JP4115470B2 - Substrate heating method - Google Patents

Substrate heating method Download PDF

Info

Publication number
JP4115470B2
JP4115470B2 JP2005190814A JP2005190814A JP4115470B2 JP 4115470 B2 JP4115470 B2 JP 4115470B2 JP 2005190814 A JP2005190814 A JP 2005190814A JP 2005190814 A JP2005190814 A JP 2005190814A JP 4115470 B2 JP4115470 B2 JP 4115470B2
Authority
JP
Japan
Prior art keywords
substrate
heat
temperature
processing chamber
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005190814A
Other languages
Japanese (ja)
Other versions
JP2007012827A (en
Inventor
航 西田
豊 松澤
益教 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005190814A priority Critical patent/JP4115470B2/en
Publication of JP2007012827A publication Critical patent/JP2007012827A/en
Application granted granted Critical
Publication of JP4115470B2 publication Critical patent/JP4115470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は半導体製造装置などにおける基板加熱方法に関するものである。   The present invention relates to a substrate heating method in a semiconductor manufacturing apparatus or the like.

半導体製造装置の1つである熱処理装置に、複数の基板を1枚ずつ順次に加熱処理していく枚葉式のものがある。枚葉式熱処理装置は一般に、処理室に回転可能な基板支持部材と加熱ランプとを配置しており、被処理基板を基板支持部材上に設置し、処理室内に成膜ガスを供給し、基板温度を光学的に監視する状態において、被処理基板を加熱ランプで所定の温度まで加熱するように構成されている(たとえば特許文献1)。
特開2001−127057号公報
One type of semiconductor manufacturing apparatus is a heat treatment apparatus in which a plurality of substrates are sequentially heated one by one. In general, a single-wafer type heat treatment apparatus has a substrate support member and a heating lamp that are rotatable in a processing chamber, a substrate to be processed is placed on the substrate support member, a film forming gas is supplied into the processing chamber, and a substrate In a state where the temperature is optically monitored, the substrate to be processed is heated to a predetermined temperature with a heating lamp (for example, Patent Document 1).
JP 2001-127057 A

しかしながら、枚葉式熱処理装置において、特に急速熱処理(RTP:Rapid Thermal Processing)装置において、酸化プロセス等の成膜処理を行った場合、図12に示すように、基板処理枚数が増えるにしたがって、基板上に形成される酸化膜の膜厚が厚くなる傾向が見られる。基板間の膜厚均一性(面間均一性)が得られないと、半導体装置の量産を行う上で重要な条件の1つである成膜の再現性が充分に得られなくなり、品質の安定性や製造効率が低下してしまう。上記した特許文献1では、加熱処理を開始した際の特に1枚目の基板が2枚目以降の基板に較べて膜厚が小さくなる現象を改善するために、1枚目の基板の搬入前に処理室を予備加熱することが提案されているが、2枚目以降の基板間の膜厚均一性については何ら考慮されておらず、依然として課題となっている。   However, when a film forming process such as an oxidation process is performed in a single wafer heat treatment apparatus, particularly in a rapid thermal processing (RTP) apparatus, as the number of processed substrates increases as shown in FIG. There is a tendency for the thickness of the oxide film formed thereon to increase. If film thickness uniformity between substrates (uniformity between surfaces) cannot be obtained, the reproducibility of film formation, which is one of the important conditions for mass production of semiconductor devices, cannot be obtained sufficiently, and the quality is stable. Performance and production efficiency are reduced. In the above-mentioned Patent Document 1, in order to improve the phenomenon that the film thickness of the first substrate becomes smaller than that of the second and subsequent substrates when the heat treatment is started, before the first substrate is carried in. Although it has been proposed to preheat the processing chamber, the film thickness uniformity between the second and subsequent substrates is not considered at all, and is still a problem.

本発明は、複数の基板を1枚ずつ処理室に搬入して加熱処理する際の基板間の膜厚均一性を向上できる基板加熱方法を提供することを目的とするものである。   An object of the present invention is to provide a substrate heating method capable of improving the film thickness uniformity between substrates when a plurality of substrates are carried into a processing chamber one by one and subjected to heat treatment.

枚葉式熱処理装置では通常、図13に示すように、昇温工程と成膜工程の処理時間が基板間で一定になるように制御されている。本発明者らは、通常は制御されていない降温工程も含めて時系列温度データを収集した結果、加熱処理で得られる膜厚は、基板に加わった熱(基板温度の変位に相当する)とその間の加熱時間との積、すなわち基板に供給された熱量に比例することを見出した。   In a single wafer heat treatment apparatus, normally, as shown in FIG. 13, the processing time of the temperature raising process and the film forming process is controlled to be constant between the substrates. As a result of collecting time-series temperature data including a temperature control step that is not normally controlled, the inventors of the present invention have obtained that the film thickness obtained by the heat treatment is the heat applied to the substrate (corresponding to the displacement of the substrate temperature). It has been found that it is proportional to the product of the heating time during that period, that is, the amount of heat supplied to the substrate.

これは、基板温度が一定になるように加熱ランプより逐次熱供給がなされる間に、処理室の構成要素、例えば処理室の壁部や加熱ランプの周辺部材や基板支持台等も蓄熱効果で昇温し、基板と処理室の構成要素との熱伝導、熱輻射のエネルギー収支の関係が変化することに関連するものと思われる。このことは、制御されていない降温工程で、基板の処理枚数が増えるに従って降温カーブが緩やかになる傾向に表れている。   This is because the heat supply effect is also applied to the components of the processing chamber, such as the wall portion of the processing chamber, the peripheral members of the heating lamp, and the substrate support base, while the heat supply is sequentially performed so that the substrate temperature becomes constant. This is considered to be related to a change in the relationship between the energy balance of heat conduction and heat radiation between the substrate and the processing chamber components as the temperature rises. This shows that the temperature-decreasing curve tends to become gentler as the number of substrates processed increases in the uncontrolled temperature-decreasing process.

本発明の第1の基板加熱方法は、上記知見に基づき、基板間の膜厚を均一にするべく、基板の加熱処理時間、特に成膜工程の時間を積極的に制御することで、基板に供給される熱量を一定に保つようにしたものである。   The first substrate heating method of the present invention is based on the above knowledge, and in order to make the film thickness between the substrates uniform, the substrate heat treatment time, in particular, the time of the film forming process is positively controlled, so that The amount of heat supplied is kept constant.

すなわち、枚葉式熱処理装置において複数の基板を1枚ずつ処理室に搬入して加熱処理する際に、
(1)処理室内に順次に搬入される基板の温度を基板裏面でモニターし、
(2)各基板の温度の経時変化より基板温度の変位と加熱処理時間との積で定義される供給熱量を算出し、各基板の供給熱量と基準となる所定の基板の供給熱量との差分で定義される、処理室への蓄熱量を算出し、
(3)処理室内の基板について、前記蓄熱量の成膜温度による商として定義する、蓄熱量が成膜温度にて蓄積されるのに要する蓄熱時間を算出し、基板毎の供給熱量が一定になるように加熱処理時間を前記蓄熱時間だけ短縮することを特徴とする。
That is, when a plurality of substrates are carried into the processing chamber one by one in the single wafer heat treatment apparatus ,
(1) Monitor the temperature of the substrate sequentially carried into the processing chamber on the back side of the substrate ,
(2) Calculate the supply heat quantity defined by the product of the displacement of the substrate temperature and the heat treatment time from the change in the temperature of each substrate over time, and the difference between the supply heat quantity of each substrate and the supply heat quantity of a predetermined substrate as a reference Calculate the amount of heat stored in the processing chamber , defined in
(3) For the substrate in the processing chamber, calculate the heat storage time required for the heat storage amount to be accumulated at the film formation temperature, which is defined as the quotient of the heat storage amount at the film formation temperature , and the supply heat amount for each substrate is constant. Thus, the heat treatment time is shortened by the heat storage time .

詳細には、処理室に搬入する1枚目および2枚目の被処理基板を昇温工程と成膜工程と降温工程とを行う所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目の被処理基板の加熱処理時に処理室に蓄積する前記蓄熱量を、1枚目n枚目の被処理基板間での前記供給熱量の差分として算出するとともに、3枚目以降のn枚目の被処理基板については、n−1枚目の被処理基板で算出された前記蓄熱量より前記蓄熱時間を算出して、算出された蓄熱時間だけ、基板を所定の成膜温度に維持する前記成膜工程時間を短縮して加熱処理を行うことを特徴とする。 Specifically, the first and second substrates to be carried into the processing chamber are heat-treated with a predetermined heating profile for performing a temperature raising process, a film forming process, and a temperature lowering process, and the second and subsequent n sheets are processed. the heat storage amount accumulated in the processing chamber during the heat treatment of the substrate to be processed in the eye, to calculate as said difference the amount of heat supplied between the first sheet and the n-th target substrate, n pieces of third and subsequent the target substrate eyes, and calculates the heat storage time than the heat storage quantity calculated by the n-1 th target substrate, only the calculated heat accumulation time, to maintain the substrate at a predetermined film forming temperature The heat treatment is performed by shortening the time of the film forming step.

また、被処理基板と同数のモニタ基板を用意し、処理室に搬入する1枚目および2枚目のモニタ基板を昇温工程と成膜工程と降温工程とを行う所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目のモニタ基板の加熱処理時に処理室に蓄積する前記蓄熱量を、1枚目n枚目のモニタ基板間での前記供給熱量の差分として算出し、その後に、処理室に搬入する1枚目の被処理基板を前記所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目の被処理基板については、対応する(n−1)枚目のモニタ基板で算出された前記蓄熱量より前記蓄熱時間算出して、算出された蓄熱時間だけ、基板を所定の成膜温度に維持する前記成膜工程時間を短縮して加熱処理を行うことを特徴とする。 Also, the same number of monitor substrates as the substrates to be processed are prepared, and the first and second monitor substrates to be carried into the processing chamber are subjected to heat treatment with a predetermined heating profile for performing the temperature raising process, the film forming process, and the temperature lowering process. and, the heat storage amount accumulated in the processing chamber during the heat treatment of the n-th monitor substrate of second and subsequent sheets, calculated as the difference between the amount of heat supplied between the first sheet and the n-th monitor substrate, then In addition, the first substrate to be carried into the processing chamber is heated by the predetermined heating profile, and the second and subsequent n-th substrates are the corresponding (n−1) -th substrate. calculates the heat storage time than the heat storage quantity calculated by the monitor substrate, only the calculated heat accumulation time, a heat treatment was performed by shortening the time of the deposition step of maintaining the substrate at a predetermined film forming temperature It is characterized by.

また、n枚(n>2)のモニタ基板を用意し、処理室に搬入する1枚目および2枚目のモニタ基板を昇温工程と成膜工程と降温工程とを行う所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目のモニタ基板の加熱処理時に処理室に蓄積する前記蓄熱量を、1枚目n枚目のモニタ基板間での前記供給熱量の差分として算出し、算出された各蓄熱量よりモニタ基板1枚当たりの平均蓄熱量を算出し、その後に、処理室に搬入する1枚目の被処理基板を前記所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目の被処理基板については、前記モニタ基板で算出された平均蓄熱量を用いて単位基板当りの前記蓄熱時間を算出して、基板を所定の成膜温度に維持する前記成膜工程時間を前記蓄熱時間ずつ順次に短縮して加熱処理を行うことを特徴とする。 In addition, n monitor substrates (n> 2) are prepared, and the first and second monitor substrates carried into the processing chamber are subjected to a heating process, a film forming process, and a temperature decreasing process with a predetermined heating profile. heat treatment, the heat storage amount accumulated in the processing chamber during the heat treatment of the n-th monitor substrate of second and subsequent sheets, calculated as the difference between the amount of heat supplied between the first sheet and the n-th monitor substrate calculates an average amount of heat stored per one respective heat storage amount by Ri monitor substrate calculated, then, heat treating the first sheet of the substrate to be loaded into the processing chamber at said predetermined heating profile, two the n-th target substrate after eye, said calculating the heat storage time per unit substrate using the average heat storage amount calculated by the monitor substrate, maintaining the board in the predetermined deposition temperature the Heat treatment is performed by sequentially shortening the time of the film formation step by the heat storage time. Cormorant be characterized.

本発明の基板加熱方法は、基板温度の経時変化より処理室への蓄熱量を推測し、基板毎の供給熱量が一定になるように、前記蓄熱量を基に、加熱処理時間を制御するか、あるいは処理室を積極的に冷却するものであり、これにより、基板間の膜厚不均一を解消し、デバイス特性の不均一を抑制することが可能になった。   In the substrate heating method of the present invention, the amount of heat stored in the processing chamber is estimated from the change over time in the substrate temperature, and the heat treatment time is controlled based on the amount of stored heat so that the amount of heat supplied to each substrate is constant. Alternatively, the processing chamber is actively cooled, thereby eliminating the non-uniform film thickness between the substrates and suppressing the non-uniform device characteristics.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の基板加熱方法に用いる熱処理装置の概略構成を示す断面図である。
この熱処理装置は、枚葉式急速熱処理装置と呼ばれるものであり、処理室1と、処理室1内で処理対象の基板(シリコンウェハ)Wを支持する基板支持部材2と、基板支持部材2に支持された基板Wを加熱するランプモジュール3と、基板支持部材上に支持された基板Wの温度を検出する温度センサ4とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a heat treatment apparatus used in the substrate heating method of the present invention.
This heat treatment apparatus is called a single wafer rapid heat treatment apparatus, and includes a processing chamber 1, a substrate support member 2 that supports a substrate (silicon wafer) W to be processed in the processing chamber 1, and a substrate support member 2. The lamp module 3 that heats the supported substrate W and the temperature sensor 4 that detects the temperature of the substrate W supported on the substrate support member are provided.

処理室1は、ステンレス製の円筒状の側壁部5とベース部6と蓋部7とで構成されている。側壁部5内には、側壁部5自体の変形や破損を防止するとともに、後述する機能を担う冷却水路8が設けられている。   The processing chamber 1 includes a stainless steel cylindrical side wall portion 5, a base portion 6, and a lid portion 7. In the side wall part 5, while preventing the deformation | transformation and damage of side wall part 5 itself, the cooling water channel 8 which bears the function mentioned later is provided.

基板支持部材2は、処理室1の側壁部5に対してベアリング9などの回転機構を介して取り付けられた円筒フレーム10と、円筒フレーム10の上端に取り付けられたリングフレーム11とを有している。リングフレーム11は内周側の段部で基板Wの外周縁部を受けて基板Wを水平方向に保持する。円筒フレーム10は図示しない駆動手段により軸心廻りに回転して、リングフレーム11上の基板Wを一体に回転させる。処理室1のベース部6はこの円筒フレーム10で囲まれている。   The substrate support member 2 includes a cylindrical frame 10 attached to the side wall 5 of the processing chamber 1 via a rotation mechanism such as a bearing 9 and a ring frame 11 attached to the upper end of the cylindrical frame 10. Yes. The ring frame 11 receives the outer peripheral edge portion of the substrate W at a step portion on the inner peripheral side, and holds the substrate W in the horizontal direction. The cylindrical frame 10 is rotated around the axis by driving means (not shown), and the substrate W on the ring frame 11 is rotated integrally. The base portion 6 of the processing chamber 1 is surrounded by the cylindrical frame 10.

ランプモジュール3は、複数の加熱ランプ12で構成されており、処理室1の蓋部7に取り付けられている。
温度センサ4は、基板温度を光学的に検出可能な複数のパイロメータ13からなり、基板裏面側に形成される光学的閉空間に臨むように処理室1のベース部6に組み込まれている。複数のパイロメータ13の位置は、円形のベース部6の軸心を頂点とする扇形領域内である。
The lamp module 3 includes a plurality of heating lamps 12 and is attached to the lid portion 7 of the processing chamber 1.
The temperature sensor 4 includes a plurality of pyrometers 13 that can optically detect the substrate temperature, and is incorporated in the base portion 6 of the processing chamber 1 so as to face an optically closed space formed on the back side of the substrate. The positions of the plurality of pyrometers 13 are in a sector area having the axis of the circular base portion 6 as the apex.

図示を省略するが、処理室1の側壁部5には、基板表面側空間に臨むガス供給口とガス排出口とが対向して設けられている。ベース部6には、基板Wを基板支持部材2の所定位置に載せまた取り外すリフト部材、たとえばベース部6を貫通した昇降自在な複数の支持ピンが設けられている。   Although not shown, the side wall 5 of the processing chamber 1 is provided with a gas supply port and a gas discharge port facing the substrate surface side space. The base portion 6 is provided with a lift member that mounts and removes the substrate W on a predetermined position of the substrate support member 2, for example, a plurality of support pins that are movable up and down through the base portion 6.

処理室1の外部には、この処理室1と弁装置を介して連通した前処理室と、前処理室から処理室1へ基板Wを搬送する搬送ロボットとが配置されている。前処理室は、複数の基板Wを収容して、加熱処理時の処理室1内と同等圧力の窒素雰囲気内に保持する。   Outside the processing chamber 1, a preprocessing chamber that communicates with the processing chamber 1 via a valve device, and a transfer robot that transfers the substrate W from the preprocessing chamber to the processing chamber 1 are arranged. The pretreatment chamber accommodates a plurality of substrates W and holds them in a nitrogen atmosphere having the same pressure as that in the treatment chamber 1 during the heat treatment.

上記熱処理装置で基板Wを加熱処理する際の動作を説明する。
前処理室内に収容された同一種類の複数の基板の内、1枚目の基板Wを搬送ロボットにより取り出して処理室1内に搬送し、基板支持部材2上の所定位置に設置し、この基板Wに対して加熱処理プロセスを実施する。加熱処理プロセスが終了したら基板Wを搬送ロボットにより処理室1外に回収し、2枚目以降の基板に対して同様に搬送および加熱処理プロセスを行なう。
An operation when the substrate W is heat-treated with the heat treatment apparatus will be described.
Of the plurality of substrates of the same type accommodated in the pretreatment chamber, the first substrate W is taken out by the transport robot and transported into the processing chamber 1 and placed at a predetermined position on the substrate support member 2. A heat treatment process is performed on W. When the heat treatment process is completed, the substrate W is recovered outside the processing chamber 1 by the transfer robot, and the transfer and heat treatment processes are similarly performed on the second and subsequent substrates.

処理室1内の加熱処理プロセスとしては、基板表面側空間に成膜ガスを供給し、基板支持部材2を介して基板Wを軸芯廻りに一定速度で回転させる状態において、基板裏面の温度を各パイロメータ13で光学的に検出しながら、その検出値が予め決めた設定温度に一致するようにランプモジュール3の出力を制御して各加熱ランプ12の熱を基板Wに供給することにより、基板Wの表面に成膜する。加熱処理の一例はISSG(In Situ Steam Generation)プロセスなどのウェット酸化プロセス(HおよびOを供給しHOを生成させて酸化膜を生成する)である。所定時間が経過したら、基板Wの回転を停止し、加熱処理プロセスを終了する。 As a heat treatment process in the processing chamber 1, the temperature of the back surface of the substrate is set in a state in which a film forming gas is supplied to the space on the substrate surface side and the substrate W is rotated at a constant speed around the axis via the substrate support member 2. By optically detecting each pyrometer 13 and controlling the output of the lamp module 3 so that the detected value matches a predetermined set temperature and supplying the heat of each heating lamp 12 to the substrate W, the substrate A film is formed on the surface of W. An example of the heat treatment is a wet oxidation process such as an ISSG (In Situ Steam Generation) process (supplying H 2 and O 2 to generate H 2 O to generate an oxide film). When the predetermined time has elapsed, the rotation of the substrate W is stopped and the heat treatment process is terminated.

図2に、加熱処理プロセスにおける基板温度の経時変化を示す。パイロメータ13による基板温度測定値データを収集したものである。
基板Wを所定位置に設置して処理レシピを開始する時刻tでの基板温度はTである。この基板Wをランプモジュール3を一定出力にして加熱する。一般にパイロメータ13を使用した温度制御系では450℃以下の温度領域の検知感度が充分でないので、ここでも、検出感度を確保できる温度(帯)Tまでは一定出力にて加温する制御方法を用いる。基板温度がTに達したら、その時刻tから所定の時刻tまでTを安定に保持する。
FIG. 2 shows a change with time of the substrate temperature in the heat treatment process. The substrate temperature measurement data by the pyrometer 13 is collected.
The substrate temperature at time t 0 when the substrate W is placed at a predetermined position and the processing recipe is started is T 0 . The substrate W is heated with the lamp module 3 at a constant output. In general, the temperature control system using the pyrometer 13 does not have sufficient detection sensitivity in a temperature region of 450 ° C. or lower. Therefore, a control method for heating at a constant output up to a temperature (band) T 1 where the detection sensitivity can be ensured is also used here. Use. When the substrate temperature reached T 1, to stably hold the T 1 from the time t 1 to a predetermined time t 2.

時刻t以後は、パイロメータ13の出力をフィードバックして基板温度を管理しつつ加熱する。所定の時刻tに、成膜が開始する温度Tまで到達させる。時刻tから所定の成膜工程時間となる時刻tまでは、基板温度をTに制御しつつ成膜ガスを基板全面に供給する。この成膜工程時間t〜tは従来は処理レシピが同一であれば一定としている。 Time t 2 subsequent heats while managing the substrate temperature by feeding back the output of the pyrometer 13. At a predetermined time t 3, to reach the temperature T 2 of the film formation is started. From time t 3 to time t 4 of a predetermined deposition process time supplies film forming gas to the entire surface of the substrate while controlling the substrate temperature T 2. Conventionally, the film forming process times t 3 to t 4 are constant if the processing recipe is the same.

時刻tに、直ちに成膜ガスをパージするとともに熱供給を遮断して、成膜を速やかに停させる。その後の所定の時刻tに基板Wを回収する。
このようにして加熱処理する間に基板に供給される供給熱量について、図3を参照しながら説明する。この図3は図2と同等の基板温度の経時変化を示している。
At time t 4, attention immediately a deposition gas to block heat supplied with purge, stop immediately the deposition. To recover the substrate W to the subsequent predetermined time t 5.
The amount of heat supplied to the substrate during the heat treatment will be described with reference to FIG. FIG. 3 shows the change with time of the substrate temperature equivalent to FIG.

基板への供給熱量は基板温度の変位と加熱処理時間との積(図中では面積)で表わされる。ここでは、時刻tまでは一定出力で昇温させるステップであって基板処理枚数に関わらず一定なので、その間の面積は簡便のために除外し、パイロメータの測定値をフィードバックして基板温度を制御する時刻t以降の面積を用いる。また時刻t以降では基板温度は常にTより高いので、基板温度T以下の面積も簡便のために除外する。 The amount of heat supplied to the substrate is represented by the product (area in the figure) of the displacement of the substrate temperature and the heat treatment time. Here, since until time t 2 is constant irrespective of the substrate processing number comprising the steps of raising the temperature at a constant output, the area therebetween is excluded for convenience, control the substrate temperature by feeding back the measured value of the pyrometer the time t 2 and later of the area to be used. Since the time t 2 after higher always substrate temperatures T 1, excluded for even simple substrate temperature T 1 of the following areas.

つまり、成膜処理開始時刻tから成膜工程時間(t〜t)を経て基板搬出時刻tに至るまでの時間範囲と、成膜処理開始温度Tから成膜温度Tを経て成膜処理終了温度Tに至るまでの温度範囲とで規定される、塗潰した領域の面積Xを基板への供給熱量として算出する。算出法にはたとえば台形面積計算法を用いる。 That is, the time range from the film formation process start time t 2 through the film formation process time (t 3 to t 4 ) to the substrate carry-out time t 5 and the film formation process start temperature T 1 to the film formation temperature T 2 are set. is defined by the temperature range up to the film forming process end temperature T 3 through, it calculates the area X of a region crushed coated as the amount of heat supplied to the substrate. For example, a trapezoidal area calculation method is used as the calculation method.

台形面積計算法について、図4に基板温度の経時変化を模式的に示して説明する。
時刻0から一定周期αで基板温度の測定値を収集するとき、時刻tおよび時刻t+αでの測定値をそれぞれA、Bとすると、その間に基板に供給された熱量は図中の塗潰した台形領域で示され、その面積Sは以下の(式1)で算出される。
The trapezoidal area calculation method will be described with reference to FIG.
When collecting measurements of substrate temperature at a constant period alpha from time 0, the time t a and time t a + alpha measurements respectively at A, when is B, the coating in the amount of heat supplied to the substrate during drawing It is shown by a crushed trapezoidal area, and its area Sa is calculated by the following (Equation 1).

=(A+B)×(t+α−t)/2・・・・(式1)
任意の時刻tまでの面積Xは、測定周期毎に算出される任意の面積(S)´の和として以下の(式2)で算出される。
S a = (A + B) × (t a + α−t a ) / 2 (Expression 1)
The area X up to an arbitrary time t n is calculated by the following (Equation 2) as the sum of an arbitrary area (S x ) ′ calculated for each measurement cycle.

Figure 0004115470
図5は、複数の基板について面積Xの値(基板への供給熱量)と膜厚とを調べた結果を示す。面積値と膜厚とは、既述したように比例関係、つまり直線関係にある。
Figure 0004115470
FIG. 5 shows the results of examining the value of area X (amount of heat supplied to the substrate) and the film thickness for a plurality of substrates. As described above, the area value and the film thickness have a proportional relationship, that is, a linear relationship.

本発明の基板加熱方法は、この比例関係を利用して、基板間の膜厚を均一にすべく、以下のようして基板毎に関連付けが可能な形式でデータ収集を行い、基板への供給熱量を一定に制御するものである。   The substrate heating method of the present invention uses this proportional relationship to collect data in a format that can be associated with each substrate as follows in order to make the film thickness between the substrates uniform, and supply to the substrate The amount of heat is controlled to be constant.

なお図5の結果は、パイロメータより出力される基板中心ゾーンの温度データを1.5秒周期で取得して面積Xを算出したものであるが、他ゾーンの出力値を用いてもよく、またデータ取得間隔は1.5秒以下であれば問題ない。昇温時や降温時等の温度変化が発生する期間のみデータ取得間隔を短く設定するようにしても勿論構わない。
(実施例1)
本発明の実施例1の基板加熱方法は、基板温度の測定結果から処理室に蓄積する熱量を評価し、その結果を基に、基板への供給熱量を成膜工程時間の制御により管理するものである。昇温工程、降温工程は一定時間とする。
The results in FIG. 5 are obtained by calculating the area X by acquiring the temperature data of the substrate center zone output from the pyrometer at a cycle of 1.5 seconds, but the output values of other zones may be used. If the data acquisition interval is 1.5 seconds or less, there is no problem. Of course, the data acquisition interval may be set to be short only during a period in which a temperature change occurs such as when the temperature rises or falls.
(Example 1)
In the substrate heating method according to the first embodiment of the present invention, the amount of heat accumulated in the processing chamber is evaluated from the measurement result of the substrate temperature, and the amount of heat supplied to the substrate is managed by controlling the film formation process time based on the result. It is. The temperature raising process and the temperature lowering process are performed for a fixed time.

ロット内の1枚目及び2枚目の被処理基板について、成膜温度をT、成膜工程時間をBとする所定の処理レシピで加熱処理を実施する。
その際の成膜処理開始時刻、成膜処理開始温度を基準とした温度プロファイルは図6で示される。1枚目の被処理基板に供給された熱量は破線で囲まれた面積に相当し、その面積値Xは上記(式2)で算出される。2枚目の被処理基板に供給された熱量は実線で囲まれた面積に相当し、その面積値Xも上記(式2)で算出される。以下、基板への供給熱量に相応する面積およびその値を熱面積、熱面積値という。
For the first sheet and the second sheet of the substrate in the lot, the deposition temperature T, performing the heat treatment at a predetermined processing recipe a deposition process time and B 1.
A temperature profile based on the film formation process start time and the film formation process start temperature is shown in FIG. Heat supplied to the first sheet of the substrate corresponds to the area surrounded by the broken line, the area value X 1 is calculated by the equation (2). The amount of heat supplied to the second sheet of the substrate corresponds to the area surrounded by the solid line, the area value X 2 is also calculated by the equation (2). Hereinafter, an area corresponding to the amount of heat supplied to the substrate and its value are referred to as a heat area and a heat area value.

2枚目の被処理基板の加熱処理時に処理室に蓄積する蓄熱量ΔSを、2枚目の被処理基板の熱面積値と1枚目の被処理基板の熱面積値との差分に相当するものとして、以下の(式3)で算出する。 The heat storage amount ΔS 2 accumulated in the processing chamber during the heat treatment of the second substrate to be processed corresponds to the difference between the heat area value of the second substrate to be processed and the heat area value of the first substrate to be processed. It is calculated by the following (Formula 3).

ΔS=X−X・・・(式3)
3枚目の被処理基板の成膜工程時間Bを以下の(式A)で算出し、算出値を用いて同基板を加熱処理する。即ち、蓄熱量ΔSが温度Tにて蓄積されるのに要する理論上の時間だけ成膜時間を短縮するのである。
ΔS 2 = X 2 −X 1 (Formula 3)
The film formation process time B3 of the third substrate to be processed is calculated by the following (formula A), and the substrate is heat-treated using the calculated value. That is, the film formation time is shortened by a theoretical time required for the heat storage amount ΔS 2 to be accumulated at the temperature T.

=B−ΔS/T・・・(式A)
3枚目の被処理基板の熱面積Xを上記(式2)より算出する。3枚目の基板処理時の処理室の蓄熱量ΔSを、3枚目の被処理基板の熱面積値と1枚目の基板の熱面積値との差分に相当するものとして、以下の(式B)で算出する。
B 3 = B 1 −ΔS 2 / T (formula A)
The thermal area X3 of the third substrate to be processed is calculated from the above (Equation 2). Assuming that the heat storage amount ΔS 3 of the processing chamber at the time of processing the third substrate corresponds to the difference between the thermal area value of the third substrate to be processed and the thermal area value of the first substrate, Calculated by equation B).

ΔS=X−X・・・(式B)
4枚目の被処理基板の成膜工程時間Bを上記と同様にして以下の(式C)で算出し、算出値を用いて同基板を加熱処理する。
ΔS 3 = X 3 −X 1 (Formula B)
The film formation process time B4 for the fourth substrate to be processed is calculated by the following (formula C) in the same manner as described above, and the substrate is heated using the calculated value.

=B−ΔS/T・・・(式C)
つまり、3枚目以降のn枚目の基板については、その成膜工程時間Bを以下の(式D)で算出し、算出値を用いて加熱処理するのである。
B 4 = B 1 −ΔS 3 / T (formula C)
That is, for the third and subsequent n-th substrates, the film formation process time B n is calculated by the following (formula D), and the heat treatment is performed using the calculated values.

=B−ΔSn−1/T(ただしn≧3)・・・(式D)
以上の基板加熱方法のシミュレーション結果を図7に示す。横軸は基板処理枚数、左軸は膜厚、右軸は基板間膜厚均一性を示している。図中に記したように、この実施例1の方法によれば、従来法に較べて基板間膜厚のばらつきを約1%改善することができる。なおシミュレーションは、ISSGプロセスでSi基板に対してH、Oを成膜ガスとしてSiOを成膜したものである。以下の実施例でも同様である。
(実施例2)
本発明の実施例2の基板加熱方法は、被処理基板と同数のモニタ基板を用いて処理室に蓄積される熱量を評価し、その結果を基に、基板への供給熱量を成膜工程時間の制御により管理するものである。
B n = B 1 −ΔS n−1 / T (where n ≧ 3) (formula D)
The simulation result of the above substrate heating method is shown in FIG. The horizontal axis indicates the number of processed substrates, the left axis indicates the film thickness, and the right axis indicates the film thickness uniformity between the substrates. As described in the figure, according to the method of the first embodiment, the variation in the film thickness between the substrates can be improved by about 1% as compared with the conventional method. In the simulation, the SiO 2 film is formed on the Si substrate by using an H 2 and O 2 film forming gas by the ISSG process. The same applies to the following embodiments.
(Example 2)
In the substrate heating method according to the second embodiment of the present invention, the amount of heat accumulated in the processing chamber is evaluated using the same number of monitor substrates as the substrate to be processed, and the amount of heat supplied to the substrate is determined based on the result. It is managed by the control of.

まず、処理室に蓄積される熱量を評価する。
被処理基板と同数のモニタ基板を用意する。このモニタ基板は、被処理基板と同種の結晶構造を有し、且つ可能であれば同様のパターン形状を有したものとする。
First, the amount of heat accumulated in the processing chamber is evaluated.
Prepare the same number of monitor substrates as the substrates to be processed. This monitor substrate has the same kind of crystal structure as the substrate to be processed and, if possible, has the same pattern shape.

ロット内の1枚目および2枚目のモニタ基板を、被処理基板と同一レシピ、つまり成膜温度をT、成膜工程時間をBとする所定の処理レシピで加熱処理する。
実施例1と同様にして、加熱処理時の温度データから、1枚目のモニタ基板の熱面積Xm1および2枚目のモニタ基板の熱面積Xm2を上記(式2)により算出する。
The first and second sheets of the monitor substrate in the lot, to heat treatment at a predetermined processing recipe target substrate in the same recipe, that is, the deposition temperature T, the film formation process time and B 1.
In the same manner as in the first embodiment, the thermal area X m1 of the first monitor substrate and the thermal area X m2 of the second monitor substrate are calculated from the temperature data at the time of the heat treatment by the above (formula 2).

2枚目以降のn枚目のモニタ基板の加熱処理時の処理室の蓄熱量ΔSmnを実施例1と同様にして以下の(式F)で算出する。
ΔSmn=Xmn−Xm1(ただしn≧2)・・・(式F)
その後に被処理基板の加熱処理プロセスを開始する。
The heat storage amount ΔS mn in the processing chamber during the heat treatment of the second and subsequent n-th monitor substrates is calculated by the following (formula F) in the same manner as in the first embodiment.
ΔS mn = X mn −X m1 (where n ≧ 2) (Formula F)
Thereafter, a heat treatment process of the substrate to be processed is started.

ロット内の1枚目の被処理基板を、処理温度をT、成膜工程時間をBとする所定の処理レシピで加熱処理する。
2枚目以降のn枚目の被処理基板については、その成膜工程時間Bを、n−1枚目のモニタ基板で得た蓄熱量値を用いて実施例1と同様にして以下の(式I)で算出し、算出値を用いて加熱処理する。
The first sheet of the substrate to be processed in the lot, the treatment temperature T, the heat treatment at a predetermined processing recipe a deposition process time and B 1.
For the second and subsequent nth substrates to be processed, the film formation process time Bn is set as follows in the same manner as in Example 1 by using the heat storage value obtained with the (n-1) th monitor substrate. It calculates with (Formula I) and heat-processes using a calculated value.

=B−ΔSmn-1/T(ただしn≧2)・・・(式I)
以上の基板加熱方法によるシミュレーション結果を図8に示す。横軸は基板処理枚数、左軸は膜厚、右軸は基板間膜厚均一性を示している。図中に記したように、この実施例2の方法によれば、従来法に較べて基板間膜厚のばらつきを約2.4%改善することができる。
(実施例3)
本発明の実施例3の基板加熱方法は、少なくとも2枚のモニタ基板を加熱処理して、処理室に蓄積される熱量を推測し、平均化し、その結果を基に、基板への供給熱量を成膜処理時間の制御により管理するものである。
B n = B 1 −ΔS mn −1 / T (where n ≧ 2) (Formula I)
The simulation result by the above substrate heating method is shown in FIG. The horizontal axis indicates the number of processed substrates, the left axis indicates the film thickness, and the right axis indicates the inter-substrate film thickness uniformity. As described in the figure, according to the method of the second embodiment, the variation in the film thickness between the substrates can be improved by about 2.4% as compared with the conventional method.
(Example 3)
In the substrate heating method according to the third embodiment of the present invention, at least two monitor substrates are heated, the amount of heat accumulated in the processing chamber is estimated, averaged, and the amount of heat supplied to the substrate is calculated based on the result. It is managed by controlling the film forming process time.

少なくとも2枚のモニタ基板を用意する。このモニタ基板は、被処理基板と同種の結晶構造を有し、且つ可能であれば同様のパターン形状を有したものとする。
ロット内の1枚目および2枚目のモニタ基板を、被処理基板と同一レシピ、つまり成膜温度をT、成膜工程時間をBとする所定の処理レシピで加熱処理する。
At least two monitor boards are prepared. This monitor substrate has the same kind of crystal structure as the substrate to be processed and, if possible, has the same pattern shape.
The first and second sheets of the monitor substrate in the lot, to heat treatment at a predetermined processing recipe target substrate in the same recipe, that is, the deposition temperature T, the film formation process time and B 1.

2枚目以降のn枚目のモニタ基板の加熱処理時の処理室の蓄熱量ΔSmnを実施例2と同様にして以下の(式F)で算出する。
ΔSmn=Xmn−Xm1(ただしn≧2)・・・(式F)
次に、蓄熱量ΔSmnの値からモニタ基板1枚当りの平均蓄熱量ΔSavを以下の(式4)で算出する。
The heat storage amount ΔS mn of the processing chamber during the heat treatment of the second and subsequent n-th monitor substrates is calculated by the following (formula F) in the same manner as in the second embodiment.
ΔS mn = X mn −X m1 (where n ≧ 2) (Formula F)
Next, an average heat storage amount ΔS av per monitor substrate is calculated from the value of the heat storage amount ΔS mn by the following (formula 4).

ΔSav=ΔSmn/(n−1)(但しn≧2)・・・(式4)
さらに、平均蓄熱量ΔSavの値から単位基板当りの成膜工程短縮時間Δtを以下の(式5)で算出する。
ΔS av = ΔS mn / (n−1) (where n ≧ 2) (Expression 4)
Further, the film formation process shortening time Δt per unit substrate is calculated from the value of the average heat storage amount ΔSav by the following (formula 5).

Δt=ΔSav/T・・・(式5)
その後に、被処理基板の加熱処理プロセスを開始する。
図9に示すように、ロット内の1枚目の被処理基板を、処理温度をT、成膜工程時間をBとする所定の処理レシピで加熱処理する。その際に被処理基板に供給される熱量は、図中の塗潰した領域に相応するものとなる(温度積分値A:熱面積)。
Δt = ΔS av / T (Expression 5)
Thereafter, a heat treatment process for the substrate to be processed is started.
As shown in FIG. 9, the first sheet of the substrate to be processed in the lot, the treatment temperature T, the heat treatment at a predetermined processing recipe a deposition process time and B 1. The amount of heat supplied to the substrate to be processed at that time corresponds to the painted area in the figure (temperature integrated value A 1 : heat area).

2枚目以降のn枚目の被処理基板については、その成膜工程時間Bを、所定の成膜工程時間Bとモニタ基板により求めた短縮時間Δtとを用いて以下の式(式7)で算出し、算出値を用いて加熱処理する。 For the second and subsequent n-th substrates to be processed, the film formation process time B n is expressed by the following equation (formula) using a predetermined film formation process time B 1 and the shortened time Δt obtained by the monitor substrate. 7), and heat treatment is performed using the calculated value.

=B−(n−1)Δt(但しn≧2)・・・(式7)
その際に被処理基板に供給される熱量は、図中の塗潰した領域に相応するものとなる(温度積分値A,A・・・)。
B n = B 1 − (n−1) Δt (where n ≧ 2) (Expression 7)
At this time, the amount of heat supplied to the substrate to be processed corresponds to the painted area in the figure (temperature integrated values A 2 , A 3 ...).

実施例2よりも簡便でありながら、1枚目からn枚目の被処理基板に供給される熱量を一定に制御できる方法である。
なお従来技術でも問題とされているように、1枚目の基板と2枚目の基板との間で膜厚変動が大きいので、2枚目の被処理基板の成膜工程時間Bはモニタ基板によって実測された結果を基に算出し、3枚目以降の被処理基板の成膜工程時間Bnは(式5)より算出される短縮時間Δtを用いて簡便に算出するようにしてもよい。
In this method, the amount of heat supplied to the first to nth substrates to be processed can be controlled to be constant while being simpler than the second embodiment.
As is also a problem in the prior art, the film thickness variation between the first substrate and the second substrate is large, so the film formation process time B 2 of the second substrate to be processed is monitored. The film formation process time Bn of the third and subsequent substrates to be processed may be simply calculated using the shortened time Δt calculated from (Equation 5). .

つまり、2枚目の成膜工程時間B2は上記(式G)で算出し、3枚目以降の成膜工程時間Bは以下の(式J)で算出することになる。
=B−(n−2)Δt(但しn≧3)・・・(式J)
3枚目以降の被処理基板についてのみ短縮時間Δtを用いる基板加熱方法によるシミュレーション結果を図10に示す。横軸は基板処理枚数、左軸は膜厚、右軸は基板間膜厚均一性を示している。図中にも記したように、この実施例3の方法によれば、基板間の膜厚ばらつきは1枚目の基板の膜厚を基準として±0.2%以内であり、従来法では±2.4%であるのに較べて、1/10以下に改善されている。
(実施例4)
本発明の実施例4の基板加熱方法は、基板への供給熱量を、処理室に蓄積する熱量を一定に制御することにより、具体的には処理室の冷媒路(図1参照)に流す冷却水流量を制御することにより、管理するものである。
That is, the film formation process time B2 for the second sheet is calculated by the above (formula G), and the film formation process time Bn for the third and subsequent sheets is calculated by the following (formula J).
B n = B 2 − (n−2) Δt (where n ≧ 3) (formula J)
FIG. 10 shows a simulation result by the substrate heating method using the shortened time Δt only for the third and subsequent substrates. The horizontal axis indicates the number of processed substrates, the left axis indicates the film thickness, and the right axis indicates the inter-substrate film thickness uniformity. As also shown in the figure, according to the method of Example 3, the film thickness variation between the substrates is within ± 0.2% based on the film thickness of the first substrate. Compared to 2.4%, it is improved to 1/10 or less.
Example 4
In the substrate heating method according to the fourth embodiment of the present invention, the amount of heat supplied to the substrate is controlled so that the amount of heat accumulated in the processing chamber is constant, and specifically, cooling that flows through the refrigerant path (see FIG. 1) of the processing chamber It is managed by controlling the water flow rate.

実施例3と同様にして、モニタ基板を用いて2枚目以降のn枚目の基板の加熱処理時に処理室に蓄積する蓄熱量ΔSmnを以下の(式F)で算出し、基板1枚当りの平均蓄熱量ΔSavを以下の(式4)で算出する。 In the same manner as in Example 3, the heat storage amount ΔS mn accumulated in the processing chamber during the heat treatment of the second and subsequent n-th substrates is calculated using the monitor substrate by the following (formula F), and one substrate is obtained. The average heat storage amount ΔS av per unit is calculated by the following (formula 4).

ΔSmn=Xmn−Xm1(ただしn≧2)・・・(式F)
ΔSav=ΔSmn/(n−1)(但しn≧2)・・・(式4)
ここで、被処理基板1枚当たりに処理室に蓄積する熱量が0となる冷却水流量をFとし、平均蓄熱量がΔSavとなる冷却水流量をFとすると、以下の(式8)で表わされる関係にある。
ΔS mn = X mn −X m1 (where n ≧ 2) (Formula F)
ΔS av = ΔS mn / (n−1) (where n ≧ 2) (Expression 4)
Here, when the cooling water flow rate at which the amount of heat accumulated in the processing chamber per substrate to be processed is 0 is F and the cooling water flow rate at which the average heat storage amount is ΔS av is F 0 , the following (formula 8) There is a relationship represented by

F−F=ΔSav・・・(式8)
被処理基板を加熱処理するにあたって、ロット内の1枚目と2枚目の基板については冷却水流量をFとして加熱処理を実施する。この場合の2枚目の基板の加熱処理時の処理室の蓄熱量は、2枚目の基板の熱面積値Xと1枚目の基板の熱面積値Xとの差分となる。
F−F 0 = ΔS av (Expression 8)
In heat treatment of the substrate to be processed, for one sheet and the second sheet of substrates in the lot is performed a heat treatment of the cooling water flow as F 0. Heat storage amount of the processing chamber during heat treatment of the second substrate in this case is thermal area value X 2 of the second substrate and the first sheet of the difference between the thermal area value X 1 of the substrate.

従って、3枚目の被処理基板の加熱処理時の冷却水流量をFとすると、上記(式8)を用いて、以下の式で算出される。
=(X−X)/ΔSav+F・・・(式9)
つまり、3枚目以降のn枚目の冷却水流量Fは以下の(式10)で算出される。算出値を用いて加熱処理する。
Therefore, when the cooling water flow rate during the heat treatment of the third substrate to be processed is F 3 , the above equation (8) is used to calculate the following equation.
F 3 = (X 2 −X 1 ) / ΔS av + F 0 (Equation 9)
That is, the third and subsequent n-th cooling water flow rate F n is calculated by the following (formula 10). Heat treatment is performed using the calculated value.

=(Xn−1−X)/ΔSav+F・・・(式10)
更に基板温度制御で処理室の蓄熱量を制御する場合は、成膜工程と降温工程との間に一定温度で保持するステップを加え、基板温度と時間積分により得られる面積値を調整する事で可能となる。即ちn枚の基板からなるロットに対しては、1枚目の保持ステップの面積値は(n−1)ΔSavとなるように保持温度若しくはステップ時間を制御する工程を設ける。
F n = (X n-1 -X 1) / ΔS av + F 0 ··· ( Formula 10)
Furthermore, when controlling the amount of heat stored in the processing chamber by controlling the substrate temperature, adding a step of holding at a constant temperature between the film forming process and the temperature decreasing process, and adjusting the substrate temperature and the area value obtained by time integration. It becomes possible. That is, for a lot consisting of n substrates, a process of controlling the holding temperature or the step time is provided so that the area value of the first holding step is (n−1) ΔS av .

図11に保持温度Tで固定した場合の基板処理枚数と保持ステップ中の熱面積及び基板温度のダイアグラムを示す。基板1枚当たりの保持ステップ工程の熱面積をΔSavずつ減少させるように保持時間を逐次短縮している。降温工程の終了時の基板温度は、1枚目の基板でTE1とすると、2枚目の基板でTE2、・・・n枚目の基板でTEnというように、処理枚数の増加に伴って上昇する(降温曲線の傾きが変化する)ことになる。 FIG. 11 shows a diagram of the number of processed substrates, the heat area during the holding step, and the substrate temperature when the holding temperature T is fixed. The holding time is sequentially shortened so that the thermal area of the holding step process per substrate is reduced by ΔS av . The substrate temperature at the end of the temperature lowering process rises as the number of processed sheets increases, such as TE1 for the first substrate, TE2 for the second substrate, and TEn for the nth substrate. (The slope of the cooling curve changes).

以上のような第4の基板加熱方法によっても、つまり処理室の蓄熱量を制御することによって、基板間膜厚均一性を向上させることが可能である。したがって基板特性を安定させて常に均質な製品を供給する事ができる。   Even by the fourth substrate heating method as described above, that is, by controlling the heat storage amount in the processing chamber, it is possible to improve the film thickness uniformity between the substrates. Therefore, the substrate characteristics can be stabilized and a uniform product can always be supplied.

本発明の基板加熱方法は、処理室の蓄熱に起因する基板間の膜厚変動を抑えることができ、半導体製造における酸化膜形成工程(枚葉式RTP装置)や熱CVD工程、さらには液晶パネル製造の薄膜形成工程等にも有用である。   The substrate heating method of the present invention can suppress film thickness fluctuations between substrates due to heat storage in a processing chamber, and can form an oxide film formation process (single wafer RTP apparatus), a thermal CVD process, and a liquid crystal panel in semiconductor manufacturing. It is also useful for manufacturing thin film forming processes.

本発明の基板加熱方法に用いる従来よりある熱処理装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the conventional heat processing apparatus used for the substrate heating method of this invention 本発明および従来の基板加熱方法における基板温度の経時変化を示すグラフThe graph which shows the time-dependent change of the substrate temperature in this invention and the conventional substrate heating method 本発明の基板加熱方法に用いる、基板への供給熱量の算出法の説明図Explanatory drawing of the calculation method of the amount of heat supplied to the substrate used in the substrate heating method of the present invention 基板への供給熱量の算出に用いる台形面積計算法の説明図Illustration of trapezoidal area calculation method used to calculate heat supply to substrate 基板への供給熱量に相当する面積値と膜厚との相関図Correlation diagram between the area value corresponding to the amount of heat supplied to the substrate and the film thickness 本発明の基板加熱方法に用いる、2枚の基板への供給熱量の差分を示す説明図Explanatory drawing which shows the difference of the calorie | heat amount supplied to two board | substrates used for the board | substrate heating method of this invention 本発明の実施例1の基板加熱方法によるシミュレーション結果Simulation results by the substrate heating method of Example 1 of the present invention 本発明の実施例2の基板加熱方法によるシミュレーション結果Simulation results by the substrate heating method of Example 2 of the present invention 本発明の実施例3の基板加熱方法の説明図Explanatory drawing of the substrate heating method of Example 3 of this invention 本発明の実施例3の基板加熱方法によるシミュレーション結果Simulation results by the substrate heating method of Example 3 of the present invention 本発明の実施例4の基板加熱方法の説明図Explanatory drawing of the substrate heating method of Example 4 of this invention. 従来の基板加熱方法による基板処理枚数と膜厚との相関図Correlation diagram between the number of substrates processed by conventional substrate heating methods and film thickness 従来の基板加熱方法の説明図Illustration of conventional substrate heating method

符号の説明Explanation of symbols

1 処理室
2 基板支持部材
3 ランプモジュール
4 温度センサ
8 冷却水路
W 基板
DESCRIPTION OF SYMBOLS 1 Processing chamber 2 Substrate support member 3 Lamp module 4 Temperature sensor 8 Cooling water channel W Substrate

Claims (4)

枚葉式熱処理装置において複数の基板を1枚ずつ処理室に搬入して加熱処理する際に、
(1)処理室内に順次に搬入される基板の温度を基板裏面でモニターし、
(2)各基板の温度の経時変化より基板温度の変位と加熱処理時間との積で定義される供給熱量を算出し、各基板の供給熱量と基準となる所定の基板の供給熱量との差分で定義される、処理室への蓄熱量を算出し、
(3)処理室内の基板について、前記蓄熱量の成膜温度による商として定義する、蓄熱量が成膜温度にて蓄積されるのに要する蓄熱時間を算出し、基板毎の供給熱量が一定になるように加熱処理時間を前記蓄熱時間だけ短縮する基板加熱方法。
When a plurality of substrates are brought into a processing chamber one by one in a single-wafer heat treatment apparatus and heat-treated,
(1) Monitor the temperature of the substrate sequentially carried into the processing chamber on the back side of the substrate ,
(2) Calculate the supply heat quantity defined by the product of the displacement of the substrate temperature and the heat treatment time from the change in the temperature of each substrate over time, and the difference between the supply heat quantity of each substrate and the supply heat quantity of a predetermined substrate as a reference Calculate the amount of heat stored in the processing chamber , defined in
(3) For the substrate in the processing chamber, calculate the heat storage time required for the heat storage amount to be accumulated at the film formation temperature, which is defined as the quotient of the heat storage amount at the film formation temperature , and the supply heat amount for each substrate is constant. A substrate heating method for shortening the heat treatment time by the heat storage time .
処理室に搬入する1枚目および2枚目の被処理基板を昇温工程と成膜工程と降温工程とを行う所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目の被処理基板の加熱処理時に処理室に蓄積する前記蓄熱量を、1枚目n枚目の被処理基板間での前記供給熱量の差分として算出するとともに、3枚目以降のn枚目の被処理基板については、n−1枚目の被処理基板で算出された前記蓄熱量より前記蓄熱時間を算出して、算出された蓄熱時間だけ、基板を所定の成膜温度に維持する前記成膜工程時間を短縮して加熱処理を行う、請求項1記載の基板加熱方法。 The first and second substrates to be carried into the processing chamber are heat-treated with a predetermined heating profile for performing the temperature raising step, the film forming step, and the temperature lowering step, and the second and subsequent n-th substrates are processed. the heat storage amount accumulated in the processing chamber during the heat treatment of the substrate, to calculate as said difference the amount of heat supplied between the first sheet and the n-th target substrate, to be processed in the n-th third and subsequent the deposition step for the substrate, and calculates the heat storage time than the heat storage quantity calculated by the n-1 th target substrate, only the calculated heat accumulation time, to maintain the substrate at a predetermined film forming temperature The substrate heating method according to claim 1 , wherein the heat treatment is performed while shortening the time. 被処理基板と同数のモニタ基板を用意し、処理室に搬入する1枚目および2枚目のモニタ基板を昇温工程と成膜工程と降温工程とを行う所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目のモニタ基板の加熱処理時に処理室に蓄積する前記蓄熱量を、1枚目n枚目のモニタ基板間での前記供給熱量の差分として算出し、
その後に、処理室に搬入する1枚目の被処理基板を前記所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目の被処理基板については、対応する(n−1)枚目のモニタ基板で算出された前記蓄熱量より前記蓄熱時間算出して、算出された蓄熱時間だけ、基板を所定の成膜温度に維持する前記成膜工程時間を短縮して加熱処理を行う、請求項1記載の基板加熱方法。
Prepare the same number of monitor substrates as the substrates to be processed, and heat-treat the first and second monitor substrates carried into the processing chamber with a predetermined heating profile for performing the temperature raising step, the film forming step, and the temperature lowering step , the heat storage amount accumulated in the processing chamber during the heat treatment of the n-th monitor substrate of second and subsequent sheets, calculated as the difference between the amount of heat supplied between the first sheet and the n-th monitor substrate,
Thereafter, the first substrate to be carried into the processing chamber is heat-treated with the predetermined heating profile, and the second and subsequent n-th substrates are the corresponding (n-1) th substrate. performing of the heat storage time than the heat storage quantity calculated by the monitor substrate is calculated, only the calculated heat accumulation time, the heat treatment to reduce the time of the deposition step of maintaining the substrate at a predetermined film forming temperature the substrate heating method of claim 1, wherein.
n枚(n>2)のモニタ基板を用意し、処理室に搬入する1枚目および2枚目のモニタ基板を昇温工程と成膜工程と降温工程とを行う所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目のモニタ基板の加熱処理時に処理室に蓄積する前記蓄熱量を、1枚目n枚目のモニタ基板間での前記供給熱量の差分として算出し、算出された各蓄熱量よりモニタ基板1枚当たりの平均蓄熱量を算出し、
その後に、処理室に搬入する1枚目の被処理基板を前記所定の加熱プロファイルで加熱処理し、2枚目以降のn枚目の被処理基板については、前記モニタ基板で算出された平均蓄熱量を用いて単位基板当りの前記蓄熱時間を算出して、基板を所定の成膜温度に維持する前記成膜工程時間を前記蓄熱時間ずつ順次に短縮して加熱処理を行う、請求項1記載の基板加熱方法。
n monitor substrates (n> 2) are prepared, and the first and second monitor substrates carried into the processing chamber are heat-treated with a predetermined heating profile for performing a temperature raising process, a film forming process, and a temperature lowering process. and, the heat storage amount accumulated in the processing chamber during the heat treatment of the n-th monitor substrate of second and subsequent sheets, calculated as the difference between the amount of heat supplied between the first sheet and the n-th monitor substrate, calculated calculates an average amount of heat stored per one respective heat storage amount by Ri monitor substrate which is,
Thereafter, the first substrate to be carried into the processing chamber is heat-treated with the predetermined heating profile, and the second and subsequent n-th substrates to be processed are average heat storage calculated by the monitor substrate. calculates the heat storage time per unit substrate using the amounts, the time of the deposition step of maintaining the board in the predetermined deposition temperature heat treatment is performed by sequentially shortened by the heat storage time, claim 2. The substrate heating method according to 1.
JP2005190814A 2005-06-30 2005-06-30 Substrate heating method Expired - Fee Related JP4115470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190814A JP4115470B2 (en) 2005-06-30 2005-06-30 Substrate heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005190814A JP4115470B2 (en) 2005-06-30 2005-06-30 Substrate heating method

Publications (2)

Publication Number Publication Date
JP2007012827A JP2007012827A (en) 2007-01-18
JP4115470B2 true JP4115470B2 (en) 2008-07-09

Family

ID=37750957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190814A Expired - Fee Related JP4115470B2 (en) 2005-06-30 2005-06-30 Substrate heating method

Country Status (1)

Country Link
JP (1) JP4115470B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562529B2 (en) * 2008-04-17 2014-07-30 大日本スクリーン製造株式会社 Heat treatment equipment
WO2024100849A1 (en) * 2022-11-10 2024-05-16 株式会社日立ハイテク Aging condition evaluation device and setting method

Also Published As

Publication number Publication date
JP2007012827A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US6940047B2 (en) Heat treatment apparatus with temperature control system
JP3639546B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US20090095422A1 (en) Semiconductor manufacturing apparatus and substrate processing method
JP5665239B2 (en) Semiconductor manufacturing apparatus and substrate processing method
US9640412B2 (en) Apparatus and method for enhancing the cool down of radiatively heated substrates
TW201140699A (en) Substrate processing device and substrate processing method thereof
JP5661078B2 (en) Method and apparatus for depositing a layer on a semiconductor wafer by vapor deposition in a processing chamber
US7598150B2 (en) Compensation techniques for substrate heating processes
JP2007123643A (en) Deposition apparatus, deposition method, monitoring program for deposition apparatus, and recording medium thereof
US20040266222A1 (en) Heat treatment apparatus and heat treatment method
JP3688264B2 (en) Heat treatment method and heat treatment apparatus
JP5166138B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP4115470B2 (en) Substrate heating method
JP2007081348A (en) Method for controlling temperature of thermal process, method of thermal process of substrate and device of thermal process of substrate
JP2009147170A (en) Method and device for manufacturing semiconductor device
JP2024517112A (en) SUBSTRATE PROCESSING APPARATUS, TEMPERATURE MEASURING METHOD, AND TEMPERATURE CONTROL METHOD
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP4783029B2 (en) Heat treatment apparatus and substrate manufacturing method
JP2008240003A (en) Film deposition method, film deposition apparatus and recording medium
JP2005333032A (en) Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
JP2004281618A (en) Method for manufacturing semiconductor device
JPH0291930A (en) Device for heat-treating substrate
JP2006135126A (en) Heat treatment method of semiconductor substrate
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JP2006155169A (en) Temperature control method, temperature controller and heat treatment system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees