JP4096413B2 - Dry etching tank - Google Patents

Dry etching tank Download PDF

Info

Publication number
JP4096413B2
JP4096413B2 JP23580398A JP23580398A JP4096413B2 JP 4096413 B2 JP4096413 B2 JP 4096413B2 JP 23580398 A JP23580398 A JP 23580398A JP 23580398 A JP23580398 A JP 23580398A JP 4096413 B2 JP4096413 B2 JP 4096413B2
Authority
JP
Japan
Prior art keywords
dry etching
tank
coaxial cable
transmission line
etching tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23580398A
Other languages
Japanese (ja)
Other versions
JP2000068253A (en
Inventor
雅史 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP23580398A priority Critical patent/JP4096413B2/en
Publication of JP2000068253A publication Critical patent/JP2000068253A/en
Application granted granted Critical
Publication of JP4096413B2 publication Critical patent/JP4096413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ドライエッチング処理加工対象部材の電気的性能検査をエッチング槽を開封することなく行うことができるドライエッチング槽に関する。
【0002】
【従来の技術】
従来より、半導体集積回路や水晶デバイス等における微細な電極加工技術としてドライエッチング処理と呼ばれる技術がある。該ドライエッチング処理は、内部を例えば10-9気圧程度の真空にしたエッチング槽内に、微量の反応性気体を封入し、高周波高電力を加えることによってプラズマを発生させ、槽内に封入した半導体集積回路や水晶デバイス等のドライエッチング処理対象の基板を、前記プラズマによって切削加工して所望の電気的特性を有する電極を形成する技術である。
図3は、従来のドライエッチング槽の構造の一例を示す概略構成図である。同図に示すように、このドライエッチング槽1は、内部に高周波発振器2を有し、該高周波発振器2は電極盤3と、前記ドライエッチング槽1と同電位のアース電極4との間に該高周波発振器2の強電界によってプラズマ20を発生するように接続される。そしてエッチング処理される加工対象部材30は前記電極盤3上に載置されて前記プラズマ20にさらされる。
【0003】
上記構成のドライエッチング槽によるエッチング処理加工対象部材30が、例えば80MHz帯の水晶フィルタであって、ドライエッチング処理の前段階で予め水晶基板上に電極パターンが形成されており、最終的に所望のフィルタ中心周波数を得るために前記水晶基板にエッチング処理を行う場合、反応性気体としてCF4をドライエッチング槽1に注入し、高周波発振器2の高電力を両電極2、3間に加えることによって生ずるCF4のプラズマ20中に前記水晶フィルタ30をさらすことによって、水晶基板が前記プラズマ20によって削り落とされ、
所望の中心周波数を有する水晶フィルタが形成される。
該プラズマ発生のための高周波発振器2には、例えば発振周波数13.6MHz、出力300Wから500Wのものが使用される。
エッチング処理によって削り落とされる水晶基板の量と処理時間の関係は経験的に把握されているが、現状では正確な所望のフィルタ特性を得るためには、また、削りすぎを防止するためにも、2、3度エッチング槽を開封して電気的性能の検査を行い、切削量が不足の場合は再度前記エッチング槽を真空にして反応性気体を注入し、プラズマを発生させてエッチング処理を継続するのが一般的である。このため、最終的に所望の特性を持つ水晶フィルタに仕上げるには多大の処理時間を必要とすると共に、削りすぎにより不良品が発生する可能性がある。
【0004】
上記の問題を解決するため、図4の概略構成図に示されるような、加工対象部材である水晶フィルタの電気的性能を測定する治具を槽内に設置し、該測定治具による測定結果を槽壁に設置した測定ポートを介して外部に導出して、前記測定結果に基づいてエッチング処理を制御するように構成したドライエッチング槽が考案された。
このドライエッチング槽1は、同図に示すように、図3の構成に、槽壁に設けたフランジ6に取り付けられ槽内外を貫通する気密性の同軸コネクタ5を備えた測定ポート40と、加工対象の水晶フィルタ30のフィルタ特性を測定するための測定治具9と、一端は測定治具9に接続され他端は前記同軸コネクタ5に接続された同軸ケーブル8とを追加して構成したものである。
そして、加工対象の水晶フィルタ30は前記測定治具9に接続され、電極盤3上に載置される。
前記測定治具9は、水晶フィルタ30と共に発振器として動作する発振回路であって、電源が印加されると接続された前記水晶フィルタ30のフィルタ中心周波数を測定するために必要な80MHz帯の周波数にて発振する。
【0005】
上記構造において、高周波発振器2の電界によるプラズマによって水晶フィルタ30のエッチング処理を行いながら該水晶フィルタ30の電気的性能を検査する場合、前記測定治具9には外部から前記測定ポート40の同軸コネクタ5と同軸ケーブル8を介して電源が印加される。その結果測定治具9からは、水晶フィルタ30のフィルタ特性データが出力され、該特性データは前記の同軸ケーブル8と同軸コネクタ5を経由して外部に導出される。
この導出されたデータによって、前記水晶フィルタ30の電気的性能の検査を、エッチング槽1を開封することなく行うことができる。
【0006】
【発明が解決しようとする課題】
しかしながら、図4のドライエッチング槽においては、電極盤3上に載置された測定治具9や同軸ケーブル8のシールド被覆は、エッチング槽に取り付けられたフランジ6に接続されているため、電極盤3とアース電極4との間にアースが配置されたことになる。このため、電極盤3とアース電極4との間に高周波発振器2の出力によって生成されている高周波電界を著しく乱してしまい、エッチング処理効果にむらが生じ、極端な場合は、反応性気体がプラズマ状態にならずエッチング処理が行えなくなる場合が発生する。
また、前記同軸ケーブル8には高周波発振器2からの高出力の発振信号がコモンモードノイズとして誘導され、測定治具9で測定された水晶フィルタ30の特性データに重畳されて同軸コネクタ5から外部に導出される。このため、前記水晶フィルタ30の性能検査が不可能になるという問題があった。
本発明は、上記課題を解決するためになされたものであって、エッチング槽を開封することなく容易に加工対象部材の電気的性能を検査できるドライエッチング槽を提供することを目的とする。
【0007】
上記課題を解決するため、本発明においては、高周波電力によるプラズマによって水晶基板をエッチング処理するドライエッチング槽において、前記ドライエッチング槽の槽壁が接地されたものであって、前記ドライエッチング槽と同電位のアース電極と、前記水晶基板が載置された電極盤と、前記電極盤と前記アース電極との間に接続された高周波発振器と、前記電極盤に載置され前記水晶基板に接続された測定手段と、一次巻線と二次巻線とを有する伝送線路トランスと、前記ドライエッチング槽の槽壁に具備され槽内外を気密に貫通するコネクタとを備え、前記測定手段は前記水晶基板と共に発振器として動作する発振回路を備えたものであり、前記一次巻線の一端側が前記コネクタに接続され、前記一次巻線の他端側が前記発振回路の出力側に接続されたものであって、前記二次巻線の一端側が前記ドライエッチング槽の槽壁に接続され、前記二次巻線の他端側が前記発振回路のアース側に接続されたものであることを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1(a)は、本発明に係わるドライエッチング槽の実施の一形態例を示す概略構成図である。同図に示すように、本発明に係わるドライエッチング槽1は、高周波発振器2と、電極盤3と、アース電極4と、同軸コネクタ5とフランジ6と伝送線路トランス7とから成る測定ポート10と、同軸ケーブル8と、測定治具9とで構成される。
同図のドライエッチング槽は、図3のドライエッチング槽のフランジ6と同軸コネクタ5とから成る測定ポート40を、フランジ6と同軸コネクタ5と伝送線路トランス7から成る測定ポート10に置き換えた構造となっている。
前記伝送線路トランス7は、図1(b)に示すように、トロイダルコアに、前記の同軸ケーブル8と同じ特性インピダンスをもつ同軸ケーブルを巻線として巻いたトランスである。そして、該巻線の同軸ケーブルの芯線を1次巻線として、一端を前記同軸コネクタ5のピンに接続し、他端は前記同軸ケーブル8の芯線に接続する。また、前記巻線の同軸ケーブルのシールド被覆は2次巻線として、一端を前記同軸コネクタ5が取り付けられたフランジ6部に接続し、他端は前記同軸ケーブル8のシールド被覆に接続する。この場合、フランジ部6はエッチング槽1に装着されて、該エッチング槽1と同じアース電位となる。
【0009】
前記伝送線路トランス7の特徴は次の通りである。即ち、伝送線路トランス7は該伝送線路トランス7の巻線である同軸ケーブル芯線とシールド被覆を往復の電流路とする信号に対しては該同軸ケーブルの特性インピダンスを有する伝送ケーブルとして動作する。
一方、高周波発振器2の電界から誘導によって同軸ケーブル8に重畳された高周波信号は、槽外へ向かう往路の電流は伝送線路トランス7の巻線である同軸ケーブルの芯線及びシールド被覆を経由するのに対し、復路の電流はアースからエッチング槽自体を経由するため、該伝送線路トランス7には前記高周波信号の往路電流のみが流れることになり、該高周波信号に対しトロイダルコアに巻かれた同軸ケーブルはチョークコイルとして動作することになる。
以下、図1(a)のエッチング槽の動作を詳細に説明する。
【0010】
図1(a)のドライエッチング槽1のプラズマ20中でドライエッチング処理中に、加工対象の水晶フィルタ30の特性を検査するために外部から測定ポート10の同軸コネクタ5を介して測定治具9に電源を印加すると、前記測定治具9が動作して前記水晶フィルタ30の特性データ信号が同軸ケーブル8及び測定ポート10を介して外部に出力される。同時に、高周波発振器2から前記同軸ケーブル8に誘導した高周波信号も前記測定ポート10を介して外部に出力される。
このときの、前記同軸ケーブル8及び測定ポート10を中心にした両信号電流に関する等価回路を図2に示す。
同図に示すように、測定治具9からの80MHz発振信号に基づく水晶フィルタ30のデータ信号電流INは、同軸ケーブル8の芯線81及び伝送線路トランス7の一次巻線を往路とし、同軸ケーブル8のシールド被覆82及び伝送線路トランス7の二次巻線を復路とした、大きさが等しく方向が逆のノーマルモード電流として流れる。
一方、プラズマを発生する13.6MHzの高周波発振器2による電界で、測定治具9や同軸ケーブル8に誘導した誘導起電力21による高周波電流ICは、往路は前記同軸ケーブル8の芯線81及びシールド被覆82、伝送線路トランス7の巻線である同軸ケーブルの芯線及びシールド被覆を経てエッチング槽外のフィルタ特性検査回路XOに入力し、復路は前記検査回路XOのアース電位、エッチング槽自体のアース電位を流れる。この高周波電流ICは、同軸ケーブル8の芯線81と伝送線路トランス7の一次巻線の経路と、同軸ケーブル8のシールド被覆82と伝送線路トランス7の二次巻線の経路とでは同じ方向にコモンモード電流として流れる。
従って、伝送線路トランス7は、前記13.6MHzのコモンモード電流ICに対しては、高いインダクタンス値を有するチョークコイルとして機能することになり、前記同軸ケーブル8の芯線81とシールド被覆82とは高周波的にアースから分離された状態となる。
【0011】
上記動作の結果、図1(a)における13.6MHzの高周波電界内の前記同軸ケーブル8はその周波数に関しては自由な電位にあり、ドライエッチング槽1の高周波電界を乱さなくなり、エッチング処理は円滑に行われる。
また、前記のように、伝送線路トランス7は、前記測定治具からのフィルタ特性データに重畳して出力される高周波発振器2からの高周波出力によって誘導したノイズを遮断するので、所望のフィルタ特性データをローノイズで外部に導出することが可能になる。
【0012】
尚、上記説明における伝送線路トランス7の巻線材料は、測定治具9に接続された同軸ケーブル8と同じ特性インピダンスを有する同軸ケーブルとして説明したが、図1(c)に示すように、前記同軸ケーブル8と同じ特性インピダンスを有する平行2線式の線路であっても良いことは言うまでもない。
【0013】
【発明の効果】
以上説明したように、本発明に係わるドライエッチング槽においては、高周波強電界によるプラズマ中のエッチング処理加工対象部材の電気的性能検査を行う場合、測定データ伝送用ケーブルと、槽壁に取り付けたコネクタとの間を伝送線路トランスで接続するように構成したので、前記データ伝送用ケーブルが槽内の高周波電界を乱すことなく、円滑なエッチング処理が可能であり、且つ、測定データに重畳するプラズマ発生用の高周波発振器出力によるノイズを前記伝送線路トランスで遮断し、所望の測定データのみを槽外に導出することが可能となる。
その結果、加工対象部材に対するエッチング処理効果を、従来のようにエッチング槽を開封することなく容易に検査することが可能となり、半導体集積回路や水晶デバイスのドライエッチング処理工程の工数低減に著効を発揮し、更に、エッチング過剰による不良発生を削減して製造コストの低減に大いに貢献する。
更に、上述の伝送線路トランスを介して電気的測定データを導出する手段は、ドライエッチング処理におけるプラズマ中に限らず、その他の高周波強電界中における製造工程の電気的分析・評価、特性監視等のデータの導出に応用することが可能であり、広い分野における製造効率向上に貢献できる。
【図面の簡単な説明】
【図1】(a)は本発明に係わるドライエッチング槽の実施の一形態例を示す概略構成図、
(b)は同軸ケーブルを巻線とした伝送線路トランスの一例を示す外観図、
(c)は平行2線式線路を巻線とした伝送線路トランスの一例を示す外観図
【図2】プラズマ中で測定治具を動作させたときの同軸ケーブルと伝送線路トランスを中心とした等価回路
【図3】従来のドライエッチング槽の一例を示す概略構成図
【図4】 従来の考案されたドライエッチング槽の一例を示す概略構成図
【符号の説明】
1・・ドライエッチング槽、 2・・高周波発振器、
3・・電極盤、 4・・アース電極、 5・・同軸コネクタ、
6・・フランジ、 7・・伝送線路トランス、 8・・同軸ケーブル、
9・・測定治具、 10・・測定ポート、
20・・プラズマ、 21・・誘導起電力、
30・・加工対象部材(水晶フィルタ)、
40・・従来の測定ポート、 81・・芯線、 82・・シールド被覆
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry etching tank capable of performing an electrical performance inspection of a dry etching processing target member without opening the etching tank.
[0002]
[Prior art]
Conventionally, there is a technique called dry etching as a fine electrode processing technique in a semiconductor integrated circuit, a crystal device, or the like. In the dry etching process, a small amount of reactive gas is sealed in an etching tank whose inside is evacuated to about 10 −9 atm, for example, plasma is generated by applying high-frequency high power, and the semiconductor sealed in the tank This is a technique for forming an electrode having desired electrical characteristics by cutting a substrate to be subjected to a dry etching process such as an integrated circuit or a crystal device with the plasma.
FIG. 3 is a schematic configuration diagram showing an example of the structure of a conventional dry etching bath. As shown in the figure, this dry etching tank 1 has a high-frequency oscillator 2 inside, and the high-frequency oscillator 2 is interposed between the electrode board 3 and the ground electrode 4 having the same potential as the dry etching tank 1. The high frequency oscillator 2 is connected so as to generate plasma 20 by a strong electric field. The workpiece 30 to be etched is placed on the electrode board 3 and exposed to the plasma 20.
[0003]
The member 30 to be etched by the dry etching tank having the above-described configuration is, for example, an 80 MHz band crystal filter, and an electrode pattern is formed on the crystal substrate in advance before the dry etching process. When the crystal substrate is etched to obtain the filter center frequency, CF 4 is injected as a reactive gas into the dry etching tank 1 and a high power of the high-frequency oscillator 2 is applied between the electrodes 2 and 3. By exposing the quartz filter 30 into the CF 4 plasma 20, the quartz substrate is scraped off by the plasma 20,
A quartz filter having the desired center frequency is formed.
As the high-frequency oscillator 2 for generating the plasma, for example, one having an oscillation frequency of 13.6 MHz and an output of 300 W to 500 W is used.
The relationship between the amount of crystal substrate scraped off by the etching process and the processing time has been empirically grasped, but at present, in order to obtain accurate desired filter characteristics, and also to prevent overcutting, Open the etching tank a few times to inspect the electrical performance. If the cutting amount is insufficient, evacuate the etching tank again, inject reactive gas, generate plasma, and continue the etching process. It is common. For this reason, in order to finally finish the crystal filter having desired characteristics, a long processing time is required, and a defective product may be generated due to excessive cutting.
[0004]
In order to solve the above problem, a jig for measuring the electrical performance of the crystal filter as a processing target member as shown in the schematic configuration diagram of FIG. Has been devised so that the etching process is controlled on the basis of the measurement result.
As shown in FIG. 3, this dry etching tank 1 has a measurement port 40 provided with an airtight coaxial connector 5 attached to a flange 6 provided on the tank wall and penetrating the inside and outside of the tank. A measurement jig 9 for measuring the filter characteristics of the target crystal filter 30 and a coaxial cable 8 having one end connected to the measurement jig 9 and the other end connected to the coaxial connector 5 It is.
The crystal filter 30 to be processed is connected to the measurement jig 9 and placed on the electrode board 3.
The measurement jig 9 is an oscillation circuit that operates as an oscillator together with the crystal filter 30 and has a frequency in the 80 MHz band necessary for measuring the filter center frequency of the crystal filter 30 connected when power is applied. Oscillates.
[0005]
In the above structure, when the electrical performance of the crystal filter 30 is inspected while etching the crystal filter 30 with plasma generated by the electric field of the high frequency oscillator 2, the coaxial jig of the measurement port 40 is externally connected to the measurement jig 9. 5 and the coaxial cable 8 are applied with power. As a result, filter characteristic data of the crystal filter 30 is output from the measurement jig 9, and the characteristic data is derived to the outside via the coaxial cable 8 and the coaxial connector 5.
Based on the derived data, the electrical performance of the crystal filter 30 can be inspected without opening the etching tank 1.
[0006]
[Problems to be solved by the invention]
However, in the dry etching tank of FIG. 4, the shield covering of the measuring jig 9 and the coaxial cable 8 placed on the electrode board 3 is connected to the flange 6 attached to the etching tank. 3 and the ground electrode 4 are grounded. For this reason, the high frequency electric field generated by the output of the high frequency oscillator 2 between the electrode board 3 and the ground electrode 4 is significantly disturbed, resulting in uneven etching treatment effect. There is a case where the etching process cannot be performed without being in a plasma state.
Further, a high-power oscillation signal from the high-frequency oscillator 2 is induced in the coaxial cable 8 as common mode noise, and is superimposed on the characteristic data of the crystal filter 30 measured by the measuring jig 9 to be externally transmitted from the coaxial connector 5. Derived. For this reason, there is a problem that the performance inspection of the crystal filter 30 becomes impossible.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a dry etching tank that can easily inspect the electrical performance of a member to be processed without opening the etching tank.
[0007]
In order to solve the above problems, in the present invention, in a dry etching tank for etching a quartz crystal substrate by plasma with high frequency power, a tank wall of the dry etching tank is grounded, and the same as the dry etching tank. A ground electrode having a potential; an electrode board on which the quartz substrate is placed; a high-frequency oscillator connected between the electrode board and the earth electrode; and placed on the electrode board and connected to the quartz substrate . Measuring means, a transmission line transformer having a primary winding and a secondary winding, and a connector provided on the tank wall of the dry etching tank and penetrating the inside and outside of the tank, the measuring means together with the quartz substrate An oscillation circuit that operates as an oscillator is provided, wherein one end side of the primary winding is connected to the connector, and the other end side of the primary winding is the oscillation circuit. Connected to the output side, one end side of the secondary winding is connected to the tank wall of the dry etching tank, and the other end side of the secondary winding is connected to the ground side of the oscillation circuit It is characterized by being.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
Fig.1 (a) is a schematic block diagram which shows one example of embodiment of the dry etching tank concerning this invention. As shown in the figure, a dry etching tank 1 according to the present invention includes a high-frequency oscillator 2, an electrode board 3, a ground electrode 4, a coaxial connector 5, a flange 6, and a transmission line transformer 7, The coaxial cable 8 and the measuring jig 9 are configured.
The dry etching bath shown in FIG. 3 has a structure in which the measurement port 40 including the flange 6 and the coaxial connector 5 of the dry etching bath shown in FIG. 3 is replaced with the measurement port 10 including the flange 6, the coaxial connector 5 and the transmission line transformer 7. It has become.
As shown in FIG. 1B, the transmission line transformer 7 is a transformer in which a coaxial cable having the same characteristic impedance as that of the coaxial cable 8 is wound as a winding around a toroidal core. The core wire of the coaxial cable of the winding is used as a primary winding, and one end is connected to the pin of the coaxial connector 5 and the other end is connected to the core wire of the coaxial cable 8. Further, the shield coating of the coaxial cable of the winding is a secondary winding, and one end is connected to the flange 6 portion to which the coaxial connector 5 is attached, and the other end is connected to the shield coating of the coaxial cable 8. In this case, the flange portion 6 is attached to the etching tank 1 and has the same ground potential as the etching tank 1.
[0009]
The characteristics of the transmission line transformer 7 are as follows. That is, the transmission line transformer 7 operates as a transmission cable having the characteristic impedance of the coaxial cable with respect to a signal having a coaxial cable core wire which is a winding of the transmission line transformer 7 and a shield coating as a reciprocal current path.
On the other hand, the high-frequency signal superimposed on the coaxial cable 8 by induction from the electric field of the high-frequency oscillator 2 passes through the core wire of the coaxial cable that is the winding of the transmission line transformer 7 and the shield coating. On the other hand, since the current of the return path passes through the etching tank itself from the ground, only the forward current of the high-frequency signal flows through the transmission line transformer 7, and the coaxial cable wound around the toroidal core with respect to the high-frequency signal is It will operate as a choke coil.
Hereinafter, the operation of the etching tank of FIG. 1A will be described in detail.
[0010]
During the dry etching process in the plasma 20 of the dry etching tank 1 of FIG. 1A, the measuring jig 9 is externally connected via the coaxial connector 5 of the measuring port 10 in order to inspect the characteristics of the crystal filter 30 to be processed. When a power source is applied, the measurement jig 9 operates and the characteristic data signal of the crystal filter 30 is output to the outside through the coaxial cable 8 and the measurement port 10. At the same time, a high-frequency signal guided from the high-frequency oscillator 2 to the coaxial cable 8 is also output to the outside via the measurement port 10.
FIG. 2 shows an equivalent circuit for both signal currents centered on the coaxial cable 8 and the measurement port 10 at this time.
As shown in the figure, the data signal current I N of the crystal filter 30 based on the 80 MHz oscillation signal from the measuring jig 9 has the primary winding of the coaxial cable 8 and the primary winding of the transmission line transformer 7 as the forward path, and the coaxial cable. 8, the shield coating 82 and the secondary winding of the transmission line transformer 7 are used as a return path, and the current flows as a normal mode current having the same magnitude and reverse direction.
On the other hand, the high-frequency current I C generated by the induced electromotive force 21 induced in the measuring jig 9 or the coaxial cable 8 by the electric field generated by the 13.6 MHz high-frequency oscillator 2 that generates plasma, The coating 82, the core of the coaxial cable which is the winding of the transmission line transformer 7, and the shield coating are input to the filter characteristic inspection circuit X O outside the etching tank, and the return path is the ground potential of the inspection circuit X O and the etching tank itself. Flows through earth potential. This high-frequency current I C is in the same direction in the core 81 of the coaxial cable 8 and the path of the primary winding of the transmission line transformer 7, and in the shield coating 82 of the coaxial cable 8 and the path of the secondary winding of the transmission line transformer 7. It flows as a common mode current.
Therefore, the transmission line transformer 7 functions as a choke coil having a high inductance value with respect to the common mode current I C of 13.6 MHz. The core wire 81 and the shield coating 82 of the coaxial cable 8 are It is separated from the ground at high frequency.
[0011]
As a result of the above operation, the coaxial cable 8 in the 13.6 MHz high frequency electric field in FIG. 1A is at a free potential with respect to the frequency, and does not disturb the high frequency electric field in the dry etching tank 1, and the etching process is smooth. Done.
Further, as described above, the transmission line transformer 7 blocks noise induced by the high-frequency output from the high-frequency oscillator 2 that is output superimposed on the filter characteristic data from the measurement jig, so that desired filter characteristic data is obtained. Can be derived to the outside with low noise.
[0012]
Although the winding material of the transmission line transformer 7 in the above description has been described as a coaxial cable having the same characteristic impedance as the coaxial cable 8 connected to the measurement jig 9, as shown in FIG. It goes without saying that a parallel two-wire line having the same characteristic impedance as the coaxial cable 8 may be used.
[0013]
【The invention's effect】
As described above, in the dry etching bath according to the present invention, when the electrical performance inspection of the etching target member in the plasma by the high frequency strong electric field is performed, the measurement data transmission cable and the connector attached to the bath wall Since the data transmission cable can be smoothly etched without disturbing the high-frequency electric field in the tank, the plasma generation superimposed on the measurement data can be performed. It is possible to cut off noise caused by the output of the high-frequency oscillator for use with the transmission line transformer and to derive only desired measurement data outside the tank.
As a result, it is possible to easily inspect the etching treatment effect on the workpiece to be processed without opening the etching tank as in the prior art, and it is effective in reducing the man-hours in the dry etching treatment process of semiconductor integrated circuits and crystal devices. In addition, it contributes greatly to the reduction of manufacturing costs by reducing the occurrence of defects due to excessive etching.
Furthermore, the means for deriving electrical measurement data via the transmission line transformer described above is not limited to plasma in dry etching processing, but includes electrical analysis / evaluation of manufacturing processes in other high-frequency strong electric fields, characteristic monitoring, etc. It can be applied to data derivation and can contribute to the improvement of manufacturing efficiency in a wide range of fields.
[Brief description of the drawings]
FIG. 1A is a schematic configuration diagram showing an embodiment of a dry etching bath according to the present invention,
(B) is an external view showing an example of a transmission line transformer having a coaxial cable as a winding;
(C) is an external view showing an example of a transmission line transformer in which a parallel two-wire line is wound. [FIG. 2] Equivalent centering on a coaxial cable and a transmission line transformer when a measurement jig is operated in plasma. Circuit [FIG. 3] Schematic configuration diagram showing an example of a conventional dry etching bath [FIG. 4] Schematic configuration diagram showing an example of a conventionally devised dry etching bath [Explanation of symbols]
1 .... Dry etching tank, 2 .... High frequency oscillator,
3 .... Electrode panel, 4 .... Ground electrode, 5 .... Coaxial connector,
6 .... Flange, 7 .... Transmission line transformer, 8 .... Coaxial cable,
9 .... Measurement jig, 10 .... Measurement port,
20 ... Plasma, 21 ... Inducted electromotive force,
30. ・ Member to be processed (crystal filter),
40 ... Conventional measurement port, 81 ... Core wire, 82 ... Shield covering

Claims (1)

高周波電力によるプラズマによって水晶基板をエッチング処理するドライエッチング槽において、前記ドライエッチング槽の槽壁が接地されたものであって、前記ドライエッチング槽と同電位のアース電極と、前記水晶基板が載置された電極盤と、前記電極盤と前記アース電極との間に接続された高周波発振器と、前記電極盤に載置され前記水晶基板に接続された測定手段と、一次巻線と二次巻線とを有する伝送線路トランスと、前記ドライエッチング槽の槽壁に具備され槽内外を気密に貫通するコネクタとを備え、前記測定手段は前記水晶基板と共に発振器として動作する発振回路を備えたものであり、前記一次巻線の一端側が前記コネクタに接続され、前記一次巻線の他端側が前記発振回路の出力側に接続されたものであって、前記二次巻線の一端側が前記ドライエッチング槽の槽壁に接続され、前記二次巻線の他端側が前記発振回路のアース側に接続されたものであることを特徴とするドライエッチング槽。In a dry etching bath that etches a crystal substrate with plasma by high frequency power, a bath wall of the dry etching bath is grounded, and an earth electrode having the same potential as the dry etching bath and the quartz substrate are placed Electrode board, high-frequency oscillator connected between the electrode board and the ground electrode, measuring means mounted on the electrode board and connected to the quartz substrate , primary winding and secondary winding A transmission line transformer, and a connector that is provided on the tank wall of the dry etching tank and airtightly penetrates the inside and outside of the tank, and the measuring means includes an oscillation circuit that operates as an oscillator together with the crystal substrate . One end of the primary winding is connected to the connector, and the other end of the primary winding is connected to the output side of the oscillation circuit, and the secondary winding One end of the line is connected to the tank wall of the dry etching bath, dry etching bath, wherein the other end of the secondary winding is what is connected to the ground side of the oscillation circuit.
JP23580398A 1998-08-21 1998-08-21 Dry etching tank Expired - Fee Related JP4096413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23580398A JP4096413B2 (en) 1998-08-21 1998-08-21 Dry etching tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23580398A JP4096413B2 (en) 1998-08-21 1998-08-21 Dry etching tank

Publications (2)

Publication Number Publication Date
JP2000068253A JP2000068253A (en) 2000-03-03
JP4096413B2 true JP4096413B2 (en) 2008-06-04

Family

ID=16991493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23580398A Expired - Fee Related JP4096413B2 (en) 1998-08-21 1998-08-21 Dry etching tank

Country Status (1)

Country Link
JP (1) JP4096413B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441825A (en) * 1987-08-10 1989-02-14 Hitachi Ltd Temperature measuring system
JP2737993B2 (en) * 1989-03-22 1998-04-08 日本電気株式会社 Dry etching equipment
JPH0374843A (en) * 1989-08-16 1991-03-29 Tadahiro Omi Device and method for dry etching
JPH0628742U (en) * 1992-09-05 1994-04-15 株式会社計測技術研究所 Probe
JPH06151373A (en) * 1992-11-12 1994-05-31 Canon Inc Semiconductor device manufacturing equipment
JP2530560B2 (en) * 1993-05-17 1996-09-04 株式会社アドテック Impedance matching device for high frequency plasma

Also Published As

Publication number Publication date
JP2000068253A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
US5683539A (en) Inductively coupled RF plasma reactor with floating coil antenna for reduced capacitive coupling
US8142674B2 (en) Plasma processing apparatus and plasma processing method
JP4728405B2 (en) Surface treatment equipment
US20070235135A1 (en) Plasma processing apparatus
US6447691B1 (en) Method for detecting end point of plasma etching, and plasma etching apparatus
JP2000031072A (en) Plasma monitoring method and semiconductor fabrication system
US5433813A (en) Semiconductor device manufacturing apparatus
US20040021454A1 (en) Capacitively coupled RF voltage probe
KR100302225B1 (en) Electromagnetic Spin Resonant Sheet Resonator
JP3621900B2 (en) Plasma processing apparatus and method
JP4131793B2 (en) High frequency power supply and control method thereof, and plasma processing apparatus
JP4096413B2 (en) Dry etching tank
JP2001085395A (en) Surface processing device
JPH0357977A (en) Device for detecting partial discharge of gas-insulated switchgear
JP2893391B2 (en) Plasma parameter measurement device
KR20020002235A (en) Electrostatic protection circuit
JP3687474B2 (en) Plasma processing equipment
JP2000174009A (en) Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device
KR0159203B1 (en) Microwave resonance probe and measurement method of density of dynamic plasma using the probe
JPS62274081A (en) Method for trimming electronic device by sputter-etching
JP3976480B2 (en) Plasma processing equipment
JPH06112167A (en) Plasma apparatus
JP3136386B2 (en) Plasma processing equipment
JP2000208485A (en) Plasma processing method and system
JP2004152606A (en) High-frequency power source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees