JP3621900B2 - Plasma processing apparatus and method - Google Patents

Plasma processing apparatus and method Download PDF

Info

Publication number
JP3621900B2
JP3621900B2 JP2001275893A JP2001275893A JP3621900B2 JP 3621900 B2 JP3621900 B2 JP 3621900B2 JP 2001275893 A JP2001275893 A JP 2001275893A JP 2001275893 A JP2001275893 A JP 2001275893A JP 3621900 B2 JP3621900 B2 JP 3621900B2
Authority
JP
Japan
Prior art keywords
plasma
frequency power
electrode
phase
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001275893A
Other languages
Japanese (ja)
Other versions
JP2002184766A (en
Inventor
誠浩 角屋
尚輝 安井
成一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001275893A priority Critical patent/JP3621900B2/en
Publication of JP2002184766A publication Critical patent/JP2002184766A/en
Application granted granted Critical
Publication of JP3621900B2 publication Critical patent/JP3621900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプラズマ処理方法及び装置に係り、特にプラズマを用いて半導体素子等の試料の表面処理を行うのに好適なプラズマ処理方法及び装置に関するものである。
【0002】
【従来の技術】
プラズマを用いてエッチング処理を行う場合、処理ガスを電離し活性化することで処理の高速化を図り、また被処理材に高周波バイアス電力を供給しプラズマ中のイオンを被処理材に垂直に入射させることで、異方性形状などの高精度エッチング処理を実現している。
【0003】
このような処理を行うプラズマ処理装置としては、例えば、特開平9−321031号公報(USP 5,891,252)に記載のように、真空容器外側の外周部に空心コイルを設け、真空容器内に設けた試料台に対向させて円形導体板を設け、円形導体板にUHF帯電源と第1の高周波電源を接続し、試料台に第2の高周波電源を接続し、円形導体板にUHF帯の周波数の電界とそのUHF帯の周波数とは異なる周波数の電界を重畳して供給し、UHF帯電源による電磁波と空心コイルによる磁場との相互作用による電子サイクロトロン共鳴現象を用いてプラズマを形成し、重畳した第1の高周波電源による高周波電圧によって円形導体板にかかるバイアスを大きくして、円形導体板とプラズマとを反応させ、エッチングに寄与する活性種をより多く生成できるようにし、試料台に接続した第2の高周波電源によりプラズマ中のイオンの試料への入射エネルギーを制御するものが知られている。
【0004】
また、一般に有磁場プラズマ中では、「プラズマ物理学入門」F.F.Chen著、丸善1977に記載のように、磁場に対して垂直方向のプラズマのインピーダンスの方が平行方向のプラズマのインピーダンスに比べて大きいことが知られている。
【0005】
【発明が解決しようとする課題】
上述のプラズマ処理装置では、被処理材に印加された高周波電力の電気回路が磁場を横切る方向に伝播するので、この磁場に対する垂直方向のプラズマのインピーダンスによって、被処理材面内に電位分布が形成されチャージングダメージを発生させる可能性がある。また、被処理材に入射するイオンエネルギーは、被処理材に供給するバイアス電力によって発生するセルフバイアス電位により決定されが、ウエハサイズの大口径化に伴って基板電極に対するアース面積の比率が減少するので、バイアスの印加効率が低下するという問題がある。
【0006】
また、従来の装置では、真空容器が接地されており、プラズマが接地されてアース電位となっている真空容器内に広がり、十分に真空容器内の処理部に閉じ込めることができず外周部まで拡散していたため、真空容器内壁のスパッタおよび反応生成物の付着・脱離などが生じ、これにより異物の発生量が増加する可能性があった。
【0007】
近年、半導体集積回路の集積度が高まるにつれ、例えば、半導体素子の代表的な一例であるMOS(Metal Oxide Semiconductor)トランジスタのゲート酸化膜が薄膜化し、ゲート酸化膜が絶縁破壊する(チャージングダメージ)問題が深刻になりつつある。また、半導体素子の微細化に伴い、加工精度についてもSAC(Self Aligned Contact)に代表されるように、マスク選択比を向上させることが要求されている。また装置内での異物等の発生は歩留まりを低下させかつ装置の稼働率を低下させることから、異物発生量の少ない装置が要求されている。
【0008】
本発明の第1の目的は、プラズマ処理におけるチャージングダメージを抑制することのできるプラズマ処理方法及び装置を提供することにある。
【0009】
本発明の第2の目的は、高精度表面処理を行うことのできるプラズマ処理方法及び装置を提供することにある。
【0010】
本発明の第3の目的は、異物発生量を少なくできるプラズマ処理方法及び装置を提供することにある。
【0011】
本発明の第4の目的は、スループットの高いプラズマ処理方法及び装置を提供することにある。
【0012】
【課題を解決するための手段】
上記第1の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる他の高周波電力を印加することにより、達成される。
【0013】
さらに、前記両電極にそれぞれ印加する逆位相となる他の高周波電力は、
180°±45°の範囲内である。
【0014】
また、前記両電極にそれぞれ印加する逆位相となる他の高周波電力は、180°±30°の範囲内である。
【0015】
また、前記両電極にそれぞれ印加する他の高周波電力は、5MHz以下の同一周波数とするプラズマ処理方法。
【0016】
また、前記プラズマは高周波電力と磁場を用いて生成される。
【0017】
また上記第1の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低い他の高周波電力を印加し、両電極側でプラズマ中を流れる電流の方向を同じにし、同一方向の電流の向きを交互に変化させることにより、達成される。
【0018】
さらに、前記両電極にそれぞれ印加する他の高周波電力は、5MHz以下の同一周波数とする。
【0019】
また上記第1の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低い他の高周波電力を印加し、両電極側でプラズマからの電子とイオンの入射方向を互いに逆向きにし、前記両電極側でプラズマからの電子とイオンの入射方向を交互に変化させることにより、達成される。
【0020】
さらに、前記両電極にそれぞれ印加する他の高周波電力は、5MHz以下の同一周波数とする。
【0021】
また上記第2の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低い他の高周波電力を印加し、一方の電極でイオン入射が行われる間、他方の電極で多くの電子を引き込み、前記イオン入射と電子の引き込みを交互に繰り返し、前記両電極に生じるバイアス電圧波形を負電圧側にシフトさせ、高エネルギーイオン量の多いイオンエネルギー分布にすることにより、達成される。
【0022】
さらに、前記両電極にそれぞれ印加する他の高周波電力は、5MHz以下の同一周波数とする。
【0023】
また上記第3の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる他の高周波電力を印加し、両電極のいずれか一方の電極を常にアース電極として機能させ、プラズマから見て真空容器がアースとなるのを抑制することにより、達成される。
【0024】
また上記第3の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低い他の高周波電力を印加し、前記両電極に印加されるそれぞれの高周波電圧によるバイアス電圧の正電圧の値を下げ、プラズマポテンシャルを低くしてアースに接地された真空容器内壁との電位差を小さく、プラズマ中のイオンによる前記真空容器内壁面の衝撃を抑制することにより、達成される。
【0025】
また、上記第4の目的は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記試料の処理中は前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる他の高周波電力を印加し、処理室内のクリーニング時には前記両電極にそれぞれ同位相となる他の高周波電力を印加することにより、達成される。
【0026】
また上記これらの目的を達成するため、本発明の態様に従えば、プラズマ処理装置は、内部を所定の減圧雰囲気に制御される容器と、前記容器内に設けられ試料を配置可能な基板電極と前記基板電極に対向する対向電極と、前記対向電極に接続され前記容器内にプラズマを生成するための高周波電力を印加するプラズマ生成電源と、前記基板電極および対向電極にそれぞれ接続され前記プラズマ生成用の高周波電力よりも周波数の低い高周波電力を印加する複数のバイアス電源と、前記複数のバイアス電源の高周波電圧の位相を制御する位相制御器とを含む。
【0027】
上記装置において、前記位相制御器は前記両電極にそれぞれ印加される高周波電圧の位相を逆位相に制御する。
【0028】
また、前記位相制御器は前記両電極にそれぞれ印加される高周波電圧の位相を同位相および逆位相に制御する。
【0029】
また、前記位相は0°±45°または180°±45°の範囲内で制御される。
【0030】
また、前記位相は0°±30°または180°±30°の範囲内で制御される。
【0031】
また、前記複数のバイアス電源は、5MHz以下の同一周波数の高周波電力を出力する。
【0032】
また、前記容器内に磁場を形成する磁場発生コイルを有する。
【0033】
本発明の他の態様に従えば、プラズマ処理装置は、真空排気装置が接続され内部を減圧可能な処理室と、前記処理室内へガスを供給するガス供給装置と、前記処理室内の設けられ被処理材を載置可能な基板電極と、前記処理室内で前記基板電極に対向して設けられプラズマを発生するための電磁波を放射するアンテナ電極と、前記アンテナ電極に接続されたプラズマ生成用の第1の高周波電源と、前記基板電極へ接続された第2の高周波電源と、前記アンテナ電極へ接続された第3の高周波電源と、前記第2の高周波電源および前記第3の高周波電源によって印加する高周波電圧の位相を互いに逆位相に制御する位相制御器を含む。
【0034】
本発明の他の態様に従えば、プラズマ処理装置は、試料を配置する基板電極に対して、対向する電極を設け、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる他の高周波電力を印加し、前記両電極を通過する磁力線を有する磁場を形成する。
【0035】
さらに、前記高周波電力の逆位相の値は前記試料面内のセルフバイアス電圧差が5V以下となる位相に設定される。
【0036】
また、前記高周波電力の逆位相の値は前記試料面内のセルフバイアス電圧差が実質的に0Vとなる位相に設定される。
【0037】
本発明のプラズマ処理では、基板電極に印加する高周波と基板電極に対向するアンテナ電極に印加する高周波の位相を制御することにより、プラズマ特性の面内分布に起因する被処理材面内の電位分布を低く押さえチャージングダメージの発生を抑制できる。また、高周波の位相を制御することにより、被処理材に入射するイオンのエネルギーを調整でき、高アスペクト比のエッチングを可能にしたり、マスク選択比の向上を図れる。これにより、高精度なエッチング処理が可能となる。また、高周波の位相を制御することにより、プラズマの拡散を抑制でき、真空容器内壁のスパッタおよび反応生成物の付着・脱離などによる異物の発生量を低減できる。これにより、歩留まり向上および装置のメンテナンス周期を長くでき、スループットの向上を可能とする。
【0038】
【発明の実施の形態】
以下、本発明の一実施例を図1から図5を用いて説明する。図1は、本発明を適用するプラズマ処理装置の一例であるエッチング装置の縦断面図である。真空容器101の上部開口部には、円筒状の処理容器102,導電体でなる平板状のアンテナ電極103,電磁波を透過可能な誘電体窓104を気密に設け、内部に処理室を形成している。処理容器102の外周部には処理室を囲んで磁場発生用コイル105が設けてある。アンテナ電極103はエッチングガスを流すための多孔構造となっており、ガス供給装置107が接続されている。また、真空容器101の下部には真空排気口106を介して真空排気装置(図示省略)が接続されている。
【0039】
アンテナ電極103上部には同軸線路108が設けられ、同軸線路108,フィルター109,整合器110を介してプラズマ生成用の高周波電源111(例えば、周波数450MHz)が接続されている。また、アンテナ電極103には同軸線路108,フィルター112,整合器113を介してアンテナバイアス電源114(例えば、周波数800kHz)が接続されている。ここで、フィルター109は高周波電源111からの高周波電力を通過させ、アンテナバイアス電源114からのバイアス電力を効果的にカットする。フィルター112はアンテナバイアス電源114からのバイアス電力を通過させ、高周波電源111からの高周波電力を効果的にカットする。
【0040】
真空容器101内の下部には被処理材116を配置可能な基板電極115が設けられている。基板電極115にはフィルター117,整合器118を介して基板バイアス電源119(例えば、周波数800kHz)が接続されている。また、基板電極115にはフィルター120を介して被処理材116を静電吸着させるための静電チャック電源121が接続されている。ここで、フィルター117は基板バイアス電源119からのバイアス電力を通過させ、高周波電源111からの高周波電力を効果的にカットする。なお、通常、高周波電力はプラズマ中で吸収されるため基板電極115側へ流れることはないが、安全のためフィルター117を設けてある。フィルター120は静電チャック電源121からのDC電力を通過させ、高周波電源111,アンテナバイアス電源114,基板バイアス電源119からの電力を効果的にカットする。
【0041】
アンテナバイアス電源114と基板バイアス電源119は位相制御器122に接続されており、アンテナバイアス電源114および基板バイアス電源119から出力する高周波の位相を制御可能となっている。この場合、アンテナバイアス電源114と基板バイアス電源119の周波数は同一周波数とした。
【0042】
位相制御器122は、アンテナバイアス電源114側のフィルター112と整合器113との間および基板バイアス電源119側のフィルター117と整合器118との間からそれぞれ電圧波形を取り込み、位相制御器122内でそれぞれの電圧波形の位相が逆相、この場合、180°±45°以内の所望の位相差になるように、アンテナバイアス電源114と基板バイアス電源119とに位相をずらした小振幅の信号を出力する。この場合のアンテナバイアス電源114および基板バイアス電源119はアンプ機能を有するのみで良い。
【0043】
また、位相制御器122が、アンテナバイアス電源114側のフィルター112と整合器113との間および基板バイアス電源119側のフィルター117と整合器118との間からそれぞれ電圧波形を取り込み、電力の出力タイミングを支持するトリガー信号のみを出力するものである場合には、アンテナバイアス電源114および基板バイアス電源119はオシレータ機能を有するものとする。
【0044】
上記のように構成された装置において処理室内部を真空排気装置(図示省略)により減圧した後、ガス供給装置107によりエッチングガスを処理室内に導入し所望の圧力に調整する。高周波電源111より発振された、例えば、周波数450MHzの高周波電力は同軸線路108を伝播し、上部電極103および誘電体窓104を介して処理室内に導入される。処理室内に導入された高周波電力による電界は、磁場発生用コイル105(例えば、ソレノイドコイル)により処理室内に形成された磁場との相互作用により、処理室内に高密度プラズマを生成する。特に電子サイクロトロン共鳴を起こす磁場強度(例えば、プラズマ生成用の高周波電源の周波数が450MHzの場合、160G)を処理室内に形成した場合、効率良く高密度プラズマを生成することができる。また、アンテナバイアス電源114より高周波電力(例えば周波数800kHz)が同軸線路108を介してアンテナ電極103に供給される。また基板電極115に載置された被処理材116は、基板バイアス電源119より高周波電力(例えば周波数800kHz)が供給され、表面処理(例えばエッチング処理)される。
【0045】
アンテナバイアス電源114によってアンテナ電極103に高周波電圧を印加することにより、アンテナ電極に所望の材料を用いた場合、該材料とプラズマ中のラジカルとが反応し、生成されるプラズマの組成を制御できる。例えば、酸化膜エッチングの場合、アンテナ電極103の材料にSiを用いることによって、酸化膜のエッチング特性、特にSiO/SiN 選択比等に影響するプラズマ中のFラジカル量を減少させることが可能となる。
【0046】
本構成の装置では、450MHzの高周波電源111によって主としてプラズマを生成し、アンテナバイアス電源114によってプラズマ組成あるいはプラズマ分布を制御し、基板バイアス電源119によってプラズマ中のイオンの被処理材116への入射エネルギーを制御している。このような装置では、プラズマ生成(イオン量)とプラズマ組成(ラジカル濃度比)を独立に制御できるというメリットがある。
【0047】
一般にプラズマ中では、プラズマ特性の面内不均一などの影響により、被処理材に電位分布が形成され、チャージングダメージを発生させる可能性がある。膜厚4.5nm をもつ半導体素子のゲート酸化膜間電圧では、約5V以上の電圧が印加されるとゲート酸化膜の劣化が生じることから、チャージングダメージを抑制するためにはゲート酸化膜間電圧を5V以下にすることが必要である。
【0048】
図2は基板電極115とアンテナ電極103に印加する高周波電圧の位相とゲート酸化膜間に発生する電圧との関係を示す。図2の縦軸はゲート酸化膜間電圧を示し、横軸は高周波電圧の位相を示す。図2によれば、位相が0°付近においてはゲート酸化膜間電圧は約6V程度発生しているが、位相を180°付近、すなわち、180°±45°の範囲以内にすることによりゲート酸化膜間電圧を許容値以下の小さい値に抑制できることが分かる。好ましくは、180°±30°の範囲以内にすればゲート酸化膜間電圧を約2V以下にでき、さらに効果的である。
【0049】
基板電極115とアンテナ電極103に印加する高周波電圧の位相を同位相とした場合と逆位相にした場合の基板電圧波形301,アンテナ電圧波形302,プラズマ電位波形303の関係をそれぞれ図3(a),(b)に示す。図3(a)に示されるように同位相で高周波電力を印加した場合には、基板電極波形301,アンテナ電圧波形302ともに正弦波的である。また、プラズマ電位波形303は正電位側に大きな振幅で振動している。これに対し、図3(b)に示されるように逆位相で高周波電力を印加した場合には、両電圧波形301,302ともに、電圧波形が負電圧側にシフトするとともに正電圧側で波形が歪み平坦化されている。これにより、プラズマ電位波形303も小さな電位のまま平坦化されている。このことから逆位相の場合は、結果として、セルフバイアス電位が大きく、すなわち、同位相の場合に比べセルフバイアス電位が増加していることが分かる。
【0050】
これは対向する両電極のアースとしての機能が向上し、十分な電流が対向する電極間で供給されることによるためと考えられる。すなわち、図4(a)に示すように、時間t1におけるアンテナ電極103のアンテナ電圧波形302は正電位であって、プラズマ中の電子を引き込む時間帯であり、時間t2ではアンテナ電圧波形は負電位であって、プラズマ中のイオンを引き込む時間帯である。これに対し、時間t1における基板電極115の基板電圧波形301は負電位であって、プラズマ中のイオンを引き込む時間帯となり、時間t2では基板電圧波形301は正電位であって、プラズマ中の電子を引き込む時間帯となる。これにより、両電極側ともプラズマ空間において、時間t1では基板電極側に向かって電流(i1,i2)が流れ、時間t2ではアンテナ電極側に向かって電流(i3,i4)が流れるので、基板,アンテナ両電極ともに、正電圧側となる位相のときに充分な電子が供給され負電圧側へシフトする。また、電流方向が同方向となるので、対向する両電極において、常にどちらか一方の電極がアースとして効率良く機能し、プラズマ電位を下げるよう作用して、プラズマ電位が小さい電位で平坦化される。
【0051】
一方、図4(b)に示すようにアンテナ電圧波形302と基板電圧波形301とを同位相にした場合には、両電極側のプラズマ空間では互いに電流(i1,i2,i3,i4)の向きが反対方向となり、電気回路はアースに接地された処理容器104との間で形成され、電流(i5,i6)は処理容器側、すなわち、壁側に流れる。また、図4(c)に示すように基板電極115への基板電圧波形301は図4(a)と同様で、アンテナ電極103に、例えば、周波数13.56MHzのアンテナ電圧波形302を印加した場合には、アンテナ電極103側にはセルフバイアス電圧Vdcが生じ、常にプラズマ中のイオンが引き込まれる状態となり、時間t1では両電極側に向けて電流(i1,i2)が流れ逆方向となる。このため、両電極ともに処理容器102との間で電気回路が形成され、処理容器側から両電極側に向けて電流(i5)が流れる。また、時間t2では電流の方向はアンテナ電極103に向けて同方向となるが、アンテナ電極側の電流値と基板電極115側の電流値との差分(i6)が処理容器102側へ流れることになる。
【0052】
本実施例のように構成された装置では、高周波電流が側壁よりも対向する電極間でより多く流れることから、磁場を横切る方向の電流が減少しチャージングダメージの発生が抑制される。したがって、図2に示したように両電極に印加する高周波の位相を180°付近にすることによりチャージングダメージの発生を抑制でき、歩留の良い処理を行うことができる。
【0053】
図5は、両電極に印加する高周波の位相を同位相(0°)にした場合(破線501)と逆位相(180°)にした場合(実線502)の両電極に入射するイオンエネルギーの分布を示す。これによると、逆位相の場合には同位相の場合に比べ、低イオンエネルギーの量が少なくなり、イオンエネルギーの値がさらに高い方向にシフトし高イオンエネルギーの量が増していることが分かる。被処理材116に入射するイオンエネルギーは基板電極115に生じるセルフバイアス電位により決定されるが、本実施例では図3に示したようにアンテナ電極103と基板電極115に印加する高周波電力の位相を逆相にすることにより、図5に示すように、高イオンエネルギーの量を増やすことができる、言い換えれば、セルフバイアス電位をさらに大きくすることができるので、アスペクト比の高い穴をさらに高アスペクトで加工することができ、高精度のエッチング処理を行うことができる。また、効率的な電力の投入により最適なエッチング形状を得る処理ができる。
【0054】
さらに、アンテナ電極103と基板電極115に印加する高周波電力の位相を制御することによっても、自由にセルフバイアス電位を制御することができ、処理条件の範囲を広げることができる。
【0055】
図6に基板電極115よりも外側で測定したイオン飽和電流密度601と高周波電圧の位相との関係を示す。図6によれば、基板電極115の外側において、印加する高周波電圧の位相が同相の場合にはプラズマ密度が高く、逆相の場合にはプラズマ密度が低いことが分かる。つまり両電極に印加する高周波電圧の位相を180°付近にすることにより、常に両電極の一方が効率良くアース電極となるので、プラズマ電位の上昇が抑制され、プラズマと接地された処理容器102および真空容器101の内壁との電位差が小さくなり、処理容器102内に生成されたプラズマが処理容器102および真空容器101の内壁側に広がることがないことを示している。言い換えると、プラズマを処理容器102内に効率よく閉じ込めることが可能である。
【0056】
一般に接地された真空容器101および処理容器102はプラズマによりスパッタされ、また反応生成物の付着・脱離等により異物の発生源となり、スループット低下の原因となる。しかしながら、本実施例では図6に示したように、高周波電圧の位相を180°付近とすることにより、プラズマを処理容器内に効率よく閉じ込められることから真空容器101に付着する反応生成物を抑制することができ、かつ図3(b)に示すようにプラズマ電位303の変動を低く押さえることが可能なので、真空容器101および処理容器102へのイオン衝撃によるスパッタを低減することができる。これより真空容器101および処理容器102からの異物の発生が低減され、装置のメンテナンス周期を長くでき、スループットを向上させることができる。
【0057】
また、本実施例では、磁場発生用コイル105によって処理室内にアンテナ電極103から基板電極115に向かって発散磁場を形成している。これにより、プラズマ中の電子は磁場に拘束されて動くので、一方の電極から流れ出た高周波(RF)電流は、処理室側壁に向かって流れるよりも、対向する電極に向かってより効率的に流れる。このためチャージングダメージに関係する基板電極面内に生じるセルフバイアス電圧差(δVdc)を低減することができる。図7に磁場発生用コイル105による磁場強度を変えたときのバイアス電圧の位相差と、基板電極の中央部と外周部に生じるセルフバイアス電圧の差(δVdc=中央のVdc−外周のVdc)との関係を示す。図7によれば、磁場発生用コイルへ供給する電流値を大きくする、すなわち、垂直方向の成分を大きくすることにより、セルフバイアス電圧差(δVdc)をゼロ(零)にすることのできるコイル電流値とバイアス電圧位相差とが存在することが分かる。したがって、磁場発生用コイル105によって処理室内に形成する磁場に、被処理材116に対して垂直方向の成分を多く持たせることによって、対向電極間隔が大きい場合(例えば、30mm以上)でも、より効果的にプラズマの拡散を抑制できる。
【0058】
また、処理室内の磁場形状において、処理室中央部から外周部に向かって磁場強度が強くなる磁場形状を用いても、プラズマ中の電子は処理室外周に向かって移動しにくくなる。このため、一方の電極から流れ出た高周波(RF)電流は、処理室側壁に向かって流れるよりも、対向する電極に向かって流れ、同様の効果を得ることができる。このような磁場は、電磁コイルによるカスプ磁場あるいは永久磁石を用いたカスプ磁場によっても実現できる。
【0059】
なお、上述の実施例では、被処理材のプラズマ処理について述べたが、プラズマを用いて装置内壁面のクリーニングを行う場合には、両電極に印加する高周波の位相を0°付近(同相)とすることにより、広範囲にプラズマが拡散され、かつ壁に効率よくイオン衝撃を与えられるので、クリーニング効果を向上させる効果がある。
【0060】
また、アンテナ電極103と基板電極115に印加される逆相又は同相の高周波電圧において、逆相の場合には180°±45°程度、好ましくは180°±30°、同相の場合には高周波電圧の位相差が0°±45°程度、好ましくは0°±30°の範囲内であれば同様の効果が期待できる。
【0061】
また、上述の実施例では磁場を用いたエッチング装置を例に述べたが、磁場を有さないエッチング装置又は、エッチング装置以外のアッシング装置、プラズマCVD装置など基板電極へ高周波電力を供給する他のプラズマ処理装置においても適用可能である。
【0062】
また、上述の実施例では、アンテナ電極103と基板電極115に印加される高周波電圧の周波数は800kHzを例に述べたが、これに限定されるものではなく、シースが抵抗性となる周波数、約5MHz以下の周波数の電源を用いることにより、効果を奏することができる。
【0063】
また、上述の実施例では、両電極に印加する高周波電圧の位相を制御するために、フィルター112,227と整合器113,118との間から電圧信号を取るようにしているが、整合器113,118内部の出力部から電圧信号を取るようにしても良い。位相制御用の電圧信号は電極部で検出するのが最良であるが、他の高周波電圧ノイズを除去するために少なくともフィルターを介して検出するのが望ましい。また、アンテナバイアス電源114および基板バイアス電源119の出力部での高周波電圧と電極103,115部での高周波電圧の位相は一致しないので、できるだけ電極に近い側で検出するのが望ましい。
【0064】
【発明の効果】
以上、本発明によれば、基板電極と該電極に対向する電極にそれぞれ印加する高周波バイアスの位相を制御することにより、容器内壁との間に流れる電流を少なくでき、プラズマ特性の面内分布に起因する被処理材の面内の電位分布の電位差を小さくでき、チャージングダメージの発生を抑制することができる。これにより、試料の歩留を向上できるという効果がある。
【0065】
また、高周波バイアスの位相を制御することにより、被処理材に入射するイオンエネルギーを自由に制御できるので、高精度なエッチング処理が可能になるという効果がある。
【0066】
さらに、高周波バイアスの位相を制御することにより、容器内壁部のプラズマ密度および壁へのイオン衝撃を高周波電圧の位相により自由に制御できるので、装置内壁からの異物の発生を低減でき、クリーニング周期を長くできるのでスループットの向上が可能となる。
【0067】
また、高周波バイアスの位相を制御することにより、容器内の効率的なクリーニングを実施できるという効果がある。
【図面の簡単な説明】
【図1】本発明を用いた第1の実施例であるエッチング装置を示す縦断面図である。
【図2】ゲート酸化膜間電圧と高周波電圧の位相差の関係を示す特性図である。
【図3】基板電極とアンテナ電極に同じ周波数のバイアスを印加した場合の基板電極・アンテナ電極電圧波形図である。
【図4】基板電極とアンテナ電極に印加する高周波電圧と、プラズマ中のイオンおよび電子の動きとの関係を示す図である。
【図5】同位相と逆位相のときの電極に入射するイオンエネルギー分布を示す図である。
【図6】外周部イオン飽和電流密度と位相の関係を示す特性図である。
【図7】磁場強度を変えたときのバイアス電圧の位相と基板面内のセルフバイアス電圧差との関係を示す図である。
【符号の説明】
101…真空容器、102…処理容器、103…アンテナ電極、104…誘電体窓、105…磁場発生用コイル、106…真空排気口、107…ガス供給装置、108…同軸線路、109,112,117,120…フィルター、110,113,118…整合器、111…高周波電源、114…アンテナバイアス電源、115…基板電極、116…被処理材、119…基板バイアス電源、121…静電チャック電源、122…位相制御器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing method and apparatus, and more particularly to a plasma processing method and apparatus suitable for performing surface treatment of a sample such as a semiconductor element using plasma.
[0002]
[Prior art]
When performing an etching process using plasma, the process gas is ionized and activated to speed up the process, and a high-frequency bias power is supplied to the material to be processed so that ions in the plasma are incident perpendicularly to the material to be processed. As a result, a highly accurate etching process such as an anisotropic shape is realized.
[0003]
As a plasma processing apparatus for performing such processing, for example, as described in JP-A-9-321031 (US Pat. No. 5,891,252), an air core coil is provided on the outer periphery of the vacuum vessel, A circular conductor plate is provided opposite to the sample stage provided on the substrate, a UHF band power source and a first high frequency power source are connected to the circular conductor plate, a second high frequency power source is connected to the sample stage, and the UHF band is connected to the circular conductor plate. An electric field having a frequency different from that of the UHF band is supplied in a superimposed manner, and plasma is formed using an electron cyclotron resonance phenomenon caused by an interaction between an electromagnetic wave generated by a UHF band power supply and a magnetic field generated by an air-core coil, Active species that contribute to etching by increasing the bias applied to the circular conductor plate by the high-frequency voltage from the superimposed first high-frequency power source, causing the circular conductor plate and plasma to react, and It is known that the incident energy of ions in the plasma to the sample is controlled by a second high-frequency power source connected to the sample stage.
[0004]
In general, in a magnetic field plasma, “Introduction to Plasma Physics” F. As described by Chen and Maruzen 1977, it is known that the impedance of the plasma in the direction perpendicular to the magnetic field is larger than the impedance of the plasma in the parallel direction.
[0005]
[Problems to be solved by the invention]
In the above-described plasma processing apparatus, an electric circuit of high-frequency power applied to the material to be processed propagates in a direction crossing the magnetic field, so that a potential distribution is formed in the surface of the material to be processed by the impedance of the plasma in the direction perpendicular to the magnetic field. May cause charging damage. The ion energy incident on the material to be processed is determined by the self-bias potential generated by the bias power supplied to the material to be processed, but the ratio of the ground area to the substrate electrode decreases as the wafer size increases. Therefore, there is a problem that the application efficiency of the bias is lowered.
[0006]
In addition, in the conventional apparatus, the vacuum vessel is grounded, the plasma is grounded and spreads in the vacuum vessel that is at the ground potential, and cannot be sufficiently confined in the processing part in the vacuum vessel and diffuses to the outer periphery. Therefore, sputtering of the inner wall of the vacuum vessel and attachment / detachment of reaction products occur, which may increase the amount of foreign matter generated.
[0007]
In recent years, as the degree of integration of a semiconductor integrated circuit increases, for example, a gate oxide film of a MOS (Metal Oxide Semiconductor) transistor, which is a typical example of a semiconductor element, becomes thinner, and the gate oxide film breaks down (charging damage). The problem is getting serious. Further, with the miniaturization of semiconductor elements, it is required to improve the mask selection ratio as represented by SAC (Self Aligned Contact) with respect to processing accuracy. Further, since the generation of foreign matter or the like in the apparatus lowers the yield and the operating rate of the apparatus, an apparatus with a small amount of foreign matter is required.
[0008]
A first object of the present invention is to provide a plasma processing method and apparatus capable of suppressing charging damage in plasma processing.
[0009]
A second object of the present invention is to provide a plasma processing method and apparatus capable of performing high precision surface treatment.
[0010]
It is a third object of the present invention to provide a plasma processing method and apparatus that can reduce the amount of foreign matter generated.
[0011]
A fourth object of the present invention is to provide a plasma processing method and apparatus with high throughput.
[0012]
[Means for Solving the Problems]
The first object is to provide a counter electrode with respect to a substrate electrode on which a sample is arranged, to apply high-frequency power for plasma generation to the counter electrode, and to apply high-frequency power for plasma generation to both electrodes, respectively. This is achieved by applying other high frequency power having a frequency lower than that of power and having an opposite phase.
[0013]
Furthermore, the other high-frequency power in the opposite phase to be applied to both the electrodes,
It is within the range of 180 ° ± 45 °.
[0014]
Further, the other high-frequency power having the opposite phase applied to both electrodes is in the range of 180 ° ± 30 °.
[0015]
The other high frequency power applied to each of the electrodes is a plasma processing method having the same frequency of 5 MHz or less.
[0016]
The plasma is generated using high frequency power and a magnetic field.
[0017]
The first object is to provide a counter electrode with respect to the substrate electrode on which the sample is arranged, to apply high-frequency power for plasma generation to the counter electrode, and to each of the electrodes for generating the plasma. This is achieved by applying another high-frequency power having a frequency lower than that of the high-frequency power, making the direction of the current flowing in the plasma the same on both electrode sides, and alternately changing the direction of the current in the same direction.
[0018]
Further, the other high-frequency power applied to each of the electrodes is the same frequency of 5 MHz or less.
[0019]
The first object is to provide a counter electrode with respect to the substrate electrode on which the sample is arranged, to apply high-frequency power for plasma generation to the counter electrode, and to each of the electrodes for generating the plasma. Apply other high-frequency power with a frequency lower than that of the high-frequency power, reverse the incident directions of electrons and ions from the plasma on both electrodes, and alternate the incident directions of electrons and ions from the plasma on both electrodes This is achieved by changing
[0020]
Further, the other high-frequency power applied to each of the electrodes is the same frequency of 5 MHz or less.
[0021]
The second object is to provide a counter electrode with respect to the substrate electrode on which the sample is arranged, to apply high-frequency power for plasma generation to the counter electrode, and to each of the electrodes for generating the plasma. While other high-frequency power having a frequency lower than that of the high-frequency power is applied and ions are incident on one electrode, many electrons are drawn on the other electrode, and the ion injection and the electron drawing are alternately repeated. This is achieved by shifting the bias voltage waveform generated in the electrode to the negative voltage side to obtain an ion energy distribution with a large amount of high energy ions.
[0022]
Further, the other high-frequency power applied to each of the electrodes is the same frequency of 5 MHz or less.
[0023]
The third object is to provide a counter electrode with respect to the substrate electrode on which the sample is placed, to apply high-frequency power for plasma generation to the counter electrode, and to each of the electrodes for generating the plasma. Apply other high-frequency power that has a lower frequency than the high-frequency power and has an opposite phase, so that either one of the electrodes always functions as a ground electrode, and suppresses the vacuum vessel from being grounded when viewed from the plasma. Is achieved.
[0024]
The third object is to provide a counter electrode with respect to the substrate electrode on which the sample is placed, to apply high-frequency power for plasma generation to the counter electrode, and to each of the electrodes for generating the plasma. A vacuum vessel that is grounded to earth by applying another high-frequency power having a frequency lower than that of the high-frequency power, lowering the positive voltage of the bias voltage due to the high-frequency voltage applied to both electrodes, and lowering the plasma potential This is achieved by reducing the potential difference from the inner wall and suppressing the impact on the inner wall surface of the vacuum vessel by ions in the plasma.
[0025]
The fourth object is to provide a counter electrode with respect to the substrate electrode on which the sample is disposed, to apply high-frequency power for plasma generation to the counter electrode, and to both the electrodes during the processing of the sample. By applying other high-frequency power having a frequency lower than that of the plasma-generating high-frequency power and having an opposite phase, and applying other high-frequency power having the same phase to both electrodes during cleaning in the processing chamber, Achieved.
[0026]
In order to achieve these objects, according to an aspect of the present invention, a plasma processing apparatus includes a container whose interior is controlled to a predetermined reduced pressure atmosphere, and a substrate electrode provided in the container and capable of arranging a sample. A counter electrode facing the substrate electrode; a plasma generating power source connected to the counter electrode for applying high-frequency power to generate plasma in the container; and the plasma generating power source connected to the substrate electrode and the counter electrode, respectively. A plurality of bias power supplies for applying a high-frequency power having a frequency lower than the high-frequency power, and a phase controller for controlling the phase of the high-frequency voltages of the plurality of bias power supplies.
[0027]
In the above apparatus, the phase controller controls the phase of the high-frequency voltage applied to each of the electrodes to be opposite to each other.
[0028]
The phase controller controls the phase of the high-frequency voltage applied to each of the electrodes to the same phase and the opposite phase.
[0029]
The phase is controlled within a range of 0 ° ± 45 ° or 180 ° ± 45 °.
[0030]
The phase is controlled within a range of 0 ° ± 30 ° or 180 ° ± 30 °.
[0031]
The plurality of bias power supplies output high-frequency power having the same frequency of 5 MHz or less.
[0032]
Moreover, it has a magnetic field generating coil for forming a magnetic field in the container.
[0033]
According to another aspect of the present invention, a plasma processing apparatus includes: a processing chamber to which an evacuation device is connected and whose inside can be decompressed; a gas supply device that supplies gas to the processing chamber; A substrate electrode on which a processing material can be placed, an antenna electrode that is provided opposite to the substrate electrode in the processing chamber and emits electromagnetic waves for generating plasma, and a plasma generating first electrode connected to the antenna electrode One high frequency power source, a second high frequency power source connected to the substrate electrode, a third high frequency power source connected to the antenna electrode, the second high frequency power source, and the third high frequency power source A phase controller for controlling the phases of the high-frequency voltage to be opposite to each other is included.
[0034]
According to another aspect of the present invention, a plasma processing apparatus is provided with opposing electrodes with respect to a substrate electrode on which a sample is disposed, and applies high-frequency power for plasma generation to the opposing electrodes, and the both electrodes The other high frequency power having a frequency lower than that of the plasma generating high frequency power and having an opposite phase is applied to form a magnetic field having magnetic lines passing through both electrodes.
[0035]
Further, the value of the anti-phase of the high-frequency power is set to a phase at which the self-bias voltage difference in the sample surface is 5 V or less.
[0036]
The value of the antiphase of the high-frequency power is set to a phase where the self-bias voltage difference in the sample surface is substantially 0V.
[0037]
In the plasma treatment of the present invention, the potential distribution in the surface of the material to be treated due to the in-plane distribution of the plasma characteristics is controlled by controlling the phase of the high frequency applied to the substrate electrode and the phase of the high frequency applied to the antenna electrode facing the substrate electrode. The charging damage can be suppressed from being suppressed to a low level. In addition, by controlling the phase of the high frequency, the energy of ions incident on the material to be processed can be adjusted, etching with a high aspect ratio can be performed, and the mask selection ratio can be improved. Thereby, a highly accurate etching process is attained. Further, by controlling the phase of the high frequency, the diffusion of plasma can be suppressed, and the amount of foreign matter generated due to sputtering of the inner wall of the vacuum vessel and attachment / detachment of reaction products can be reduced. As a result, the yield can be improved, the maintenance period of the apparatus can be lengthened, and the throughput can be improved.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of an etching apparatus which is an example of a plasma processing apparatus to which the present invention is applied. In the upper opening of the vacuum vessel 101, a cylindrical processing vessel 102, a flat antenna electrode 103 made of a conductor, and a dielectric window 104 capable of transmitting electromagnetic waves are provided in an airtight manner, and a processing chamber is formed inside. Yes. A magnetic field generating coil 105 is provided on the outer periphery of the processing container 102 so as to surround the processing chamber. The antenna electrode 103 has a porous structure for flowing an etching gas, and a gas supply device 107 is connected thereto. A vacuum exhaust device (not shown) is connected to the lower portion of the vacuum vessel 101 via a vacuum exhaust port 106.
[0039]
A coaxial line 108 is provided on the antenna electrode 103, and a plasma generating high frequency power supply 111 (for example, a frequency of 450 MHz) is connected through the coaxial line 108, the filter 109, and the matching unit 110. An antenna bias power supply 114 (for example, a frequency of 800 kHz) is connected to the antenna electrode 103 via a coaxial line 108, a filter 112, and a matching unit 113. Here, the filter 109 allows high-frequency power from the high-frequency power source 111 to pass and effectively cuts bias power from the antenna bias power source 114. The filter 112 passes the bias power from the antenna bias power source 114 and effectively cuts the high frequency power from the high frequency power source 111.
[0040]
A substrate electrode 115 on which a material to be processed 116 can be placed is provided in the lower part of the vacuum vessel 101. A substrate bias power source 119 (for example, a frequency of 800 kHz) is connected to the substrate electrode 115 via a filter 117 and a matching unit 118. The substrate electrode 115 is connected to an electrostatic chuck power source 121 for electrostatically attracting the material 116 to be processed through a filter 120. Here, the filter 117 passes the bias power from the substrate bias power source 119 and effectively cuts the high frequency power from the high frequency power source 111. Normally, the high frequency power is absorbed in the plasma and does not flow to the substrate electrode 115 side, but a filter 117 is provided for safety. The filter 120 allows the DC power from the electrostatic chuck power supply 121 to pass and effectively cuts the power from the high frequency power supply 111, the antenna bias power supply 114, and the substrate bias power supply 119.
[0041]
The antenna bias power source 114 and the substrate bias power source 119 are connected to the phase controller 122 so that the phase of the high frequency output from the antenna bias power source 114 and the substrate bias power source 119 can be controlled. In this case, the antenna bias power supply 114 and the substrate bias power supply 119 have the same frequency.
[0042]
The phase controller 122 takes in voltage waveforms from between the filter 112 and the matching unit 113 on the antenna bias power supply 114 side, and between the filter 117 and the matching unit 118 on the substrate bias power supply 119 side, respectively. A small amplitude signal is output to the antenna bias power supply 114 and the substrate bias power supply 119 so that the phase of each voltage waveform is reversed, in this case, a desired phase difference within 180 ° ± 45 °. To do. In this case, the antenna bias power supply 114 and the substrate bias power supply 119 need only have an amplifier function.
[0043]
Further, the phase controller 122 captures voltage waveforms from between the filter 112 and the matching unit 113 on the antenna bias power source 114 side and between the filter 117 and the matching unit 118 on the substrate bias power source 119 side, respectively, and outputs the power output timing. Antenna bias power source 114 and substrate bias power source 119 are assumed to have an oscillator function.
[0044]
In the apparatus configured as described above, the inside of the processing chamber is depressurized by an evacuation apparatus (not shown), and then an etching gas is introduced into the processing chamber by the gas supply device 107 and adjusted to a desired pressure. For example, high-frequency power having a frequency of 450 MHz oscillated from the high-frequency power source 111 propagates through the coaxial line 108 and is introduced into the processing chamber via the upper electrode 103 and the dielectric window 104. The electric field generated by the high-frequency power introduced into the processing chamber generates high-density plasma in the processing chamber due to the interaction with the magnetic field formed in the processing chamber by the magnetic field generation coil 105 (for example, a solenoid coil). In particular, when a magnetic field intensity causing electron cyclotron resonance (for example, 160 G when the frequency of the high-frequency power source for plasma generation is 450 MHz) is formed in the processing chamber, high-density plasma can be generated efficiently. Further, high frequency power (for example, frequency 800 kHz) is supplied from the antenna bias power supply 114 to the antenna electrode 103 via the coaxial line 108. Further, the material 116 to be processed placed on the substrate electrode 115 is supplied with high frequency power (for example, a frequency of 800 kHz) from a substrate bias power source 119 and is subjected to surface treatment (for example, etching).
[0045]
By applying a high frequency voltage to the antenna electrode 103 by the antenna bias power source 114, when a desired material is used for the antenna electrode, the material and radicals in the plasma react to control the composition of the generated plasma. For example, in the case of oxide film etching, by using Si as the material of the antenna electrode 103, the etching characteristics of the oxide film, particularly SiO 2 It becomes possible to reduce the amount of F radicals in the plasma that affect the / SiN selection ratio and the like.
[0046]
In the apparatus of this configuration, plasma is mainly generated by the high frequency power supply 111 of 450 MHz, the plasma composition or the plasma distribution is controlled by the antenna bias power supply 114, and the incident energy of ions in the plasma to the material 116 is controlled by the substrate bias power supply 119. Is controlling. Such an apparatus has an advantage that plasma generation (ion amount) and plasma composition (radical concentration ratio) can be controlled independently.
[0047]
In general, in plasma, a potential distribution is formed in a material to be processed due to in-plane nonuniformity in plasma characteristics, and charging damage may occur. When the voltage between gate oxides of a semiconductor element having a film thickness of 4.5 nm is applied with a voltage of about 5 V or more, the gate oxide film deteriorates. The voltage needs to be 5V or less.
[0048]
FIG. 2 shows the relationship between the phase of the high frequency voltage applied to the substrate electrode 115 and the antenna electrode 103 and the voltage generated between the gate oxide films. The vertical axis in FIG. 2 indicates the voltage between the gate oxide films, and the horizontal axis indicates the phase of the high frequency voltage. According to FIG. 2, when the phase is around 0 °, the voltage between the gate oxide films is about 6V. However, the gate oxidation is achieved by setting the phase around 180 °, that is, within the range of 180 ° ± 45 °. It can be seen that the transmembrane voltage can be suppressed to a small value below the allowable value. Preferably, if it is within the range of 180 ° ± 30 °, the voltage between the gate oxide films can be reduced to about 2 V or less, which is more effective.
[0049]
FIG. 3A shows the relationship between the substrate voltage waveform 301, the antenna voltage waveform 302, and the plasma potential waveform 303 when the phase of the high-frequency voltage applied to the substrate electrode 115 and the antenna electrode 103 is opposite to that of the same phase. , (B). As shown in FIG. 3A, when high frequency power is applied in the same phase, both the substrate electrode waveform 301 and the antenna voltage waveform 302 are sinusoidal. The plasma potential waveform 303 oscillates with a large amplitude on the positive potential side. On the other hand, when the high frequency power is applied in the opposite phase as shown in FIG. 3B, the voltage waveforms of both voltage waveforms 301 and 302 are shifted to the negative voltage side and the waveforms are increased on the positive voltage side. The distortion is flattened. Thereby, the plasma potential waveform 303 is also flattened with a small potential. From this, it can be seen that in the case of the reverse phase, the self-bias potential is large, that is, the self-bias potential is increased as compared with the case of the same phase.
[0050]
This is considered to be due to the fact that the functions of the opposing electrodes as the ground are improved and a sufficient current is supplied between the opposing electrodes. That is, as shown in FIG. 4A, the antenna voltage waveform 302 of the antenna electrode 103 at time t1 is a positive potential and is a time zone in which electrons in the plasma are drawn, and at time t2, the antenna voltage waveform is a negative potential. In this time period, ions in the plasma are attracted. On the other hand, the substrate voltage waveform 301 of the substrate electrode 115 at time t1 is a negative potential and is a time zone for drawing ions in the plasma, and at time t2, the substrate voltage waveform 301 is positive potential and the electrons in the plasma It will be a time to pull in. As a result, in the plasma space on both electrode sides, current (i1, i2) flows toward the substrate electrode side at time t1, and current (i3, i4) flows toward the antenna electrode side at time t2. Sufficient electrons are supplied to both electrodes of the antenna when the phase is on the positive voltage side, and shifts to the negative voltage side. Also, since the current direction is the same direction, in either of the opposing electrodes, one of the electrodes always functions efficiently as a ground, acts to lower the plasma potential, and is flattened with a small plasma potential. .
[0051]
On the other hand, when the antenna voltage waveform 302 and the substrate voltage waveform 301 have the same phase as shown in FIG. 4B, the directions of the currents (i1, i2, i3, i4) in the plasma space on both electrode sides. , And the electric circuit is formed with the processing vessel 104 grounded to the ground, and the current (i5, i6) flows to the processing vessel side, that is, the wall side. Further, as shown in FIG. 4C, the substrate voltage waveform 301 to the substrate electrode 115 is the same as that in FIG. 4A. For example, when the antenna voltage waveform 302 having a frequency of 13.56 MHz is applied to the antenna electrode 103. In this case, a self-bias voltage Vdc is generated on the antenna electrode 103 side, and ions in the plasma are always drawn, and at time t1, currents (i1, i2) flow toward the two electrode sides in the reverse direction. For this reason, an electrical circuit is formed between the both electrodes and the processing container 102, and a current (i5) flows from the processing container side toward the both electrode sides. At time t2, the direction of the current is the same direction toward the antenna electrode 103, but the difference (i6) between the current value on the antenna electrode side and the current value on the substrate electrode 115 side flows to the processing container 102 side. Become.
[0052]
In the apparatus configured as in the present embodiment, more high-frequency current flows between the electrodes facing each other than the side walls, so that the current in the direction crossing the magnetic field is reduced and the occurrence of charging damage is suppressed. Therefore, as shown in FIG. 2, by making the phase of the high frequency applied to both electrodes near 180 °, the occurrence of charging damage can be suppressed, and processing with good yield can be performed.
[0053]
FIG. 5 shows the distribution of ion energy incident on both electrodes when the phase of the high frequency applied to both electrodes is the same phase (0 °) (dashed line 501) and the opposite phase (180 °) (solid line 502). Indicates. According to this, it can be seen that the amount of low ion energy is smaller in the case of reverse phase than in the case of the same phase, and the value of ion energy is shifted to a higher direction and the amount of high ion energy is increased. The ion energy incident on the workpiece 116 is determined by the self-bias potential generated in the substrate electrode 115. In this embodiment, the phase of the high-frequency power applied to the antenna electrode 103 and the substrate electrode 115 is changed as shown in FIG. By making the phase reverse, as shown in FIG. 5, the amount of high ion energy can be increased. In other words, the self-bias potential can be further increased, so that a hole with a high aspect ratio can be formed with a higher aspect ratio. It can be processed and highly accurate etching can be performed. Moreover, the process which obtains an optimal etching shape can be performed by efficient input of electric power.
[0054]
Furthermore, by controlling the phase of the high-frequency power applied to the antenna electrode 103 and the substrate electrode 115, the self-bias potential can be freely controlled and the range of processing conditions can be expanded.
[0055]
FIG. 6 shows the relationship between the ion saturation current density 601 measured outside the substrate electrode 115 and the phase of the high-frequency voltage. According to FIG. 6, it can be seen that outside the substrate electrode 115, the plasma density is high when the phase of the applied high-frequency voltage is in-phase, and the plasma density is low when the phase is opposite. That is, by setting the phase of the high-frequency voltage applied to both electrodes to around 180 °, one of the two electrodes is always an efficient ground electrode, so that the rise in plasma potential is suppressed, and the processing vessel 102 grounded to the plasma and The potential difference with the inner wall of the vacuum vessel 101 is reduced, indicating that the plasma generated in the processing vessel 102 does not spread to the inner wall side of the processing vessel 102 and the vacuum vessel 101. In other words, the plasma can be efficiently confined in the processing container 102.
[0056]
Generally, the vacuum vessel 101 and the processing vessel 102 which are grounded are sputtered by plasma and become a source of foreign matter due to adhesion / desorption of reaction products, which causes a reduction in throughput. However, in this embodiment, as shown in FIG. 6, by setting the phase of the high frequency voltage to around 180 °, the plasma is efficiently confined in the processing vessel, so that reaction products adhering to the vacuum vessel 101 are suppressed. Further, as shown in FIG. 3B, the fluctuation of the plasma potential 303 can be suppressed low, so that sputtering due to ion bombardment to the vacuum vessel 101 and the processing vessel 102 can be reduced. As a result, the generation of foreign matter from the vacuum vessel 101 and the processing vessel 102 is reduced, the maintenance cycle of the apparatus can be lengthened, and the throughput can be improved.
[0057]
In this embodiment, a divergent magnetic field is formed from the antenna electrode 103 toward the substrate electrode 115 in the processing chamber by the magnetic field generating coil 105. As a result, electrons in the plasma move while being constrained by the magnetic field, so that the radio frequency (RF) current flowing out from one electrode flows more efficiently toward the opposite electrode rather than toward the processing chamber side wall. . Therefore, the self-bias voltage difference (δVdc) generated in the substrate electrode plane related to charging damage can be reduced. FIG. 7 shows the phase difference of the bias voltage when the magnetic field intensity by the magnetic field generating coil 105 is changed, and the difference between the self-bias voltages generated at the center portion and the outer periphery of the substrate electrode (δVdc = center Vdc−outer periphery Vdc). The relationship is shown. According to FIG. 7, the coil current that can make the self-bias voltage difference (δVdc) zero (zero) by increasing the current value supplied to the magnetic field generating coil, that is, by increasing the vertical component. It can be seen that there is a value and a bias voltage phase difference. Therefore, the magnetic field formed in the processing chamber by the magnetic field generating coil 105 has a larger component in the direction perpendicular to the material to be processed 116, so that even when the distance between the counter electrodes is large (for example, 30 mm or more), the effect is further improved. In particular, plasma diffusion can be suppressed.
[0058]
Further, even when a magnetic field shape in which the magnetic field strength increases from the central portion of the processing chamber toward the outer peripheral portion is used as the magnetic field shape in the processing chamber, electrons in the plasma hardly move toward the outer periphery of the processing chamber. For this reason, the radio frequency (RF) current flowing out from one electrode flows toward the opposite electrode rather than flowing toward the side wall of the processing chamber, and the same effect can be obtained. Such a magnetic field can also be realized by a cusp magnetic field using an electromagnetic coil or a cusp magnetic field using a permanent magnet.
[0059]
In the above-described embodiment, the plasma treatment of the material to be treated has been described. However, when cleaning the inner wall surface of the apparatus using plasma, the phase of the high frequency applied to both electrodes is set to around 0 ° (in-phase). By doing so, plasma is diffused in a wide range and ion bombardment can be efficiently applied to the wall, so that the cleaning effect is improved.
[0060]
Further, in the high-frequency voltage of the reverse phase or the same phase applied to the antenna electrode 103 and the substrate electrode 115, in the case of the reverse phase, about 180 ° ± 45 °, preferably 180 ° ± 30 °, and in the case of the same phase, the high-frequency voltage The same effect can be expected if the phase difference of the above is within the range of 0 ° ± 45 °, preferably 0 ° ± 30 °.
[0061]
In the above-described embodiments, an etching apparatus using a magnetic field has been described as an example. However, an etching apparatus that does not have a magnetic field, an ashing apparatus other than an etching apparatus, a plasma CVD apparatus, or other devices that supply high-frequency power to a substrate electrode. The present invention can also be applied to a plasma processing apparatus.
[0062]
In the above-described embodiment, the frequency of the high-frequency voltage applied to the antenna electrode 103 and the substrate electrode 115 is described as an example of 800 kHz. However, the frequency is not limited to this, and the frequency at which the sheath becomes resistive, An effect can be obtained by using a power supply having a frequency of 5 MHz or less.
[0063]
In the above-described embodiment, a voltage signal is taken between the filters 112 and 227 and the matching units 113 and 118 in order to control the phase of the high-frequency voltage applied to both electrodes. , 118 may take a voltage signal from an output section inside. The voltage signal for phase control is best detected at the electrode section, but it is desirable to detect it through at least a filter in order to remove other high-frequency voltage noise. In addition, since the phase of the high frequency voltage at the output part of the antenna bias power supply 114 and the substrate bias power supply 119 and the high frequency voltage at the electrode 103 and 115 parts do not coincide with each other, it is desirable to detect as close to the electrode as possible.
[0064]
【The invention's effect】
As described above, according to the present invention, by controlling the phase of the high frequency bias applied to the substrate electrode and the electrode facing the electrode, the current flowing between the inner wall of the container can be reduced, and the in-plane distribution of the plasma characteristics can be achieved. The potential difference of the potential distribution in the surface of the to-be-processed material resulting from it can be made small, and generation | occurrence | production of charging damage can be suppressed. Thereby, there is an effect that the yield of the sample can be improved.
[0065]
In addition, by controlling the phase of the high frequency bias, the ion energy incident on the material to be processed can be freely controlled, so that there is an effect that a highly accurate etching process can be performed.
[0066]
Furthermore, by controlling the phase of the high-frequency bias, the plasma density of the inner wall of the container and the ion bombardment on the wall can be freely controlled by the phase of the high-frequency voltage. Since the length can be increased, the throughput can be improved.
[0067]
In addition, by controlling the phase of the high frequency bias, there is an effect that the inside of the container can be efficiently cleaned.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an etching apparatus according to a first embodiment using the present invention.
FIG. 2 is a characteristic diagram showing a relationship between a phase difference between a gate oxide film voltage and a high-frequency voltage.
FIG. 3 is a voltage waveform diagram of a substrate electrode / antenna electrode when a bias having the same frequency is applied to the substrate electrode and the antenna electrode.
FIG. 4 is a diagram showing a relationship between a high-frequency voltage applied to a substrate electrode and an antenna electrode and movements of ions and electrons in plasma.
FIG. 5 is a diagram showing an ion energy distribution incident on an electrode in the same phase and opposite phase.
FIG. 6 is a characteristic diagram showing the relationship between the outer peripheral ion saturation current density and the phase.
FIG. 7 is a diagram showing the relationship between the phase of the bias voltage and the self-bias voltage difference in the substrate surface when the magnetic field intensity is changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Vacuum container, 102 ... Processing container, 103 ... Antenna electrode, 104 ... Dielectric window, 105 ... Coil for magnetic field generation, 106 ... Vacuum exhaust port, 107 ... Gas supply device, 108 ... Coaxial line, 109, 112, 117 , 120 ... Filter, 110, 113, 118 ... Matching unit, 111 ... High frequency power supply, 114 ... Antenna bias power supply, 115 ... Substrate electrode, 116 ... Material to be processed, 119 ... Substrate bias power supply, 121 ... Electrostatic chuck power supply, 122 ... phase controller.

Claims (9)

試料を配置する基板電極に対して、対向する電極を設け、さらに磁場発生手段を有し、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く180°±45°の範囲内で逆位相となる5MHz以下の同一周波数の他の高周波電力を印加し、高周波電力と磁場を用いてプラズマを生成することを特徴とするプラズマ処理方法。The substrate electrode on which the sample is arranged is provided with an opposing electrode, further has a magnetic field generating means, applies high-frequency power for plasma generation to the opposing electrode, and each of the electrodes generates the plasma. It is characterized in that plasma is generated using high frequency power and a magnetic field by applying another high frequency power having a frequency lower than that of the high frequency power and having an opposite phase within a range of 180 ° ± 45 ° and having an opposite phase of 5 MHz or less. Plasma processing method. 試料を配置する基板電極に対して、対向する電極を設け、さらに磁場発生手段を有し、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低い5MHz以下の同一周波数の180°±45°の範囲内で逆位相となる他の高周波電力を印加し、高周波電力と磁場を用いてプラズマを生成させ、両電極側およびプラズマ中を流れる電流の方向を同じにし、その電流の向きを交互に変化させることを特徴とするプラズマ処理方法。The substrate electrode on which the sample is arranged is provided with an opposing electrode, further has a magnetic field generating means, applies high-frequency power for plasma generation to the opposing electrode, and each of the electrodes generates the plasma. applying another high-frequency power opposite phases within a range of 180 ° ± 45 ° of the RF power same frequency frequency following lower 5MHz than, plasma is generated using a high frequency power and the magnetic field, the electrodes side and A plasma processing method characterized in that the directions of currents flowing in plasma are the same , and the directions of the currents are alternately changed. 試料を配置する基板電極に対して、対向する電極を設け、さらに磁場発生手段を有し、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる5MHz以下の同一周波数の他の高周波電力を印加し、高周波電力と磁場を用いてプラズマを生成させ、両電極のいずれか一方の電極を常にアース電極として機能させ、プラズマから見て真空容器がアースとなるのを抑制することを特徴とするプラズマ処理方法。The substrate electrode on which the sample is arranged is provided with an opposing electrode, further has a magnetic field generating means, applies high-frequency power for plasma generation to the opposing electrode, and each of the electrodes generates the plasma. Apply other high-frequency power of the same frequency of 5 MHz or less, which has a lower frequency and opposite phase than the high-frequency power, generates plasma using the high-frequency power and the magnetic field, and one of the two electrodes is always the ground electrode A plasma processing method characterized in that the plasma processing method is characterized in that the vacuum vessel is prevented from being grounded when viewed from the plasma. 試料を配置する基板電極に対して、対向する電極を設け、さらに磁場発生手段を有し、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低い5MHz以下の同一周波数の逆位相となる他の高周波電力を印加し、高周波電力と磁場を用いてプラズマを生成させ、前記両電極に印加される電圧波形の正側の電圧値を下げ、プラズマポテンシャルを低くしてアースに接地された真空容器内壁との電位差を小さく、プラズマ中のイオンによる前記真空容器内壁面の衝撃を抑制することを特徴とするプラズマ処理方法。The substrate electrode on which the sample is arranged is provided with an opposing electrode, further has a magnetic field generating means, applies high-frequency power for plasma generation to the opposing electrode, and each of the electrodes generates the plasma. Apply other high-frequency power that is opposite in phase to the same frequency of 5 MHz or less, which is lower than the high-frequency power, generate plasma using the high-frequency power and the magnetic field, and the positive side of the voltage waveform applied to both electrodes A plasma processing method characterized by lowering a voltage value, lowering a plasma potential, reducing a potential difference with an inner wall of a vacuum vessel grounded to earth, and suppressing impact of the inner surface of the vacuum vessel due to ions in the plasma. 試料を配置する基板電極に対して、対向する電極を設け、さらに磁場発生手段を有し、前記対向する電極にプラズマ生成用の高周波電力を印加するとともに、前記試料の処理中は前記両電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる5MHz以下の同一周波数の他の高周波電力を印加し、高周波電力と磁場を用いてプラズマを生成させ、処理室内のクリーニング時には前記両電極にそれぞれ同位相となる他の高周波電力を印加することを特徴とするプラズマ処理方法。The substrate electrode on which the sample is arranged is provided with opposing electrodes, further has a magnetic field generating means, applies high-frequency power for plasma generation to the opposing electrodes, and applies both of the electrodes during processing of the sample. Each other high frequency power of the same frequency of 5 MHz or less, which is lower in frequency and opposite in phase to the high frequency power for plasma generation, is applied to generate plasma using the high frequency power and the magnetic field. A plasma processing method, wherein another high-frequency power having the same phase is applied to each electrode. 内部を所定の減圧雰囲気に制御される容器と、前記容器内に設けられ試料を配置可能な基板電極と、前記基板電極に対向する対向電極と、前記対向電極に接続され前記容器内にプラズマを生成するための高周波電力を印加するプラズマ生成電源と、前記基板電極および対向電極にそれぞれ接続され前記プラズマ生成用の高周波電力よりも周波数の低い5MHz以下の同一周波数の高周波電力を印加する複数のバイアス電源と、磁場を形成するための磁場発生手段と、前記複数のバイアス電源の高周波電圧の位相を0°±45°あるいは180°±45°の範囲で制御する位相制御器とを具備することを特徴とするプラズマ処理装置。A container whose inside is controlled to a predetermined reduced-pressure atmosphere, a substrate electrode provided in the container on which a sample can be placed, a counter electrode facing the substrate electrode, and plasma connected to the counter electrode in the container A plasma generation power source for applying high-frequency power for generation, and a plurality of biases connected to the substrate electrode and the counter electrode, respectively, for applying high-frequency power of the same frequency of 5 MHz or less, which is lower in frequency than the high-frequency power for plasma generation A power source, magnetic field generating means for forming a magnetic field, and a phase controller for controlling the phase of the high-frequency voltage of the plurality of bias power sources in a range of 0 ° ± 45 ° or 180 ° ± 45 °. A plasma processing apparatus. 真空排気装置が接続され内部を減圧可能な処理室と、前記処理室内へガスを供給するガス供給装置と、前記処理室内に設けられ被処理材を載置可能な基板電極と、前記処理室内で前記基板電極に対向して設けられプラズマを発生するための電磁波を放射するアンテナ電極と、磁場を発生するための磁場発生手段と、前記アンテナ電極に接続されたプラズマ生成用の第1の高周波電源と、前記基板電極へ接続された第2の高周波電源と、前記アンテナ電極へ接続された第3の高周波電源と、前記第2の高周波電源および前記第3の高周波電源によって印加する高周波電圧の位相を逆位相に制御する位相制御器を有することを特徴とするプラズマ処理装置。A processing chamber to which an evacuation apparatus is connected and whose inside can be decompressed; a gas supply device that supplies gas into the processing chamber; a substrate electrode that is provided in the processing chamber and on which a material to be processed can be placed; An antenna electrode that is provided facing the substrate electrode and emits an electromagnetic wave for generating plasma, a magnetic field generating means for generating a magnetic field, and a first high-frequency power source for plasma generation connected to the antenna electrode A phase of a high frequency voltage applied by the second high frequency power source connected to the substrate electrode, a third high frequency power source connected to the antenna electrode, and the second high frequency power source and the third high frequency power source. A plasma processing apparatus having a phase controller that controls the phase to be in reverse phase. 真空排気装置が接続され内部を減圧可能な処理室と、前記処理室内へガスを供給するガス供給装置と、前記処理室内に設けられ被処理材を載置可能な基板電極と、前記処理室内で前記基板電極に対向して設けられプラズマを発生するための電磁波を放射するアンテナ電極と、磁場を発生するための磁場発生手段と、前記アンテナ電極に接続されたプラズマ生成用の第1の高周波電源と、前記基板電極へ接続された第2の高周波電源と、前記アンテナ電極へ接続された第3の高周波電源と、前記第2の高周波電源および前記第3の高周波電源によって印加する高周波電圧の位相を逆位相に制御する位相制御器を有することを特徴とするプラズマ処理装置のプラズマ処理方法において、
前記基板電極と前記アンテナ電極にそれぞれ前記プラズマ生成用の高周波電力よりも周波数が低く逆位相となる他の高周波電力を印加し、前記両電極を通過する磁場を形成することを特徴とするプラズマ処理方法。
A processing chamber to which an evacuation apparatus is connected and whose inside can be decompressed; a gas supply device that supplies gas into the processing chamber; a substrate electrode that is provided in the processing chamber and on which a material to be processed can be placed; An antenna electrode that is provided facing the substrate electrode and emits an electromagnetic wave for generating plasma, a magnetic field generating means for generating a magnetic field, and a first high-frequency power source for plasma generation connected to the antenna electrode A phase of a high frequency voltage applied by the second high frequency power source connected to the substrate electrode, a third high frequency power source connected to the antenna electrode, and the second high frequency power source and the third high frequency power source. In the plasma processing method of the plasma processing apparatus, comprising a phase controller that controls the phase to be in reverse phase,
Plasma and forming a magnetic field than said each substrate electrode and the antenna electrode high frequency power for the plasma generation is applied to the other high-frequency power to be opposite phase low frequency, passes in front Symbol both electrodes Processing method.
請求項8記載のプラズマ処理方法において、前記高周波電力の逆位相の値は、前記試料面内のセルフバイアス電圧差が5V以下となる位相に設定されることを特徴とするプラズマ処理方法。9. The plasma processing method according to claim 8, wherein the value of the antiphase of the high-frequency power is set to a phase at which a self-bias voltage difference in the sample surface is 5 V or less.
JP2001275893A 2000-09-12 2001-09-12 Plasma processing apparatus and method Expired - Fee Related JP3621900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275893A JP3621900B2 (en) 2000-09-12 2001-09-12 Plasma processing apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-276667 2000-09-12
JP2000276667 2000-09-12
JP2001275893A JP3621900B2 (en) 2000-09-12 2001-09-12 Plasma processing apparatus and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003346594A Division JP2004165644A (en) 2000-09-12 2003-10-06 Apparatus and method for plasma processing

Publications (2)

Publication Number Publication Date
JP2002184766A JP2002184766A (en) 2002-06-28
JP3621900B2 true JP3621900B2 (en) 2005-02-16

Family

ID=26599766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275893A Expired - Fee Related JP3621900B2 (en) 2000-09-12 2001-09-12 Plasma processing apparatus and method

Country Status (1)

Country Link
JP (1) JP3621900B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776856B2 (en) * 2002-09-13 2006-05-17 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP4584572B2 (en) 2003-12-22 2010-11-24 株式会社日立ハイテクノロジーズ Plasma processing apparatus and processing method
JP4523352B2 (en) 2004-07-20 2010-08-11 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP4773079B2 (en) 2004-11-26 2011-09-14 株式会社日立ハイテクノロジーズ Control method of plasma processing apparatus
JP2007115867A (en) * 2005-10-20 2007-05-10 Hitachi High-Technologies Corp Plasma processor and method for controlling the same
JP4928817B2 (en) * 2006-04-07 2012-05-09 株式会社日立ハイテクノロジーズ Plasma processing equipment
US8262847B2 (en) * 2006-12-29 2012-09-11 Lam Research Corporation Plasma-enhanced substrate processing method and apparatus
JP5063154B2 (en) * 2007-03-20 2012-10-31 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP5149610B2 (en) 2007-12-19 2013-02-20 株式会社日立ハイテクノロジーズ Plasma processing equipment
US8475673B2 (en) * 2009-04-24 2013-07-02 Lam Research Company Method and apparatus for high aspect ratio dielectric etch
JP5656458B2 (en) * 2010-06-02 2015-01-21 株式会社日立ハイテクノロジーズ Plasma processing equipment
TWI611454B (en) * 2011-09-26 2018-01-11 Tokyo Electron Ltd Plasma etching method
JP6544902B2 (en) * 2014-09-18 2019-07-17 東京エレクトロン株式会社 Plasma processing system

Also Published As

Publication number Publication date
JP2002184766A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
US6875366B2 (en) Plasma processing apparatus and method with controlled biasing functions
JP3776856B2 (en) Plasma processing apparatus and plasma processing method
JP5205378B2 (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
JP3691784B2 (en) Low frequency induction type high frequency plasma reactor
JP3912993B2 (en) Neutral particle beam processing equipment
US6806201B2 (en) Plasma processing apparatus and method using active matching
JP2019024090A (en) Particle generation suppressing device by DC bias modulation
JP3621900B2 (en) Plasma processing apparatus and method
JPH04287318A (en) Method of plasma treatment and device
JPH06283470A (en) Plasma processing device
JPH08255782A (en) Plasma surface treating apparatus
JP4653395B2 (en) Plasma processing equipment
JP3563054B2 (en) Plasma processing apparatus and method
JP4238050B2 (en) Plasma processing apparatus and processing method
JP3599670B2 (en) Plasma processing method and apparatus
JP2003077904A (en) Apparatus and method for plasma processing
JP2004165644A (en) Apparatus and method for plasma processing
JP3687474B2 (en) Plasma processing equipment
JP4527833B2 (en) Plasma processing apparatus and method
JPH1167725A (en) Plasma etching device
JP2005203444A (en) Plasma processing apparatus
JP2851765B2 (en) Plasma generation method and apparatus
JP3898612B2 (en) Plasma processing apparatus and processing method
KR20010081035A (en) Plasma etching apparatus
JP4105866B2 (en) Plasma processing apparatus and method for cleaning plasma processing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees