JP2004203844A - Method for production of 2-(alkylidene)cycloalkanone - Google Patents

Method for production of 2-(alkylidene)cycloalkanone Download PDF

Info

Publication number
JP2004203844A
JP2004203844A JP2002378007A JP2002378007A JP2004203844A JP 2004203844 A JP2004203844 A JP 2004203844A JP 2002378007 A JP2002378007 A JP 2002378007A JP 2002378007 A JP2002378007 A JP 2002378007A JP 2004203844 A JP2004203844 A JP 2004203844A
Authority
JP
Japan
Prior art keywords
compound
formula
reaction
alkyl
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002378007A
Other languages
Japanese (ja)
Other versions
JP4115828B2 (en
Inventor
Hakuko Nishimura
博貢 西村
Hisanori Haneki
久憲 羽木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002378007A priority Critical patent/JP4115828B2/en
Publication of JP2004203844A publication Critical patent/JP2004203844A/en
Application granted granted Critical
Publication of JP4115828B2 publication Critical patent/JP4115828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficient high-yield production of a 2-(alkylidene)cycloalkanone and methods for producing, by using the same, an alkyl(3-oxo-2-alkylcycloalkyl)acetate and a 5-alkyl-5-alkanolide both of which are useful for fragrance raw materials or physiologically active substances. <P>SOLUTION: A 2-(alkylidene)cycloalkanone of formula (2) is produced by the dehydration reaction of 2-(1-hydroxyalkyl)cycloalkanone of formula (1) using a solid acid catalyst. Alkyl(3-oxo-2-alkylcycloalkyl)acetate of formula (5) and 5-alkyl-5-alkanolide of formula (6) are produced by using the 2-(alkylidene)cycloalkanone of formula (2) containing the compound of formula (1). In the above formulas, (n) is an integer of 1 or 2; R<SP>1</SP>and R<SP>2</SP>are each H, a 1-8C alkyl, or the like; and R<SP>3</SP>is a 1-3C alkyl. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は香料素材として有用なジヒドロジャスモン酸メチル、δ−ラクトン等の中間体である2−(アルキリデン)シクロアルカノンの製法、並びにそれを用いた、アルキル(3−オキソ−2−アルキルシクロアルキル)アセテート及び5−アルキル−5−アルカノリドの製法に関する。
【0002】
【従来の技術】
従来、2−(1−ヒドロキシアルキル)シクロアルカノンから2−(アルキリデン)シクロアルカノンを製造する際には、脱水反応触媒として均一系の酸触媒が一般的に用いられている。
【0003】
例えば特許文献1では、2−(アルキリデン)シクロアルカノンを得るために、アルドール縮合体にシュウ酸を添加して脱水反応を行っているが、反応後にアルカリによる中和、分層が必要であり、工程が多く、排水も生じる。また、酸により設備が腐食したり、アルカリによる中和時に2−(アルキリデン)シクロアルカノンが重合および分解し収率が低下する場合もある。
【0004】
さらに、このような重合および分解のため、これを用いて合成されるアルキル(3−オキソ−2−アルキルシクロアルキル)アセテートや5−アルキル−5−アルカノリドの匂いの低下が生じる場合がある。
【0005】
【特許文献1】
特開昭56−147740号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、2−(アルキリデン)シクロアルカノンを効率的に高収率で製造する方法、並びにそれを用いた香料素材や生理活性物質として有用なアルキル(3−オキソ−2−アルキルシクロアルキル)アセテート及び5−アルキル−5−アルカノリドの製法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、式(1)
【0008】
【化7】

Figure 2004203844
【0009】
(式中、nは1又は2の整数、R1及びR2はそれぞれ、水素原子又は炭素数1〜8の直鎖もしくは分岐鎖のアルキル基を示すか、あるいはR1とR2が一緒になって隣接する炭素原子と共にシクロペンタン環もしくはシクロヘキサン環を形成してもよい。)
で表される2−(1−ヒドロキシアルキル)シクロアルカノン(以下化合物(1)という)を、固体酸触媒を用いて脱水反応させる、式(2)
【0010】
【化8】
Figure 2004203844
【0011】
(式中、n、R1及びR2は前記の意味を示す。)
で表される2−(アルキリデン)シクロアルカノン(以下化合物(2)という)の製法を提供する。
【0012】
また、本発明は、上記の製法で得られた化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、式(3)
【0013】
【化9】
Figure 2004203844
【0014】
(式中、n、R1及びR2は前記の意味を示す。)
で表される2−(アルキル)シクロアルケノン(以下化合物(3)という)とし、次いで式(4)
【0015】
【化10】
Figure 2004203844
【0016】
(式中、R3は炭素数1〜3の直鎖又は分岐鎖のアルキル基を示し、2個のR3は同一でも異なっていてもよい。)
で表されるマロン酸ジエステル(以下化合物(4)という)とを反応させ、次いで水を反応させる、式(5)
【0017】
【化11】
Figure 2004203844
【0018】
(式中、n、R1、R2及びR3は前記の意味を示す。)
で表されるアルキル(3−オキソ−2−アルキルシクロアルキル)アセテート(以下化合物(5)という)の製法、並びに上記製法で得られた化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)とし、次いで水素還元させた後、バイヤービリガー酸化させる、式(6)で表される5−アルキル−5−アルカノリド(以下化合物(6)という)の製法を提供する。
【0019】
【化12】
Figure 2004203844
【0020】
(式中、n、R1及びR2は前記の意味を示す。)
【0021】
【発明の実施の形態】
[化合物(2)の製法]
本発明の原料として用いられる、化合物(1)において、1−ヒドロキシアルキル基を構成するアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、ヘプチル基等が挙げられる。
【0022】
この化合物(1)は、一般的に公知の方法により製造でき、例えば炭素数5又は6のシクロアルカノンと、式(7)
【0023】
【化13】
Figure 2004203844
【0024】
(式中、R1及びR2は前記の意味を示す。)
で表されるアルデヒド又はケトンを反応させることにより得ることができる。本発明では、このような方法で得られる化合物(1)を蒸留せずに用いることもできるが、固体酸触媒の活性が低下する場合は蒸留精製して使用してもよい。
【0025】
本発明に用いられる固体酸触媒としては、AlPO4、Al23、活性アルミナ、硫酸ジルコニア、トリポリリン酸二水素アルミニウム、TiO2等の無機金属固体触媒や、カチオン交換樹脂、SiO2−TiO2、SiO2−CaO、SiO2−MgO、ゼオライト等を用いることができ、AlPO4、TiO2、カチオン交換樹脂から選ばれる少なくとも1種が好ましい。
【0026】
固体酸触媒の形状は、粉末でも成型したものでもよい。さらに、固体酸触媒の使用方法も、懸濁床でも固定床でもよいが、固定床の場合には、触媒と反応終了物との分離工程がいらないことから、大量生産する際には有効である。また、この脱水反応は回分式でも連続式でもよい。
【0027】
固体酸触媒の使用量は、反応形式により適宜最適化すればよいが、回分式の場合は、反応性、経済性の面から原料である化合物(1)に対して0.5〜20重量%が好ましく、1〜10重量%がより好ましい。
【0028】
また、例えば化合物(3)を得るために脱水反応後に異性化反応を行う場合は、脱水反応転化率が低すぎると、異性化反応中に脱水反応を同時に行わなければならず、異性化反応を効率的に行える温度(80℃〜200℃)を維持することが困難となり、また、脱水反応転化率が高すぎると、脱水反応の原料の化合物(1)や生成物の化合物(2)が重合および分解し、収率の低下を招くので、脱水反応転化率は40〜90%が好ましく、50〜80%がより好ましい。
ここで、脱水反応転化率は、以下の式(I)で定義される値である。
【0029】
【数1】
Figure 2004203844
【0030】
脱水反応の温度は、反応を短時間で終わらせ、化合物(2)の重合および分解を防いで収率の低下を防ぐという観点から、70〜150℃が好ましく、90〜120℃が更に好ましい。また、反応圧力は、常圧でも反応は進行するが、生成する水を効率的に系外へ留去させ、原料および反応生成物を留出させないで効率的に反応させるために、20〜101kPaが好ましく、20〜80kPaの減圧下で反応させることが更に好ましい。
【0031】
本発明の脱水反応においては、生成する水を留去しながら反応を行うことが好ましい。反応後は、固体酸触媒を濾過等により、反応液と容易に分離することができ、リサイクルすることも可能である。
【0032】
[化合物(5)の製法]
上記製法により得られた化合物(2)、又は化合物(1)を含有する化合物(2)を原料とし、例えば特開昭56−147740号公報に記載の方法により香料素材や生理活性剤として有用な化合物(5)を得ることができる。
【0033】
具体的には、まず化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)を得る。
【0034】
この脱水反応及び異性化反応は、既知の方法を用いることができ、例えば特開2001−328965号公報に記載されているように、化合物(2)、又は化合物(1)を含有する化合物(2)に、アミンとハロゲン化水素からなる触媒を作用させて行う。
【0035】
ここで用いるアミンとしては、アニリン、ジフェニルアミン、ピリジン、ピコリン、キノリン、ポリビニルピリジン等の芳香族アミン又は複素芳香環アミンが好ましく、特にピリジン、ピコリン及びキノリンが好ましい。ハロゲン化水素としては、塩化水素、臭化水素又はヨウ化水素等が挙げられ、特に塩化水素又は臭化水素が好ましい。
【0036】
反応は、アルコール溶媒中又は無溶媒下で行うのが好ましい。アルコール溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、ペンタノール、ヘキサノール、2−エチルヘキサノール、シクロヘキサノール、エチレングリコール、1,8−オクタンジオール、グリセリン、ポリエチレングリコール等が挙げられ、炭素数1〜8の低級アルコール類が特に好ましい。反応温度は80〜200℃、特に100〜180℃が好ましい。
【0037】
次いで、得られる化合物(3)と化合物(4)とを塩基性触媒存在下に反応させて、式(8)で表される化合物(以下化合物(8)という)を得る。
【0038】
【化14】
Figure 2004203844
【0039】
(式中、n、R1、R2及びR3は前記の意味を示す。)
化合物(3)に対して化合物(4)を、好ましくは1〜5モル倍、更に好ましくは1.2〜2モル倍の割合で反応させる。
【0040】
塩基性触媒としては、ナトリウム、カリウム等のアルカリ金属、ナトリウムアルコキシド、カリウムアルコキシド等のアルカリ金属アルコキシド等が挙げられる。触媒の使用量は化合物(3)に対して0.02〜0.2モル倍が好ましい。溶媒としてはアルコール類等の極性溶媒が好ましい。反応温度は−10〜30℃の範囲が好ましく、0〜20℃の範囲が更に好ましい。
【0041】
次に、得られた化合物(8)と水とを反応させることにより、化合物(5)を製造することができる。水は、化合物(8)に対して1〜3モル倍量を反応系中に滴下しながら反応させることが好ましい。反応温度は150〜220℃の範囲が好ましい。
【0042】
このようにして得られた化合物(5)は、脱水反応において均一系の酸触媒を用いた場合に比べ、収率がよく、不純物が少ないので、化合物(5)を高純度で得るための精留負荷が低減でき、香料素材として優れたものである。
【0043】
[化合物(6)の製法]
上記製法により得られた化合物(2)、又は化合物(1)を含有する化合物(2)を原料とし、既知の一般的な方法により、香料素材や生理活性剤として有用な化合物(6)を得ることができる。
【0044】
例えば、上記のように化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)を得る。次いで、Pd/C等の触媒存在下で水素還元させ、式(9)で表される化合物(以下化合物(9)という)を得る。
【0045】
【化15】
Figure 2004203844
【0046】
(式中、n、R1及びR2は前記の意味を示す。)
得られた化合物(9)を、例えば特開平9−104681号公報に記載されているように、過酢酸等を酸化剤として用い、バイヤービリガー(Baeyer-Villiger)酸化させて、化合物(6)を得る。
【0047】
このようにして得られた化合物(6)は、脱水反応において均一系の酸触媒を用いた場合に比べ、収率がよく、不純物が少ないので、化合物(6)を高純度で得るための精留負荷が低減でき、香料素材として優れたものである。
【0048】
【実施例】
以下の例において、生成物の定量はガスクロマトグラフィーによる内部標準法(内標は、カルビトール又はウンデカン)によって行った。
【0049】
製造例1
滴下槽を備えた6m3の反応槽に、シクロペンタノン2241kg(26.6kmol)、水1007kg、48%NaOH11kgを仕込み、撹拌しながら15℃に冷却した後、同温度でバレルアルデヒド985kg(11.4kmol)を5時間かけて滴下した。滴下終了後、同温度で1時間撹拌した。反応終了後、中和し、過剰のシクロペンタノンを蒸留回収した後、有機層を分析した結果、反応終了品1868kg中には、2−(1−ヒドロキシペンチル)−シクロペンタノンが1706kg含まれていた。
【0050】
実施例1
脱水管を備えた300mlの4つ口フラスコに、製造例1と同様に製造した反応終了品を精留して得られた2−(1−ヒドロキシペンチル)−シクロペンタノン170g(0.99mol)、TiO2(球状成型品、直径1.5mm)8.5gを加え、100℃、53kPaになるように加熱し混合した。反応6時間後には、留分が16.7g得られ、反応終了物を分析すると、2−ペンチリデンシクロペンタノンが141g含まれていることがわかった。収率は93%であった。
【0051】
実施例2
実施例1と同様の装置に、2−(1−ヒドロキシペンチル)−シクロペンタノン170g(0.99mol)、AlPO4(ヌードル状成型品、直径0.8mm、長さ<5mm)8.5gを加え、120℃、101kPaになるように加熱し混合した。反応5時間後には、留分が16.7g得られ、反応終了物を分析すると、2−ペンチリデンシクロペンタノンが141g含まれていることがわかった。収率は93%であった。
【0052】
実施例3
固体酸触媒としてNafion NR−50(デュポン(株)、ヌードル状成型品)1.7gを用いる以外は実施例2と同様にして、反応を行った結果、2−ペンチリデンシクロペンタノンが121g得られた。収率は80%であった。
【0053】
実施例4
固体酸触媒としてDIAION RCP160M(三菱化学(株)、球状成型品、直径約1mm)8.5gを用い、圧力26.7kPa、温度100℃とする以外は実施例2と同様にして、反応を行った結果、2−ペンチリデンシクロペンタノンが94g得られた。収率は62%であった。
【0054】
実施例5
実施例1と同様にして得られた反応終了物中の固体酸触媒を濾過し、153gの濾過終了物を得た。この中に含まれる2−ペンチリデンシクロペンタノンは141g(0.93mol)であった。この濾過終了物をn−ブタノール153gに溶かし、130℃に昇温した後、同温度で3−ピコリン14.5g(0.15mol)と35%塩酸10.5g(0.1mol)の混合液を30分で滴下した。滴下終了後、同温度で3.5時間加熱攪拌した。反応終了後、室温まで冷却し、水酸化ナトリウム水溶液で中和した後、有機層を分析した結果、反応終了品中には、2−ペンチル−2−シクロペンテノンが118g含まれていることがわかった。この異性化反応の収率は83%であった。
【0055】
この反応終了品を精留し、2−ペンチル−2−シクロペンテノンを95g(0.6mol)得た。さらに、窒素雰囲気下にてマロン酸ジメチル118g(0.9mol)を無水メタノール38gに溶解し、0℃に冷却して、ナトリウムメトキシド(30%メタノール溶液)6.5g(0.036mol)を添加したものに、上記で得られた2−ペンチル−2−シクロペンテノン95g(0.6mol)を0℃で、2時間かけて滴下した。滴下終了後、未反応のマロン酸ジメチルを減圧留去し、160gのマイケル付加物を得た。
【0056】
蒸留留出管をつけた反応装置に、上記で得られたマイケル付加物を加え、215℃に加熱し、水を3.2g/h(2%/h)の速度で滴下した。発生する二酸化炭素とメタノールを留出させながら、215℃で、4時間滴下反応を行った。反応終了後、粗生成物126g中に、3−オキソ−2−ペンチルシクロペンチル酢酸メチル123gを得た。
【0057】
粗生成物を精留して得られた3−オキソ−2−ペンチルシクロペンチル酢酸メチルは、フルーティでジャスミン様の香気を有しており、香料素材としても優れたものであった。
【0058】
【発明の効果】
本発明の方法によれば、脱水反応触媒として均一系触媒を用いる場合のように反応後に中和/分層等の工程がなく、設備の腐食の可能性もなく、高収率かつ高生産性で2−(アルキリデン)シクロアルカノンを製造することができる。更に、得られた2−(アルキリデン)シクロアルカノンを用い、香料素材や生理活性物質として有用なアルキル(3−オキソ−2−アルキルシクロアルキル)アセテート及び5−アルキル−5−アルカノリドを高収率、高純度で製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing 2- (alkylidene) cycloalkanone which is an intermediate such as methyl dihydrojasmonate and δ-lactone useful as a perfume material, and an alkyl (3-oxo-2-alkylcycloalkyl) using the same. ) Acetate and 5-alkyl-5-alkanolides.
[0002]
[Prior art]
Conventionally, when producing 2- (alkylidene) cycloalkanone from 2- (1-hydroxyalkyl) cycloalkanone, a homogeneous acid catalyst is generally used as a dehydration reaction catalyst.
[0003]
For example, in Patent Document 1, in order to obtain 2- (alkylidene) cycloalkanone, oxalic acid is added to an aldol condensate to perform a dehydration reaction. However, after the reaction, neutralization with an alkali and layer separation are required. There are many processes and wastewater is generated. Further, the equipment may be corroded by an acid, or the 2- (alkylidene) cycloalkanone may be polymerized and decomposed during neutralization with an alkali to lower the yield.
[0004]
Further, due to such polymerization and decomposition, the odor of alkyl (3-oxo-2-alkylcycloalkyl) acetate or 5-alkyl-5-alkanolide synthesized using the same may be reduced.
[0005]
[Patent Document 1]
JP-A-56-147740 [0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing 2- (alkylidene) cycloalkanone at a high yield, and an alkyl (3-oxo-2-alkylcyclo) useful as a fragrance material or a physiologically active substance using the same. (Alkyl) acetate and 5-alkyl-5-alkanolides.
[0007]
[Means for Solving the Problems]
The present invention relates to formula (1)
[0008]
Embedded image
Figure 2004203844
[0009]
(Wherein, n is an integer of 1 or 2, R 1 and R 2 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 together To form a cyclopentane ring or a cyclohexane ring together with adjacent carbon atoms.)
A 2- (1-hydroxyalkyl) cycloalkanone (hereinafter referred to as compound (1)) represented by the following formula (2):
[0010]
Embedded image
Figure 2004203844
[0011]
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
A method for producing a 2- (alkylidene) cycloalkanone (hereinafter referred to as compound (2)) represented by the formula:
[0012]
In addition, the present invention provides an isomerization reaction of the compound (2) obtained by the above production method or an isomerization reaction of the compound (2) containing the compound (1) while performing a dehydration reaction on the compound (2) to obtain a compound of the formula (3) )
[0013]
Embedded image
Figure 2004203844
[0014]
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
2- (alkyl) cycloalkenone (hereinafter referred to as compound (3)) represented by the formula:
[0015]
Embedded image
Figure 2004203844
[0016]
(In the formula, R 3 represents a linear or branched alkyl group having 1 to 3 carbon atoms, and the two R 3 may be the same or different.)
Reacting with a malonic acid diester represented by the following formula (hereinafter referred to as compound (4)) and then reacting with water:
[0017]
Embedded image
Figure 2004203844
[0018]
(In the formula, n, R 1 , R 2 and R 3 have the same meanings as described above.)
The compound (2) obtained by the method for producing an alkyl (3-oxo-2-alkylcycloalkyl) acetate (hereinafter referred to as compound (5)) represented by The compound (2) containing the compound (2) is subjected to an isomerization reaction while being subjected to a dehydration reaction to give a compound (3), which is then hydrogen-reduced and then subjected to Bayer-Villiger oxidation, which is a 5-alkyl-5 represented by the formula (6). -A method for producing an alkanolide (hereinafter referred to as compound (6)) is provided.
[0019]
Embedded image
Figure 2004203844
[0020]
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
[Production method of compound (2)]
In the compound (1) used as a raw material of the present invention, examples of the alkyl group constituting the 1-hydroxyalkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an amyl group, Examples include an isoamyl group, a hexyl group, and a heptyl group.
[0022]
This compound (1) can be produced by a generally known method. For example, a cycloalkanone having 5 or 6 carbon atoms and a compound represented by the formula (7)
[0023]
Embedded image
Figure 2004203844
[0024]
(Wherein, R 1 and R 2 have the same meanings as described above.)
By reacting an aldehyde or ketone represented by In the present invention, the compound (1) obtained by such a method can be used without distillation, but if the activity of the solid acid catalyst is reduced, it may be purified by distillation.
[0025]
Examples of the solid acid catalyst used in the present invention include inorganic metal solid catalysts such as AlPO 4 , Al 2 O 3 , activated alumina, zirconia sulfate, aluminum dihydrogen tripolyphosphate, and TiO 2 , cation exchange resins, SiO 2 —TiO 2 , SiO 2 —CaO, SiO 2 —MgO, zeolite and the like can be used, and at least one selected from AlPO 4 , TiO 2 and a cation exchange resin is preferable.
[0026]
The shape of the solid acid catalyst may be powder or molded. Further, the method of using the solid acid catalyst may be either a suspension bed or a fixed bed. However, in the case of a fixed bed, since there is no need for a step of separating the catalyst and the reaction product, it is effective for mass production. . The dehydration reaction may be a batch type or a continuous type.
[0027]
The amount of the solid acid catalyst to be used may be appropriately optimized depending on the reaction mode. In the case of a batch system, from 0.5 to 20% by weight based on the raw material compound (1) from the viewpoint of reactivity and economy , Preferably 1 to 10% by weight.
[0028]
When the isomerization reaction is performed after the dehydration reaction to obtain the compound (3), for example, if the conversion of the dehydration reaction is too low, the dehydration reaction must be performed simultaneously during the isomerization reaction. If it is difficult to maintain a temperature (80 ° C. to 200 ° C.) at which the reaction can be performed efficiently, and if the conversion rate of the dehydration reaction is too high, the compound (1) as a raw material of the dehydration reaction and the compound (2) as a product may be polymerized. In addition, the decomposition rate is reduced and the yield is reduced. Therefore, the conversion rate of the dehydration reaction is preferably 40 to 90%, more preferably 50 to 80%.
Here, the conversion rate of the dehydration reaction is a value defined by the following formula (I).
[0029]
(Equation 1)
Figure 2004203844
[0030]
The temperature of the dehydration reaction is preferably from 70 to 150 ° C, more preferably from 90 to 120 ° C, from the viewpoint of terminating the reaction in a short time, preventing polymerization and decomposition of the compound (2) and preventing a decrease in yield. Further, the reaction pressure is such that the reaction proceeds even at normal pressure, but in order to efficiently distill off the generated water to the outside of the system and to conduct the reaction efficiently without distilling the raw materials and the reaction products, 20 to 101 kPa The reaction is preferably performed under a reduced pressure of 20 to 80 kPa.
[0031]
In the dehydration reaction of the present invention, it is preferable to carry out the reaction while distilling off generated water. After the reaction, the solid acid catalyst can be easily separated from the reaction solution by filtration or the like, and can be recycled.
[0032]
[Production method of compound (5)]
The compound (2) obtained by the above-mentioned production method or the compound (2) containing the compound (1) is used as a raw material, and is useful as a fragrance material or a physiologically active agent, for example, by the method described in JP-A-56-147740. Compound (5) can be obtained.
[0033]
Specifically, first, the compound (2) is subjected to an isomerization reaction, or the compound (2) containing the compound (1) is subjected to an isomerization reaction while being subjected to a dehydration reaction to obtain a compound (3).
[0034]
For the dehydration reaction and the isomerization reaction, known methods can be used. For example, as described in JP-A-2001-328965, compound (2) or compound (2) containing compound (1) is used. ) Is reacted with a catalyst comprising an amine and hydrogen halide.
[0035]
The amine used here is preferably an aromatic amine such as aniline, diphenylamine, pyridine, picoline, quinoline, or polyvinylpyridine or a heteroaromatic amine, and particularly preferably pyridine, picoline and quinoline. Examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, and hydrogen iodide, and hydrogen chloride or hydrogen bromide is particularly preferable.
[0036]
The reaction is preferably carried out in an alcohol solvent or without solvent. Examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, butanol, pentanol, hexanol, 2-ethylhexanol, cyclohexanol, ethylene glycol, 1,8-octanediol, glycerin, polyethylene glycol and the like. And lower alcohols having 1 to 8 carbon atoms are particularly preferred. The reaction temperature is preferably from 80 to 200C, particularly preferably from 100 to 180C.
[0037]
Next, the obtained compound (3) and compound (4) are reacted in the presence of a basic catalyst to obtain a compound represented by the formula (8) (hereinafter, referred to as compound (8)).
[0038]
Embedded image
Figure 2004203844
[0039]
(In the formula, n, R 1 , R 2 and R 3 have the same meanings as described above.)
The compound (4) is reacted with the compound (3) at a ratio of preferably 1 to 5 moles, more preferably 1.2 to 2 moles.
[0040]
Examples of the basic catalyst include alkali metals such as sodium and potassium, and alkali metal alkoxides such as sodium alkoxide and potassium alkoxide. The amount of the catalyst to be used is preferably 0.02 to 0.2 mol times with respect to the compound (3). As the solvent, a polar solvent such as an alcohol is preferable. The reaction temperature is preferably in the range of -10 to 30C, more preferably in the range of 0 to 20C.
[0041]
Next, the compound (5) can be produced by reacting the obtained compound (8) with water. It is preferable that water is reacted while being dripped in the reaction system in an amount of 1 to 3 times the molar amount of the compound (8). The reaction temperature is preferably in the range of 150 to 220C.
[0042]
The compound (5) thus obtained has a higher yield and fewer impurities as compared with the case where a homogeneous acid catalyst is used in the dehydration reaction. The retention load can be reduced, and it is an excellent fragrance material.
[0043]
[Production method of compound (6)]
Using the compound (2) obtained by the above production method or the compound (2) containing the compound (1) as a raw material, a compound (6) useful as a fragrance material or a bioactive agent is obtained by a known general method. be able to.
[0044]
For example, the compound (2) is subjected to an isomerization reaction as described above, or the compound (2) containing the compound (1) is subjected to an isomerization reaction while being subjected to a dehydration reaction to obtain a compound (3). Next, hydrogen reduction is performed in the presence of a catalyst such as Pd / C to obtain a compound represented by the formula (9) (hereinafter, referred to as compound (9)).
[0045]
Embedded image
Figure 2004203844
[0046]
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
The obtained compound (9) is oxidized with Baeyer-Villiger using peracetic acid or the like as an oxidizing agent as described in, for example, JP-A-9-104681, to give compound (6). obtain.
[0047]
The compound (6) thus obtained has a higher yield and fewer impurities as compared with the case where a homogeneous acid catalyst is used in the dehydration reaction. The retention load can be reduced, and it is an excellent fragrance material.
[0048]
【Example】
In the following examples, the quantification of the product was performed by an internal standard method using gas chromatography (internal standard was carbitol or undecane).
[0049]
Production Example 1
A reaction vessel of 6 m 3 equipped with a dropping tank was charged with 2241 kg (26.6 kmol) of cyclopentanone, 1007 kg of water and 11 kg of 48% NaOH, cooled to 15 ° C. with stirring, and 985 kg of valeraldehyde (11. 4 kmol) was added dropwise over 5 hours. After completion of the dropwise addition, the mixture was stirred at the same temperature for 1 hour. After completion of the reaction, the mixture was neutralized, and excess cyclopentanone was recovered by distillation, and the organic layer was analyzed. As a result, 1706 kg of 2- (1-hydroxypentyl) -cyclopentanone was contained in 1868 kg of the reaction-completed product. I was
[0050]
Example 1
170 g (0.99 mol) of 2- (1-hydroxypentyl) -cyclopentanone obtained by rectifying a reaction-completed product produced in the same manner as in Production Example 1 in a 300 ml four-necked flask equipped with a dehydration tube. And 8.5 g of TiO 2 (spherical molded product, 1.5 mm in diameter), and heated and mixed at 100 ° C. and 53 kPa. Six hours after the reaction, 16.7 g of a fraction was obtained, and analysis of the reaction completed product revealed that 141 g of 2-pentylidenecyclopentanone was contained. The yield was 93%.
[0051]
Example 2
In a device similar to that of Example 1, 170 g (0.99 mol) of 2- (1-hydroxypentyl) -cyclopentanone and 8.5 g of AlPO 4 (noodle-shaped molded product, diameter 0.8 mm, length <5 mm) were added. In addition, the mixture was heated and mixed at 120 ° C. and 101 kPa. Five hours after the reaction, 16.7 g of a fraction was obtained, and analysis of the reaction completed product revealed that 141 g of 2-pentylidenecyclopentanone was contained. The yield was 93%.
[0052]
Example 3
The reaction was carried out in the same manner as in Example 2 except that 1.7 g of Nafion NR-50 (Dupont, noodle-shaped molded product) was used as the solid acid catalyst. As a result, 121 g of 2-pentylidenecyclopentanone was obtained. Was done. The yield was 80%.
[0053]
Example 4
The reaction was carried out in the same manner as in Example 2 except that 8.5 g of DIAION RCP160M (Mitsubishi Chemical Corporation, spherical molded product, diameter of about 1 mm) was used as the solid acid catalyst, the pressure was 26.7 kPa, and the temperature was 100 ° C. As a result, 94 g of 2-pentylidenecyclopentanone was obtained. The yield was 62%.
[0054]
Example 5
The solid acid catalyst in the reaction product obtained in the same manner as in Example 1 was filtered to obtain 153 g of a filtration product. The amount of 2-pentylidenecyclopentanone contained therein was 141 g (0.93 mol). This filtered product was dissolved in 153 g of n-butanol and heated to 130 ° C., and then a mixture of 14.5 g (0.15 mol) of 3-picoline and 10.5 g (0.1 mol) of 35% hydrochloric acid was heated at the same temperature. It was dropped in 30 minutes. After completion of the dropwise addition, the mixture was heated and stirred at the same temperature for 3.5 hours. After completion of the reaction, the mixture was cooled to room temperature, neutralized with an aqueous sodium hydroxide solution, and analyzed for the organic layer. As a result, it was found that the reaction-completed product contained 118 g of 2-pentyl-2-cyclopentenone. all right. The yield of this isomerization reaction was 83%.
[0055]
The product after the reaction was rectified to obtain 95 g (0.6 mol) of 2-pentyl-2-cyclopentenone. Further, under a nitrogen atmosphere, 118 g (0.9 mol) of dimethyl malonate was dissolved in 38 g of anhydrous methanol, cooled to 0 ° C, and 6.5 g (0.036 mol) of sodium methoxide (30% methanol solution) was added. 95 g (0.6 mol) of 2-pentyl-2-cyclopentenone obtained above was dropped at 0 ° C. over 2 hours. After completion of the dropwise addition, unreacted dimethyl malonate was distilled off under reduced pressure to obtain 160 g of Michael adduct.
[0056]
The Michael adduct obtained above was added to a reactor equipped with a distillation distilling tube, heated to 215 ° C., and water was added dropwise at a rate of 3.2 g / h (2% / h). While distilling off the generated carbon dioxide and methanol, a dropping reaction was performed at 215 ° C. for 4 hours. After completion of the reaction, 123 g of methyl 3-oxo-2-pentylcyclopentylacetate was obtained in 126 g of the crude product.
[0057]
Methyl 3-oxo-2-pentylcyclopentyl acetate obtained by rectifying the crude product had a fruity and jasmine-like odor, and was also excellent as a fragrance material.
[0058]
【The invention's effect】
According to the method of the present invention, there is no neutralization / separation step after the reaction as in the case of using a homogeneous catalyst as the dehydration reaction catalyst, there is no possibility of equipment corrosion, high yield and high productivity. To produce 2- (alkylidene) cycloalkanone. Furthermore, using the obtained 2- (alkylidene) cycloalkanone, alkyl (3-oxo-2-alkylcycloalkyl) acetate and 5-alkyl-5-alkanolide useful as a perfume material or a physiologically active substance are obtained in high yield. , Can be manufactured with high purity.

Claims (5)

式(1)
Figure 2004203844
(式中、nは1又は2の整数、R1及びR2はそれぞれ、水素原子又は炭素数1〜8の直鎖もしくは分岐鎖のアルキル基を示すか、あるいはR1とR2が一緒になって隣接する炭素原子と共にシクロペンタン環もしくはシクロヘキサン環を形成してもよい。)
で表される2−(1−ヒドロキシアルキル)シクロアルカノン(以下化合物(1)という)を、固体酸触媒を用いて脱水反応させる、式(2)
Figure 2004203844
(式中、n、R1及びR2は前記の意味を示す。)
で表される2−(アルキリデン)シクロアルカノン(以下化合物(2)という)の製法。
Equation (1)
Figure 2004203844
(Wherein, n is an integer of 1 or 2, R 1 and R 2 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms, or R 1 and R 2 together To form a cyclopentane ring or a cyclohexane ring together with adjacent carbon atoms.)
A 2- (1-hydroxyalkyl) cycloalkanone (hereinafter referred to as compound (1)) represented by the following formula (2):
Figure 2004203844
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
A method for producing 2- (alkylidene) cycloalkanone (hereinafter referred to as compound (2)) represented by the formula:
温度70〜150℃、圧力20〜101kPaで反応させる請求項1記載の製法。The method according to claim 1, wherein the reaction is carried out at a temperature of 70 to 150 ° C and a pressure of 20 to 101 kPa. 固体酸触媒が、AlPO4、TiO2、カチオン交換樹脂から選ばれる少なくとも1種である請求項1又は2記載の製法。Solid acid catalyst, AlPO 4, TiO 2, method according to claim 1 or 2, wherein at least one selected from the cation exchange resin. 請求項1〜3のいずれか一項に記載の製法で得られた化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、式(3)
Figure 2004203844
(式中、n、R1及びR2は前記の意味を示す。)
で表される2−(アルキル)シクロアルケノン(以下化合物(3)という)とし、次いで式(4)
Figure 2004203844
(式中、R3は炭素数1〜3の直鎖又は分岐鎖のアルキル基を示し、2個のR3は同一でも異なっていてもよい。)
で表されるマロン酸ジエステルとを反応させ、次いで水を反応させる、式(5)
Figure 2004203844
(式中、n、R1、R2及びR3は前記の意味を示す。)
で表されるアルキル(3−オキソ−2−アルキルシクロアルキル)アセテートの製法。
The compound (2) obtained by the production method according to any one of claims 1 to 3 is isomerized, or the compound (2) containing the compound (1) is subjected to an isomerization reaction while being subjected to a dehydration reaction. And equation (3)
Figure 2004203844
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
2- (alkyl) cycloalkenone (hereinafter referred to as compound (3)) represented by the formula:
Figure 2004203844
(In the formula, R 3 represents a linear or branched alkyl group having 1 to 3 carbon atoms, and the two R 3 may be the same or different.)
Reacting with malonic diester represented by the formula: and then reacting with water.
Figure 2004203844
(In the formula, n, R 1 , R 2 and R 3 have the same meanings as described above.)
A method for producing an alkyl (3-oxo-2-alkylcycloalkyl) acetate represented by the formula:
請求項1〜3のいずれか一項に記載の製法で得られた化合物(2)を異性化反応させるか、又は化合物(1)を含有する化合物(2)を脱水反応させつつ異性化反応させて、化合物(3)とし、次いで水素還元させた後、バイヤービリガー酸化させる、式(6)で表される5−アルキル−5−アルカノリドの製法。
Figure 2004203844
(式中、n、R1及びR2は前記の意味を示す。)
The compound (2) obtained by the production method according to any one of claims 1 to 3 is isomerized, or the compound (2) containing the compound (1) is subjected to an isomerization reaction while being subjected to a dehydration reaction. To produce a compound (3), followed by hydrogen reduction and Bayer-Villiger oxidation to produce a 5-alkyl-5-alkanolide represented by the formula (6).
Figure 2004203844
(In the formula, n, R 1 and R 2 have the same meanings as described above.)
JP2002378007A 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone Expired - Fee Related JP4115828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378007A JP4115828B2 (en) 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378007A JP4115828B2 (en) 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone

Publications (2)

Publication Number Publication Date
JP2004203844A true JP2004203844A (en) 2004-07-22
JP4115828B2 JP4115828B2 (en) 2008-07-09

Family

ID=32815007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378007A Expired - Fee Related JP4115828B2 (en) 2002-12-26 2002-12-26 Preparation of 2- (alkylidene) cycloalkanone

Country Status (1)

Country Link
JP (1) JP4115828B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217619A (en) * 2002-12-26 2004-08-05 Kao Corp Method for producing cycloalkanone derivative
JP2005255646A (en) * 2004-03-15 2005-09-22 Kao Corp Cycloalkanones-containing composition
JP2009078983A (en) * 2007-09-25 2009-04-16 Nippon Zeon Co Ltd Continuous preparation method for 2-alkylidene cycloalkanone
WO2009125713A1 (en) 2008-04-11 2009-10-15 花王株式会社 Method for producing of 2-alkyl-2-cycloalken-1-one
WO2009128347A1 (en) * 2008-04-15 2009-10-22 花王株式会社 Process for producing a 2-alkyl-2-cycloalkene-1-one
JP2009298771A (en) * 2008-05-13 2009-12-24 Kao Corp Method for producing 2-alkyl-2-cycloalken-1-one
WO2011007146A1 (en) 2009-07-16 2011-01-20 Syngenta Limited Herbicidally active 2-(substituted-phenyl)-cyclopentane-1,3-dione derivatives
WO2011012862A1 (en) 2009-07-31 2011-02-03 Syngenta Limited Herbicidally active heteroaryl-sυbstitυted cyclic diones or derivatives thereof
WO2011043478A1 (en) 2009-10-09 2011-04-14 花王株式会社 Process for producing 2-alkylcycloalkanone
WO2011073060A2 (en) 2009-12-18 2011-06-23 Syngenta Participations Ag Method of combating and controlling pests
EP2997824A1 (en) 2008-12-15 2016-03-23 Syngenta Participations AG. Novel herbicides
CN106554359A (en) * 2015-09-25 2017-04-05 南京理工大学 Application of the sulfonated graphene resin type catalyst in Baeyer-Villiger oxidation reactions
WO2023063030A1 (en) * 2021-10-12 2023-04-20 花王株式会社 COMPOUND PRODUCING METHOD INCLUDING STEP FOR ISOMERIZING α,β-UNSATURATED KETONE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232242A1 (en) 2022-06-01 2023-12-07 Symrise Ag Fragrance mixture

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615206B2 (en) * 2002-12-26 2011-01-19 花王株式会社 Method for producing cycloalkanone derivative
JP2004217619A (en) * 2002-12-26 2004-08-05 Kao Corp Method for producing cycloalkanone derivative
JP4651959B2 (en) * 2004-03-15 2011-03-16 花王株式会社 Cycloalkanone-containing composition
JP2005255646A (en) * 2004-03-15 2005-09-22 Kao Corp Cycloalkanones-containing composition
JP2009078983A (en) * 2007-09-25 2009-04-16 Nippon Zeon Co Ltd Continuous preparation method for 2-alkylidene cycloalkanone
WO2009125713A1 (en) 2008-04-11 2009-10-15 花王株式会社 Method for producing of 2-alkyl-2-cycloalken-1-one
US8394994B2 (en) 2008-04-11 2013-03-12 Kao Corporation Method for producing of 2-alkyl-2-cycloalken-1-one
WO2009128347A1 (en) * 2008-04-15 2009-10-22 花王株式会社 Process for producing a 2-alkyl-2-cycloalkene-1-one
US8378147B2 (en) 2008-04-15 2013-02-19 Kao Corporation Process for producing a 2-alkyl-2-cycloalkene-1-one
JP2009298771A (en) * 2008-05-13 2009-12-24 Kao Corp Method for producing 2-alkyl-2-cycloalken-1-one
EP2997824A1 (en) 2008-12-15 2016-03-23 Syngenta Participations AG. Novel herbicides
WO2011007146A1 (en) 2009-07-16 2011-01-20 Syngenta Limited Herbicidally active 2-(substituted-phenyl)-cyclopentane-1,3-dione derivatives
WO2011012862A1 (en) 2009-07-31 2011-02-03 Syngenta Limited Herbicidally active heteroaryl-sυbstitυted cyclic diones or derivatives thereof
WO2011043478A1 (en) 2009-10-09 2011-04-14 花王株式会社 Process for producing 2-alkylcycloalkanone
CN102548944A (en) * 2009-10-09 2012-07-04 花王株式会社 Process for producing 2-alkylcycloalkanone
CN102548944B (en) * 2009-10-09 2014-12-10 花王株式会社 Process for producing 2-alkylcycloalkanone
JP5756406B2 (en) * 2009-10-09 2015-07-29 花王株式会社 Process for producing 2-alkylcycloalkanone
WO2011073060A2 (en) 2009-12-18 2011-06-23 Syngenta Participations Ag Method of combating and controlling pests
CN106554359A (en) * 2015-09-25 2017-04-05 南京理工大学 Application of the sulfonated graphene resin type catalyst in Baeyer-Villiger oxidation reactions
WO2023063030A1 (en) * 2021-10-12 2023-04-20 花王株式会社 COMPOUND PRODUCING METHOD INCLUDING STEP FOR ISOMERIZING α,β-UNSATURATED KETONE

Also Published As

Publication number Publication date
JP4115828B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US7208621B2 (en) Malonic acid monomethyl derivatives and production process thereof
JP4115828B2 (en) Preparation of 2- (alkylidene) cycloalkanone
US8450508B2 (en) Method of retaining the quality of 2-methyl-3-(3,4-methylenedioxyphenyl)propanal and process for producing the same
US7057077B2 (en) Method for producing 2- (alkyl) cycloalkenone
JP4407896B2 (en) Method for producing 2- (alkyl) cycloalkenone
US6500990B2 (en) Method for producing jasmonate derivatives and intermediates thereof
US20110118510A1 (en) Method for producing phenylalkane-1-ols
JP4615206B2 (en) Method for producing cycloalkanone derivative
US20050261513A1 (en) Process for producing indenol esters or ethers
JP4651959B2 (en) Cycloalkanone-containing composition
JP4216248B2 (en) Method for producing jasmonic acid ester derivative and its intermediate
JP2001328965A (en) Method for producing jasmonate derivative and intermediate thereof
JP4437586B2 (en) Preparation of 2-alkyl-2-cyclopentenone
JP4156462B2 (en) Method for producing acetate derivative
EP1433773B2 (en) Process for producing cycloalkanone derivatives
JP4586568B2 (en) Method for producing tetralones
US6881865B2 (en) Method for preparing cyclohexyl phenyl ketone from 1,3-butadiene and acrylic acid
RU2258060C2 (en) Method for preparing 5-[(4-chlorophenyl)methyl]-2,2-dimethylcyclopentanone
JP2001158756A (en) Method for manufacturing aromatic dihydroxy compound
JP2004331515A (en) Method for producing 3-acetoxystyrene
JP2003128605A (en) Production method of phytantriol
JPS6311344B2 (en)
JPWO2014148269A1 (en) Manufacturing method of Lavanjural
JP2005035946A (en) Method for producing acetic ester derivative
JP2003192629A (en) Method for producing bis(phenylacetyl)benzene

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4115828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees