JP4089220B2 - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
JP4089220B2
JP4089220B2 JP2001389133A JP2001389133A JP4089220B2 JP 4089220 B2 JP4089220 B2 JP 4089220B2 JP 2001389133 A JP2001389133 A JP 2001389133A JP 2001389133 A JP2001389133 A JP 2001389133A JP 4089220 B2 JP4089220 B2 JP 4089220B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
magnet motor
motor according
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001389133A
Other languages
Japanese (ja)
Other versions
JP2003189517A (en
Inventor
文敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001389133A priority Critical patent/JP4089220B2/en
Publication of JP2003189517A publication Critical patent/JP2003189517A/en
Application granted granted Critical
Publication of JP4089220B2 publication Critical patent/JP4089220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、mW級出力の永久磁石型モータの高出力化に関する。
【0002】
【従来の技術】
OA、AV、情報通信機器等に搭載されるmW級出力の小型永久磁石型モータは当該機器の小型軽量化に伴うモータ体格の減少とともに高効率化が求められている。モータの高効率化には損失削減、または高出力化が必要である。高出力化の鍵の一つは永久磁石であり、磁石粉末の磁気性能を如何にモータ性能に反映させるかが重要である。ところで、個々のモータに応用するために必要な磁石の具備すべき条件は、▲1▼空隙に必要な静磁界を与え得る磁気特性、▲2▼非可逆減磁に代表される安定性、▲3▼求める形状に応じられる形状任意性、▲4▼原料の資源確保から実装に至るまでの総合的な経済性の4点において、最も高い整合性を確保することである。
【0003】
ところで、モータの体格を1/10とすると出力は1/1000となる。このように、モータの出力と体格にはスケーリング則が成立する。とくに出力がmW級の本発明が対象とするmW級出力の永久磁石モータは、体格の減少による出力低下が顕著であるため磁石とモータづくりとの融合を一層進展させる必要がある。
【0004】
上記、mW級出力の永久磁石型モータのための高性能磁石として、R2TM14B(RはNd/Pr、TMはFe/Co)単相磁石粉末をエポキシ樹脂で固めた磁石が広く知られている。ここでR2TM14B単相磁石粉末として合金組成Ndx(Fe0.8,Co0.2balance6,(X=11〜16)をエポキシ樹脂で固めた密度6Mg/m3の磁石の保磁力Hciに対する最大エネルギー積(BH)max、角型性(Hk/Hci)、着磁性(1.6MA/mと4MA/mパルス着磁後の(BH)maxの比)を図1に示す。図のように、R2TM14B単相磁石粉末をエポキシ樹脂で固めた磁石の着磁性はHciの減少に伴って良化するが、(BH)maxはHci800kA/m付近でピークを示し、それより低いHciでは(BH)maxが急減する。従って、出力がmW級の本発明が対象とする体格の小さな永久磁石型モータのための高性能磁石としては、もっぱら800−1000kA/m付近のHciが得られるX=12、すなわち、Nd2(Fe、Co)14B化学量論組成に近い単相磁石粉末が一般に使用される。
【0005】
モータ体格の減少が進展する永久磁石型モータにおいて、上記のようなNd2(Fe、Co)14B化学量論組成に近い単相磁石粉末で、磁石粉末のもつ磁気性能をモータ性能に十分に反映させることにより、モータの高出力化、高効率化を図る動きとしては、例えばF.Yamashita、Y.Sasaki、H.Fukunaga、“Isotropic Nd−Fe−B Thin Arc−shaped Bonded Magnets for Small DC Motors Prepared by Powder Compacting Press with Metal Ion−implanted Punches”、日本応用磁気学会誌、Vol.25、No.4−2、pp.683−686(2001).に記載されているように、出力200mW級の永久磁石界磁型直流モータに搭載する円弧状磁石において、合金組成Nd12Fe77Co56のR2TM14B化学量論組成に近い単相磁石粉末とエポキシ樹脂を主成分としたコンパウンドを粉末成形し、当該圧粉体のエポキシ樹脂を加熱硬化した円弧状のボンド磁石が、同一磁石粉末の押出成形磁石を基準としたモータ効率を約8%改善している。
【0006】
以上のように、永久磁石型モータの体格減少とともに低下するモータの出力低下を補い、ひいては出力改善に基づく高効率化の実現は磁石とモータづくりの融合の重要性を示す例である。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような磁石の作製手段のみでは永久磁石型モータの体格減少に伴ったモータ出力の低下を補いきれないことが多い。例えば、合金組成Nd12Fe77Co56のR2TM14B単相磁石粉末とエポキシ樹脂とのコンパウンドを980MPaで圧縮し、当該圧粉体のエポキシ樹脂を加熱硬化して作製したボンド磁石は密度6.0Mg/m3、4MA/mのパルス磁界で磁化した後の(BH)maxは80kJ/m3が得られる。しかしながら、モータの体格減少が進むと、モータに実装した磁石を十分磁化するに必要な、例えば4MA/mの着磁界での磁化が困難となる場合が多くなる。この場合、磁石粉末の磁気性能をモータ性能に十分反映させることはできない。例えば、PM型ステップモータではモータの直径の減少(体格の減少)に応じて磁石ロータの外周面の磁極間距離が狭まることになる。ステッピングモータは1パルス電流に対応する励磁コイルの起磁力により1ステップ角だけ磁石ロータが変位する。したがって、モータ体格に拘らず磁極の数は一般に10、12、24極である。また、磁極数を増加すれば変位角が狭まって分解能が高まる効果もある。しかし、モータ直径(体格)の減少や磁極数の増加によって磁極間距離が狭まると磁石を磁化する際の、着磁電流の導体径が細くなる(通常1極あたり1巻きの巻線を施す)。例えば、合金組成Nd12Fe77Co56のR2TM14B単相磁石粉末とエポキシ樹脂との磁石に必要なパルス電流波高値Ipは17〜25kA(導体の電流密度〜22kA/mm2)であるが、仮に磁極間距離を1.25mmとすると、パルス電流波高値Ipの許容限界は着磁ヨークの耐久性を考慮すると6.7kA(導体の電流密度〜22kA/mm2)程度に制限される。換言すると、4MA/mのような十分な着磁界は不可能で、0.6−1.6MA/m(15−40%)の所謂、不飽和着磁界領域での磁石粉末の磁気性能を、モータ性能に反映させなければならない著しくモータ体格が減少した永久磁石型モータが求められている。
【0008】
一方、着磁界が0.6−1.6MA/mのような不飽和着磁領域では、例えば小原、植田、山下、“Nanocomposite材料を用いたボンド磁石と応用”、日本応用磁気学会第19回学術講演会,(1995)23aG−9.に記載されているようにR2TM14B単相磁石粉末に比べて1/2以下の保磁力Hci値、1.05〜1.07倍の残留磁化Ir値をもつαFe/Nd2Fe14B系ナノコンポジット磁石粉末をエポキシ樹脂で固めた磁石を検討し、当該磁石の外周面をパルス電流波高値Ip=3kA(導体の電流密度22kA/mm2)、磁極50極(磁極間距離0.8mm)とすると、R2Fe14B単相磁石粉末をエポキシ樹脂で固めた磁石と比較し、1.18倍の磁束量が得られるとしている。しかしながら、この磁石は初期不可逆減磁に代表される磁気的な安定性に乏しい。したがって、熱安定性を兼ね備えたmW級出力の永久磁石型モータの小型化・高出力化を実現するための磁石が求められる。
【0009】
本発明は、熱安定性を兼ね備えた磁石粉末本来の磁気性能をモータ性能に十分に反映させることによるmW級出力の永久磁石型モータの体格減少・高出力化・高効率化への対応を目的とする。
【0010】
【課題を解決するための手段】
すなわち、本発明の永久磁石型モータは着磁界4MA/mパルス着磁後の保磁力Hci600kA/m以上、残留磁化Ir940mT以上、最大エネルギー積(BH)max135kJ/m3以上の磁気的な等方性の結晶化急冷薄帯を出発原料とし、その粗粉砕粉末と結合剤とのコンパウンドを圧縮成形し、得られた圧粉体のエポキシ樹脂を加熱硬化した磁石を着磁界Hm0.6−1.6MA/mの不飽和着磁領域で磁極を付与し、磁石ロータ或いは永久磁石界磁としたmW級出力の永久磁石型モータである。
【0011】
【発明の実施の形態】
本発明の永久磁石型モータは着磁界4MA/mパルス着磁後の保磁力Hci600kA/m以上、残留磁化Ir940mT以上、最大エネルギー積(BH)max135kJ/m3以上の磁気的な等方性の結晶化急冷薄帯を出発原料とし、その粗粉砕粉末と結合剤とのコンパウンドを圧縮成形し、得られた圧粉体のエポキシ樹脂を加熱硬化した磁石を着磁界Hm0.6−1.6MA/mの不飽和着磁領域で磁極を付与し、磁石ロータ或いは永久磁石界磁としたmW級出力の永久磁石型モータである。
【0012】
本発明で言う結晶化急冷薄帯は磁気的に等方性のαFe相とR2Fe14B相のナノコンポジットが含まれる必要はあるが、結晶粒子径が60nm以下のR2Fe14B単相薄帯との混合物であっても差し支えない。それらの急冷薄帯の粗粉砕粉末は38μm以下微粉末を除去すると減磁曲線の角型性(Hk/Hci)の低下を抑えて、高い(BH)maxを得るのに効果的である。
【0013】
一方、本発明で言う結合剤は固体エポキシオリゴマー、液体エポキシオリゴマー内包マイクロカプセル、潜在性粉末硬化剤を主成分としたエポキシ樹脂とすることが望ましい。ここで、エポキシオリゴマーとは1分子中に少なくとも2個以上のオキシラン環を有する化合物であり、室温で固体のエポキシオリゴマーとして好ましくは、アセトンなどの有機溶媒に易溶で分子鎖内にオキシラン環を有する下記化学構造で表せる軟化温度70℃以上、エポキシ当量235以下のノボラック型エポキシオリゴマーを挙げることができる。
【0014】
【化1】

Figure 0004089220
【0015】
一方、マイクロカプセルに内包する室温で液体のエポキシオリゴマーとは下記化学構造で表すことができるビスフェノールAとエピクロルヒドリンとの縮合体で、エポキシ当量170−190のジグリシジルエーテルビスフェノールAなど、低粘度のエポキシオリゴマーが好ましい。
【0016】
【化2】
Figure 0004089220
【0017】
上記、液体エポキシオリゴマーのカプセル内包量は70wt.%以上とする。内包量は増量した方が本発明の目的に適うが、内包量が90wt.%を超えると、機械的に破損し易くなるため磁石粉末とのコンパウンド作製時にセル系外に流出する場合があるので好ましくない。また、セルの材質はアセトンなど有機溶媒に不溶のメラミン樹脂で構成するとコンパウンドを作製する段階でセルが有機溶媒に侵されてエポキシオリゴマーのセル系外への流出を防ぐことができる。
【0018】
次に、本発明で言う粉末状潜在性硬化剤とはジシアンジアミドおよびその誘導体、カルボン酸ジヒドラジド、ジアミノマレオニトリルおよびその誘導体のヒドラジドの群より選ばれた1種または2種以上などを挙げることができる。これ等は一般に有機溶媒に難溶の高融点化合物であるが、粒子径を数ないし数十μmに調整したものが好ましい。なお、ジシアンジアミド誘導体としては、例えばo−トリルビグアニド、α−2・5−ジメチルビクアニド、α−ω−ジフェニルビグアニド、5−ヒドロキシブチル−1−ビグアニド、フェニルビグアニド、α−、ω−ジメチルビクアニドなどがある。更に、カルボン酸ジヒドラジドとしてはコハク酸ヒドラジド、アジピン酸ヒドラジド、イソフタル酸ヒドラジド、p−アキシ安息香酸ヒドラジドなどがある。
【0019】
以上のようなコンパウンドを圧縮すると成形圧力でセルが破壊し、セル系外に内包液体エポキシオリゴマーが流出した圧粉体を作製することができる。セル系外に流出した液体エポキシオリゴマーは成形圧力で破砕された磁石粉末の新生面や圧粉体表面を再び濡らす。このような圧粉体を加熱して圧粉体に分散した潜在性粉末硬化剤で固体エポキシオリゴマーと同時に液体エポキシ樹脂を硬化すると磁石表面近傍にはエポキシ樹脂が高濃度で存在するようになり、その濃度が10%以上になるよう調整することができる。これにより、防錆能が高まり、一般の磁石に行うエポキシ樹脂の電着塗装やスプレーコートを行うことなく、永久磁石型モータの磁石ロータや永久磁石界磁として実装することが可能となる。膜厚10−20μmの電着塗装やスプレーコートを行うことなく、磁石をそのまま直接永久磁石型モータの磁石ロータや永久磁石界磁として実装できるということは、その分、対向する固定子や電機子との空隙距離を狭めることができる。これにより、空隙磁束密度は、およそ5%向上する。
【0020】
さらに、本発明では圧粉体を作製する際、圧縮圧力でセル系外に流出した液体エポキシオリゴマーが圧粉体表面を再び濡らすので、圧粉体に回転軸を直接挿入し、圧粉体の加熱硬化と同時に接着剤を用いることなく圧粉体と回転軸とを一体的に剛体化することができる。
【0021】
以上のような密度6±0.1Mg/m3、残留磁化Ir720mT以上、(BH)max80kJ/m3以上である磁石を最大出力200mW以下の永久磁石型モータに搭載すると高出力、高効率化を促進することができる。
【0022】
【実施例】
次に、本発明を実施例にて更に詳しく説明する。ただし本発明の実施の形態は実施例に限定されるものではない。
【0023】
[急冷薄帯と磁石特性]
2Fe14B(RはNd/Pr)化学量論組成に近い急冷薄帯、およびそれよりRが少なく、R2Fe14B相とαFe相とのナノコンポジット急冷薄帯6種類を準備した。次に、それらの急冷薄帯を250μm以下に粗粉砕し、53μm以下の微粉末を除去した磁石粉末とした。更に、前記磁石粉末とエポキシ樹脂とで作製したコンパウンドを980MPaで圧縮し、最後に140℃でエポキシ樹脂を加熱硬化し、密度6Mg/m3、直径5mm長さ5mmの円柱磁石を作製した。
【0024】
上記、薄帯の合金組成、および薄帯と磁石の4MA/mパルス着磁後の磁気特性を(表1)に示す。また、図2は(表1)に対応する磁石を電磁石に挟み、任意の外部磁界Hmを加えたのちの残留磁化Irを外部磁界Hmに対してプロットした特性図である。合金組成Nd12Fe77Co56のR2Fe14B単相磁石粉末からなる急冷薄帯の磁気特性を基準とすれば、(表1)のR2Fe14B相とαFe相とのナノコンポジット急冷薄帯は保磁力Hciは、何れも小さい。しかし、表中nanocomposite−Aで示した急冷薄帯は何れも高いIrと(BH)maxを示している。なお、磁石のHci、Ir、(BH)maxは何れも薄帯よりも低下するが傾向は同じである。
【0025】
図2からnanocomposite−Aの磁化曲線はnanocomposite−Bに比べると低磁界での立ち上りが遅いが、R2Fe14B単相磁石よりも急峻に立ち上がる。また、4種類のnanocomposite−Aは、(表1)のように合金組成は異なるが何れも同じ傾向で、外部磁界Hm0.4MA/m付近から1.6MA/mの不飽和着磁領域でR2Fe14B単相磁石よりも高い磁化が得られる。
【0026】
【表1】
Figure 0004089220
【0027】
図3は保磁力Hci250−950kA/mのαFe/R2Fe14BナノコンポジットおよびR2Fe14B単相磁石の保磁力Hciに対する不可逆減磁率を減磁の要因に対してプロットした特性図である。ただし、図のReductionin coecivityは保磁力Hciの減少による減磁率、Change in squarenessは減磁曲線の角型性(Hk/Hci)の劣化による減磁率を示している。図のように、角型性(Hk/Hci)の劣化による減磁はHciが550kA/m付近でほぼ消滅し、それ以上では保磁力Hciが磁石の熱安定性の一つである不可逆減磁率を律則するようになる。
【0028】
図4は保磁力Hciが626kA/m以上のナノコンポジット磁石を0.8−1.6MA/mで磁化した際に得られる磁束量と不可逆減磁率を保磁力Hciの異なるR2TM14B単相磁石のそれと比較した特性図である。R2TM14B単相磁石はHciの減少に伴って磁束量、不可逆減磁率が増加する。しかし、ナノコンポジット磁石は保磁力Hciの割に不可逆減磁率が小さく、その水準はHci730kA/mのR2TM14B単相磁石に等しく、磁束量は最高125%程度増加する。
【0029】
図5は直径4.1mm、長さ6mm、内径2mmの磁石の外周面に1.2MA/mの外部磁界で10極の磁極を設けたPMステッピングモータの磁石ロータの全磁束量に対する不可逆減磁率と保磁力Hci(4MA/m)の関係を示す特性図である。ただし、試料は(表1)に示すnanocomposite−Aのうち、最もHciの高い磁石と低い磁石、およびR2TM14B単相磁石である。nanocomposite−Aのうち最も高いHciを示す磁石はR2TM14B単相磁石と同等の不可逆減磁率であり、この傾向は図4ともよく一致した結果である。すなわち、(表1)のように磁気特性から同じnanocomposite−Aに分類される磁石でも、実際の不可逆減磁に代表される熱安定性は大きく異なることが判る。
【0030】
図6は上記磁石を実装したステッピングモータのパルスレートとトルクの関係を示す特性図である。図のようにnanocomposite−Aのうち最も高いHciを示す磁石はR2TM14B単相磁石に比べ10−15%程度高出力化している。しかしながら、nanocomposite−Aで最も低いHciを示す磁石はR2TM14B単相磁石とほぼ同一であり、高出力化することはできない。したがって、熱安定性を兼ね備えたモータ体格の減少や高出力化、高効率化には533kA/mの保磁力Hciでは不足で、600kA/m以上が必要である。
【0031】
[磁石の作製]
先ず、αFe相とR2TM14B相を有する急冷薄帯を150μm以下に粗粉砕し、53μm以下の微粉末を除去した磁石粉末とした。この磁石粉末と下記構造で表されるマイクロカプセルをニーダに仕込み、ブレイドを回転して乾式混合した。ただし、カプセルに内包した液体エポキシオリゴマーはエポキシ当量約190のジグリシジルエーテルビスフェノールA、内包量は80wt.%である。その後、予めエポキシオリゴマー(ポリグリシジルエーテル−o−クレゾール−フォルムアルデヒドノボラック、軟化温度80℃、エポキシ当量215〜235、比重1.21)を有機溶媒(アセトン)に完溶させ、その50wt.%溶液を所定量の磁石粉末と湿式混合した。この湿式混合物を80℃に加熱して溶媒を除去し、得られた固形ブロックを解砕して粒径53〜250μmの顆粒とした。なお、この段階での顆粒は磁石粉末とエポキシオリゴマーのみである。したがって、例えば溶媒除去のための加熱時にエポキシオリゴマーの硬化反応は起こり得ない。
【0032】
上記、顆粒の配合は磁石粉末98.5%、固体エポキシオリゴマー0.5%、液体エポキシオリゴマー内包カプセル1%である。このように、固体エポキシオリゴマーは磁石粉末とカプセルとの分離を防止するための結着剤としての役割があり、顆粒を形成する必要最低限度でよい。
【0033】
次に上記、粒径53〜250μmの顆粒、粉末状潜在性硬化剤、および滑剤とを乾式混合した。ただし、粉末状潜在性硬化剤としては、1、2−ドデカン酸エステル1molと、アクリル酸エステル2molの付加反応生成物にヒドラジンを反応させて得られる平均粒子径30〜50μmの下記化学構造の酸ヒドラジドを使用した。
【0034】
【化3】
Figure 0004089220
【0035】
なお、この化合物の融点は120〜130℃である。エポキシオリゴマーとの配合は全エポキシ当量に対するアミノ活性水素当量か、あるいは化学当量比よりも僅かに粉末状潜在性硬化剤を増量した方が、高い架橋密度が得られる傾向にある。ここでの実際のエポキシオリゴマーに対する混合割合は概ね0.102〜0.613wt.%である。また、滑剤は平均粒子径5μmのステアリン酸カルシウム粉末で、顆粒100重量部に対して0.2重量部を添加した。
【0036】
上記コンパウンドのJIS Z2501による粉末流動性は45sec/50g、手で掴んでも粘り気のない乾いた顆粒であった。次に、本実施例で示した磁気特性測定用の直径5mmの円柱磁石、および直径4.1mm、長さ6mm、内径2mmのステッピングモータ用磁石を作製した。圧粉体はコンパウンドを、それぞれ980MPaで圧縮した。この圧粉体は圧縮時の圧力でセルが破壊し、内包液体エポキシオリゴマーのセル系外への流出で表面には湿り気があった。そこで、ステッピングモータ用磁石に直径2mmの回転軸を挿入して140℃−1hrの加熱硬化を行うと、磁石と回転軸とは一体的に剛体化しており、磁石から回転軸を抜くには60kgf以上の荷重が必要であった。なお、前記回転軸と一体化的に剛体化した磁石ロータは80℃、90%RHの高温高湿環境下で50hrs放置しても、磁石に錆びが発生することはなかった。したがって、電着塗装やスプレー塗装などのコーティングにより磁石表面に10−20μmのエポキシ樹脂保護膜を形成させることなく、そのままモータに実装することが可能となる。保護膜20μm相当分を磁石とすると空隙磁束密度は5%程度向上する。
【0037】
図7は上記磁石表面から深さ方向へのエポキシ樹脂の濃度分布を示す特性図である。図のように表面近傍のエポキシ樹脂濃度は、その平均よりも著しく高濃度であることがわかる。この現象はマイクロカプセルに内包した低粘度エポキシオリゴマーが圧縮時にコンパウンドの顆粒の境界から成形型表面に絞り出されているためと説明できる。
【0038】
【発明の効果】
本発明によれば熱安定性を兼ね備えた磁石粉末本来の磁気性能をモータ性能に十分に反映させることにより、mW級出力の永久磁石型モータの体格減少・高出力化・高効率化対応が可能となる。
【図面の簡単な説明】
【図1】R2TM14B単相磁石の保磁力対(BH)max、(Hk/Hci)、着磁性を示す特性図
【図2】外部磁界Hm対残留磁化Irを示す特性図
【図3】保磁力Hci対不可逆減磁率を示す特性図
【図4】保磁力Hci対磁束量と不可逆減磁率を示す特性図
【図5】保磁力Hci対全磁束量に対する不可逆減磁率の関係を示す特性図
【図6】ステッピングモータのパルスレートとトルクの関係を示す特性図
【図7】磁石表面から深さ方向へのエポキシ樹脂の濃度分布を示す特性図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to increasing the output of a permanent magnet type motor with mW class output.
[0002]
[Prior art]
Small permanent magnet type motors with mW class output mounted on OA, AV, information communication devices, etc. are required to have high efficiency along with a decrease in the motor size as the devices become smaller and lighter. To increase the efficiency of the motor, it is necessary to reduce the loss or increase the output. One of the keys to higher output is a permanent magnet, and it is important how the magnetic performance of the magnet powder is reflected in the motor performance. By the way, the conditions necessary for magnets to be applied to individual motors are as follows: (1) magnetic characteristics that can provide a static magnetic field necessary for the air gap, (2) stability represented by irreversible demagnetization, 3) Arbitrary shape according to the required shape, and (4) Overall economic efficiency from securing raw material resources to mounting is to ensure the highest consistency.
[0003]
By the way, if the physique of the motor is 1/10, the output is 1/1000. Thus, the scaling law is established for the output and the physique of the motor. In particular, the mW class output permanent magnet motor of the present invention, whose output is the mW class, has a remarkable decrease in output due to a decrease in physique, so it is necessary to further advance the fusion of magnets and motor manufacturing.
[0004]
As a high performance magnet for the mW class output permanent magnet type motor, a magnet in which R 2 TM 14 B (R is Nd / Pr, TM is Fe / Co) single-phase magnet powder is hardened with epoxy resin is widely known. It has been. Here, the coercive force of a magnet with a density of 6 Mg / m 3 in which the alloy composition Nd x (Fe 0.8 , Co 0.2 ) balance B 6 , (X = 11 to 16) is solidified with an epoxy resin as R 2 TM 14 B single-phase magnet powder. FIG. 1 shows the maximum energy product (BH) max , squareness (Hk / Hci), and magnetization (ratio of 1.6 MA / m and (BH) max after 4 MA / m pulse magnetization) with respect to Hci. As shown in the figure, the magnetization of R 2 TM 14 B single-phase magnet powder solidified with epoxy resin improves with decreasing Hci, but (BH) max shows a peak around Hci 800 kA / m, At lower Hci, (BH) max decreases rapidly. Therefore, as a high performance magnet for a permanent magnet type motor of the present invention whose output is mW class and small in size, X = 12 which can obtain Hci of around 800-1000 kA / m, that is, Nd 2 ( Fe, Co) single-phase magnet powder near the 14 B stoichiometry are generally used.
[0005]
In permanent magnet motors where the reduction in motor size progresses, single-phase magnet powder close to the Nd 2 (Fe, Co) 14 B stoichiometric composition as described above, and the magnetic performance of magnet powder is sufficient for motor performance. As a movement to increase the output and efficiency of the motor by reflecting it, for example, F.A. Yamashita, Y. et al. Sasaki, H .; Fukunaga, “Isotropic Nd-Fe-B Thin Arc-shaped Bonded Magnets for Small DC Motors Prepared by Powder Compacting Press Vita. 25, no. 4-2, pp. 683-686 (2001). In the arc-shaped magnet mounted on the permanent magnet field type DC motor having an output of 200 mW, the alloy composition Nd 12 Fe 77 Co 5 B 6 has an R 2 TM 14 B stoichiometric composition close to that of the stoichiometric composition. An arc-shaped bonded magnet made by molding a compound composed mainly of a phase magnet powder and an epoxy resin, and heat-curing the epoxy resin of the green compact, has a motor efficiency of about the same as the extruded magnet of the same magnet powder. 8% improvement.
[0006]
As described above, the reduction in the output of the motor, which decreases with the decrease in the size of the permanent magnet type motor, and the realization of high efficiency based on the output improvement are examples showing the importance of the fusion of magnets and motor manufacturing.
[0007]
[Problems to be solved by the invention]
However, in many cases, it is not possible to compensate for the decrease in the motor output accompanying the decrease in the size of the permanent magnet type motor only by the magnet manufacturing means as described above. For example, a bonded magnet produced by compressing a compound of R 2 TM 14 B single-phase magnet powder having an alloy composition of Nd 12 Fe 77 Co 5 B 6 and an epoxy resin at 980 MPa and heat curing the epoxy resin of the green compact. The density (BH) max after magnetizing with a pulse magnetic field of density 6.0 Mg / m 3 and 4 MA / m is 80 kJ / m 3 . However, as the physique of the motor continues to decrease, there are many cases where it becomes difficult to magnetize the magnet mounted on the motor, for example, with an applied magnetic field of 4 MA / m. In this case, the magnetic performance of the magnet powder cannot be sufficiently reflected in the motor performance. For example, in the PM type step motor, the distance between the magnetic poles on the outer peripheral surface of the magnet rotor is reduced as the motor diameter decreases (decrease in physique). In the stepping motor, the magnet rotor is displaced by one step angle by the magnetomotive force of the exciting coil corresponding to one pulse current. Therefore, the number of magnetic poles is generally 10, 12, or 24 regardless of the motor size. Also, increasing the number of magnetic poles has the effect of increasing the resolution by narrowing the displacement angle. However, if the distance between the magnetic poles decreases due to a decrease in the motor diameter (physique) or an increase in the number of magnetic poles, the conductor diameter of the magnetizing current when magnetizing the magnet becomes thin (usually one winding per pole is applied). . For example, the pulse current peak value Ip required for a magnet of an R 2 TM 14 B single-phase magnet powder having an alloy composition of Nd 12 Fe 77 Co 5 B 6 and an epoxy resin is 17 to 25 kA (the current density of the conductor to 22 kA / mm 2 However, if the distance between the magnetic poles is 1.25 mm, the allowable limit of the pulse current peak value Ip is about 6.7 kA (conductor current density to 22 kA / mm 2 ) considering the durability of the magnetized yoke. Limited. In other words, a sufficient magnetic field of 4 MA / m is not possible, and the magnetic performance of the magnet powder in the so-called unsaturated magnetic field region of 0.6-1.6 MA / m (15-40%) There is a need for a permanent magnet motor with a significantly reduced motor size that must be reflected in motor performance.
[0008]
On the other hand, in the unsaturated magnetization region where the magnetic field is 0.6-1.6 MA / m, for example, Ohara, Ueda, Yamashita, “Bonded magnets and applications using Nanocomposite materials”, Japan Society of Applied Magnetics, 19th Academic Lecture, (1995) 23aG-9. ΑFe / Nd 2 Fe 14 having a coercive force Hci value of ½ or less and a remanent magnetization Ir value of 1.05 to 1.07 times that of the R 2 TM 14 B single-phase magnet powder. A magnet obtained by solidifying a B-based nanocomposite magnet powder with an epoxy resin was examined, and the outer peripheral surface of the magnet was subjected to a pulse current peak value Ip = 3 kA (conductor current density 22 kA / mm 2 ), 50 magnetic poles (distance between the magnetic poles 0. 0). 8 mm), the amount of magnetic flux is 1.18 times that of a magnet in which R 2 Fe 14 B single-phase magnet powder is hardened with an epoxy resin. However, this magnet has poor magnetic stability as represented by initial irreversible demagnetization. Therefore, there is a demand for a magnet for realizing a reduction in size and output of a permanent magnet type motor with mW class output having thermal stability.
[0009]
The purpose of the present invention is to respond to the reduction in body size, higher output, and higher efficiency of mW class output permanent magnet motors by fully reflecting the original magnetic performance of magnet powder having thermal stability in motor performance. And
[0010]
[Means for Solving the Problems]
That is, the permanent magnet type motor of the present invention is magnetically isostatic with a coercive force Hci of 600 kA / m or more after a magnetization field of 4 MA / m pulse, a residual magnetization Ir of 940 mT or more, and a maximum energy product (BH) of max 135 kJ / m 3 or more. A magnetically crystallized quenching ribbon is used as a starting material, a compound of the coarsely pulverized powder and a binder is compression-molded, and a magnet obtained by heat-curing an epoxy resin of the obtained green compact is applied to a magnetic field Hm0.6-1. This is a mW class output permanent magnet type motor with magnetic poles applied in an unsaturated magnetization region of 6 MA / m, and a magnet rotor or permanent magnet field.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The permanent magnet type motor of the present invention is magnetically isotropic with a coercive force Hci of 600 kA / m or more after magnetization of 4 MA / m pulse, a residual magnetization Ir of 940 mT or more, and a maximum energy product (BH) of max 135 kJ / m 3 or more. Using a crystallized quenching ribbon as a starting material, a compound of the coarsely pulverized powder and a binder is compression-molded, and a magnet obtained by heating and curing an epoxy resin of the obtained green compact is applied to a magnetic field Hm 0.6-1.6 MA / This is a mW class output permanent magnet type motor with magnetic poles applied in the unsaturated magnetization region of m to provide a magnet rotor or permanent magnet field.
[0012]
Although the crystallized quenching ribbon as referred to in the present invention needs to contain a magnetically isotropic αFe phase and R 2 Fe 14 B nanocomposite, the R 2 Fe 14 B single crystal having a crystal particle diameter of 60 nm or less is required. It can be a mixture with a thin ribbon. The coarsely pulverized powder of the quenched thin ribbon is effective in obtaining a high (BH) max by suppressing the decrease in the squareness (Hk / Hci) of the demagnetization curve when the fine powder of 38 μm or less is removed.
[0013]
On the other hand, the binder referred to in the present invention is preferably an epoxy resin mainly composed of a solid epoxy oligomer, a liquid epoxy oligomer-encapsulated microcapsule, or a latent powder curing agent. Here, the epoxy oligomer is a compound having at least two oxirane rings in one molecule, and is preferably a solid epoxy oligomer at room temperature, preferably soluble in an organic solvent such as acetone and having an oxirane ring in the molecular chain. A novolak type epoxy oligomer having a softening temperature of 70 ° C. or more and an epoxy equivalent of 235 or less that can be represented by the following chemical structure can be given.
[0014]
[Chemical 1]
Figure 0004089220
[0015]
On the other hand, an epoxy oligomer that is liquid at room temperature in a microcapsule is a condensate of bisphenol A and epichlorohydrin that can be represented by the following chemical structure, and a low-viscosity epoxy such as diglycidyl ether bisphenol A having an epoxy equivalent of 170-190. Oligomers are preferred.
[0016]
[Chemical 2]
Figure 0004089220
[0017]
The amount of the liquid epoxy oligomer encapsulated is 70 wt. % Or more. Increasing the amount of inclusion is suitable for the purpose of the present invention, but the amount of inclusion is 90 wt. If it exceeds 50%, it tends to be mechanically damaged, so that it may flow out of the cell system at the time of producing a compound with magnet powder, which is not preferable. In addition, if the material of the cell is composed of a melamine resin insoluble in an organic solvent such as acetone, the cell is attacked by the organic solvent at the stage of preparing the compound, and the epoxy oligomer can be prevented from flowing out of the cell system.
[0018]
Next, the powdery latent curing agent referred to in the present invention may include one or more selected from the group of dicyandiamide and derivatives thereof, carboxylic acid dihydrazide, diaminomaleonitrile and hydrazides of derivatives thereof, and the like. . These are generally high melting point compounds that are hardly soluble in organic solvents, but those having a particle size adjusted to several to several tens of μm are preferred. Examples of the dicyandiamide derivative include o-tolylbiguanide, α-2 · 5-dimethylbiguanide, α-ω-diphenylbiguanide, 5-hydroxybutyl-1-biguanide, phenylbiguanide, α-, ω-dimethylbivic. There are anides. Furthermore, examples of the carboxylic acid dihydrazide include succinic acid hydrazide, adipic acid hydrazide, isophthalic acid hydrazide, and p-axylbenzoic acid hydrazide.
[0019]
When the above compound is compressed, the cell is destroyed by the molding pressure, and a green compact in which the encapsulated liquid epoxy oligomer flows out of the cell system can be produced. The liquid epoxy oligomer that has flowed out of the cell system wets again the new surface and the green compact surface of the magnet powder crushed by the molding pressure. When a liquid epoxy resin is cured at the same time as a solid epoxy oligomer with a latent powder curing agent dispersed in the green compact by heating such a green compact, the epoxy resin will be present in a high concentration near the magnet surface. The concentration can be adjusted to 10% or more. As a result, the rust prevention capability is enhanced, and it is possible to mount as a magnet rotor or permanent magnet field of a permanent magnet type motor without performing electrodeposition coating or spray coating of an epoxy resin on a general magnet. A magnet can be directly mounted as a magnet rotor or permanent magnet field of a permanent magnet type motor without performing electrodeposition coating or spray coating with a film thickness of 10-20 μm. And the gap distance can be reduced. Thereby, the gap magnetic flux density is improved by about 5%.
[0020]
Further, in the present invention, when the green compact is produced, the liquid epoxy oligomer that has flowed out of the cell system due to the compression pressure wets the green compact surface again, so the rotating shaft is directly inserted into the green compact, The green compact and the rotating shaft can be integrally rigidized without using an adhesive simultaneously with heat curing.
[0021]
When a magnet having a density of 6 ± 0.1 Mg / m 3 , a residual magnetization of Ir 720 mT or more, and a (BH) max of 80 kJ / m 3 or more is mounted on a permanent magnet type motor having a maximum output of 200 mW or less, high output and high efficiency are achieved. Can be promoted.
[0022]
【Example】
Next, the present invention will be described in more detail with reference to examples. However, the embodiments of the present invention are not limited to the examples.
[0023]
[Quenched ribbon and magnet properties]
R 2 Fe 14 B (R is Nd / Pr) quenched ribbon close to the stoichiometric composition, and it more R less, was prepared nanocomposite quenched ribbons 6 kinds of R 2 Fe 14 B phase and the αFe phase . Next, these quenched ribbons were coarsely pulverized to 250 μm or less to obtain magnet powder from which fine powder of 53 μm or less was removed. Furthermore, the compound produced with the said magnet powder and an epoxy resin was compressed at 980 Mpa, and the epoxy resin was finally heat-hardened at 140 degreeC, and the cylindrical magnet of density 6Mg / m < 3 >, diameter 5mm and length 5mm was produced.
[0024]
(Table 1) shows the alloy composition of the ribbon and the magnetic properties of the ribbon and magnet after 4 MA / m pulse magnetization. FIG. 2 is a characteristic diagram in which the residual magnetization Ir is plotted against the external magnetic field Hm after a magnet corresponding to (Table 1) is sandwiched between electromagnets and an arbitrary external magnetic field Hm is applied. Based on the magnetic properties of the quenched ribbon made of R 2 Fe 14 B single-phase magnet powder of alloy composition Nd 12 Fe 77 Co 5 B 6 , the relationship between R 2 Fe 14 B phase and αFe phase in (Table 1) The nanocomposite quenched ribbon has a small coercive force Hci. However, all of the quenched ribbons indicated by nanocomposite-A in the table show high Ir and (BH) max . The magnets Hci, Ir, and (BH) max all decrease from the ribbon, but the tendency is the same.
[0025]
Magnetization curve of Nanocomposite-A from FIG. 2 is rising at a low magnetic field is slow as compared to Nanocomposite-B, it rises sharply than R 2 Fe 14 B single phase magnet. The four types of nanocomposite-A have different alloy compositions as shown in (Table 1), but they all have the same tendency. In the unsaturated magnetization region from the vicinity of the external magnetic field Hm 0.4 MA / m to 1.6 MA / m, R Magnetization higher than that of a 2 Fe 14 B single-phase magnet can be obtained.
[0026]
[Table 1]
Figure 0004089220
[0027]
FIG. 3 is a characteristic diagram in which the irreversible demagnetization factor with respect to the coercive force Hci of the αFe / R 2 Fe 14 B nanocomposite and the R 2 Fe 14 B single-phase magnet having the coercive force Hci 250 to 950 kA / m is plotted against the demagnetizing factor. is there. In the figure, “Reduction in coefficiency” indicates a demagnetization factor due to a decrease in coercive force Hci, and “Change in squares” indicates a demagnetization factor due to deterioration of squareness (Hk / Hci) of a demagnetization curve. As shown in the figure, the demagnetization due to the deterioration of the squareness (Hk / Hci) almost disappears when the Hci is near 550 kA / m, and beyond this, the coercive force Hci is one of the thermal stability of the magnet. It comes to rule.
[0028]
Figure 4 is the coercive force Hci different coercive forces Hci flux amount and the irreversible flux loss obtained when the magnetized nanocomposite magnet above 626kA / m in 0.8-1.6MA / m R 2 TM 14 B single It is a characteristic view compared with that of a phase magnet. In the R 2 TM 14 B single-phase magnet, the amount of magnetic flux and the irreversible demagnetization rate increase as Hci decreases. However, the nanocomposite magnet has a small irreversible demagnetizing factor for the coercive force Hci, the level is equal to that of an R 2 TM 14 B single-phase magnet of Hci 730 kA / m, and the amount of magnetic flux increases up to about 125%.
[0029]
FIG. 5 shows an irreversible demagnetization factor with respect to the total magnetic flux of a magnet rotor of a PM stepping motor in which a magnetic pole having a diameter of 4.1 mm, a length of 6 mm, and an inner diameter of 2 mm is provided with 10 magnetic poles with an external magnetic field of 1.2 MA / m. It is a characteristic view which shows the relationship between the coercive force Hci (4MA / m). However, the sample is a magnet having the highest Hci and a low magnet among the nanocomposite-A shown in (Table 1), and an R 2 TM 14 B single-phase magnet. The magnet showing the highest Hci among the nanocomposite-A has an irreversible demagnetization factor equivalent to that of the R 2 TM 14 B single-phase magnet, and this tendency is in good agreement with FIG. That is, it can be seen that the thermal stability represented by actual irreversible demagnetization is greatly different even in magnets classified into the same nanocomposite-A from the magnetic characteristics as shown in (Table 1).
[0030]
FIG. 6 is a characteristic diagram showing the relationship between the pulse rate and torque of a stepping motor mounted with the magnet. As shown in the figure, the magnet showing the highest Hci among the nanocomposite-A has a higher output of about 10-15% than the R 2 TM 14 B single-phase magnet. However, the magnet showing the lowest Hci in nanocomposite-A is almost the same as the R 2 TM 14 B single-phase magnet, and cannot increase the output. Therefore, the coercive force Hci of 533 kA / m is insufficient for the reduction of the motor physique having thermal stability, high output, and high efficiency, and 600 kA / m or more is necessary.
[0031]
[Production of magnet]
First, a quenched ribbon having an αFe phase and an R 2 TM 14 B phase was coarsely pulverized to 150 μm or less to obtain a magnet powder from which fine powder of 53 μm or less was removed. The magnet powder and microcapsules represented by the following structure were charged into a kneader, and the blade was rotated and dry mixed. However, the liquid epoxy oligomer contained in the capsule was diglycidyl ether bisphenol A having an epoxy equivalent of about 190, and the amount contained was 80 wt. %. Thereafter, an epoxy oligomer (polyglycidyl ether-o-cresol-formaldehyde novolak, softening temperature 80 ° C., epoxy equivalents 215 to 235, specific gravity 1.21) was completely dissolved in an organic solvent (acetone) in advance. % Solution was wet mixed with a predetermined amount of magnet powder. The wet mixture was heated to 80 ° C. to remove the solvent, and the resulting solid block was crushed to form granules having a particle size of 53 to 250 μm. The granules at this stage are only magnet powder and epoxy oligomer. Therefore, for example, the curing reaction of the epoxy oligomer cannot occur during the heating for removing the solvent.
[0032]
The composition of the granule is 98.5% magnet powder, 0.5% solid epoxy oligomer, and 1% capsule containing liquid epoxy oligomer. Thus, the solid epoxy oligomer has a role as a binder for preventing separation between the magnetic powder and the capsule, and may be the minimum necessary to form granules.
[0033]
Next, the granules having a particle size of 53 to 250 μm, the powdery latent curing agent, and the lubricant were dry mixed. However, the powdery latent curing agent is an acid having the following chemical structure with an average particle size of 30 to 50 μm obtained by reacting hydrazine with an addition reaction product of 1 mol of 1,2-dodecanoic acid ester and 2 mol of acrylic acid ester. Hydrazide was used.
[0034]
[Chemical 3]
Figure 0004089220
[0035]
In addition, melting | fusing point of this compound is 120-130 degreeC. When the compounding with the epoxy oligomer is amino active hydrogen equivalent to the total epoxy equivalent, or the powdery latent curing agent is slightly increased rather than the chemical equivalent ratio, a higher crosslinking density tends to be obtained. The mixing ratio with respect to the actual epoxy oligomer here is about 0.102 to 0.613 wt. %. The lubricant was calcium stearate powder having an average particle size of 5 μm, and 0.2 part by weight was added to 100 parts by weight of the granules.
[0036]
The powder flowability of the above compound according to JIS Z2501 was 45 sec / 50 g, and it was a dry granule that was not sticky even if it was grasped by hand. Next, a cylindrical magnet having a diameter of 5 mm and a magnet for a stepping motor having a diameter of 4.1 mm, a length of 6 mm, and an inner diameter of 2 mm shown in this example were prepared. The green compacts were each compressed at 980 MPa. In this green compact, the cell was destroyed by the pressure at the time of compression, and the surface was wet due to the outflow of the encapsulated liquid epoxy oligomer outside the cell system. Therefore, when a rotating shaft having a diameter of 2 mm is inserted into a stepping motor magnet and heat-cured at 140 ° C. for 1 hr, the magnet and the rotating shaft are integrally rigid, and 60 kgf is required to remove the rotating shaft from the magnet. The above load was necessary. Note that the magnet rotor made rigid integrally with the rotating shaft did not rust on the magnet even when left for 50 hrs in a high temperature and high humidity environment of 80 ° C. and 90% RH. Therefore, it can be mounted on the motor as it is without forming a 10-20 μm epoxy resin protective film on the magnet surface by coating such as electrodeposition coating or spray coating. When the portion corresponding to 20 μm of the protective film is a magnet, the gap magnetic flux density is improved by about 5%.
[0037]
FIG. 7 is a characteristic diagram showing the concentration distribution of the epoxy resin from the magnet surface to the depth direction. As shown in the figure, it can be seen that the concentration of the epoxy resin near the surface is significantly higher than the average. This phenomenon can be explained by the fact that the low-viscosity epoxy oligomer encapsulated in the microcapsule is squeezed from the boundary of the compound granules to the mold surface during compression.
[0038]
【The invention's effect】
According to the present invention, mW class output permanent magnet motors can be reduced in size, increased in output and increased in efficiency by fully reflecting the original magnetic performance of magnet powder having thermal stability in motor performance. It becomes.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing coercivity (BH) max , (Hk / Hci) and magnetization of an R 2 TM 14 B single-phase magnet. FIG. 2 is a characteristic chart showing external magnetic field Hm versus remanent magnetization Ir. 3] Characteristic diagram showing coercive force Hci vs. irreversible demagnetization factor [FIG. 4] Characteristic diagram showing coercive force Hci vs. magnetic flux amount and irreversible demagnetization factor [FIG. 5] Fig. 5 shows the relationship of irreversible demagnetization factor to coercive force Hci vs. total magnetic flux amount [Fig. 6] Characteristic diagram showing the relationship between the pulse rate and torque of the stepping motor. [Fig. 7] Characteristic diagram showing the concentration distribution of the epoxy resin from the magnet surface in the depth direction.

Claims (13)

着磁界4MA/mパルス着磁後の保磁力Hci600kA/m以上、残留磁化Ir940mT以上、最大エネルギー積(BH)max135kJ/m3以上の、αFe相とR 2 Fe 14 B相を有するナノコンポジットが含まれる磁気的な等方性の結晶化急冷薄帯の粗粉砕粉末と結合剤とのコンパウンドを圧縮成形し、その圧粉体を加熱硬化したボンド磁石を着磁界Hm0.6−1.6MA/mの不飽和着磁領域で磁極を付与し、磁石ロータとした永久磁石型モータ。Includes nanocomposite with αFe phase and R 2 Fe 14 B phase with coercive force Hci 600 kA / m or more after magnetization of 4 MA / m pulse, residual magnetization Ir940 mT or more, maximum energy product (BH) max 135 kJ / m 3 or more A magnetically isotropically crystallized quenched ribbon of coarsely pulverized powder and a binder is compression molded, and the green compact is heat-cured to form a bonded magnet with a magnetic field Hm 0.6-1.6 MA / m Permanent magnet type motor with a magnetic rotor provided with magnetic poles in the unsaturated magnetization region. 着磁界4MA/mパルス着磁後の保磁力Hci600kA/m以上、残留磁化Ir940mT以上、最大エネルギー積(BH)max135kJ/m3以上の、αFe相とR 2 Fe 14 B相を有するナノコンポジットが含まれる磁気的な等方性の結晶化急冷薄帯の粗粉砕粉末と結合剤とのコンパウンドを圧縮成形し、その圧粉体を加熱硬化したボンド磁石を着磁界Hm0.6−1.6MA/mで磁極を付与し、永久磁石界磁とした永久磁石モータ。Includes nanocomposite with αFe phase and R 2 Fe 14 B phase with coercive force Hci 600 kA / m or more after magnetization of 4 MA / m pulse, residual magnetization Ir940 mT or more, maximum energy product (BH) max 135 kJ / m 3 or more A magnetically isotropically crystallized quenched ribbon of coarsely pulverized powder and a binder is compression molded, and the green compact is heat-cured to form a bonded magnet with a magnetic field Hm 0.6-1.6 MA / m Permanent magnet motor with a magnetic pole and a permanent magnet field. 結合剤が固体エポキシオリゴマー、液体エポキシオリゴマー内包マイクロカプセル、潜在性粉末硬化剤を主成分としたエポキシ樹脂である請求項1または2記載の永久磁石モータ。  The permanent magnet motor according to claim 1, wherein the binder is an epoxy resin mainly composed of a solid epoxy oligomer, a liquid epoxy oligomer-encapsulated microcapsule, or a latent powder curing agent. マイクロカプセルの液体エポキシオリゴマー内包量が80wt%以上である請求項1または2に記載の永久磁石モータ。The permanent magnet motor according to claim 1 or 2, wherein the amount of liquid epoxy oligomer included in the microcapsule is 80 wt% or more. マイクロカプセルがメラミン樹脂である請求項1〜4のいずれか1項に記載の永久磁石モータ。The permanent magnet motor according to any one of claims 1 to 4 , wherein the microcapsule is a melamine resin. マイクロカプセルの液体エポキシオリゴマーがエポキシ当量約190のジグリシジルエーテルビスフェノールAである請求項1〜5のいずれか1項に記載の永久磁石モータ。The permanent magnet motor according to claim 1 , wherein the liquid epoxy oligomer of the microcapsule is diglycidyl ether bisphenol A having an epoxy equivalent of about 190. 圧縮成形の圧力でマイクロカプセルを破壊し、系外に流出した内包液体エポキシオリゴマーを固体エポキシオリゴマーと同時に加熱硬化したボンド磁石である請求項1、2、のいずれか1項に記載の永久磁石モータ。Destroy microcapsules by pressure of compression molding, the permanent magnet according Enclosing liquid epoxy oligomer having flowed out of the system claim 1 is a bonded magnet was heat-cured at the same time as the solid epoxy oligomer, to any one of the 3 motor. ボンド磁石の表層のエポキシ樹脂量が10%以上である請求項1〜3のいずれか1項に記載の永久磁石モータ。The permanent magnet motor according to any one of claims 1 to 3 , wherein an amount of epoxy resin on a surface layer of the bonded magnet is 10% or more. 磁石がコーティングレスである請求項1、2および6のいずれか1項に記載の永久磁石モータ。Permanent magnet motor according to any one of claims 1, 2 and 6 magnets are less coating. 圧粉体に回転軸を挿入し、圧粉体の加熱硬化と同時に回転軸を一体的
に剛体化する請求項1および3〜6のいずれか1項に記載の永久磁石モータ。
The permanent magnet motor according to any one of claims 1 and 3 to 6 , wherein a rotary shaft is inserted into the green compact, and the rotary shaft is integrally rigidized at the same time as the green compact is heated and cured.
ボンド磁石の密度が6±0.1Mg/m3である請求項1または2記載の永久磁石モータ。The permanent magnet motor according to claim 1, wherein the density of the bond magnet is 6 ± 0.1 Mg / m 3 . ボンド磁石が残留磁化Ir720mT以上、(BH)max80kJ/m3以上である請求項1または2記載の永久磁石モータ。Bonded magnet remanence Ir720mT above, claim 1 or 2 permanent magnet motor, wherein the (BH) max80kJ / m 3 or more. 最大出力が200mW以下である請求項1または2記載の永久磁石モータ  The permanent magnet motor according to claim 1 or 2, wherein the maximum output is 200 mW or less.
JP2001389133A 2001-12-21 2001-12-21 Permanent magnet motor Expired - Fee Related JP4089220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001389133A JP4089220B2 (en) 2001-12-21 2001-12-21 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001389133A JP4089220B2 (en) 2001-12-21 2001-12-21 Permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2003189517A JP2003189517A (en) 2003-07-04
JP4089220B2 true JP4089220B2 (en) 2008-05-28

Family

ID=27597441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389133A Expired - Fee Related JP4089220B2 (en) 2001-12-21 2001-12-21 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP4089220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233764A (en) * 2010-04-28 2011-11-17 Minebea Co Ltd Method for manufacturing laminated resin composite magnet film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934787B2 (en) * 2004-05-25 2012-05-16 戸田工業株式会社 Magnetic alloys and bonded magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233764A (en) * 2010-04-28 2011-11-17 Minebea Co Ltd Method for manufacturing laminated resin composite magnet film

Also Published As

Publication number Publication date
JP2003189517A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
EP1480235B1 (en) Flexible magnet and method for manufacturing motor using the same
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
JP4525678B2 (en) Manufacturing method of self-assembled rare earth-iron bond magnet and motor using the same
EP0331055B1 (en) Methods for producing a resinbonded magnet
US6995488B1 (en) Permanent magnet field small DC motor
JPH03257807A (en) Manufacture of resin magnet structure body
JP4089220B2 (en) Permanent magnet motor
JP4042505B2 (en) Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor
JP4710830B2 (en) Anisotropic rare earth bonded magnet with self-organized network boundary phase and permanent magnet type motor using the same
JP4364487B2 (en) Rare earth bonded magnet from sheet to film and permanent magnet motor using the same
US5190684A (en) Rare earth containing resin-bonded magnet and its production
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP2004296873A (en) Anisotropic rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP3646486B2 (en) Rare earth bonded magnet
JP2006049554A (en) Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP2004179378A (en) Manufacturing method of rare earth bond magnet and permanent magnet type motor including the magnet
JP2558790B2 (en) Resin magnet manufacturing method
JP2615781B2 (en) Method for manufacturing resin magnet structure
KR920002258B1 (en) Resin-bonded magnet and making method thereof
JP4887617B2 (en) Resin composition for anisotropic bonded magnet, anisotropic bonded magnet, and motor
JP2839264B2 (en) permanent magnet
JP4089705B2 (en) Multi-layered multipole magnet rotor
JP3024436B2 (en) Method for manufacturing resin magnet structure
JP2558791B2 (en) Resin magnet manufacturing method
JP2006080115A (en) Anisotropic rare earth/iron-based bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees