JP4096351B2 - Nitrogen-containing carbon material - Google Patents

Nitrogen-containing carbon material Download PDF

Info

Publication number
JP4096351B2
JP4096351B2 JP2001337417A JP2001337417A JP4096351B2 JP 4096351 B2 JP4096351 B2 JP 4096351B2 JP 2001337417 A JP2001337417 A JP 2001337417A JP 2001337417 A JP2001337417 A JP 2001337417A JP 4096351 B2 JP4096351 B2 JP 4096351B2
Authority
JP
Japan
Prior art keywords
nitrogen
carbon material
containing carbon
atom
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001337417A
Other languages
Japanese (ja)
Other versions
JP2003137524A (en
Inventor
雅之 川口
英明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2001337417A priority Critical patent/JP4096351B2/en
Publication of JP2003137524A publication Critical patent/JP2003137524A/en
Application granted granted Critical
Publication of JP4096351B2 publication Critical patent/JP4096351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、窒素を含有する炭素材料に関し、詳しくは、新規な構造を有し、原子モル比で窒素含有比率の高く、吸着材として好適に用いることが可能な窒素を含有する炭素材料に関する。
【0002】
【従来技術】
従来窒素含有する炭素材料としては、例えば、特開2000−1306号公報には、窒素含有硬化性樹脂を硬化、炭化させて得られることを特徴とする窒素含有炭素材が記載されており、窒素含有熱硬化樹脂としてメラミン樹脂、尿素樹脂、アニリン樹脂等が例示されており、これらの樹脂を熱硬化させた後、窒素ガス雰囲気下、1000℃付近で炭化させ、窒素含有量が2〜10重量%の炭素材が得られる。
【0003】
また、電気化学、54巻、1180頁(1996年)には、石英管を反応管に用いて、ピリジン、あるいは、ピリジンと塩素ガスを反応部に導入し、化学蒸着法により、800℃、8時間で反応中央部にフレーク、または、粉末として堆積させさらに、窒素フロー雰囲気で800℃、30分間加熱処理して炭素原子モル数(C)と窒素原子モル数(N)の比(C/N)が、7.3、11.7.12.5の窒素含有炭素材が得られることが記載されている。
【0004】
また、J. Am. Ceram. Soc., 74, 1686(1991)には、比較的窒素含有量の高い有機化合物を密閉系において、高温、高圧下で処理することにより、窒素原子の損失を抑えて窒素高含有炭素材が得られることが記載されている。上記処理に用いられる有機化合物として、メラミン、ジシアノジアミド、1,2,4−トリアゾール、ジアミノマレオニトリル、ポリマー化したシアン化水素、ジシアノイミダゾール、テトラシアノエチレン(TCE)、ヘキサアザトリフェニレンヘキサカルボニトリル(HAT)が例示されており、特に、水素原子を含まないTCE、HATを用い、高温高圧下処理した場合に、窒素含有率が36.1重量%、39.3重量%と窒素原子の損失の少なく高い含有率の炭素材料を製造することができる。
【0005】
【発明が解決しようとする課題】
しかし、ピリジン、アセトニトリル等の窒素含有量の少ない低分子有機化合物を化学蒸着法を用いて重合させる方法は、工業的に大量に製造するには不向きであり、高い窒素含有量の炭素材を製造するには限界があった。
【0006】
また、含窒素高分子を原料として炭化させる方法は、高分子自体の構造が3次元的架橋構造を有しているため、炭化処理においてもともとの原料由来の構造の影響を受けやすいという問題があった。
【0007】
また、TCEを用いた場合、比較的高い窒素含有率の炭素材料が得られるものの、炭素クラスター中における窒素原子の位置はランダムであり、窒素原子の位置を制御できないという問題があった。さらに、HATを用いた場合、高圧下で反応を行わなければならず、工業的に大量に製造するには問題があった。
また、いずれの炭素材料についても、吸着材の用途について記載はされていない。
本発明は、工業的にも大量に製造することが可能であり、窒素含有率の高い新規な構造を有する炭素材、及びそれを用いた新規な用途を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、シアノ基を有する窒素含有率の高い含窒素芳香族複素環、好ましくは縮合複素環を重合、炭化することで、元の骨格を維持した炭素クラスターを生成することを見出し本発明を完成するに至った。
【0009】
すなわち、本発明は、
(1)式(I)
【化3】

Figure 0004096351
(式中、X1〜X4は、それぞれ独立に、炭素原子、または窒素原子を表し、少なくとも1つは窒素原子を表す。)で表される繰り返し単位を含有することを特徴とする含窒素炭素材に関し、
(2)式(II)
【化4】
Figure 0004096351
(式中、X1〜X4は、それぞれ独立に、炭素原子、または窒素原子を表し、少なくとも1つは窒素原子を表す。)で表される化合物を重合、炭化して製造されたことを特徴とする含窒素炭素材に関する。
また、
(3)(1)または(2)に記載の含窒素炭素材を含有することを特徴とする吸着材に関し、
(4)炭素原子と窒素原子の組成比がCZZ-1(式中、Zは2以上の整数を表す。)であり繰り返し単位を有することを特徴とする含窒素炭素材を含有することを特徴とする吸着材に関する。
さらに、
(5)(1)または(2)に記載の含窒素炭素材を含有することを特徴とする導電性材料に関する。
【0010】
【発明の実施の形態】
本願発明における窒素含有炭素材料は、式(I)で表される繰り返し単位を含有することを特徴とする。窒素原子は少なくとも1個以上含まれていればよい。ここで、式(I)で表される繰り返し単位を含有するとは、炭素材料全体が、上記繰り返し単位からなる場合、及びその一部が上記繰り返し単位からなる場合の両方場合を含むものとする。
【0011】
式(I)で表される繰り返し単位中、窒素原子含有率を向上させるためには、X1〜X4すべてが窒素原子の場合が好ましい。
また、より大きな空隙を炭素クラスター内に生成させるためには、少なくとも空隙周りを構成する炭素原子が、sp2混成軌道の炭素であるのが好ましい。このような炭素で構成させることにより、炭素材料全体またはその一部が、平面的広がり有する含窒素炭素クラスターが層状に積層した構造を有することとなり、空隙のみならずそれぞれの層間にも分子を効率よく捕捉することが可能となる。
【0012】
また、本発明の窒素高含有炭素材料は、炭素原子と窒素原子の組成比がCzz-1(式中、Zは2以上の整数を表す。)である繰り返し単位を有することを特徴とする含窒素炭素材として捕らえることもできる。
【0013】
本発明の窒素含有炭素材は、式(II)で表されるシアノ体を重合、炭化して得られることを特徴とする。条件を設定することにより、式(I)で表される繰り返し単位を含有する含窒素炭素材を、同様の方法で製造することができる。式(II)において、シアノ基は、主に脱離基となるため、重合、炭化条件下脱離する置換基であれば、特に制限されることなくシアノ基の代わりに用いることが可能であるが、炭素材料の原子組成として、炭素原子、窒素原子以外の原子を混入させたくない場合には、シアノ基を用いるのが好ましい。
【0014】
重合、炭化時の雰囲気は、窒素、ヘリウム、アルゴン等の不活性雰囲気下が好ましく、これら不活性ガス気流下、または不活性ガス雰囲気下密閉状態もしくは減圧下いずれでも行うことができる。
加熱する手段としては、電気、マイクロ波、プラズマ等の通常の加熱手段を用いることができる。原料の構造変化の判断としては、例えば、一部サンプリングした試料の粉末X線を測定することにより判断することができる。
【0015】
本発明は、前記した窒素含有炭素材が1000℃以下の低温で、しかも特別の賦活処理を行うことなく、およそ1000m2/g前後の広い表面積を有することから、吸着材の有効成分の一つとして用いることができることを特徴とする。また、通常の活性炭と比較して低圧においても優れた吸着能を有するものである。吸着材として、前記した窒素含有炭素材を単独で用いることもできるが、他の成分、例えば、活性炭等の他の吸着材と混合して用いることもできる。
【0016】
本発明はさらに、前記した窒素含有炭素材が高比表面積であることを利用した導電性材料を構成することができる。
具体的には、リチウムイオン二次電池の負極や電気二重層キャパシタの電極とすることができる。このような、電極の製造方法として、具体的には上記の含窒素炭素材を適当なバインダーと混合し、さらに必要に応じて他の導電性材料、強度を付加するための添加剤を加えて、集電体上に塗布、乾燥させて薄膜を形成させる方法、プレスして固形化させる方法等を例示することができる。
【0017】
以下実施例を用いて本発明を詳細に説明するが、本発明の範囲は実施例に限定されるものではない。
【0018】
【実施例】
実施例1
2,3,6,7−テトラシアノ−1,4,5,8−テトラアザナフタレン(以下TCNAと略す)を図1に示す装置を用いて窒素気流下、室温から徐々に昇温(昇温速度20℃/分)したところ、370℃付近で重合が起こり、さらに表1に示す温度まで昇温させて1時間加熱して炭化させた。得られた各試料の原子組成比を第1表にまとめて示す。
【0019】
【表1】
Figure 0004096351
【0020】
表1に示す、水素原子、酸素原子は、測定の際に吸着した水に由来するものと考えられる。
また、サンプル1−1につき、13CNMR、及び粉末X線回折を測定した。それぞれのチャートを図2、図3に示す。
また、粉末X線回折のパターンは、25°付近に黒鉛の(002)面に対応するブロードな回折ピークが認められ、構造は結晶性の低い、乱層構造の炭素であることがわかった。
【0021】
実施例2
実施例1で作成したサンプル1−1の表面積を下記の方法測定した。
サンプルを2時間、110℃、6.7×10-2Paで減圧乾燥した後定容型ガス吸着装置(日本ベル株式会社製BELSORP28)を用い、ガス吸着法により測定した、吸着ガスに窒素ガスを用い、77Kで測定を行った。表面積の解析にはBET式で行い、細孔径分布の解析にはt−プロットを用いたMP法で行った。その結果、比表面積はサンプル1−1で990m2/gであった。また、図4にその細孔径分布を示す。0.8nmにシャープなピークがあり、これにより平均細孔粒径は約0.8nmであった。
以上のことから、熱処理された上記サンプルは、マイクロ孔が多量に存在することが確認できた。
【0022】
実施例3
実施例1で調整したサンプルを45μm以下に粉砕し、150℃で1時間減圧乾燥した試料を用いて、水の吸着測定を行った。水の吸着測定はデシケータに前記試料を入れ、さらにデシケータに硫酸水溶液を入れ、それぞれの相対圧に対応する蒸気圧になるように硫酸の濃度を変えて測定した。その結果を図5に表す。吸着等温線の形は、IV型を示し、メソ孔、マクロ孔をもつことを表しており、活性炭などにみられる水の吸着等温線と同型となった。
【0023】
実施例4
実施例1で調製したサンプルを、ポリビニリデンフルオリドのN−メチルピロリドン溶液をバインダーにして銅箔に塗布し、乾燥させて電極を作製した。この電極を作用極として、また金属リチウムを対極と参照電極にしてLiClO41モル含有のエチレンカーボネート:ジエチレンカーボネート (容積比、1:1)電解液中で、サイクリックボルタンメトリーを行った。そのチャートを図6に示す。
【0024】
【発明の効果】
以上述べたように、本発明の炭素材料は、窒素原子含有率が高く、窒素原子の位置を制御した新規な構造を有するものであり、1000℃以下の低温で、賦活処理等行わなくても1000m2/g前後の高い表面積を有する材料であり、この性質を利用することにより、吸着材として利用することが可能である。また、導電性を有することから、上記の性質を相俟ってキャパシタ等の電極として用いることもでき、産業上の利用可能性は高いといえる。
【図面の簡単な説明】
【図1】は、実施例1で用いた合成装置を表す。
【図2】は、実施例1で調整したサンプル1−1の13CNMRを示す。
【図3】は、実施例1で調整したサンプル1−1の粉末X線回折のチャートを示す。
【図4】は、実施例1で調整したサンプル1−1の細孔分布図を表す。
【図5】は、実施例1で調整したサンプル1−1の水の吸着等温線を示す。
【図6】は、実施例1で調整したサンプル1−1のサイクリックボルタンメトリーのチャート図を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon material containing nitrogen, and more particularly to a carbon material containing nitrogen that has a novel structure, has a high nitrogen content ratio in terms of an atomic molar ratio, and can be suitably used as an adsorbent.
[0002]
[Prior art]
As a conventional nitrogen-containing carbon material, for example, JP-A 2000-1306 describes a nitrogen-containing carbon material obtained by curing and carbonizing a nitrogen-containing curable resin. Examples of the thermosetting resin include melamine resin, urea resin, aniline resin, and the like. After these resins are thermoset, they are carbonized near 1000 ° C. in a nitrogen gas atmosphere, and the nitrogen content is 2 to 10 weights. % Carbon material is obtained.
[0003]
In Electrochemistry, Vol. 54, 1180 (1996), a quartz tube is used as a reaction tube, pyridine or pyridine and chlorine gas are introduced into the reaction part, and a chemical vapor deposition method is used. It is deposited as flakes or powder in the center of the reaction over time, and further subjected to heat treatment at 800 ° C. for 30 minutes in a nitrogen flow atmosphere, and the ratio of carbon atom moles (C) to moles of nitrogen atoms (N) However, it is described that a nitrogen-containing carbon material of 7.3 and 11.7.12.5 can be obtained.
[0004]
In J. Am. Ceram. Soc., 74, 1686 (1991), organic compounds with a relatively high nitrogen content are treated in a closed system under high temperature and pressure to reduce the loss of nitrogen atoms. It is described that a high nitrogen content carbon material can be obtained. As organic compounds used in the above treatment, melamine, dicyanodiamide, 1,2,4-triazole, diaminomaleonitrile, polymerized hydrogen cyanide, dicyanoimidazole, tetracyanoethylene (TCE), hexaazatriphenylenehexacarbonitrile (HAT) In particular, when TCE and HAT containing no hydrogen atom are used and treated at high temperature and high pressure, the nitrogen content is 36.1% by weight and 39.3% by weight, and the loss of nitrogen atoms is small and high. A carbon material having a content rate can be produced.
[0005]
[Problems to be solved by the invention]
However, the method of polymerizing low molecular organic compounds with low nitrogen content such as pyridine and acetonitrile using chemical vapor deposition is not suitable for industrial production in large quantities, and produces carbon materials with high nitrogen content. There was a limit to it.
[0006]
In addition, the method of carbonizing a nitrogen-containing polymer as a raw material has a problem in that the structure of the polymer itself has a three-dimensional cross-linked structure, and thus the carbonization treatment is easily influenced by the structure derived from the original raw material. It was.
[0007]
Further, when TCE is used, a carbon material having a relatively high nitrogen content can be obtained, but there is a problem that the position of the nitrogen atom in the carbon cluster is random and the position of the nitrogen atom cannot be controlled. Furthermore, when HAT is used, the reaction must be performed under high pressure, which is problematic for industrial production in large quantities.
In addition, any carbon material is not described about the use of the adsorbent.
An object of the present invention is to provide a carbon material having a novel structure having a high nitrogen content and a novel application using the same, which can be produced in large quantities industrially.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have polymerized and carbonized a nitrogen-containing aromatic heterocycle having a cyano group and a high nitrogen content, preferably a condensed heterocycle, so that the original skeleton is obtained. The inventors have found that a maintained carbon cluster is generated, and have completed the present invention.
[0009]
That is, the present invention
(1) Formula (I)
[Chemical 3]
Figure 0004096351
(Wherein, X 1 to X 4 each independently represents a carbon atom or a nitrogen atom, and at least one represents a nitrogen atom). Regarding carbon materials,
(2) Formula (II)
[Formula 4]
Figure 0004096351
(Wherein, X 1 to X 4 each independently represents a carbon atom or a nitrogen atom, and at least one represents a nitrogen atom). It relates to a characteristic nitrogen-containing carbon material.
Also,
(3) Regarding the adsorbent characterized by containing the nitrogen-containing carbon material according to (1) or (2),
(4) The composition ratio of carbon atom and nitrogen atom is C Z N Z-1 (wherein Z represents an integer of 2 or more) and contains a nitrogen-containing carbon material characterized by having a repeating unit. It is related with the adsorbent characterized by this.
further,
(5) A conductive material containing the nitrogen-containing carbon material according to (1) or (2).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The nitrogen-containing carbon material in the present invention contains a repeating unit represented by the formula (I). It is sufficient that at least one nitrogen atom is contained. Here, containing the repeating unit represented by formula (I) includes both the case where the entire carbon material is composed of the above repeating unit and the case where a part thereof is composed of the above repeating unit.
[0011]
In order to improve the nitrogen atom content in the repeating unit represented by the formula (I), it is preferable that all of X 1 to X 4 are nitrogen atoms.
In order to generate larger voids in the carbon cluster, it is preferable that at least the carbon atoms constituting the voids are sp 2 hybrid orbital carbon. By comprising such carbon, the entire carbon material or a part of it has a structure in which nitrogen-containing carbon clusters having a planar extension are laminated in layers, and molecules are efficiently used not only in the voids but also in each layer. It is possible to capture well.
[0012]
The high nitrogen content carbon material of the present invention has a repeating unit having a composition ratio of carbon atoms to nitrogen atoms of C z N z-1 (wherein Z represents an integer of 2 or more). It can also be captured as a nitrogen-containing carbon material.
[0013]
The nitrogen-containing carbon material of the present invention is obtained by polymerizing and carbonizing a cyano compound represented by the formula (II). By setting the conditions, the nitrogen-containing carbon material containing the repeating unit represented by the formula (I) can be produced by the same method. In the formula (II), the cyano group mainly serves as a leaving group, so that it can be used in place of the cyano group without particular limitation as long as it is a substituent that is eliminated under polymerization and carbonization conditions. However, when it is not desired to mix atoms other than carbon atoms and nitrogen atoms as the atomic composition of the carbon material, it is preferable to use a cyano group.
[0014]
The atmosphere at the time of polymerization and carbonization is preferably an inert atmosphere such as nitrogen, helium, or argon, and can be carried out either in an inert gas stream or in an airtight state or under reduced pressure.
As a heating means, a normal heating means such as electricity, microwave, plasma or the like can be used. For example, the structural change of the raw material can be determined by measuring powder X-rays of a partially sampled sample.
[0015]
The present invention is one of the active ingredients of the adsorbent because the above-mentioned nitrogen-containing carbon material has a large surface area of about 1000 m 2 / g at a low temperature of 1000 ° C. or less and without performing a special activation treatment. It can be used as: In addition, it has excellent adsorption ability even at a low pressure as compared with ordinary activated carbon. As the adsorbent, the above-described nitrogen-containing carbon material can be used alone, but it can also be used by mixing with other adsorbents such as activated carbon.
[0016]
The present invention can further constitute a conductive material utilizing the above-described nitrogen-containing carbon material having a high specific surface area.
Specifically, it can be used as a negative electrode of a lithium ion secondary battery or an electrode of an electric double layer capacitor. As a method for producing such an electrode, specifically, the above nitrogen-containing carbon material is mixed with an appropriate binder, and other conductive materials and additives for adding strength are added as necessary. Examples thereof include a method of forming a thin film by applying and drying on a current collector, a method of solidifying by pressing, and the like.
[0017]
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the scope of the present invention is not limited to an Example.
[0018]
【Example】
Example 1
1,3,6,7-tetracyano-1,4,5,8-tetraazanaphthalene (hereinafter abbreviated as TCNA) is gradually heated from room temperature in a nitrogen stream using the apparatus shown in FIG. 20 ° C./min), polymerization occurred at around 370 ° C., and the temperature was further raised to the temperature shown in Table 1 and heated for 1 hour for carbonization. The atomic composition ratios of the obtained samples are summarized in Table 1.
[0019]
[Table 1]
Figure 0004096351
[0020]
The hydrogen atoms and oxygen atoms shown in Table 1 are considered to be derived from the water adsorbed during the measurement.
Further, 13 CNMR and powder X-ray diffraction were measured for sample 1-1. The respective charts are shown in FIGS.
Further, in the powder X-ray diffraction pattern, a broad diffraction peak corresponding to the (002) plane of graphite was observed at around 25 °, and it was found that the structure was carbon of a turbulent structure with low crystallinity.
[0021]
Example 2
The surface area of Sample 1-1 prepared in Example 1 was measured by the following method.
The sample was dried under reduced pressure at 110 ° C. and 6.7 × 10 −2 Pa for 2 hours, and then measured with a gas adsorption method using a constant volume type gas adsorption device (BELSORP28 manufactured by Nippon Bell Co., Ltd.). And measured at 77K. The surface area was analyzed by the BET equation, and the pore size distribution was analyzed by the MP method using a t-plot. As a result, the specific surface area was 990 m 2 / g in Sample 1-1. FIG. 4 shows the pore size distribution. There was a sharp peak at 0.8 nm, which resulted in an average pore size of about 0.8 nm.
From the above, it was confirmed that the heat-treated sample had a large amount of micropores.
[0022]
Example 3
The sample prepared in Example 1 was pulverized to 45 μm or less and subjected to water adsorption measurement using a sample dried under reduced pressure at 150 ° C. for 1 hour. The water adsorption was measured by placing the sample in a desiccator, and further adding a sulfuric acid aqueous solution to the desiccator, and changing the concentration of sulfuric acid so that the vapor pressure corresponding to each relative pressure was obtained. The result is shown in FIG. The shape of the adsorption isotherm is type IV, indicating that it has mesopores and macropores, and is the same type as the adsorption isotherm of water found in activated carbon.
[0023]
Example 4
The sample prepared in Example 1 was applied to a copper foil using an N-methylpyrrolidone solution of polyvinylidene fluoride as a binder, and dried to produce an electrode. Using this electrode as a working electrode and metallic lithium as a counter electrode and a reference electrode, cyclic voltammetry was performed in an electrolyte containing ethylene carbonate: diethylene carbonate (volume ratio, 1: 1) containing 1 mol of LiClO 4 . The chart is shown in FIG.
[0024]
【The invention's effect】
As described above, the carbon material of the present invention has a high nitrogen atom content and has a novel structure in which the position of the nitrogen atom is controlled. It is a material having a high surface area of around 1000 m 2 / g, and by utilizing this property, it can be used as an adsorbent. Moreover, since it has electroconductivity, it can also be used as electrodes, such as a capacitor, combined with said property, and it can be said that industrial applicability is high.
[Brief description of the drawings]
FIG. 1 shows a synthesizer used in Example 1. FIG.
FIG. 2 shows 13 CNMR of Sample 1-1 prepared in Example 1.
3 is a powder X-ray diffraction chart of Sample 1-1 prepared in Example 1. FIG.
4 represents a pore distribution diagram of Sample 1-1 prepared in Example 1. FIG.
FIG. 5 shows the water adsorption isotherm of Sample 1-1 prepared in Example 1.
6 shows a chart of cyclic voltammetry of Sample 1-1 prepared in Example 1. FIG.

Claims (5)

式(I)
Figure 0004096351
(式中、X1〜X4は、それぞれ独立に、炭素原子、または窒素原子を表し、少なくとも1つは窒素原子を表す。)で表される繰り返し単位を含有することを特徴とする含窒素炭素材。
Formula (I)
Figure 0004096351
(Wherein, X1 to X4 each independently represents a carbon atom or a nitrogen atom, and at least one represents a nitrogen atom). .
式(II)
Figure 0004096351
(式中X1〜X4は、それぞれ独立に、炭素原子、または窒素原子を表し、少なくとも1つは窒素原子を表す。)で表される化合物を重合、炭化して製造されたことを特徴とする含窒素炭素材。
Formula (II)
Figure 0004096351
(Wherein , X1 to X4 each independently represents a carbon atom or a nitrogen atom, and at least one represents a nitrogen atom). Nitrogen-containing carbon material.
請求項1または2に記載の含窒素炭素材を含有することを特徴とする吸着材。An adsorbent comprising the nitrogen-containing carbon material according to claim 1. 炭素原子と窒素原子の組成比がCZZ-1(式中、Zは2以上の整数を表す。)であり繰り返し単位を有することを特徴とする含窒素炭素材を含有することを特徴とする吸着材。It contains a nitrogen-containing carbon material characterized in that the composition ratio of carbon atoms to nitrogen atoms is C Z N Z-1 (wherein Z represents an integer of 2 or more) and has repeating units. Adsorbent. 請求項1または2に記載の含窒素炭素材を含有することを特徴とする導電性材料。A conductive material comprising the nitrogen-containing carbon material according to claim 1.
JP2001337417A 2001-11-02 2001-11-02 Nitrogen-containing carbon material Expired - Fee Related JP4096351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337417A JP4096351B2 (en) 2001-11-02 2001-11-02 Nitrogen-containing carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337417A JP4096351B2 (en) 2001-11-02 2001-11-02 Nitrogen-containing carbon material

Publications (2)

Publication Number Publication Date
JP2003137524A JP2003137524A (en) 2003-05-14
JP4096351B2 true JP4096351B2 (en) 2008-06-04

Family

ID=19152060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337417A Expired - Fee Related JP4096351B2 (en) 2001-11-02 2001-11-02 Nitrogen-containing carbon material

Country Status (1)

Country Link
JP (1) JP4096351B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043311A1 (en) * 2005-09-30 2007-04-19 Asahi Kasei Chemicals Corporation Nitrogenous carbon material and process for producing the same
US8092771B2 (en) 2007-03-28 2012-01-10 Asahi Kasei Chemicals Corporation Nitrogen-containing carbon material and process for producing the same
US8486565B2 (en) 2007-03-28 2013-07-16 Asahi Kasei Chemicals Corporation Electrode, and lithium ion secondary battery, electric double layer capacitor and fuel cell using the same
JP5077999B2 (en) * 2007-03-28 2012-11-21 旭化成ケミカルズ株式会社 Hydrogen storage method and apparatus
JP2017043511A (en) * 2015-08-26 2017-03-02 国立大学法人 鹿児島大学 Method for producing carbon nitride

Also Published As

Publication number Publication date
JP2003137524A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
Cai et al. A highly conductive MOF of graphene analogue Ni3 (HITP) 2 as a sulfur host for high‐performance lithium–sulfur batteries
Guo et al. Covalent assembly of two‐dimensional COF‐on‐MXene heterostructures enables fast charging lithium hosts
Kandambeth et al. 2D covalent‐organic framework electrodes for supercapacitors and rechargeable metal‐ion batteries
Wang et al. Metal–organic frameworks for energy storage: Batteries and supercapacitors
Cui et al. Ionic liquid‐controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors
Salunkhe et al. Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer
Chen et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose
Liu et al. A novel strategy of in situ trimerization of cyano groups between the Ti 3 C 2 T x (MXene) interlayers for high-energy and high-power sodium-ion capacitors
KR102143708B1 (en) Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
Liu et al. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors
Kim et al. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor
Xu et al. Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure
Wang et al. Nitrogen‐doped hierarchical few‐layered porous carbon for efficient electrochemical energy storage
Li et al. Design of 3D graphene‐oxide spheres and their derived hierarchical porous structures for high performance supercapacitors
Tang et al. Nitrogen/oxygen co-doped porous carbons derived from a facilely-synthesized Schiff-base polymer for high-performance supercapacitor
US9458021B2 (en) Sol-gel method for synthesis of nano-porous carbon
Zhu et al. Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage
KR20120112475A (en) Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material
Rasines et al. On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water
Xie et al. Ordered nitrogen doped mesoporous carbon assembled under aqueous acidic conditions and its electrochemical capacitive properties
JP2006335596A (en) Simple synthesizing method for microporous carbon having regularity and large surface area
Roy et al. Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF
Gaikwad et al. Ultrahigh rate and high-performance lithium-sulfur batteries with resorcinol-formaldehyde xerogel derived highly porous carbon matrix as sulfur cathode host
Alkarmo et al. Poly (ionic liquid)‐Derived N‐Doped Carbons with Hierarchical Porosity for Lithium‐and Sodium‐Ion Batteries
Li et al. Flower-like Ni 3 (NO 3) 2 (OH) 4@ Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees