form a cyclopentane ring or a cyclohexane ring with adjacent carbon atoms.)
A 2- (1-hydroxyalkyl) cycloalkanone represented by the following formula (2) is subjected to a dehydration reaction using a solid acid catalyst.
[0010]
[Chemical 8]
Figure 0004115828
[0011]
(In the formula, n, R 1 and R 2 have the above-mentioned meanings.)
The manufacturing method of 2- (alkylidene) cycloalkanone (henceforth a compound (2)) represented by these is provided.
[0012]
In the present invention, the compound (2) obtained by the above production method is isomerized, or the compound (2) containing the compound (1) is subjected to an isomerization reaction while dehydrating to give a compound of formula (3 )
[0013]
[Chemical 9]
Figure 0004115828
[0014]
(In the formula, n, R 1 and R 2 have the above-mentioned meanings.)
2- (alkyl) cycloalkenone (hereinafter referred to as compound (3)) represented by formula (4)
[0015]
[Chemical Formula 10]
Figure 0004115828
[0016]
(In the formula, R 3 represents a linear or branched alkyl group having 1 to 3 carbon atoms, and two R 3 s may be the same or different.)
Is reacted with a malonic acid diester represented by the formula (hereinafter referred to as compound (4)), and then reacted with water, formula (5)
[0017]
Embedded image
Figure 0004115828
[0018]
(In the formula, n, R 1 , R 2 and R 3 have the above-mentioned meanings.)
Or an isomerization reaction of the compound (2) obtained by the above-described production method and the compound (1) The compound (2) containing) is subjected to an isomerization reaction while dehydrating to give a compound (3), followed by hydrogen reduction, and then buyer-bilger oxidation. 5-alkyl-5 represented by formula (6) -A method for producing an alkanolide (hereinafter referred to as compound (6)) is provided.
[0019]
Embedded image
Figure 0004115828
[0020]
(In the formula, n, R 1 and R 2 have the above-mentioned meanings.)
[0021]
DETAILED DESCRIPTION OF THE INVENTION
[Production Method of Compound (2)]
In the compound (1) used as a raw material of the present invention, examples of the alkyl group constituting the 1-hydroxyalkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an amyl group, An isoamyl group, a hexyl group, a heptyl group, etc. are mentioned.
[0022]
This compound (1) can be generally produced by a known method, for example, a cycloalkanone having 5 or 6 carbon atoms and a compound of the formula (7)
[0023]
Embedded image
Figure 0004115828
[0024]
(In the formula, R 1 and R 2 have the above-mentioned meanings.)
It can obtain by making the aldehyde or ketone represented by these react. In the present invention, the compound (1) obtained by such a method can be used without distillation. However, when the activity of the solid acid catalyst is lowered, it may be used after being purified by distillation.
[0025]
Examples of the solid acid catalyst used in the present invention include inorganic metal solid catalysts such as AlPO 4 , Al 2 O 3 , activated alumina, zirconia sulfate, aluminum dihydrogen phosphate, TiO 2 , cation exchange resins, SiO 2 —TiO 2. , SiO 2 —CaO, SiO 2 —MgO, zeolite and the like can be used, and at least one selected from AlPO 4 , TiO 2 and cation exchange resin is preferable.
[0026]
The shape of the solid acid catalyst may be a powder or a molded one. Further, the method of using the solid acid catalyst may be either a suspended bed or a fixed bed. However, in the case of a fixed bed, there is no need for a separation step of the catalyst and the reaction product, which is effective for mass production. . The dehydration reaction may be batch or continuous.
[0027]
The amount of the solid acid catalyst used may be optimized as appropriate depending on the reaction mode, but in the case of a batch system, 0.5 to 20% by weight with respect to the raw material compound (1) in terms of reactivity and economy. 1 to 10% by weight is more preferable.
[0028]
For example, when the isomerization reaction is performed after the dehydration reaction in order to obtain the compound (3), if the conversion rate of the dehydration reaction is too low, the dehydration reaction must be performed simultaneously during the isomerization reaction. It becomes difficult to maintain a temperature (80 ° C. to 200 ° C.) that can be efficiently performed, and if the dehydration reaction conversion rate is too high, the raw material compound (1) and the product compound (2) of the dehydration reaction are polymerized. In addition, the dehydration reaction conversion rate is preferably 40 to 90%, and more preferably 50 to 80%.
Here, the dehydration reaction conversion rate is a value defined by the following formula (I).
[0029]
[Expression 1]
Figure 0004115828
[0030]
The temperature of the dehydration reaction is preferably from 70 to 150 ° C, more preferably from 90 to 120 ° C, from the viewpoint of completing the reaction in a short time and preventing the polymerization and decomposition of the compound (2) to prevent the yield from decreasing. In addition, the reaction proceeds at normal pressure, but the reaction proceeds efficiently without distilling off the produced water and distilling off the raw materials and reaction products. It is more preferable to make it react under the reduced pressure of 20-80 kPa.
[0031]
In the dehydration reaction of the present invention, it is preferable to carry out the reaction while distilling off the produced water. After the reaction, the solid acid catalyst can be easily separated from the reaction solution by filtration or the like, and can be recycled.
[0032]
[Production Method of Compound (5)]
The compound (2) obtained by the above production method or the compound (2) containing the compound (1) is used as a raw material, and is useful as a fragrance material or bioactive agent by the method described in, for example, JP-A-56-147740. Compound (5) can be obtained.
[0033]
Specifically, the compound (2) is first subjected to an isomerization reaction, or the compound (2) containing the compound (1) is subjected to an isomerization reaction while dehydrating to obtain a compound (3).
[0034]
For this dehydration reaction and isomerization reaction, known methods can be used. For example, as described in JP-A-2001-328965, compound (2) or compound (2) containing compound (1) ) And a catalyst comprising an amine and a hydrogen halide.
[0035]
As the amine used here, aromatic amines or heteroaromatic amines such as aniline, diphenylamine, pyridine, picoline, quinoline and polyvinylpyridine are preferable, and pyridine, picoline and quinoline are particularly preferable. Examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, hydrogen iodide and the like, and hydrogen chloride or hydrogen bromide is particularly preferable.
[0036]
The reaction is preferably performed in an alcohol solvent or in the absence of a solvent. Examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol, hexanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, 1,8-octanediol, glycerin, and polyethylene glycol. Particularly preferred are lower alcohols having 1 to 8 carbon atoms. The reaction temperature is preferably 80 to 200 ° C, particularly preferably 100 to 180 ° C.
[0037]
Next, the resulting compound (3) and compound (4) are reacted in the presence of a basic catalyst to obtain a compound represented by formula (8) (hereinafter referred to as compound (8)).
[0038]
Embedded image
Figure 0004115828
[0039]
(In the formula, n, R 1 , R 2 and R 3 have the above-mentioned meanings.)
The compound (4) is reacted with the compound (3) at a ratio of preferably 1 to 5 mol times, more preferably 1.2 to 2 mol times.
[0040]
Examples of the basic catalyst include alkali metals such as sodium and potassium, alkali metal alkoxides such as sodium alkoxide and potassium alkoxide, and the like. The amount of the catalyst used is preferably 0.02 to 0.2 mole times the compound (3). As the solvent, polar solvents such as alcohols are preferable. The reaction temperature is preferably in the range of −10 to 30 ° C., more preferably in the range of 0 to 20 ° C.
[0041]
Next, the compound (5) can be produced by reacting the obtained compound (8) with water. It is preferable to make water react while dripping 1-3 mol times with respect to a compound (8) in a reaction system. The reaction temperature is preferably in the range of 150 to 220 ° C.
[0042]
The compound (5) thus obtained has a better yield and less impurities than the case where a homogeneous acid catalyst is used in the dehydration reaction. Therefore, the compound (5) is highly purified to obtain the compound (5) with high purity. The residual load can be reduced, and it is an excellent fragrance material.
[0043]
[Production Method of Compound (6)]
Using compound (2) obtained by the above production method or compound (2) containing compound (1) as a raw material, compound (6) useful as a fragrance material or bioactive agent is obtained by a known general method. be able to.
[0044]
For example, compound (2) is isomerized as described above, or compound (2) containing compound (1) is isomerized while dehydrating to obtain compound (3). Next, hydrogen reduction is performed in the presence of a catalyst such as Pd / C to obtain a compound represented by formula (9) (hereinafter referred to as compound (9)).
[0045]
Embedded image
Figure 0004115828
[0046]
(In the formula, n, R 1 and R 2 have the above-mentioned meanings.)
The obtained compound (9) is oxidized with a Baeyer-Villiger using peracetic acid or the like as an oxidizing agent, as described in, for example, JP-A-9-104681 to give compound (6). obtain.
[0047]
The compound (6) thus obtained has a better yield and less impurities than the case where a homogeneous acid catalyst is used in the dehydration reaction, so that the compound (6) for obtaining the compound (6) with high purity is obtained. The residual load can be reduced, and it is an excellent fragrance material.
[0048]
【Example】
In the following examples, the product was quantified by an internal standard method by gas chromatography (internal standard is carbitol or undecane).
[0049]
Production Example 1
A 6m 3 reaction tank equipped with a dropping tank was charged with 2241 kg (26.6 kmol) of cyclopentanone, 1007 kg of water and 11 kg of 48% NaOH, cooled to 15 ° C. with stirring, and then 985 kg (11. 4 kmol) was added dropwise over 5 hours. After completion of dropping, the mixture was stirred at the same temperature for 1 hour. After completion of the reaction, the reaction mixture was neutralized and excess cyclopentanone was recovered by distillation, and the organic layer was analyzed. As a result, 1868 kg of 2- (1-hydroxypentyl) -cyclopentanone was contained in the reaction finished product 1868 kg. It was.
[0050]
Example 1
170 g (0.99 mol) of 2- (1-hydroxypentyl) -cyclopentanone obtained by rectifying the reaction-finished product produced in the same manner as in Production Example 1 in a 300 ml four-necked flask equipped with a dehydrating tube Then, 8.5 g of TiO 2 (spherical molded product, diameter 1.5 mm) was added, and the mixture was heated and mixed to 100 ° C. and 53 kPa. After 6 hours of reaction, 16.7 g of a fraction was obtained, and when the reaction product was analyzed, it was found that 141 g of 2-pentylidenecyclopentanone was contained. The yield was 93%.
[0051]
Example 2
In the same apparatus as in Example 1, 170 g (0.99 mol) of 2- (1-hydroxypentyl) -cyclopentanone and 8.5 g of AlPO 4 (noodle-shaped molded product, diameter 0.8 mm, length <5 mm) were added. In addition, the mixture was heated and mixed at 120 ° C. and 101 kPa. After 5 hours of reaction, 16.7 g of a fraction was obtained, and analysis of the reaction product revealed that 141 g of 2-pentylidenecyclopentanone was contained. The yield was 93%.
[0052]
Example 3
As a result of carrying out the reaction in the same manner as in Example 2 except that 1.7 g of Nafion NR-50 (DuPont Co., Ltd., noodle-shaped molded product) was used as the solid acid catalyst, 121 g of 2-pentylidenecyclopentanone was obtained. It was. The yield was 80%.
[0053]
Example 4
The reaction was conducted in the same manner as in Example 2 except that 8.5 g of DIAION RCP160M (Mitsubishi Chemical Corporation, spherical molded product, diameter of about 1 mm) was used as the solid acid catalyst, the pressure was 26.7 kPa, and the temperature was 100 ° C. As a result, 94 g of 2-pentylidenecyclopentanone was obtained. The yield was 62%.
[0054]
Example 5
The solid acid catalyst in the reaction end product obtained in the same manner as in Example 1 was filtered to obtain 153 g of the filtration end product. The amount of 2-pentylidenecyclopentanone contained in this was 141 g (0.93 mol). The filtered product was dissolved in 153 g of n-butanol, heated to 130 ° C., and then mixed with 14.5 g (0.15 mol) of 3-picoline and 10.5 g (0.1 mol) of 35% hydrochloric acid at the same temperature. It was dripped in 30 minutes. After completion of dropping, the mixture was heated and stirred at the same temperature for 3.5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, neutralized with an aqueous sodium hydroxide solution, and the organic layer was analyzed. As a result, it was confirmed that 118 g of 2-pentyl-2-cyclopentenone was contained in the finished product. all right. The yield of this isomerization reaction was 83%.
[0055]
This reaction-finished product was rectified to obtain 95 g (0.6 mol) of 2-pentyl-2-cyclopentenone. Furthermore, 118 g (0.9 mol) of dimethyl malonate was dissolved in 38 g of anhydrous methanol under a nitrogen atmosphere, cooled to 0 ° C., and 6.5 g (0.036 mol) of sodium methoxide (30% methanol solution) was added. To the obtained product, 95 g (0.6 mol) of 2-pentyl-2-cyclopentenone obtained above was added dropwise at 0 ° C. over 2 hours. After completion of dropping, unreacted dimethyl malonate was distilled off under reduced pressure to obtain 160 g of a Michael adduct.
[0056]
The Michael adduct obtained above was added to a reactor equipped with a distillation distillation tube, heated to 215 ° C., and water was added dropwise at a rate of 3.2 g / h (2% / h). While distilling off the generated carbon dioxide and methanol, a drop reaction was carried out at 215 ° C. for 4 hours. After completion of the reaction, 123 g of methyl 3-oxo-2-pentylcyclopentylacetate was obtained in 126 g of the crude product.
[0057]
Methyl 3-oxo-2-pentylcyclopentyl acetate obtained by rectifying the crude product had a fruity and jasmine-like fragrance, and was also excellent as a fragrance material.
[0058]
【The invention's effect】
According to the method of the present invention, there is no neutralization / separation step after the reaction as in the case of using a homogeneous catalyst as a dehydration reaction catalyst, there is no possibility of equipment corrosion, high yield and high productivity. Can produce 2- (alkylidene) cycloalkanone. Further, using the obtained 2- (alkylidene) cycloalkanone, high yields of alkyl (3-oxo-2-alkylcycloalkyl) acetate and 5-alkyl-5-alkanolide useful as a fragrance material or physiologically active substance are obtained. Can be produced with high purity.

Claims (3)

式(1)
Figure 0004115828
(式中、nは1又は2の整数、R及びRはそれぞれ、水素原子又は炭素数1〜8の直鎖もしくは分岐鎖のアルキル基を示すか、あるいはRとRが一緒になって隣接する炭素原子と共にシクロペンタン環もしくはシクロヘキサン環を形成してもよい。)
で表される2−(1−ヒドロキシアルキル)シクロアルカノン(以下化合物(1)という)を、固体酸触媒を用いて、温度70〜150℃、圧力20〜101kPaで脱水反応させる、式(2)
Figure 0004115828
(式中、n、R及びRは前記の意味を示す。)
で表される2−(アルキリデン)シクロアルカノン(以下化合物(2)という)の製法。
Formula (1)
Figure 0004115828
(Wherein n represents an integer of 1 or 2, R 1 and R 2 each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 together And may form a cyclopentane ring or a cyclohexane ring with adjacent carbon atoms.)
2- (1-hydroxyalkyl) cycloalkanone (hereinafter referred to as compound (1)) represented by the formula (2) is subjected to a dehydration reaction at a temperature of 70 to 150 ° C. and a pressure of 20 to 101 kPa using a solid acid catalyst. )
Figure 0004115828
(In the formula, n, R 1 and R 2 have the above-mentioned meanings.)
The manufacturing method of 2- (alkylidene) cycloalkanone (henceforth a compound (2)) represented by these.
固体酸触媒が、AlPO、TiO、カチオン交換樹脂から選ばれる少なくとも1種である請求項記載の製法。Solid acid catalyst, AlPO 4, TiO 2, method according to claim 1, wherein at least one selected from the cation exchange resin. 請求項1記載の式(1)で表される化合物(1)を、固体酸触媒を用いて、温度70〜150℃、圧力20〜101kPaで脱水反応させて、請求項1記載の式(2)で表される化合物(2)を得、得られた化合物(2)を異性化反応させて、式(3)
Figure 0004115828
(式中、n、R及びR請求項1と同じ意味を示す。)
で表される2−(アルキル)シクロアルケノン(以下化合物(3)という)とし、次いで式(4)
Figure 0004115828
(式中、Rは炭素数1〜3の直鎖又は分岐鎖のアルキル基を示し、2個のRは同一でも異なっていてもよい。)
で表されるマロン酸ジエステルとを反応させ、次いで水を反応させる、式(5)
Figure 0004115828
(式中、n、R、R及びRは前記の意味を示す。)
で表されるアルキル(3−オキソ−2−アルキルシクロアルキル)アセテートの製法。
The compound (1) represented by the formula (1) according to claim 1 is subjected to a dehydration reaction at a temperature of 70 to 150 ° C. and a pressure of 20 to 101 kPa using a solid acid catalyst. The compound (2) represented by formula (3) is obtained, and the obtained compound (2) is isomerized to give a compound of formula (3)
Figure 0004115828
(In the formula, n, R 1 and R 2 have the same meaning as in claim 1 ).
2- (alkyl) cycloalkenone (hereinafter referred to as compound (3)) represented by formula (4)
Figure 0004115828
(In the formula, R 3 represents a linear or branched alkyl group having 1 to 3 carbon atoms, and two R 3 may be the same or different.)
With a malonic acid diester represented by the formula (5)
Figure 0004115828
(In the formula, n, R 1 , R 2 and R 3 have the above-mentioned meanings.)
The manufacturing method of the alkyl (3-oxo-2-alkyl cycloalkyl) acetate represented by these.
JP2002378007A 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone Expired - Fee Related JP4115828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378007A JP4115828B2 (en) 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378007A JP4115828B2 (en) 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone

Publications (2)

Publication Number Publication Date
JP2004203844A JP2004203844A (en) 2004-07-22
JP4115828B2 true JP4115828B2 (en) 2008-07-09

Family

ID=32815007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378007A Expired - Fee Related JP4115828B2 (en) 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone

Country Status (1)

Country Link
JP (1) JP4115828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232242A1 (en) 2022-06-01 2023-12-07 Symrise Ag Fragrance mixture

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615206B2 (en) * 2002-12-26 2011-01-19 花王株式会社 Method for producing cycloalkanone derivative
JP4651959B2 (en) * 2004-03-15 2011-03-16 花王株式会社 Cycloalkanone-containing composition
JP2009078983A (en) * 2007-09-25 2009-04-16 Nippon Zeon Co Ltd Continuous preparation method for 2-alkylidene cycloalkanone
US8394994B2 (en) 2008-04-11 2013-03-12 Kao Corporation Method for producing of 2-alkyl-2-cycloalken-1-one
JP5478097B2 (en) 2008-04-15 2014-04-23 花王株式会社 Process for producing 2-alkyl-2-cycloalkene-1-one
JP5486210B2 (en) * 2008-05-13 2014-05-07 花王株式会社 Process for producing 2-alkyl-2-cycloalkene-1-one
GB0822834D0 (en) 2008-12-15 2009-01-21 Syngenta Ltd Novel herbicides
GB0912385D0 (en) 2009-07-16 2009-08-26 Syngenta Ltd Novel herbicides
WO2011012862A1 (en) 2009-07-31 2011-02-03 Syngenta Limited Herbicidally active heteroaryl-sυbstitυted cyclic diones or derivatives thereof
JP5756406B2 (en) * 2009-10-09 2015-07-29 花王株式会社 Process for producing 2-alkylcycloalkanone
WO2011073060A2 (en) 2009-12-18 2011-06-23 Syngenta Participations Ag Method of combating and controlling pests
CN106554359B (en) * 2015-09-25 2018-08-10 南京理工大学 Application of the sulfonated graphene resin type catalyst in Baeyer-Villiger oxidation reactions
JP2023058009A (en) * 2021-10-12 2023-04-24 花王株式会社 METHOD OF PRODUCING COMPOUND INCLUDING ISOMERIZING α,β-UNSATURATED KETONE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232242A1 (en) 2022-06-01 2023-12-07 Symrise Ag Fragrance mixture

Also Published As

Publication number Publication date
JP2004203844A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4115828B2 (en) Preparation of 2- (alkylidene) cycloalkanone
US20060252957A1 (en) Novel malonic acid monomethyl derivatives and production process thereof
US7141698B2 (en) Continuous process for producing pseudoionones and ionones
US7057077B2 (en) Method for producing 2- (alkyl) cycloalkenone
JP4407896B2 (en) Method for producing 2- (alkyl) cycloalkenone
US6500990B2 (en) Method for producing jasmonate derivatives and intermediates thereof
US8455700B2 (en) Method for producing phenylalkane-1-ols
JPH07505405A (en) Manufacturing method of sclareolide
JP3676222B2 (en) Method for producing jasmonic ester derivative and its intermediate
JP4615206B2 (en) Method for producing cycloalkanone derivative
JP4216248B2 (en) Method for producing jasmonic acid ester derivative and its intermediate
JPS643177B2 (en)
JP4651959B2 (en) Cycloalkanone-containing composition
JP4156462B2 (en) Method for producing acetate derivative
JP4437586B2 (en) Preparation of 2-alkyl-2-cyclopentenone
EP1433773B2 (en) Process for producing cycloalkanone derivatives
JP4754085B2 (en) Manufacturing method of Lavanjural
US6881865B2 (en) Method for preparing cyclohexyl phenyl ketone from 1,3-butadiene and acrylic acid
EP0043526B1 (en) Process for the preparation of dihydrocinnamaldehyde derivatives
RU2258060C2 (en) Method for preparing 5-[(4-chlorophenyl)methyl]-2,2-dimethylcyclopentanone
JPH053859B2 (en)
JP2005289981A (en) Method for producing tetralones
JP2003128605A (en) Production method of phytantriol
JPH08151343A (en) Production of 4-alkoxyphenol
JPS6311344B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4115828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees