JP4094887B2 - Electromagnetic wave absorber and pavement and building using the same - Google Patents

Electromagnetic wave absorber and pavement and building using the same Download PDF

Info

Publication number
JP4094887B2
JP4094887B2 JP2002135949A JP2002135949A JP4094887B2 JP 4094887 B2 JP4094887 B2 JP 4094887B2 JP 2002135949 A JP2002135949 A JP 2002135949A JP 2002135949 A JP2002135949 A JP 2002135949A JP 4094887 B2 JP4094887 B2 JP 4094887B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
concrete
layer
water
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135949A
Other languages
Japanese (ja)
Other versions
JP2003327463A (en
Inventor
克則 山木
信夫 柵瀬
喜久夫 小関
豊 藤野
隆夫 内川
裕志 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002135949A priority Critical patent/JP4094887B2/en
Publication of JP2003327463A publication Critical patent/JP2003327463A/en
Application granted granted Critical
Publication of JP4094887B2 publication Critical patent/JP4094887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Road Paving Structures (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,路面の電磁波反射の抑制や電磁シールドビルの壁面などに用いる電磁波吸収体に関する。
【0002】
【従来の技術】
従来より,電磁遮蔽材には,金属や炭素等の導電材や各種の磁性材料を用いるのが一般的であった。それらの成形品としては,導電性粉体や磁性粉などの粉体を樹脂や無機材料中に分散させたものも使用されている。電磁シールドビルなどを構築する材料として電磁遮蔽用コンクリートも各種のものが提案されている。従来の電磁遮蔽用コンクリートは導電材や磁性材からなる電磁遮蔽材料を,粒体その他の形態でコンクリート中に混入したものが一般的である。
【0003】
【発明が解決しようとする課題】
コンクリート中に金属・炭素質・磁性体などの電磁遮蔽機能の高い材料を混入する場合には,その混入量を高くすればそれだけ電磁遮蔽効果は大きくなるが,反面,コンクリートの構造材に要求されるコンクリート本来の諸特性(フレッシュ性状・硬化性状とも)が劣化することも否めない。すなわち,強度や耐久性その他のコンクリート本来の性質を実質的に保持した状態で電磁波エネルギーを吸収できることが望ましいが,両性質を同時に十分に兼備させることは実際には困難である。
【0004】
昨今では電磁波による電子機器類の誤動作防止体制の要求は,ビル内に止まらず屋外の機器類にも及んでおり,例えば高速道路のノンストップ自動料金収受システム(ETCという)において,電磁波の多重反射による読み取りエラーの問題が顕在化している。これを防止するには,その多重反射を抑制する道路舗装が必要とされているが,そのような道路舗装は技術的に未経験である。
【0005】
したがって本発明の課題は,施工現場ごとにコンクリートに要求される諸性質を具備しながら,且つ高い電磁波吸収機能を備える材料を得ることにある。
【0006】
【課題を解決するための手段】
本発明によれば,セメントマトリックス中に,含水率10〜20%の水分を保持することができる量の植物繊維を分散含有したセメント系硬化体からなり,この硬化体中に含水率10〜20%の遊離水を含浸させてなる電磁波吸収体を提供する。そして,この電磁波吸収体を舗装用材料として用いた電磁波吸収舗装,および壁材として用いた電磁波吸収建造物を提供する。
【0007】
【発明の実施の形態】
前記の課題解決のために,本発明者らは水による電磁波減衰効果に着目し,これをコンクリートで実現するために種々の試験を繰り返した。その結果,水が含浸する細孔を有したセメント系硬化体,例えば植物繊維をセメントマトリックス中に分散させて含水率10%以上を示すような硬化体とし,この硬化体に遊離水を十分に含浸させておけば高い電磁波吸収機能を発現できることがわかった。植物繊維としては麻や綿が好ましく,場合によっては籾,藁,種子殻等の植物繊維も使用できる。これらの植物繊維を適量コンクリート中に分散配合することによって,植物繊維が有する優れた保水機能がコンクリート中で実現でき,施工現場ごとに要求されるコンクリート本来の性質も具備させることができる。
【0008】
一般に,コンクリート硬化体中の水分量は,周囲環境の湿度によって左右されるが,普通コンクリートで3〜4重量%程度であり,強制的に含浸させたとしても5〜6重量%程度に過ぎない。また,単にコンクリートを水で濡らしても,空気とコンクリートとの境界面(コンクリート表面)での電磁波の反射が大きくなってコンクリート内部での吸収効果は期待できない。これは,水の誘電率が空気の約80倍近くもあり,水の膜が張ったような状態がコンクリート表面で生じていると,電磁波が鏡面反射のように大きく反射を起こしてしまうからである。
【0009】
したがって,コンクリートに電磁波吸収能力を付与するには,空気相と水相を区分するような境界面を実質的に作らずに,電磁波エネルギーを吸収できるに十分な量の水が存在した状態のコンクリートを得ることが肝要となる。植物繊維をコンクリート中に適量配合すると,毛細管現象も起きるのではないかと考えられるが,コンクリートのマトリックス中に含水率10%以上の遊離水を分散して含ませることができ,この遊離水が電磁波エネルギーを吸収し,熱エネルギーに効率よく変換することができる。またコンクリート硬化体全体に分散した細孔内に含浸されている遊離水は,電磁波を反射するような明確な空気と水の鏡面を作ることも少ない。特に20%以下の含水率では電磁波の反射を起こすような境界層を形成するようなことは殆んど生じない。このため,コンクリート硬化体の表面に,反射防止用の被覆等を設けるようなことは必ずしも必要ではなくなる。
【0010】
コンクリートの含水率(%)は次式で表すことができる。
コンクリートの含水率(%)=100×(W1−W0)/V1
但し:W0=乾燥重量,W1=湿潤重量を表す。乾燥重量W0は,供試体を例えば110℃で湿度0%の乾燥器内にてもはや重量変化が生じないまでに乾燥したときの乾燥重量を意味し,湿潤重量W1は大気圧下でその供試体全体に給水し,もはや重量変化が生じないまで飽和状態に含水したときの重量を意味する。V1は体積を表す。植物繊維を配合して練り混ぜたコンクリートは,その硬化体中の植物繊維それ自身が水分を保持する作用を有することから,前式で定義するコンクリートの含水率が10%以上を示すものが得られる。
【0011】
コンクリートの含水率と電磁波の吸収量との関係は,コンクリートの含水率と誘電率の関係から知ることができる。本発明者らは含水率が異なる多くの植物繊維含有のコンクリートを製作し,その含水率と誘電率との関係を測定し,図1および図2の結果を得た。
【0012】
図1は,コンクリートの含水率を横軸にとり,誘電率の複素数虚数部における誘電率(損失)の値をプロットしたものであるが,図1の結果から電磁波の損失となる虚数部において含水率に比例して損失が大きくなることが明らかであり,含水率が大きいほど電磁波エネルギーの吸収が大きくなることがわかる。また,図2は同じく誘電率の実数部の誘電率(実部)の値をプロットしたものであるが,図2の結果から含水率が大きいほど電磁波の反射を大きくする作用が強くなることがわかる。しかし,含水率が20%以下ではその誘電率は数%の範囲であり,大きな反射は起きていない。したがって,コンクリート中の含水率を適切に高めたものは良好な電磁波エネルギー吸収体となることがわかる。
【0013】
以下さらに,本発明者らが行った試験例について説明する。表1に示した配合の3種のコンクリートを練り混ぜ,いずれも,供試体として60cm×60cm×5cmのコンクリート板を製作した。材令28日後の各供試体について,いずれも水中に2時間浸漬したあとの状態で,次のようにして電波の透過係数と反射係数を測定した。すなわち,5.8GHzの電波を送信アンテナから各供試体の広面に垂直に照射し,供試体の背面に置いた受信アンテナで透過電場を受信して透過係数を求める。また,5.8GHzの電波を送信アンテナから,入射角30度で各供試体の広面に照射し,その反射波を反射角30度の位置においた受信アンテナで受信して反射係数を求める。それらの結果を表1に併記した。
【0014】
【表1】

Figure 0004094887
【0015】
表1の結果から,植物繊維を配合した試験例1と2のものは,配合しない対照例に比べて反射係数が小さいにも拘わらず,透過係数が小さいことがわかる。すなわち反射量も透過量も少ないことから内部で吸収される量が多い。また,これらの透過係数と反射係数から,次式に従って,電波吸収エネルギーを求め,その結果も表1に併記した。
電波吸収エネルギー(%)=100×(1−反射係数2+透過係数2
表1に示すとおり,対照例のものは電波吸収エネルギーが43.6%であるのに対し,試験例2のものは電波吸収エネルギーが86.9%に達し,試験例1のものも68%に達しており,優れた電磁波吸収機能を有することがわかる。
【0016】
なお,材令28日での強度試験を行った結果は,対照例の普通コンクリートは圧縮強度38.6N/mm2,曲げ強度4.1N/mm2であったのに対し,試験例1のものは圧縮強度36.7N/mm2,曲げ強度5.8N/mm2であった。したがって,強度的には普通コンクリートのものと遜色のないものが得られる。
【0017】
このように,本発明に従うコンクリート製の電磁波吸収体は,コンクリート本来の強度特性や施工性を損なうことなく電磁波吸収能力が高いので,これを用いて電磁遮蔽ビルの壁面や床面等の構造材として有益であるし,屋外材料としては舗装に好適に利用できる。
【0018】
高速道路の料金所について説明すると,通常は例えば図3に示すように,砕石の路盤1の上にコンクリート層2を形成し,その上に防水層としてのアスファルトコンクリート層3を施設する。そして,通常は最外層を排水性のアスファルトコンクリート4とする。コンクリート層3には場所によって鉄筋5を配筋する。各層の厚みは,路盤1:15〜20cm程度,コンクリート層2:20〜25cm程度,アスファルトコンクリート層3:4〜5cm程度,排水性のアスファルトコンクリート4:4〜5cm程度である。このような従来の舗装構造では,雨水のない期間では路面に入射した電磁波はアスファルト層4および3を通り抜け,コンクリート層2も通り抜けることが多く,反射波は鉄筋層5からのものとなる。他方,雨水時には,排水性のアスファルトコンクリート層4には水が貯留せずに排水され,その結果,非透水性のアスファルト層3との境界において水層6が形成されるので,路面に入射した電磁波はこの水層6の面で反射することになる。このようなことから,高速道路の料金所近傍では,鉄筋層5からの反射波や,雨水時の該水層6からの反射波が多く発生し,前述のETCの誤動作の原因を形成している。
【0019】
この問題は本発明に従うコンクリート製の電磁波吸収体を用いることで解決できる。図4はそのための道路構造例を示したものであり,図3と同じ番号を付したものは図3で説明したものと同じであるが,図4の構造例で特徴的なことは,図3のアスファルトコンクリート層3を,本発明に従うコンクリート製の電磁波吸収体6で置き換えた点にある。
【0020】
すなわち,図4の舗装構造は,セメントマトリックス中に植物繊維を分散含有したセメント系硬化体中に含水率10%以上の遊離水を含浸させてなる電磁波吸収体層7を,鉄筋5が存在するコンクリート層2よりも上方に設けてあるので,路面に入射した電磁波は電磁波吸収体層7で吸収され,鉄筋5に至る量が少なくなると共に,鉄筋5からの反射波も再び電磁波吸収体層7を通過する過程で吸収される結果,全体として反射波は非常に低減する。この場合,電磁波吸収体層7に含浸されている遊離水が蒸発その他の原因で枯渇すると電磁波吸収能力が低下するので,その場合には給水するのが好ましく,図例のものでは給水管8を電磁波吸収体層7の内部またはその上方に施設し,給水源から電磁波吸収体層7の全体に水を補給できる構成としてある。
【0021】
他方,雨水時には,電磁波吸収体層7には遊離水が十分に含浸され,過剰水はこの吸収体層7とコンクリート層2の間を通って下水へと流れてゆく。すなわち,雨水時では電磁波吸収体層7内を水が通過して必要十分な量の遊離水が電磁波吸収体層7内に保持される結果,高い電磁波吸収能力を維持する。また通過した過剰水は排水される結果,電磁波吸収層7の上面には図3のような明瞭な界面をもつ水層6が生成するようなこともない。電磁波吸収層7の上面を凹凸面に形成しておくと,一層水層の形成が阻止されると同時に電磁波吸収効率を高めることができる。
【0022】
なお,図4の例では最外層に排水用アスファルトコンクリート層4を有しているが,場合によってはこの層4は省略することもできる。すなわち,本発明の舗装はアスファルト舗装に限らず,コンクリート舗装にも適用可能である。また,図4では,鉄筋5と電磁波吸収体層7の間に,ある程度の厚さ(例えば5〜6cmの厚さ)のコンクリート層2が存在する例を示しているが,鉄筋5の上部は,それほどコンクリート層2を被せることなく,直ぐその上から電磁波吸収体層7とすることもできる。さらに図4では,コンクリート層2の上に電磁波吸収体層7を設けた例を示したが,コンクリート層2そのものについても,セメントマトリックス中に植物繊維を分散含有したセメント系硬化体中に含水率10%以上の遊離水を含浸させてなるコンクリート層とすることができる。すなわち,コンクリート層2も電磁波吸収体機能をもつコンクリート層とし,さらにその上に前述のように電磁波吸収体層7を形成するようにしてもよい。
【0023】
一般にETC周辺の路面では少なくとも反射減衰量10dB以上(反射係数では0.2以下)が必要とされるが,本発明の電磁波吸収体を用いた舗装ではその要求を満たすことができる。その例を図5と図6に示した。図5は,従来の舗装(図3の舗装)において雨天時に水層6が生成している場合の電磁波の入射角と反射係数の関係を示すものであり,図6は,本発明に従う舗装(図4の舗装)における雨天時(電磁波吸収体に遊離水が必要十分な量で含浸されている場合)の入射角と反射係数の関係を示したものである。図6では,非雨天時であっても,電磁波吸収体層に給水して遊離水を必要十分な量で含浸させた場合も同様に解釈することができる。両図の比較から明らかなように,図6の本発明例では,図5の従来例の構造に比べて反射係数が大きく低下している。そのうち,代表的な反射角での反射減衰量(水平偏波の場合)を求めると,表2のようになる。
なお,反射係数をRとすると,反射減衰量=20Log Rの式で表される。
【0024】
【表2】
Figure 0004094887
【0025】
表2の結果から明らかなように,本発明に従う舗装構造では反射減衰量は10dB以上を達成できることがわかる。
【0026】
このようにして,本発明の電磁波吸収体を用いた舗装では雨水時および非雨水時とも電磁波の路面からの反射が抑制されるので,ETC等の精密機器類の誤動作原因を除去することができる。また,本発明に従う保水能力を有した舗装構造では,ヒートアイランド現象の原因となっている路面の温度を低下させ,路上気温の低下を下げる効果もある。なお,このような路面のみならず,壁面やその他の構造材にも同様にして本発明の電磁波吸収体を用いることができることは勿論である。
【0027】
以上説明したように,本発明によると,電磁波吸収能力の高いコンクリート製の電磁波吸収体が得られる。このコンクリート製の電磁波吸収体は通常の構造用コンクリートとして適用可能であるから,建築用の構造材料や舗装用材料として使用することができる。このため,電磁遮蔽ビルの構造材や電磁波反射の少ない路面材料として好適である。
【図面の簡単な説明】
【図1】コンクリートの含水率と誘電率の複素数虚数部における誘電率(損失)との関係を示す図である。
【図2】コンクリートの含水率と誘電率の実数部の誘電率(実部)との関係を示す図である。
【図3】従来の通常のアスファルト舗装の構造例を示す略断面図である。
【図4】本発明に従う電磁波吸収体を用いた舗装の構造例を示す略断面図である。
【図5】従来の舗装(図3の舗装)において雨天時に水層が生成している場合の電磁波の入射角と反射係数の関係を示す図である。
【図6】本発明に従う舗装(図4のもの)において,電磁波吸収体に遊離水が必要十分な量で含浸されている場合の電磁波の入射角と反射係数の関係を示す図である。
【符号の説明】
1 路盤(砕石)
2 コンクリート層
3 アスファルトコンクリート層(防水層)
4 排水性のアスファルトコンクリート層
5 鉄筋
6 水層
7 電磁波吸収体層
8 給水管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic wave absorber used for suppression of electromagnetic wave reflection on a road surface or a wall surface of an electromagnetic shield building.
[0002]
[Prior art]
Conventionally, conductive materials such as metal and carbon and various magnetic materials have been generally used as electromagnetic shielding materials. As such molded products, those in which powders such as conductive powders and magnetic powders are dispersed in resins and inorganic materials are also used. Various types of concrete for electromagnetic shielding have been proposed as materials for constructing electromagnetic shielding buildings. Conventional electromagnetic shielding concrete is generally made by mixing an electromagnetic shielding material made of a conductive material or a magnetic material into concrete in the form of particles or the like.
[0003]
[Problems to be solved by the invention]
When a material with high electromagnetic shielding function such as metal, carbonaceous material, or magnetic substance is mixed in concrete, the higher the amount of mixing, the greater the electromagnetic shielding effect, but on the other hand, it is required for concrete structural materials. It is undeniable that the original properties (both fresh and hardened) of concrete will deteriorate. In other words, it is desirable to be able to absorb electromagnetic wave energy while substantially maintaining the strength, durability and other properties inherent in concrete, but it is actually difficult to combine both properties at the same time.
[0004]
Recently, the requirement for a system for preventing malfunction of electronic devices due to electromagnetic waves has been extended not only to buildings but also to outdoor devices. For example, in non-stop automatic toll collection systems (called ETC) on highways, multiple reflections of electromagnetic waves are required. The problem of reading errors due to is obvious. In order to prevent this, road pavement that suppresses the multiple reflection is required, but such road pavement is technically inexperienced.
[0005]
Accordingly, an object of the present invention is to obtain a material having a high electromagnetic wave absorbing function while having various properties required for concrete at each construction site.
[0006]
[Means for Solving the Problems]
According to the present invention, the cement matrix is composed of a cement-based hardened body in which an amount of plant fibers that can retain moisture with a water content of 10 to 20% is dispersed, and the moisture content of the hardened body is 10 to 20%. An electromagnetic wave absorber that is impregnated with % free water is provided. And the electromagnetic wave absorption pavement which used this electromagnetic wave absorber as a pavement material, and the electromagnetic wave absorption building used as a wall material are provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, the present inventors paid attention to the electromagnetic wave attenuation effect by water, and repeated various tests in order to realize this with concrete. As a result, a cement-based cured body having pores impregnated with water, for example, a cured body in which plant fibers are dispersed in a cement matrix and exhibit a water content of 10% or more, and free water is sufficiently contained in the cured body. It was found that a high electromagnetic wave absorbing function can be expressed if impregnated. As the plant fiber, hemp or cotton is preferable. In some cases, plant fibers such as cocoons, cocoons and seed shells can also be used. By dispersing and blending these plant fibers in an appropriate amount in concrete, the excellent water retention function of the plant fibers can be realized in the concrete, and the inherent properties of the concrete required for each construction site can be provided.
[0008]
In general, the amount of moisture in the hardened concrete depends on the humidity of the surrounding environment, but it is about 3 to 4% by weight for ordinary concrete, and it is only about 5 to 6% even if it is forcibly impregnated. . Moreover, even if the concrete is simply wetted with water, the reflection of electromagnetic waves at the interface between the air and the concrete (concrete surface) becomes large, and an absorption effect inside the concrete cannot be expected. This is because the dielectric constant of water is about 80 times that of air, and if a water film is stretched on the concrete surface, the electromagnetic wave will be greatly reflected like a specular reflection. is there.
[0009]
Therefore, in order to impart electromagnetic wave absorbing ability to concrete, concrete with a sufficient amount of water to absorb electromagnetic wave energy without substantially creating an interface that separates the air phase from the water phase. It is important to obtain When plant fibers are mixed with concrete in an appropriate amount, capillarity may occur, but free water with a water content of 10% or more can be dispersed and contained in the concrete matrix. It can absorb energy and convert it efficiently into thermal energy. In addition, the free water impregnated in the pores dispersed throughout the hardened concrete does not often form a clear air and water mirror that reflects electromagnetic waves. In particular, when the water content is 20% or less, almost no boundary layer that causes reflection of electromagnetic waves is formed. For this reason, it is not always necessary to provide an antireflection coating or the like on the surface of the hardened concrete.
[0010]
The moisture content (%) of concrete can be expressed by the following equation.
Moisture content of concrete (%) = 100 × (W 1 −W 0 ) / V 1
Where W 0 = dry weight and W 1 = wet weight. The dry weight W 0 means the dry weight when the specimen is dried in a dryer at 110 ° C. and 0% humidity before no change in weight occurs, and the wet weight W 1 is measured under atmospheric pressure. It means the weight when water is supplied to the entire specimen and the water is saturated until there is no more weight change. V 1 represents volume. Concrete mixed with plant fiber and kneaded has the effect that the plant fiber itself in the hardened body retains moisture, so that the moisture content of the concrete defined by the previous formula is 10% or more. It is done.
[0011]
The relationship between the moisture content of concrete and the amount of electromagnetic wave absorption can be understood from the relationship between the moisture content of concrete and the dielectric constant. The present inventors produced many plant fiber-containing concretes having different moisture contents, measured the relationship between the moisture content and the dielectric constant, and obtained the results shown in FIGS.
[0012]
Fig. 1 plots the value of the dielectric constant (loss) in the complex imaginary part of the dielectric constant on the horizontal axis of the moisture content of the concrete. From the result of Fig. 1, the moisture content in the imaginary part that causes the electromagnetic wave loss is plotted. It is clear that the loss increases in proportion to, and the absorption of electromagnetic wave energy increases as the water content increases. FIG. 2 is also a plot of the value of the dielectric constant (real part) of the real part of the dielectric constant. From the results of FIG. 2, the effect of increasing the reflection of electromagnetic waves increases as the water content increases. Recognize. However, when the moisture content is 20% or less, the dielectric constant is in the range of several percent, and no large reflection occurs. Therefore, it can be seen that a material with an appropriately high moisture content in concrete is a good electromagnetic wave energy absorber.
[0013]
Hereinafter, test examples conducted by the present inventors will be described. Three types of concrete having the composition shown in Table 1 were mixed together, and a 60 cm × 60 cm × 5 cm concrete plate was produced as a test specimen. For each specimen 28 days after material age, the transmission coefficient and reflection coefficient of radio waves were measured as follows, after being immersed in water for 2 hours. That is, a 5.8 GHz radio wave is irradiated vertically from the transmitting antenna to the wide surface of each specimen, and the transmission electric field is received by the receiving antenna placed on the back of the specimen, and the transmission coefficient is obtained. Further, a 5.8 GHz radio wave is irradiated from the transmitting antenna to the wide surface of each specimen at an incident angle of 30 degrees, and the reflected wave is received by the receiving antenna at a position where the reflection angle is 30 degrees to obtain the reflection coefficient. The results are also shown in Table 1.
[0014]
[Table 1]
Figure 0004094887
[0015]
From the results shown in Table 1, it can be seen that Test Examples 1 and 2 with plant fiber blended have a small transmission coefficient, although the reflection coefficient is small compared to the control example without blending. That is, since the amount of reflection and the amount of transmission are small, the amount absorbed inside is large. In addition, the radio wave absorption energy was obtained from these transmission coefficient and reflection coefficient according to the following equation, and the results are also shown in Table 1.
Radio wave absorption energy (%) = 100 × (1−reflection coefficient 2 + transmission coefficient 2 )
As shown in Table 1, the radio wave absorption energy of the control example is 43.6%, whereas the radio wave absorption energy of Test Example 2 reaches 86.9%, and that of Test Example 1 is 68%. It can be seen that it has an excellent electromagnetic wave absorbing function.
[0016]
The results of the strength test on the 28th day of the material age showed that the normal concrete of the control example had a compressive strength of 38.6 N / mm 2 and a bending strength of 4.1 N / mm 2 , whereas that of the test example 1 The product had a compressive strength of 36.7 N / mm 2 and a bending strength of 5.8 N / mm 2 . Therefore, in terms of strength, those that are comparable to those of ordinary concrete can be obtained.
[0017]
As described above, the electromagnetic wave absorber made of concrete according to the present invention has a high electromagnetic wave absorbing ability without impairing the original strength characteristics and workability of the concrete, so that it can be used for structural materials such as walls and floor surfaces of electromagnetic shielding buildings. As an outdoor material, it can be suitably used for paving.
[0018]
The highway toll booth will be described. Usually, as shown in FIG. 3, for example, a concrete layer 2 is formed on a crushed stone base 1 and an asphalt concrete layer 3 as a waterproof layer is provided thereon. In general, the outermost layer is drainable asphalt concrete 4. Reinforcing bars 5 are placed on the concrete layer 3 depending on the location. The thickness of each layer is about 1:15 to 20 cm for the roadbed, about 20 to 25 cm for the concrete layer, about 4 to 5 cm for the asphalt concrete layer, and about 4 to 5 cm for the drainage asphalt concrete. In such a conventional pavement structure, electromagnetic waves incident on the road surface often pass through the asphalt layers 4 and 3 and also through the concrete layer 2 during periods when there is no rainwater, and reflected waves are from the reinforcing bar layer 5. On the other hand, when it rains, the drainage asphalt concrete layer 4 is drained without storing water, and as a result, a water layer 6 is formed at the boundary with the non-permeable asphalt layer 3 so that it enters the road surface. The electromagnetic wave is reflected by the surface of the water layer 6. For this reason, many reflected waves from the reinforcing steel layer 5 and reflected waves from the water layer 6 during rainwater are generated in the vicinity of the toll booth on the expressway, which causes the aforementioned ETC malfunction. Yes.
[0019]
This problem can be solved by using a concrete electromagnetic wave absorber according to the present invention. FIG. 4 shows an example of a road structure for that purpose, and those with the same numbers as those in FIG. 3 are the same as those explained in FIG. 3, but what is characteristic of the structure example in FIG. The asphalt concrete layer 3 is replaced with a concrete electromagnetic wave absorber 6 according to the present invention.
[0020]
That is, in the pavement structure of FIG. 4, the reinforcing bar 5 has an electromagnetic wave absorber layer 7 in which free water having a water content of 10% or more is impregnated in a cement-based hardened body in which plant fibers are dispersed and contained in a cement matrix. Since the electromagnetic wave incident on the road surface is absorbed by the electromagnetic wave absorber layer 7 because it is provided above the concrete layer 2, the amount reaching the reinforcing bar 5 is reduced, and the reflected wave from the reinforcing bar 5 is again reflected by the electromagnetic wave absorber layer 7. As a result, the reflected wave is greatly reduced as a whole. In this case, if the free water impregnated in the electromagnetic wave absorber layer 7 is depleted due to evaporation or other causes, the electromagnetic wave absorbing ability is reduced. In that case, it is preferable to supply water. The electromagnetic wave absorber layer 7 is provided inside or above the electromagnetic wave absorber layer 7 so that water can be supplied to the entire electromagnetic wave absorber layer 7 from a water supply source.
[0021]
On the other hand, during rainwater, the electromagnetic wave absorber layer 7 is sufficiently impregnated with free water, and excess water flows between the absorber layer 7 and the concrete layer 2 to the sewage. That is, during rain water, the water passes through the electromagnetic wave absorber layer 7 and a necessary and sufficient amount of free water is retained in the electromagnetic wave absorber layer 7, thereby maintaining a high electromagnetic wave absorption capability. Moreover, as a result of draining excess water that has passed, the water layer 6 having a clear interface as shown in FIG. 3 is not generated on the upper surface of the electromagnetic wave absorbing layer 7. If the upper surface of the electromagnetic wave absorbing layer 7 is formed as an uneven surface, the formation of a water layer can be prevented and the electromagnetic wave absorbing efficiency can be increased.
[0022]
In the example of FIG. 4, the drainage asphalt concrete layer 4 is provided as the outermost layer, but this layer 4 may be omitted depending on circumstances. That is, the pavement of the present invention is not limited to asphalt pavement but can be applied to concrete pavement. FIG. 4 shows an example in which a concrete layer 2 having a certain thickness (for example, 5 to 6 cm) exists between the reinforcing bar 5 and the electromagnetic wave absorber layer 7. The electromagnetic wave absorber layer 7 can be formed directly on the concrete layer 2 without covering the concrete layer 2 so much. Further, FIG. 4 shows an example in which the electromagnetic wave absorber layer 7 is provided on the concrete layer 2, but the concrete layer 2 itself also has a moisture content in a cement-based cured body in which plant fibers are dispersed and contained in the cement matrix. It can be set as the concrete layer impregnated with 10% or more of free water. That is, the concrete layer 2 may also be a concrete layer having an electromagnetic wave absorber function, and the electromagnetic wave absorber layer 7 may be formed thereon as described above.
[0023]
Generally, at least 10 dB or more of return loss (0.2 or less in reflection coefficient) is required on the road surface around the ETC, but pavement using the electromagnetic wave absorber of the present invention can satisfy the requirement. Examples thereof are shown in FIGS. FIG. 5 shows the relationship between the incident angle of the electromagnetic wave and the reflection coefficient when the water layer 6 is generated in the case of rain in the conventional pavement (pavement of FIG. 3), and FIG. FIG. 5 shows the relationship between the incident angle and the reflection coefficient during rainy weather (when the electromagnetic wave absorber is impregnated with a necessary and sufficient amount of free water) in the pavement of FIG. In FIG. 6, even when it is not raining, it can be similarly interpreted when water is supplied to the electromagnetic wave absorber layer and impregnated with a sufficient amount of free water. As is apparent from the comparison between the two figures, the reflection coefficient of the example of the present invention shown in FIG. 6 is significantly lower than that of the conventional structure shown in FIG. Of these, the return loss (in the case of horizontal polarization) at typical reflection angles is as shown in Table 2.
If the reflection coefficient is R, the return loss is expressed by the equation of 20 Log R.
[0024]
[Table 2]
Figure 0004094887
[0025]
As is apparent from the results in Table 2, it can be seen that the return loss can be 10 dB or more in the pavement structure according to the present invention.
[0026]
In this way, in the pavement using the electromagnetic wave absorber of the present invention, the reflection of electromagnetic waves from the road surface is suppressed both in rainy and non-rainy water, so that the cause of malfunction of precision equipment such as ETC can be eliminated. . Moreover, in the pavement structure having the water retention capability according to the present invention, there is also an effect of reducing the temperature of the road surface causing the heat island phenomenon and lowering the temperature on the road. Of course, the electromagnetic wave absorber of the present invention can be used not only on such road surfaces but also on wall surfaces and other structural materials.
[0027]
As described above, according to the present invention, an electromagnetic wave absorber made of concrete having a high electromagnetic wave absorbing ability can be obtained. Since this concrete electromagnetic wave absorber can be applied as ordinary structural concrete, it can be used as a structural material for construction or as a pavement material. For this reason, it is suitable as a structural material for electromagnetic shielding buildings and a road surface material with less electromagnetic wave reflection.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the moisture content of concrete and the dielectric constant (loss) in the complex imaginary part of the dielectric constant.
FIG. 2 is a diagram showing the relationship between the moisture content of concrete and the dielectric constant (real part) of the real part of the dielectric constant.
FIG. 3 is a schematic cross-sectional view showing an example of the structure of a conventional ordinary asphalt pavement.
FIG. 4 is a schematic cross-sectional view showing an example of a pavement structure using an electromagnetic wave absorber according to the present invention.
FIG. 5 is a diagram showing a relationship between an incident angle of electromagnetic waves and a reflection coefficient when a water layer is generated during rain in the conventional pavement (pavement of FIG. 3).
6 is a diagram showing a relationship between an incident angle of an electromagnetic wave and a reflection coefficient when the electromagnetic wave absorber is impregnated with a necessary and sufficient amount of free water in the pavement according to the present invention (the one shown in FIG. 4).
[Explanation of symbols]
1 Roadbed (crushed stone)
2 Concrete layer 3 Asphalt concrete layer (waterproof layer)
4 Drainage asphalt concrete layer 5 Reinforcement 6 Water layer 7 Electromagnetic wave absorber layer 8 Water supply pipe

Claims (3)

セメントマトリックス中に,含水率10〜20%の水分を保持することができる量の植物繊維を分散含有したセメント系硬化体からなり,この硬化体中に含水率10〜20%の遊離水を含浸させてなる電磁波吸収体。The cement matrix is composed of a cement-based hardened body in which a plant fiber is dispersed and contained in an amount capable of holding water with a water content of 10 to 20% . The hardened body is impregnated with free water with a water content of 10 to 20%. An electromagnetic wave absorber. 請求項に記載の電磁波吸収体を舗装用材料として用いた電磁波吸収舗装。An electromagnetic wave absorbing pavement using the electromagnetic wave absorber according to claim 1 as a pavement material. 請求項1に記載の電磁波吸収体を壁材として用いた電磁波吸収建造物。  An electromagnetic wave absorbing structure using the electromagnetic wave absorber according to claim 1 as a wall material.
JP2002135949A 2002-05-10 2002-05-10 Electromagnetic wave absorber and pavement and building using the same Expired - Fee Related JP4094887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135949A JP4094887B2 (en) 2002-05-10 2002-05-10 Electromagnetic wave absorber and pavement and building using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135949A JP4094887B2 (en) 2002-05-10 2002-05-10 Electromagnetic wave absorber and pavement and building using the same

Publications (2)

Publication Number Publication Date
JP2003327463A JP2003327463A (en) 2003-11-19
JP4094887B2 true JP4094887B2 (en) 2008-06-04

Family

ID=29698138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135949A Expired - Fee Related JP4094887B2 (en) 2002-05-10 2002-05-10 Electromagnetic wave absorber and pavement and building using the same

Country Status (1)

Country Link
JP (1) JP4094887B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242188B2 (en) * 2008-02-15 2013-07-24 電気化学工業株式会社 Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP5210969B2 (en) * 2009-05-27 2013-06-12 大成建設株式会社 Concrete flooring
KR100933249B1 (en) * 2009-07-23 2009-12-17 주식회사 삼주에스엠씨 Repair composition for concrete crack structure using jute fiber

Also Published As

Publication number Publication date
JP2003327463A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
Okpala Palm kernel shell as a lightweight aggregate in concrete
US4587279A (en) Cementitious building material incorporating end-capped polyethylene glycol as a phase change material
EP3083522B1 (en) Dry building material mixture and thermal insulation plaster produced therefrom
KR101173441B1 (en) Permeable paving manufacture method to use eco-friendly recycled aggregate coated
CN105625137B (en) A kind of slag permeable pavement structure and its construction method
CN109970391A (en) A kind of modified pitch and the high-intensitive pervious asphalt concrete with the pitch
KR101146190B1 (en) Concrete compostion for facing layer of block decreasing heat island effect, and a concrete block for roadway and sidewalk using thereof
CN101914953B (en) Cork board outer wall external heat-insulation system
JP4094887B2 (en) Electromagnetic wave absorber and pavement and building using the same
JP2008002225A (en) Water absorbing/retaining carbide-coated aggregate and water absorbing/retaining paving material using the same
Akinyemi et al. Prospects of coir fibre as reinforcement in termite mound clay bricks
CN113024175B (en) Pervious concrete and preparation method and application thereof
JPWO2003064780A1 (en) Electromagnetic wave absorber
CN109138355A (en) The environmental protection construction method on hydrophobic cement ground
CN113123185A (en) Toughness inflation dirt road bed structure based on nanometer silica and carbon fiber
DE102015100583B4 (en) Precast concrete element, use of a concrete recyclate and a viscose fiber material, production process for a self-cooling precast concrete element, methods for reducing the effect of urban heat islands, buildings and use of the precast concrete element
WO2000008113A1 (en) Disposable water resistant cover for bulk salt
KR102112262B1 (en) Permeable block with the ability to prevent heat transfer
JP4043963B2 (en) Sound absorption and electromagnetic wave absorption panels
JP2004224638A (en) Coating material and method of manufacturing the same
Solomon‐Ayeh Studies of strengths of stabilized laterite blocks and rendering mortars: Strength of Ghanaian mortars for jointing laterite blocks has in the past been overspecified, this study looks at suitable ratios of materials for mortars appropriate for overall strength of constrution
KR100783013B1 (en) A road packing materials
JPH07915B2 (en) Sheet material for buildings with heat retention, moisture permeability and waterproofness
KR200426436Y1 (en) A Road Packing Materials
KR102177177B1 (en) Composition for free form crete comprising mineral fiber and free form crete having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees