JP4102702B2 - 光ファイバカプラの製造方法 - Google Patents

光ファイバカプラの製造方法 Download PDF

Info

Publication number
JP4102702B2
JP4102702B2 JP2003128002A JP2003128002A JP4102702B2 JP 4102702 B2 JP4102702 B2 JP 4102702B2 JP 2003128002 A JP2003128002 A JP 2003128002A JP 2003128002 A JP2003128002 A JP 2003128002A JP 4102702 B2 JP4102702 B2 JP 4102702B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber coupler
optical
diameter
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128002A
Other languages
English (en)
Other versions
JP2004333748A (ja
Inventor
亮吉 松本
貴宏 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003128002A priority Critical patent/JP4102702B2/ja
Publication of JP2004333748A publication Critical patent/JP2004333748A/ja
Application granted granted Critical
Publication of JP4102702B2 publication Critical patent/JP4102702B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバを伝搬する光を分岐・結合させる光ファイバカプラの製造方法に関し、特に、挿入損失の温度依存性を低減させる光ファイバカプラの製造方法に関する。
【0002】
【従来の技術】
光ファイバ通信分野において、光パワーを2分岐又はそれ以上分岐させる光デバイスとして光ファイバカプラが広く一般に利用されている。図10は、一般的な光ファイバカプラの外観図(a)、及び光ファイバカプラの光結合部におけるC−C断面図(b)である。
【0003】
図10(a)に示すように、光ファイバカプラ101は、中間部被覆が除去された光ファイバを2本用意し、被覆除去により露出されたクラッド105同士を2本平行に沿わせ、1700℃以上の高温で溶融延伸して作製したものである。
【0004】
上記構成を有する光ファイバカプラ101は、一方の端から光を入射させると、光結合部で所定の分岐比に分岐され他方の端部から出射される。この分岐比は2本の光ファイバコアを近接させると生じる光ファイバ間のモード結合状態により決定される。図11は、このような光ファイバ間に生じる光結合状態を表した模式図である。この光ファイバカプラ101は、ポート1とポート3、及びポート2とポート4の本来1本の連続した光ファイバを結合したものである。溶融延伸法(Fused Taper Method)を用いて2本の光ファイバのコア間距離を狭めて融着させると、ポート1に入射した光は、ポート2側の光ファイバに結合して、ポート4から光が出射される。
【0005】
図11に示した光ファイバカプラ101の種類は、分岐比が波長に殆ど依存しない波長フラット型光ファイバカプラと、波長に大きく依存するWDM型光ファイバカプラとに分類することができる。図12は、波長フラット型光ファイバカプラとWDM型光ファイバカプラの光結合特性を示したグラフである。波長フラット型光ファイバカプラの分岐比は、任意に設定できるが、ここでは一般的な3dB分岐のものを示している。
【0006】
図11に示される、波長フラット型光ファイバカプラでは、ポート1からポート3に至る光ファイバの伝搬定数と、ポート2からポート4に至る光ファイバの伝搬定数を異ならせることにより、図12に示されるように広範囲な光波長域におけるほぼ一定の結合特性を達成している。
【0007】
一方、WDM型光ファイバカプラでは、ポート1からポート3に至る光ファイバの伝搬定数と、ポート2からポート4に至る光ファイバの伝搬定数が等しく、結合特性は波長に依存して周期的に変動する。
【0008】
このような光ファイバカプラの種類が存在するうち、波長フラット型光ファイバカプラを製造するためには、結合させる複数本の光ファイバの伝搬定数を異ならせるようにそれぞれ光ファイバの外径を予め異なるように加工する必要がある。そのためには光ファイバカプラの材料として使用する同一の複数の光ファイバのうち、一部のものだけに細径化加工を施すことが必要である。
【0009】
このような光ファイバカプラ101の断面は、図10(b)に示すように、第1のコア103aと第2のコア103bとが1つのクラッド105内に包含されており、一方のコア(ここでは第1のコア103a)が他方のコア(第2のコア103b)より小さい断面積を有している。
【0010】
また、クラッド105の中心点0から第1のコア103aの中心点までの距離をL、中心点0から第2のコア103bの中心点までの距離をLとしたとき、距離Lと距離LにはL>Lの関係が成立し、第1のコア103aと第2のコア103bは互いにクラッド105の中で、図中X軸に対して非対称に配置されている。
【0011】
更に、第2のコア103bの周縁部を覆うクラッド径Wは、第1のコア103aの周縁部を覆うクラッド径Wよりも厚いため、全体としてクラッド断面形状も図中X軸に対して非対称形状となっている。
【0012】
次に、波長フラット型光ファイバカプラの製造方法を図13〜図15を参照して詳述する。
【0013】
まず図13(a)に示すように、第1工程として、石英系光ファイバを所定長(通常は、数m)に切断したものを2本用意する。次に機械的或いは化学的方法を用いて、各光ファイバの中間部付近の被覆107を所定長(通常、数十mm)だけ除去し、クラッド105を露出させる。クラッド105が露出された状態のクラッドA−A断面図を図13(b)に示す。このとき2本の光ファイバのコア外径R及びクラッド外径Dは共に同一外径を有する。
【0014】
次に、図14に示すように、第2工程として、2本の光ファイバのうち、一方の光ファイバクラッドを細径化する。細径寸法は、直径125μmのクラッドを、例えば概そ110μmの径とすることを目的とする。細径化の方法は、プリテーパ法或いはエッチング法が一般であるが、火炎研磨法でも細径化できる。プリテーパ法によるクラッド細径化は、特公平6−40167号公報に開示されている。この公報によればプリテーパ法は、次工程で行う溶融延伸工程前に、一方の光ファイバクラッドの所定部分を熱源で溶融加熱し、予備延伸することで、目的の細径化クラッドを得る方法である。このとき光ファイバの伝搬常数は変化する。一方エッチング法は、特開平6−265749号公報に開示されている。この公報によればエッチング法は、溶融延伸工程前に、他方の光ファイバクラッドの所定部分のみフッ化水素(HF、フッ酸ともいう)に浸漬し、クラッドを構成する石英を溶出させて細径化クラッドを得る方法である。これによればこの時点での光ファイバの伝搬定数は変化しない。また火炎研磨法は、酸水素(2H+O)バーナを用いて、クラッドを1700℃以上に高温加熱し、その表面層の石英成分を気化させることで、細径化クラッドを得る方法である。上述した3つの延伸方法のうち、プリテーパ法で細径化された光ファイバクラッド105aと、細径化していない光ファイバ105bのB−B断面を図14(b)に示す。同図に示すように、細径化された光ファイバ105aのコア外径はRであり、クラッド外径はDである。細径化前のクラッド径Dと細径化後のクラッド径Dとの間には、D>Dの関係が成立している。また、コア外径に関しても同様に、R>Rの関係が成立している。
【0015】
次に、図15に示すように、第3工程として、クラッド細径化光ファイバ105aと通常クラッド径光ファイバ105bを溶融延伸法を用いて結合させる。結合された光ファイバカプラ101は、概観上、光結合部109を挟むポート数として2×2の形状を有している。実際の使用においてポート2が不要な場合は、ポート2を適当な方法で切断し、概観上、ポート数が1×2の形状の状態で使用する場合もある。
【0016】
上記製造方法によれば、光ファイバで分岐・結合器が作製できる上に、構造が単純であるため光ファイバ通信用光分岐・光結合として標準的に用いることができるという利点がある。
【0017】
【特許文献1】
特公平6−40167号公報
【0018】
【特許文献2】
特開平6−265749号公報
【0019】
【発明が解決しようとする課題】
ところで、上述した従来の製造方法によれば、波長フラット型光ファイバカプラを製造できる。しかし実際に波長フラット型光ファイバカプラが設置される雰囲気中の温度変化が大きいと、波長フラット型光ファイバカプラの温度変化に起因する挿入損失変動が大きくなるという問題がある。
【0020】
図16は、光通信網幹線系の高密度波長多重(Dense Wavelength Division Multiplexing、以下、DWDMという)伝送システムの光線路内に置かれた光増幅器に、この波長フラット型光ファイバカプラを適用した場合の構成を示す図である。この構成によれば、光ファイバ本線を伝搬する入出力光パワーレベルを知ることができる。この光増幅器は、一般に屋外に設置されることが多く、外的環境変化に曝されている。そのため入出力光パワーモニタ用途の波長フラット型光ファイバカプラの挿入損失が温度変化により変動すると、あたかも光ファイバ本線中を伝搬する光パワーが変動したものとして錯誤してしまいシステム設計上の問題となる。
【0021】
図17は、波長フラット型光ファイバカプラを波長多重合波器の後段に配置し、DWDM伝送システムの光源レーザダイオード(Laser Diode、以下、LDという)から出射された各波長の光パワーレベルを測定するため、一部をモニタ用として分岐させるものである。この装置は、一般に室内に設置されるが、それでも室温の変化により波長フラット型光ファイバカプラの光学特性が変動した場合に、モニタ光が変動するという問題がある。
【0022】
図18は、波長フラット型光ファイバカプラをカスケード接続して局側から送信される光信号(1490nm、1550nm)を、末端に接続される多数の加入者側に対して等分岐で配信するためのPON用等分岐スプリッタの構成を示す図である。この形態は、主に屋外に設置されることから、広い温度範囲(−40℃〜+85℃)で、広い波長域(1250〜1600nm)に亘って温度変化による光学特性の変動を小さくする必要がある。
【0023】
2本の光ファイバの外径を予め異なるように加工する方法で作製された波長フラット型光ファイバカプラは、外径の異なる2本の光ファイバを溶融延伸してなることから、2本の光ファイバが一体化並びに細径化された光結合部の形状が必然的に非対称形状となる。一方、光ファイバひいては光結合部を構成する石英ガラスは、その屈折率が温度依存性を持つことから、温度変化によって光結合部における光結合状態に変化が生じ、これにより光ファイバカプラの光学特性が温度依存性を示す。
【0024】
そのため従来の波長フラット型光ファイバカプラにおいては、光結合部の形状及びコアの配置が非対称であることから屈折率変化による光結合の変動が大きくなり、結果として光学特性の温度依存性が大きくなるという問題がある。この温度依存性は、一般的な3dB分岐カプラの挿入損失で0.1dB以下であることから、これまで殆ど問題にならなかったが、光ファイバ通信技術の発展に伴う光部品の高性能化要求により、温度依存性はこれまで以上に低減化が求められている。
【0025】
本発明は、上記に鑑みてなされたもので、その目的としては、挿入損失温度変動が極めて小さい光ファイバカプラの製造方法を提供することにある。
【0027】
【課題を解決するための手段】
上記目的を達成するために、請求項記載の本発明は、断面が略円形を有するコアと該コアを覆う断面が略円形を有するクラッドとからなる同一構成の2本の光ファイバを、互いに平行に沿わせ又は捻り合わせ、該沿わせ又は捻り合わせてなる隣接部を溶融延伸して形成される光結合部を有する光ファイバカプラの製造方法であって、前記2本の光ファイバのうち、一方の光ファイバを、クラッドのみ外削する第1細径化方法を用いて所定断面外径まで細径化する第1細径化工程と、他方の光ファイバを、コア及びクラッド共に細径化する第2細径化方法を用いて所定断面外径まで細径化する第2細径化工程と、前記第1及び第2細径化工程で細径化された光ファイバを、平行に沿わせ又は捻り合わせ、該沿わせ又は捻り合わせてなる隣接部を溶融延伸する溶融延伸工程とを有することを要旨とする。
【0028】
請求項記載の本発明は、請求項記載の光ファイバカプラの製造方法であって、第1細径化方法は、エッチング法若しくは火炎研磨法であり、第2細径化方法はプリテーパ法であることを要旨とする。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0030】
図1は、本発明により製造される光ファイバカプラ1の外観図(a)、及び光ファイバカプラの光結合部におけるC−C断面図(b)である。
【0031】
図1(a)に示すように、光ファイバカプラ1は、予め被覆が除去された2本の石英系光ファイバを、平行に沿わせ1700℃以上の高温で溶融延伸して作製されるものである。このとき2本の光ファイバは、同一外径の光ファイバを異なる方法で同一の比率で細径化したものである。
【0032】
この光ファイバカプラ1の断面は、図1(b)に示すように、第1のコア3aと第2のコア3bとが1つのクラッド5内に包含されており、その第1のコア3aの断面積が第2のコア3bの断面積と同じ断面積、又は小さい断面積を有した構成となっている。
【0033】
また、クラッド5の中心点0から第1のコア3aの中心点までの距離Lと、中心点0から第2のコア3bの中心点までの距離Lは共に等距離を有している。従って、第1のコア3aと第2のコア3bは、中心点0を境にして対称に配置されている。
【0034】
また、第1のコア3aの周縁部を覆うクラッド径Wと、第2のコア3bの周縁部を覆うクラッド径Wは共に同寸法からなるため、全体としてクラッド断面形状は図1(b)中、X軸に関して対称な形状となっている。
【0035】
尚、本発明に用いた光ファイバは、例えばコア径が10μm、クラッド径が125μmからなる裸光ファイバをUV樹脂等で被覆してなる断面径が250μmのシングルモード型光ファイバである。光ファイバはこれに限らず、例えば分散シフト光ファイバ、偏波保持光ファイバ、マルチモード光ファイバ等でもよい。
【0036】
図1から明らかなように、2つのコア3a,3bの中心は、2本の光ファイバ溶融延伸後の長径軸Yに直交する中心線X軸を挟んで線対称の等距離Lに位置している。この構造により、温度変動による、双方のコア3a,3bの膨張・収縮や、コア3a,3bとクラッド5の比屈折率の変化で光結合状態に与える影響が相殺され、光結合状態が平衡を保つことができるので、結果として挿入損失温度変動量を小さく抑えることができると考えられる。
【0037】
従って、本発明により製造される光ファイバカプラでは、光結合部の断面構成において、クラッド5の中心点0から第1のコア3aの中心点までの距離Lと、中心点0から第2のコア3bの中心点までの距離Lとを等距離とし、クラッド中心点0を境にして第1のコア3aと第2のコア3bを対称配置させることで、屈折率変化による光結合の変動を小さくし、結果として光学特性の温度依存性を小さくすることができる。
【0038】
次に、図2〜図4を参照して、本発明の光ファイバカプラの製造方法を工程順に説明する。
【0039】
まず、図2に示すように、光ファイバカプラの製造方法においては、第1工程として石英系光ファイバを所定長(通常は、数m)に切断したものを2本用意する。次に機械的或いは化学的方法を用いて、その光ファイバの中間部付近の被覆7を所定長(通常、数十mm)だけ除去し、クラッド5を露出させる。クラッド5が露出された状態のクラッドA−A断面図を図2(b)に示す。このとき2本の光ファイバのコア外径R及びクラッド外径Dを共に同一外径とする。
【0040】
次に、図3に示すように、第2工程として、第1工程で準備した2本の光ファイバを別々の方法を用いて細径化する。つまり、一方の光ファイバはエッチング法を用いて直径125μmのクラッドを概そ110μmの径となるまで細径化する。また、他方の光ファイバはプリテーパ法を用いて直径125μmのクラッドを概そ110μmの径となるまで細径化する。細径化の方法は、プリテーパ法及びエッチング法に限らず、プリテーパ法に代えて火炎研磨法を適用したり、エッチング法に代えて火炎研磨法を適用してもよい。つまり、このとき2本の光ファイバの細径化方法はそれぞれ異なる方法で行う。細径化された状態のクラッドB−B断面図を図3(b)に示す。同図に示す通り、光ファイバ5aは、エッチング法を用いてクラッドのみ削られている。そのため、クラッド外径はDまで縮小されているが、コア3aの外径は細径化前と同径のRとなっている。一方光ファイバ5bは、プリテーパ法を用いてクラッド5bとコア3bを一括して延伸しているため、クラッド径がDまで縮小されると共に、コア3b径もRまで縮小されている。
【0041】
次に、図4に示すように、第3工程として、エッチング法でクラッド細径化された光ファイバ5aとプリテーパ法でクラッド細径化された光ファイバ5bを溶融延伸法を用いて結合させる。結合された光結合部9のC−C断面図を図4(b)に示す。これによれば、同一外径の光ファイバを異なる方法で、且つ、同一の比率で細径化することになるので、光結合部9の断面中心点0からコア3a中心点までの距離と、光結合部9の断面中心点0からコア3b中心点までの距離を等距離にすることができる。これにより中心点0を境にコア3a,3bを対称形状に配置することができる。
【0042】
次に、上記構成を有する光ファイバカプラの諸元の説明を図5(a)〜(c)を参照して行う。
【0043】
図5(a)〜(c)に示すように、2本の光ファイバを溶融結合させてなる光ファイバカプラ1において、ポート1への入射光強度をP1[mW]、ポート3からの出射光強度をP3[mW]、ポート4からの出射光強度をP4[mW]とした時、2本の光ファイバの結合比[%](Coupling Ratio、以下CRという)は、式(1)(又は図5(b))から算出することができる。
【0044】
CR=(P4/P3+P4)×100 ・・・式(1)
また、ポート1からポート3に光を伝搬させたときに受ける挿入損失IL13[dB](Insertion Loss、以下ILという)は、式(2)(又は図5(C))から算出することができる。
【0045】
IL13=−10log10(P3/P1) ・・・(式2)
更に、ポート1からポート4に光を伝搬させたときに受ける挿入損失IL14[dB]は、式(3)(又は図5(C))から算出することができる。
【0046】
IL14=−10log10(P4/P1) ・・・(式3)
次に、図6に、本発明の光ファイバカプラ1の挿入損失特性の温度依存測定結果を示す。また併せて図7、図8に比較例1,2を示し、本発明と異なる製造方法で作製された光ファイバカプラとの比較を行う。
【0047】
本発明の製造方法を用いて作製された波長フラット型光ファイバカプラについて、温度−40℃、+23℃、+85℃の各条件下でそれぞれ挿入損失を測定した。図6に示すように、光波長域1250〜1600nmで、温度変化−40〜+85℃に対する挿入損失温度の最大値と最小値の差を測定し、その変動量をΔIL13(t)、ΔIL14(t)としてグラフに示した。その結果、変動量ΔIL13(t)及び変動量ΔIL14(t)は、共に0.02dB以下であった。
【0048】
一方、図7に示す挿入損失の温度依存特性は、プリテーパ法で110μmまでクラッド細径化した光ファイバと、125μmのクラッド外径を有する通常の光ファイバを用いて作製された波長フラット型光ファイバカプラのものである。この光ファイバカプラでは、1250〜1600nmの光波長域で−40〜+85℃の温度変化に対する挿入損失温度変動は、平均0.08dBであった。
【0049】
また、図8に示す挿入損失の温度依存特性は、エッチング法で110μmまでクラッド細径化した光ファイバと、125μmのクラッド外径を有する通常の光ファイバを用いて作製された波長フラット型光ファイバカプラを作製したものの特性である。この光ファイバカプラでは、1250〜1600nmの光波長域で−40〜+85℃の温度変化に対する挿入損失温度変動は、平均0.09dBであった。
【0050】
従って、上記測定結果より、波長フラット型光ファイバカプラを作製する時に、溶融延伸する前工程において、隣接する複数本の光ファイバのクラッド径を細径化加工し、且つ、そのクラッド径を等しくすることにより、挿入損失の温度依存性を極めて小さくできることが示された。
【0051】
よって、本発明の製造方法、すなわち光結合部を構成する部分において同一の外径となるように細径化加工された複数本の光ファイバから光ファイバカプラを作製する方法により、光学特性の温度依存性を低減させた光ファイバカプラを得ることができる。
【0052】
本発明の方法で作製した光ファイバカプラは、広い光波長帯域(1250〜1600nm)に亘って、広い温度範囲(−40〜+85℃)において安定した挿入損失特性を有するので、環境温度の変化が大きい屋外施設にも適用が可能である。
【0053】
以上の試作測定結果は、全て光ファイバ2本を材料として作製される2×2、或いは1×2(2×1も同様)光ファイバカプラについて行ったものである。本発明は、2以上の複数本数(n本)の光ファイバを材料とするn×n、1×n(n×1も同様)、m×n(n×mも同様)多ポート型カプラにもすべて適用可能である。ここで、n=2、3、4…(整数)であり、m=1、2、3…(整数)で、n>mである。
【0054】
そこで本発明により製造される光ファイバカプラの変形例を図9(a)(b)に示す。図9(a)は、光ファイバ3本を結合させた場合の細径化加工の例を示す図である。また、図9(b)は、光ファイバ4本を結合させた場合の細径化加工の例を示す図である。
【0055】
ここで互いに隣接する光ファイバは、細径化加工の際に、異なる方法で細径化されるものとする。つまり、クラッド5aはエッチング法により細径化され、クラッド5bは火炎研磨法により細径化され、クラッド5cはプリテーパ法により細径化されるといったようにである。このとき細径化方法は異なっても、各クラッド径は全て同一外径を有している必要がある。従って、上記構成を有すれば、複数本の光ファイバであっても、2本の光ファイバで作製した光ファイバカプラの効果と同様の効果を得ることができる。また、このとき入射ポートに使用されない光ファイバが複数あれば、それらは同一の方法で細径化されていても良い。図9(c)に1×3カプラの場合の例を示す。
【0056】
【発明の効果】
従って本発明によれば、挿入損失温度依存性が極めて小さい光ファイバカプラの製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明により製造される光ファイバカプラの外観図(a)及び光結合部のC−C断面図(b)である。
【図2】 本発明の光ファイバカプラの製造工程における被覆除去工程を示す図(a)及び、光ファイバカプラのA−A断面図(b)である。
【図3】 本発明の光ファイバカプラの製造工程におけるクラッド細径化工程を示す図(a)及び、光ファイバカプラのB−B断面図(b)である。
【図4】 本発明の光ファイバカプラの製造工程における溶融結合工程を示す図(a)及び、光ファイバカプラのC−C断面図(b)である。
【図5】 光ファイバカプラの諸元定義である。
【図6】 本発明により製造された光ファイバカプラの挿入損失の温度依存特性を示すグラフである。
【図7】 比較例1の挿入損失の温度依存特性を示すグラフである。
【図8】 比較例2の挿入損失の温度依存特性を示すグラフである。
【図9】 隣接光ファイバの結合細径化加工の例を示す図である。
【図10】 従来の光ファイバカプラの外観図(a)及び光結合部のC−C断面図(b)である。
【図11】 光ファイバカプラ内の伝搬状態を示すイメージ図である。
【図12】 波長フラット型光ファイバカプラとWDM型光ファイバカプラの特性を比較する特性グラフである。
【図13】 従来の光ファイバカプラの製造工程における被覆除去工程を示す図(a)及び、光ファイバカプラのA−A断面図(b)である。
【図14】 従来の光ファイバカプラの製造工程におけるクラッド細径化工程を示す図(a)及び、光ファイバカプラのB−B断面図(b)である。
【図15】 従来の光ファイバカプラの製造工程における溶融結合工程を示す図(a)及び、光ファイバカプラのC−C断面図(b)である。
【図16】 波長フラット型光ファイバカプラを光増幅器内の入出力光モニタ用に適用した場合の構成を示す図である。
【図17】 波長フラット型光ファイバカプラを光ファイバ本線のインラインモニタ用に適用した場合の構成を示す図である。
【図18】 波長フラット型光ファイバカプラをPON(Passive Optical Network)用の分岐比スプリッタに適用した場合の構成を示す図である。
【符号の説明】
1…光ファイバカプラ
3a,3b…コア
5…クラッド
7…光ファイバ被覆
9…光結合部
101…光ファイバカプラ
105a…クラッド細径化光ファイバ
105b…通常クラッド径光ファイバ
107…光ファイバ被覆
109…光結合部

Claims (2)

  1. 断面が略円形を有するコアと該コアを覆う断面が略円形を有するクラッドとからなる同一構成の2本の光ファイバを、互いに平行に沿わせ又は捻り合わせ、該沿わせ又は捻り合わせてなる隣接部を溶融延伸して形成される光結合部を有する光ファイバカプラの製造方法であって、
    前記2本の光ファイバのうち、一方の光ファイバを、クラッドのみ外削する第1細径化方法を用いて所定断面外径まで細径化する第1細径化工程と、
    他方の光ファイバを、コア及びクラッド共に細径化する第2細径化方法を用いて所定断面外径まで細径化する第2細径化工程と、
    前記第1及び第2細径化工程で細径化された光ファイバを、平行に沿わせ又は捻り合わせ、該沿わせ又は捻り合わせてなる隣接部を溶融延伸する溶融延伸工程と、
    を有することを特徴とする光ファイバカプラの製造方法。
  2. 前記第1細径化方法は、エッチング法若しくは火炎研磨法であり、前記第2細径化方法はプリテーパ法であることを特徴とする請求項記載の光ファイバカプラの製造方法。
JP2003128002A 2003-05-06 2003-05-06 光ファイバカプラの製造方法 Expired - Fee Related JP4102702B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128002A JP4102702B2 (ja) 2003-05-06 2003-05-06 光ファイバカプラの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128002A JP4102702B2 (ja) 2003-05-06 2003-05-06 光ファイバカプラの製造方法

Publications (2)

Publication Number Publication Date
JP2004333748A JP2004333748A (ja) 2004-11-25
JP4102702B2 true JP4102702B2 (ja) 2008-06-18

Family

ID=33504313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128002A Expired - Fee Related JP4102702B2 (ja) 2003-05-06 2003-05-06 光ファイバカプラの製造方法

Country Status (1)

Country Link
JP (1) JP4102702B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646984B2 (ja) * 2015-09-07 2020-02-14 株式会社フジクラ 光コンバイナ

Also Published As

Publication number Publication date
JP2004333748A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
US5553179A (en) Varied insertion loss fiber optic coupling and method of making same
US5664037A (en) Multi-neckdown fiber optic coupler
WO2017179352A1 (ja) 光学モジュール
JP2002228863A (ja) 光結合構造
CA2024225C (en) Optical fiber coupler
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
JP4102702B2 (ja) 光ファイバカプラの製造方法
US20190331868A1 (en) Methods for coupling optical fibers to optical chips with high yield and low-loss
US20020102057A1 (en) All fiber dwdm multiplexer and demultiplexer
JP2004226561A (ja) 光ファイバカプラ及び光ファイバカプラ用光ファイバ
JP4372267B2 (ja) 伝搬モード変換素子およびその製造方法
JPH07230014A (ja) 2つの導波路間の近接結合のための集積光装置
JP2812469B2 (ja) 光ファイバ形波長フィルタ
JP2828251B2 (ja) 光ファイバカプラ
KR100464341B1 (ko) 광자결정 광섬유 커플러 및 그 제조방법
US20040161199A1 (en) Photonic crystal fiber coupler and fabricating method thereof
JP2980248B2 (ja) 光ファイバカップラ
JP3392275B2 (ja) 広帯域型光ファイバカプラ
JPH04219707A (ja) 光ファイバカプラおよびその製造方法
JPH01287603A (ja) 絶対単一偏波光ファイバ
JPH06265749A (ja) 広帯域光ファイバカプラ及びその製造方法
JP2006023623A (ja) 光導波路回路
JPH03204605A (ja) 光フィルタ
WO2000065390A1 (en) A fused fiber coupler
JP2000266956A (ja) 光ファイバ型波長フィルタ素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees