JP4042505B2 - Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor - Google Patents

Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor Download PDF

Info

Publication number
JP4042505B2
JP4042505B2 JP2002264494A JP2002264494A JP4042505B2 JP 4042505 B2 JP4042505 B2 JP 4042505B2 JP 2002264494 A JP2002264494 A JP 2002264494A JP 2002264494 A JP2002264494 A JP 2002264494A JP 4042505 B2 JP4042505 B2 JP 4042505B2
Authority
JP
Japan
Prior art keywords
rare earth
bonded magnet
earth bonded
producing
anisotropic rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002264494A
Other languages
Japanese (ja)
Other versions
JP2004103871A (en
Inventor
文敏 山下
彰彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002264494A priority Critical patent/JP4042505B2/en
Publication of JP2004103871A publication Critical patent/JP2004103871A/en
Application granted granted Critical
Publication of JP4042505B2 publication Critical patent/JP4042505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は希土類磁石粉末と熱硬化性樹脂組成物からなる顆粒状コンパウンド、温間圧縮と含浸を必須工程とした異方性希土類ボンド磁石の製造方法、並びにそれらを利用した効率的な永久磁石型モータに関する。例えば、1992年から2000年までの小型モータ生産台数の概算は24億から47億を既に超えた。直流モータ、ブラシレスモータ、ステッピングモータ、および無鉄心モータの生産台数の増加が特に顕著で1992年から2000年まで26億も増加した。その上、将来も年率平均で9%の成長を見積もることができる。しかしながら、小型誘導モータと小型同期モータの生産数は徐々に減少傾向にある。この傾向は、小型モータ産業における高性能磁石による効率的な小型モータの開発と、電気電子機器分野における効率的な小型モータの需要が高度であることを示唆する。小型モータの生産台数のおよそ70%は直流モータである。なお、一般の小型直流モータではフェライトゴム磁石、高性能小型直流モータではメルトスピニングによって準備されたNd−Fe−B系のフレーク状の希土類磁石粉末をエポキシ樹脂のような堅い熱硬化性樹脂で圧縮成形した環状磁石が主として利用されている。
【0002】
一方、経済産業省・資源エネルギー庁の統計では日本における電力総消費は2000年で、およそ9500億kWhであった。その資料から推計すると、モータによる消費電力は総内需の50%を超えると推定される。モータの電力消費は大容量の動力用モータとは限らない。例えば、2.5インチのHDDスピンドルモータの消費電力はアイドルの状態におけるPCの消費電力の50%を超える。(J.G.W.West,Power Engineering J.April.77,1994)。すなわち、小型モータに関しては、それ自体の電力消費は高々数10W以下が多数である。しかしながら、先端電気電子機器における需要が高度であることを勘案すれば、効率的な小型モータの広い利用と普及が環境保全や省資源の見地からも強く必要である。本発明は、上記効率的な小型モータを主体とした各種先端電気電子機器に利用されるような効率的な小型モータと、それに適応する異方性希土類ボンド磁石の新規な製造方法に関する。
【0003】
【従来の技術】
各種先端電気、電子機器に利用される小型モータは、当該機器の小型軽量化に伴う更なるモータ体格の減少とともに小型、高出力、或いは高効率化が求められている。1960年代から永久磁石型モータが普及したのも、磁石の応用がモータの損失削減につながり、ひいては効率的な小型モータの作製に効果的であったからである。このような小型モータの発展は磁石粉末を結合剤で固めたボンド磁石の場合には磁石粉末、結合剤、成形加工法が3大要素技術として、それぞれ等しく重要である。
【0004】
上記、小型モータに広く使われているボンド磁石に関して、広沢、富澤らの「Recent Progress in Research and Development Related to Bonded Rare−ErathPermanent Magnets」日本応用磁気学会誌、Vol.21、No.4−1、pp.161−167(1997)が端的に解説している。したがって、引用文献に基づく図1を用いてボンド磁石作製における3大要素技術、すなわち磁石粉末、結合剤、成形加工法の連携を説明する。
【0005】
先ず、磁石粉末▲1▼としてはフェライト系▲1▼−a、アルニコ系▲1▼−b、希土類系▲1▼−c、結合剤▲2▼としてはフレキシブル系(ゴム、熱可塑性エラストマー)▲2▼−a、堅い熱可塑性樹脂▲2▼−b、堅い熱硬化性樹脂▲2▼−c、加工方法▲3▼としてはカレンダーリング/押出成形▲3▼−a、射出成形▲3▼−b、圧縮成形▲3▼−cがある。そして、それらの連携は図中の実線で示すように整理される。
【0006】
例えば、K.Ohmori,「New Era of Bonded SmFeN Magnets」,Polymer bonded magnet 2002,April,Chicago,US,2000によれば、耐候性を付与した粉末粒子径5μm以下のSm−Fe−N系希土類磁石粉末▲1▼−cは結合剤▲2▼としてフレキシブル系(ゴム、熱可塑性エラストマー)▲2▼−a、または、堅い熱可塑性樹脂▲2▼−b、また、成形加工法▲3▼としてカレンダーリング/押出成形▲3▼−a、射出成形▲3▼−bという要素で連携した異方性希土類ボンド磁石が紹介されている。そして、このような粉末粒子径5μm以下のSm−Fe−N系希土類磁石粉末やSmCo5系希土類磁石粉末は堅い熱硬化性樹脂▲2▼−cと圧縮成形▲3▼−cとの連携要素の下で工業的に使用されることは当業者の知り得る技術情報には見当たらない。それは、粉末粒子径5μm以下の希土類磁石粉末を圧縮しても得られるグリーンコンパクトの密度は射出成形等、一般に紹介されている加工技術よりも高い値が得られないという認識があったからと考えられる。このことは、ハードフェライト磁石粉末▲1▼−aでも堅い熱硬化性樹脂▲2▼−cと圧縮成形▲3▼−cとの連携要素の下で工業的に使用されることは極めて稀であることからも了解されるところである。
【0007】
【非特許文献1】
広沢 哲、外1名「Recent Progress in Research and Development Related to Bonded Rare−Erath Permanent Magnets」日本応用磁気学会誌、Vol.21、No.4−1、pp.161−167(1997)
【0008】
【発明が解決しようとする課題】
ところで、上記のような粉末粒子径5μm以下のSm−Fe−N系希土類磁石粉末▲1▼−c、堅い熱可塑性樹脂▲2▼−b、射出成形▲3▼−bという、よく知られた連携要素で作製したラジアル異方性希土類ボンド磁石を松岡篤、山崎東吾、川口仁らは送風機用ブラシレスモータの高効率化の手段として応用したことを電気学会回転機研究会資料、RM−01−161(2001)で報告している。表1は報告された希土類ボンド磁石の代表特性とモータ特性を示す。
【0009】
【表1】

Figure 0004042505
【0010】
ただし、表1のFerriteは従来磁石の例であり、図1の連携要素で説明すると、ハードフェライト磁石粉末▲1▼−a、堅い熱可塑性樹脂▲2▼−b、射出成形▲3▼−bという要素で連携した極異方性フェライトボンド磁石である。前記、最大エネルギー積(BH)maxが16kJ/m3の異方性フェライトボンド磁石と比較して、(BH)maxが79kJ/m3のSm−Fe−N系ラジアル異方性希土類ボンド磁石をモータに応用することでモータの高出力化が実現し、効率が5%改善されている。しかしながら、前記Sm−Fe−N系磁石粉末自体の(BH)maxは323kJ/m3であるとしている。しからば、実際にモータに使用されている異方性希土類ボンド磁石は磁石粉末自体の(BH)maxの1/4程度と推定される。このように、Sm−Fe−N系希土類磁石粉末▲1▼−cを▲2▼−aまたは脂▲2▼−b、▲3▼−aまたは▲3▼−bという連携要素では(BH)maxが100kJ/m3を越える異方性希土類ボンド磁石を工業的規模で安定して作製することが困難であることが予想される。
【0011】
なお、(BH)maxが79kJ/m3と言う水準はメルトスパンした磁気的に等方性のNd2Fe14B系希土類磁石粉末▲1▼−c、堅い熱硬化性樹脂▲2▼−c、圧縮成形▲3▼−cの連携によって作製したボンド磁石の(BH)maxが80kJ/m3と殆ど同じである。しかも同磁石粉末自体の(BH)max値が概ね120kJ/m3であることを考慮すれば、ボンド磁石製造における3大要素の連携を見直し、平均粒子径5μm以下のSm−Fe−N系希土類磁石粉末本来の磁気特性を効率的に引き出し、モータ効率の改善に繋げる技術が求められる。
【0012】
【課題を解決するための手段】
本発明は、図1の太実線で示すように材料が平均粒子径5μm以下の希土類磁石粉末▲1▼−cと堅い熱硬化性樹脂組成物▲2▼−cとの顆粒状コンパウンド、成形加工が温間圧縮と熱硬化性樹脂組成物の含浸▲3▼−dとを必須工程とする異方性希土類ボンド磁石の製造方法。材料が平均粒子径5μm以下の希土類磁石粉末▲1▼−cと平均粒子径50μm以上の希土類磁石粉末▲1▼−c、および堅い熱硬化性樹脂組成物▲2▼−cとの顆粒状コンパウンド、成形加工が温間圧縮と熱硬化性樹脂組成物の含浸▲3▼−dとを必須工程とする異方性希土類ボンド磁石の製造方法。更には希土類磁石粉末▲1▼−cと堅い熱硬化性樹脂組成物▲2▼−cとを主成分とした顆粒状コンパウンドを温間圧縮し、得られたグリーンコンパクトと支持部材とを組立て、熱硬化性樹脂組成物を同時に含浸▲3▼−d、熱硬化して支持部材と一体的に剛体化する異方性希土類ボンド磁石の製造方法。並びに、希土類磁石粉末▲1▼−cと堅い熱硬化性樹脂組成物▲2▼−cとを主成分とした顆粒状コンパウンドを温間圧縮したグリ−ンコンパクトを熱硬化した後、支持部材と組立て、更に、熱硬化性樹脂組成物を同時に含浸▲3▼−d、熱硬化して支持部材と一体的に剛体化する異方性希土類ボンド磁石の製造方法を骨子とするものである。
【0013】
本発明は、とくに(BH)maxが300kJ/m3以上の平均粒子径5μm以下の希土類磁石粉末が耐候性Sm2Fe17N3系金属間化合物を主成分とする希土類磁石粉末▲1▼−cか、または(BH)maxが160kJ/m3以上の平均粒子径5μm以下の希土類磁石粉末がSm−Co5系金属間化合物を主成分とする希土類磁石粉末▲1▼−cを主成分とする。しかしながら、前記平均粒子径5μm以下の希土類磁石粉末とともに、平均粒子径50μm以上の希土類磁石粉末が耐候性Nd2Fe(Co)14B系金属間化合物を主成分とする希土類磁石粉末▲1▼−c、平均粒子径50μm以上の希土類磁石粉末がNd2Fe(Co)14B系金属間化合物を主成分とする磁気的に等方性の希土類磁石粉末▲1▼−c、平均粒子径50μm以上の希土類磁石粉末がNd2Fe(Co)14B系金属間化合物とFe3B、Fe等のソフト相との磁気的に等方性のナノコンポジット磁石粉末▲1▼−c、平均粒子径50μm以上の希土類磁石粉末がSm2Fe17N3系金属間化合物とFe等のソフト相との磁気的に等方性のナノコンポジット磁石粉末▲1▼−cの1種または2種以上を併用しても差し支えない。
【0014】
一方、堅い熱硬化性樹脂組成物▲2▼−bは不飽和ポリエステル樹脂を主成分とすることが望ましく、更に、不飽和ポリエステル樹脂を構成する不飽和ポリエステルアルキッドが室温で固体のテレフタル酸系不飽和ポリエステルアルキッド、不飽和ポリエステル樹脂を構成する共重合性単量体がアリル基を有するアリル系共重合性単量体であり、前記、不飽和ポリエステル樹脂の重合開始温度(キックオフ温度)が110℃以上となる有機過酸化物を有効成分とすることが望ましい。とくに、前記有機過酸化物は本発明に係るか粒状コンパウンドの室温での貯蔵性や温間圧縮時の安定性確保のために室温で固体のジクミルパ−オキサイドを主成分とすることが望ましい。
【0015】
更に、上記不飽和ポリエステル樹脂に対して10PHR以上のペンタエリスリト−ルステアリン酸トリエステルを添加すると磁界印加による磁石粉末の特定方向への配列が促進され、生産性の改善に効果的である。
【0016】
なお、本発明に係るか粒状コンパウンドの作製手段としては、先ず室温で固体の不飽和ポリエステル樹脂を有機溶媒に溶解し、希土類磁石粉末と湿式混合する。次いで、加熱等によって有機溶媒を除去した当該混合物を解砕して顆粒状コンパウンドとすることが望ましい。とくに、粒子径75μm以上の顆粒を50wt.%以上とすると成形型キャビティへの充填性や低圧力で高密度を有する異方性希土類ボンド磁石を得るのに効果的である。また、当該コンパウンドを温間圧縮する加熱成形型よりも高融点の高級脂肪酸、高級脂肪酸アミド、高級脂肪酸金属石鹸類から選ばれる1種または2種以上の滑剤を顆粒状コンパウンドの表面に0.1wt.%以上付着せしめると1mm以下の薄肉キャビティへの顆粒状コンパウンドの充填性を改善することが可能となる。
【0017】
一方、本発明における顆粒状コンパウンドの熱硬化性樹脂組成物の割合が2wt.%以下とし、希土類磁石粉末を高充填することが希土類磁石粉末本来の(BH)maxを希土類ボンド磁石で引き出すことに効果的である。
【0018】
また、本発明では温間圧縮が▲1▼フィーダボックス内の顆粒状コンパウンドを熱硬化性樹脂組成物の軟化温度以上に加熱した成形型キャビティに充填し、顆粒状コンパウンドを非磁性上下パンチと非磁性ダイとで密閉する工程。▲2▼前記顆粒状コンパウンドに磁界を印加して希土類磁石粉末を所定の方向に配列しながら圧縮し、圧縮された成形型内のグリーンコンパクトを脱磁する工程。▲3▼グリーンコンパクトを離型する工程から構成するものであるが、前記温間圧縮工程において▲1▼と▲3▼の工程が▲2▼の工程と隔離され、▲1▼と▲2▼の工程に移動する際にフィーダボックス並びにキャビティから漏洩した希土類磁石粉末を含む顆粒状コンパウンドを非帯磁状態で回収すると帯磁した希土類磁石粉末の発生が抑制され、材料歩留まりの良好な生産を実現することができる。さらに、温間圧縮工程において0.1sec以上の磁界を印加したのち顆粒状コンパウンドを500MPa以上で圧縮することが望ましい。
【0019】
上記の工程によって作製するグリーンコンパクトは磁界印加方向に対して不等幅、不等肉厚、厚さを1mm以下とすること、或いは飽和磁化1.3T以上のFe、Fe−Ni、Fe−Co、Fe−Si、Fe−N、Fe−Bの群から選ばれる1種または2種以上のソフト磁性粉末を含有したグリーンコンパクトと希土類磁石粉末を含有したグリーンコンパクトを一体的に成形することは、効率的なモータを作製するための設計思想に委ねられる。
【0020】
上記、グリーンコンパクトおよび/または該熱硬化物への含浸が熱硬化性樹脂組成物への常圧浸漬であり、更に含浸する熱硬化性樹脂組成物が不飽和ポリエステル樹脂を主成分とする溶剤型ワニスであることが好ましい。
【0021】
一方、グリーンコンパクトおよび/または該熱硬化物と積層電磁鋼板で構成した本発明に係る異方性希土類ボンド磁石を搭載した表面磁石回転子型ロータ、埋込磁石型ロータを有する永久磁石型モータであったり、本発明に係る希土類ボンド磁石を永久磁石界磁とした直流モータにおいては、とくに4MA/mパルス着磁後の室温における最大エネルギー積(BH)maxが140kJ/m3以上の本発明に係る異方性希土類ボンド磁石を搭載した永久磁石型モータが好ましい。
【0022】
【発明の実施の形態】
本発明に係る図1の希土類磁石粉末▲1▼−cと結合剤▲2▼−dとの顆粒状コンパウンドの具備すべき条件に関して、顆粒状コンパウンドは熱硬化性樹脂の粘着力によって希土類磁石粉末を統合し、圧縮成形まえの結合剤と希土類磁石粉末の機械的分離を防ぐ役割とともに、成形型キャビティ中の顆粒状コンパウンドへの磁界印加によって希土類磁石粉末を素早く特定方向に配列する役割、できるだけ低温短時間の熱処理で希土類ボンド磁石を作製できる機能を付与することが肝要である。そのための具体的手段として、結合剤は少なくとも室温で固体の不飽和ポリエステルアルキッドと室温で液体の共重合性単量体との割合で粘着性を付与した不飽和ポリエステル樹脂、および重合開始剤、必要に応じて適宜加える添加剤から構成することが好ましい。
【0023】
不飽和ポリエステル樹脂は、不飽和ポリエステルアルキドの共重合性単量体溶液で、不飽和多塩基酸、飽和多塩基酸とグリコール類とを反応させたものである。不飽和多塩基酸は、例えば無水マレイン酸、フマル酸、イタコン酸、シトラコン酸などである。飽和多塩基酸は、例えば無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸、セバシン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ヘット酸、テトラブロム無水フタル酸などである。グリコール類は、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1−3−ブタンジオール、1−6−ヘキサンジオール、水素化ビスフェノールA、ビスフェノールAプロピレンオキシド化合物、ジブロムネオペンチルグリコールなどである。
【0024】
ビニル化合物またはアリル化合物は、例えばスチレン、ビニルトルエン、ジビニルベンゼン、α−メチルスチレン、メタクリル酸メチル、酢酸ビニル、ジアリルオルソフタレート、ジアリルイソフタレート、トリアリルシアヌレート、ジアリルテトラブロムフタレート、フェノキシエチルアクリレート、2−ヒドロキシエチルアクリレート、1−6ヘキサンジオールジアクリレートなどを使用できる。
【0025】
以上において、耐熱性に優れるとされる室温で固体の直鎖状芳香族ポリエステルアルキドであるテレフタル酸系不飽和ポリエステルアルキド、および蒸気圧が高く、揮発し難いジアリルオルソフタレート、ジアリルイソフタレート、トリアリルシアヌレートなどアリル系共重合性単量体の1種または2種以上から構成した室温で固体で、且つ柔軟な不飽和ポリエステル樹脂が好ましい。なお、前記不飽和ポリエステル樹脂とは、例えば軟化温度90−100℃のテレフタル酸系不飽和ポリエステルアルキドに対してジアリルオルソフタレート、ジアリルイソフタレート、トリアリルシアヌレートなどアリル系共重合性単量体の1種または2種以上を5〜50重量%とすることで任意に調整可能である。
【0026】
次に、平均粒子径が5μm以下の希土類磁石粉末としてはRD(酸化還元)処理によって準備された磁気的に異方性のSm−Fe−N系希土類磁石粉末を挙げることができるが、とくに前記粉末の表面を不活性化処理した粉末で、しかも4MA/mパルス着磁後の20℃における(BH)maxは300kJ/m3以上のものが望ましい。また、平均粒子径が5μm以下の希土類磁石粉末としてSmCo5系希土類磁石粉末を挙げることもできる。
【0027】
一方、平均粒子径50μm以上の希土類磁石粉末としては熱間据込加工(Die−Up−Setting)によって準備されたNd−Fe−B系粉末(例えば、M.Doser,V.Panchanathan;「Pulverizinganisotropic rapidly solidified Nd−Fe−B materials for bonded magnet」;J.Appl.Phys.70(10),15,1993)。HDDR処理(水素分解/再結合)によって準備されたNd−Fe−B系希土類磁石粉末、すなわち、Nd−Fe(Co)−B系合金のNd2(Fe、Co)14B相の水素化(Hydrogenation,Nd2[Fe、Co]14BHx)、650〜1000℃での相分解(Decomposition,NdH2+Fe+Fe2B)、脱水素(Desorpsion)、再結合(Recombination)するHDDR処理(T.Takeshita and R.Nakayama:Proc.of the 10th RE Magnets and Their Applications,Kyoto,Vol.1,551 1989)した磁気的に異方性の希土類磁石粉末である。とくに、前記粉末の表面を予め光分解したZnなどで不活性化処理した粉末など(例えば、K.Machida,K.Noguchi,M.Nushimura,Y.Hamaguchi,G.Adachi,Proc.9th Int.Workshop on Rare−Earth Magnets andTtheir Applications,Sendai,Japan,II,845 2000、或いは、K.Machida,Y.Hamaguchi,K.Noguchi,G.Adachi,Digests ofthe 25th Annual conference on Magnetcs in Japan,28aC−6 2001)を挙げることができる。なお、それらの磁石粉末の4MA/mパルス着磁後の20℃における保磁力は1.1MA/m以上のものが望ましい。
【0028】
上記、平均粒子径50μm以上の希土類磁石粉末は、例えばF.Yamashita,Y.Yamagata,H.Fukunaga,“nisotropic Nd−Fe−B Based Flexible Bonded Magnet Curled to The Ring for Small Permanent Magnet Motors”IEEE.Trans.Magn.Vol.36,No.5,pp.3366−3369(2000)に記載されているように粉末粒子径が小さくなると磁気特性の劣化が起こることが知られている。
【0029】
なお、平均粒子径50μm以上の希土類磁石粉末がNd2Fe(Co)14B系金属間化合物を主成分とする磁気的に等方性の希土類磁石粉末、Nd2Fe(Co)14B系金属間化合物とFe3B、Fe等のソフト相との磁気的に等方性のナノコンポジット磁石粉末、Sm2Fe17N3系金属間化合物とFe等のソフト相との磁気的に等方性のナノコンポジット磁石粉末の1種または2種以上を併用しても差し支えない。
【0030】
図2は上記本発明に係る希土類ボンド磁石と積層電磁鋼板を組合わせた本発明が対象とする永久磁石型モータ(SPM、IPM)の代表的な回転子構造の例を4極構造として示す。
【0031】
ただし、(a)は環状磁石を鉄心の表面に配置した表面磁石型(SPM)ロ−タで750W以下のモータに多く見られる。(b)は極毎に磁石が独立したもので、偏肉円弧状磁石も見られる。(c)は鉄心に磁石を差し込んだInset−Magnetで表面磁石型(SPM)ながらリラクタンストルクを併用できる。表面磁石型(SPM)では磁石飛散防止のため(d)のように外周に非磁性スリーブを用いることもある。また、(d)の非磁性部を磁性体とした(e)は外周に磁性リングを配置したものと鉄心のスロットに磁石を挿入したものもあるが、リラクタンストルクは多くを期待できない。また、希土類ボンド磁石量を増した(f)もある。平板状磁石の磁化方向が軸の周方向と平行になるように配置して、鉄心で挟み込む磁石埋込型(IPM)ロータ(g)は鉄心の形状によって固定子鉄心との空隙磁束密度を更に高めることができる。磁石埋込型(IPM)ロータ(h)は軸の半径方向と平行に磁化した平板状磁石を配置した構造でリラクタンストルクの増加が可能である。また、V字に配した平板状磁石2枚で1極を構成する磁石埋込型(IPM)ロータ(i)は磁石位置や角度でモータ特性を調整でき、磁石埋込型(IPM)ロータ(j)の効果を平板状磁石で狙ったものと言える。一方、逆円弧状磁石を極幅全体にわたって配した磁石埋込型(IPM)ロータ(j)は空隙磁束密度とリラクタンストルク増加が可能である。逆円弧状磁石を多層にする磁石埋込型(IPM)ロータ(k)はリラクタンストルクがより大きく、しかも空隙磁束密度が高い。なお、本発明に係る図1で示した永久磁石モータのその他として円弧状磁石等を永久磁石界磁とした永久磁石界磁型直流モータを挙げることができる。
【0032】
【実施例】
以下、本発明を実施例により更に詳しく説明する。ただし、本発明は実施例によって限定されるものではない。
【0033】
[原料]
本実施例では平均粒子径5μm以下の希土類磁石粉末としては、5μm以下のRD(Reduction&Diffusion)法による磁気的に異方性のSm2Fe17N3系希土類磁石粉末を使用した。また、平均粒子径50μm以上の希土類磁石粉末としてはHDDR処理(水素分解/再結合)によって準備された磁気的に異方性のNd−Fe(Co)−B系希土類磁石粉末(Nd12.3Dy0.3Fe64.7Co12.3B6.0Ga0.6Zr0.1)を使用した。なお、それらの希土類磁石粉末の比表面積Sは比表面積計を用いて粉末を液体窒素温度まで冷却し、N2/He混合ガス(3:7vol.ratio)を吸着させ、BET−1点法で測定し、1式、2式の関係から算出した。
【0034】
(式1)
Vm=V[1−(P/Ps)]
(式2)
S(m2/g)=Vm×{(16.2×10−20×6.02×1023)/22400}
ただし、Vmは単分子吸着量、Pは吸着平衡圧力、Psは吸着ガスの飽和蒸気圧、6.02×1023はアボガドロ数(mol−1)、22400はガスの分子容(cm3)、16.2×10−20は1個の吸着ガスが占める面積(N2:Å)である。その結果、RD−Sm2Fe17N3系希土類磁石粉末、HDDR−Nd2Fe14B系希土類磁石粉末の比表面積は、それぞれ1.6m2/g,0.007m2/gであった。また、それらの希土類磁石粉末自体の4MA/mパルス着磁後の室温における(BH)maxは、VSM(試料振動型磁力計)で反磁界補正なしで290〜310kJ/m3、室温での保磁力Hciは、それぞれ804kA/m、1180kA/mであった。ここで、HDDR−Nd2Fe14B系希土類磁石粉末に1MA/mの高保磁力材料を選択した理由は図3のように、磁気的に等方性のメルトスパン−Nd2Fe14B系希土類磁石粉末と同等の不可逆磁束損失を確保するためである。
【0035】
一方、本発明に係る顆粒状コンパウンドの熱硬化性樹脂組成物の構成成分として、先ず不飽和ポリエステルアルキドとして室温で固体のテレフタル酸系不飽和ポリエステルアルキド(軟化温度90−100℃、40mesh以下の粉体)、共重合単量体としてo−ジアリルフタレート、重合開始剤としての有機過酸化物としてジクミルパーオキサイドを使用した。このような不飽和ポリエステル樹脂の調整としては、先ず80重量部の不飽和ポリエステルアルキドと20重量部のo−ジアリルフタレート、0.5重量部のジクミルパーオキサイドを秤量し、その等倍量のアセトンで50%の有機溶媒溶液とした。
【0036】
更に、本発明に係るペンタエリスリトールステアリン酸トリエステルとはペンタエリスリトール1モルとステアリン酸3モルとを定法に従ってエステル化反応したもので、融点50−55℃であり、その構造は下式で示される。
【0037】
【化1】
Figure 0004042505
【0038】
[顆粒状コンパウンド]
本発明に係る顆粒状コンパウンドは最初に上記、融点約50−55℃のペンタエリスリトールステアリン酸トリエステルを平均粒子径5μm以下のRD−Sm2Fe17N3系希土類磁石粉末、またはHDDR−Nd2Fe14B系希土類磁石粉末と乾式混合した。ペンタエリスリトールステアリン酸トリエステルはケトン系有機溶媒や共重合性単量体には不溶であるが混合操作によって粉砕されながら、それぞれの希土類磁石粉末に均質に分散される。
【0039】
次に、60℃に加温した内容量5lのΣブレイドミキサーにペンタエリスリトールステアリン酸トリエステル化合物を分散した希土類磁石粉末5kgを仕込み、攪拌しながら、室温で固体の不飽和ポリエステル樹脂の50wt.%アセトン溶液を滴下した。ただし、RD−Sm2Fe17N3系希土類磁石粉末では不飽和ポリエステル樹脂2wt.%、HDDR−Nd2Fe14B系希土類磁石粉末では不飽和ポリエステル樹脂0.5wt.%を基準として滴下した。なお、予め希土類磁石粉末と混合したペンタエリスリトールステアリン酸トリエステルは不飽和ポリエステル樹脂に対して10PHRを基準とした。
【0040】
攪拌を続けると、不飽和ポリエステル樹脂50wt.%アセトン溶液滴下後、およそ5minで乾燥した不飽和ポリエステル樹脂と希土類磁石粉末との顆粒状コンパウンドとなった。このような顆粒状コンパウンドは350μmのステンレス製スクリーンで篩い分け、回収した350μm以下の顆粒状コンパウンドを本発明に係る実施例の基準とした。不飽和ポリエステル樹脂と粒子径5μm以下のRD−Sm2Fe17N3系希土類磁石粉末との350μm以下に調整した顆粒状コンパウンドの平均粒子径は約150μm、見掛密度2.2Mg/m3であり、通常の粉末成形機に供することが可能な粉末流動性を持っていた。更に、本実施例では滑剤として粒子径10μm以下のステアリン酸カルシウム粉末を顆粒状コンパウンド100重量部に対して0.2−0.4重量部を実験のために添加し、乾式混合した。
【0041】
なお、不飽和ポリエステル樹脂とHDDR−Nd2Fe14B系希土類磁石粉末との顆粒状コンパウンドは樹脂成分が0.5wt.%と少ないが、希土類磁石粉末の比表面積の差の影響でRD−Sm2Fe17N3系希土類磁石粉末の顆粒状コンパウンドと同様な粉末流動性を示し、両者は互いに任意の割合で均一混合できることが判った。
【0042】
[グリーンコンパクト]
(顆粒状コンパウンドの粉末成形)
本発明に係るグリーンコンパクトは図4のような磁場配向電磁石が組み込まれたダイセットを備えた粉末成形機によって作製した。図のように粉末成形機のフィーダーカップに本発明に係るか粒状コンパウンドを仕込み、成形型キャビティに本発明に係る顆粒状コンパウンドを充填した。ただし、成形型の上下パンチとキャビティ周辺のみ50〜100℃に加熱されている。キャビティに充填した磁気的に異方性の希土類磁石粉末を含む顆粒状コンパウンドは1.4MA/mのアキシャル磁界の下で上下パンチによって圧縮され、脱磁され、グリーンコンパクトを作製した。このグリーンコンパクトは十分なハンドリング性を備えていた。
【0043】
なお、本発明では温間圧縮が▲1▼フィーダボックス内の顆粒状コンパウンドを熱硬化性樹脂組成物の軟化温度以上に加熱した成形型キャビティに充填し、顆粒状コンパウンドを非磁性上下パンチと非磁性ダイとで密閉する工程。▲2▼前記顆粒状コンパウンドに磁界を印加して希土類磁石粉末を所定の方向に配列しながら圧縮し、圧縮された成形型内のグリーンコンパクトを脱磁する工程。▲3▼グリーンコンパクトを離型する工程から構成するものであるが、前記温間圧縮工程において▲1▼と▲3▼の工程が▲2▼の工程と隔離され、▲1▼と▲2▼の工程に移動する際にフィーダボックス並びにキャビティから漏洩した希土類磁石粉末を含む顆粒状コンパウンドを非帯磁状態で回収すると帯磁した希土類磁石粉末の発生が抑制され、材料歩留まりの良好な生産を実現することができる。
【0044】
(キャビティへの充填性)
幅1.25mm、長さ70.5mm、深さ12mmのキャビティに粉末成形の定法に従ってフィーダカップからの落し込みによって本発明に係るRD−Sm2Fe17N3系希土類磁石粉末の顆粒状コンパウンドを充填した。コンパウンドの粒子径上限を250μm、150μm、105μmと次第に細かくしたり、或いはRD−Sm2Fe17N3系希土類磁石粉末を直接キャビティに充填しようとしてもキャビティへの均質充填はできず、グリーンコンパクトの密度も5Mg/m3未満であることが判った。なお、粒子径上限を350μmとしたRD−Sm2Fe17N3系希土類磁石粉末の顆粒状コンパウンドの粒子径分布を調べると75μm以上の顆粒が50wt.%以上含まれていた。そこで、75μm以上の顆粒が50wt.%以上含み粒子径上限を105μmとした顆粒状コンパウンドの充填性を調べると均質充填が可能であった。以上のように通常の粉末成形機での粉末成形性や薄肉のグリーンコンパクトを確保するには粒子径75μm以上の顆粒を50wt.%以上含む顆粒状コンパウンドとすることが望ましい。
【0045】
(温間圧縮の効果)
次に、本発明に係る顆粒状コンパウンドからグリーンコンパクトを作製する際の温間圧縮の効果について実施例にて説明する。2wt.%の不飽和ポリエステル樹脂とRD−Sm2Fe17N3系希土類磁石粉末から構成した顆粒状コンパウンドを490MPaで圧縮してグリーンコンパクトを作製したとき、当該ダイ温度に対するグリーンコンパクトの密度の関係を図5に示す。ただし、下パンチ温度はダイ温度とほぼ等しく、上パンチは10〜20℃低い状態であった。図から明らかなようにダイ温度の上昇に伴ってグリーンコンパクトの密度は上昇するが、不飽和ポリエステル樹脂が溶融する約70℃付近で該密度は飽和する。また、図のようにダイ温度70−90℃と室温(20℃)との密度差は約0.16Mg/m3であった。なお、密度0.15g/m3の差をこの系における(BH)maxに換算すると、およそ10kJ/m3の差と推定されるため、本実施例のように温間圧縮により本発明に係るグリーンコンパクトを作製することが望ましい。ただし、不飽和ポリエステル樹脂は周知のように有機過酸化物の熱分解に伴うラジカル重合で即硬化するため、温間圧縮は所謂当該樹脂のキックオフ温度以下に設定する必要がある。
【0046】
次に、上記2wt.%の不飽和ポリエステル樹脂とRD−Sm2Fe17N3系希土類磁石粉末から構成した顆粒状コンパウンドを温間圧縮する際の圧縮圧力とグリーンコンパクトの密度の関係を図6に示す。ただし、ダイ温度は図5で示したように高密度グリーンコンパクトが得られる70℃での実施である。図から明らかなように、圧縮圧力P(MPa)を高めるとグリーンコンパクトの密度D(Mg/m3)は上昇するが、その関係は下式の回帰式(相関係数0.986)で表すことができる。
【0047】
(式3)
D=−5×10−7P2+0.0015P+4.3452
すなわち、約500MPaの圧縮圧力で密度5Mg/m3以上のグリーンコンパクトが得られる。この値は、例えばRD−Sm2Fe17N3系希土類磁石粉末と熱可塑性樹脂(12PA)などとのコンパウンドを射出成形した従来の希土類ボンド磁石の密度の最高値4.9Mg/m3(K.Ohmori,「New Era of Bonded SmFeN Magnets」,Polymerbonded magnet 2002,April,Chicago,US,2002)を明らかに越える。
【0048】
以上のように、上記2wt.%の不飽和ポリエステル樹脂とRD−Sm2Fe17N3系希土類磁石粉末から構成した顆粒状コンパウンドを約500MPa以上で温間圧縮すると従来この種の射出成形磁石では得られなかった5Mg/m3以上のグリーンコンパクトが容易に作製できることが判った。なお、温間圧縮下では不飽和ポリエステル樹脂を2wt.%以下としてもグリーンコンパクトの密度は殆ど変化ない。
【0049】
(ペンタエリスリトールステアリン酸トリエステルの効果)
次に、ペンタエリスリトールステアリン酸トリエステルを希土類磁石粉末に分散することの効果について実施例を用いて説明する。本発明に係る異方性希土類ボンド磁石を作製するには、例えば、2wt.%の不飽和ポリエステル樹脂とRD−Sm2Fe17N3系希土類磁石粉末から構成した顆粒状コンパウンドをキャビティに充填し、圧縮する前に磁界を印加して当該顆粒状コンパウンドを特定の方向に配列させる必要がある。約500MPa、70−100℃で温間圧縮する際に、上パンチを一時停止し、1.4MA/mのアキシャル方向磁界を印加する時間の関数としてグリーンコンパクトの4MA/mパルス着磁後の磁束量をサーチコイルで測定した。図7はその結果を示す特性図である。
【0050】
図から明らかなように、ペンタエリスリトールステアリン酸トリエステルが存在しないと配列に必要な磁界印加時間が1sec以上必要であるが、不飽和ポリエステル樹脂に対して10PHRの存在で0.1secの磁界印加でRD−Sm2Fe17N3系希土類磁石粉末を特定方向に整列させることが可能となる。しかしながら、図のように40PHRに増量しても顕著な変化はなかった。従って、ペンタエリスリトールステアリン酸トリエステルの顆粒状コンパウンドへの添加量は不飽和ポリエステル樹脂基準で10PHRとすれば、RD−Sm2Fe17N3系希土類磁石粉末の高速配列が可能となるため、本発明に係る異方性希土類ボンド磁石の生産性の改善が可能となる。
【0051】
ペンタエリスリトールステアリン酸トリエステルは親油性の炭素数17のアルキル基3個と、親水性のアルコール性水酸基1個を有する。したがって、親水性の12−PAとは水酸基部分が親和性を示す。アルキル基によって本実施例で用いた10PHR(per hundred resin)のペンタエリスリトールステアリン酸トリエステルは不飽和ポリエステル樹脂には不溶である。したがって、本発明に係る顆粒状コンパウンドでのペンタエリスリトールステアリン酸トリエステルは微粒子状態でRD−Sm2Fe17N3系希土類磁石粉末と不飽和ポリエステル樹脂との界面を中心に分散した状態で存在すると推察される。よって、温間圧縮キャビティ内で70℃以上に加熱された顆粒状コンパウンドに磁界印加すると溶融ペンタエリスリトールステアリン酸トリエステルはRD−Sm2Fe17N3系希土類磁石粉末と不飽和ポリエステル樹脂との界面などから該系外に溶出し、顆粒が一旦開放され、RD−Sm2Fe17N3系希土類磁石粉末は所定の方向に配列される。その後、コンパウンドが圧縮圧力を受け緻密化される際には、溶出したペンタエリスリトールステアリン酸トリエステルの一部がRD−Sm2Fe17N3系希土類磁石粉末相互やダイ壁面との境界面で潤滑作用を担うものと考えられる。このような薬剤は一般に滑剤と称され炭化水素系、脂肪酸アミド系、脂肪酸エステル系、高級アルコール系などがあるが、代表的には脂肪酸系(ステアリン酸)とその金属塩類が知られている。しかし、脂肪酸系(ステアリン酸)とその金属塩類を急冷粉末と本発明に係るコンパウンドに添加してもペンタエリスリトールステアリン酸トリエステルで観測したような顕著な効果は得られなかった。
【0052】
(顆粒状コンパウンドの混合効果)
HDDR−Nd2Fe14B系希土類磁石粉末との顆粒状コンパウンドは樹脂成分が0.5wt.%と少ない。従って、このコンパウンドを本発明に係る製造方法に適用しても本発明が目的とする工業的規模で安定した性能と品質を有する異方性希土類ボンド磁石を作製することは困難である。とくに、HDDR−Nd2Fe14B系希土類ボンド磁石の場合は保磁力の温度係数が−0.5%/℃程度と、例えば磁気的に等方性のメルトスパン−Nd2Fe14B系希土類系磁石粉末の−0.4%/℃よりも大きく、その分、室温で4MA/mのパルス着磁後の保磁力が1.1MA/m以上であることが望ましい。このようなHDDR−Nd2Fe14B系希土類系磁石粉末から準備される本発明に掛かる異方性希土類ボンド磁石は長期間高温暴露された際の磁束損失が問題になるかも知れない。ところが、最近、HDDR−Nd2Fe14B系希土類磁石粉末への表面処理で長期間高温暴露された際の磁束損失の課題が克服できると報告される。例えば、K.Machida,K.Noguchi,M.Nushimura,Y.Hamaguchi,G.Adachi,Proc.9th Int.Workshop on Rare−Earth Magnets andTtheir Applications,Sendai,Japan,(II),845(2000)。或いは、K.Machida,Y.Hamaguchi,K.Noguchi,G.Adachi,Digests of the 25th Annualconference on Magnetcs in Japan,28aC−6(2001)などで、その技術が開示されており、RD−Sm2Fe17N3系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドとともに、HDDR−Nd2Fe14B系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドも積極的に使用できる環境に移っている。
【0053】
本発明に係るRD−Sm2Fe17N3系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドはHDDR−Nd2Fe14B系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドと任意の割合で混合しても本発明に係る温間圧縮粉末成形で配向した高密度グリーンコンパクトを作製することができる。しかし、両者を特定の割合で混合することにより、更に高密度のグリーンコンパクトとすることができる。図8はRD−Sm2Fe17N3系希土類磁石粉末と2wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドへのHDDR−Nd2Fe14B系希土類磁石粉末と0.5wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合を関数とし、グリーンコンパクトの密度と4MA/mバルス着磁後の磁束を示す特性図である。ただし、温間圧縮でのダイ温度は70℃、磁界印加は1sec、圧縮は500MPaである。
【0054】
図のように、密度はHDDR−Nd2Fe14B系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合に応じて変化するが、その割合が50−60wt.%付近で極大が観測される。また、得られる磁束は、ほぼ密度変化に連動するが、回帰式での極大点は概ね50wt.%付近となっている。これは、ほぼ同じ密度ならば、粒子径の大きいHDDR−Nd2Fe14B系希土類磁石粉末の割合が高いと当該粉末が緻密化の際に破損して配向が乱れるためと推察される。従って、本発明に係るHDDR−Nd2Fe14B系希土類磁石粉末の混合割合は、当該粉末が破損し難い範囲。すなわち、50wt.%以下とすることが望ましい。
【0055】
(顆粒状コンパウンドの連続成形性)
以上のように、本発明では、例えば、2wt.%の不飽和ポリエステル樹脂とRD−Sm2Fe17N3系希土類磁石粉末から構成した顆粒状コンパウンドをダイ温度70−100℃のキャビティに充填し、圧縮する前に1.4MA/m程度の磁界を印加して当該顆粒状コンパウンドを特定の方向に配列させ、500MPa以上の圧力で温間圧縮して密度5Mg/m3を越えるグリーンコンパクトを作製することが望ましい。そこで、外半径25.15mm、内半径23.15mm、肉厚2mmの円弧状グリーンコンパクトを連続30個成形した。得られたグリーンコンパクトの厚さ平均値は2.037mm、標準偏差0.118mm、密度5.385Mg/m3、標準偏差0.055Mg/m3で作製における障害はなかった。
【0056】
なお、図9はRD−Sm2Fe17N3系希土類磁石粉末と2wt.%不飽和ポリエステル樹脂との顆粒状コンパウンド、および前記コンパウンドとHDDR−Nd2Fe14B系希土類磁石粉末と0.5wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合を50wt.%としたものを使用して温間圧縮のダイ温度と異方性ボンド磁石の4MA/mパルス着磁後の磁束との関係を示す特性図である。ただし、図中1はRD−Sm2Fe17N3系希土類磁石粉末と2wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドから作製した異方性希土類ボンド磁石、2は前記コンパウンドに対してHDDR−Nd2Fe14B系希土類磁石粉末と0.5wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合を50wt.%としたものから作成した異方性希土類ボンド磁石を示す。ダイ温度が高くなると1と2との磁束の比は狭まるが不飽和ポリエステル樹脂のキックオフ温度(この場合は約120℃)では1.06倍程度の差がある。
【0057】
(不飽和ポリエステル樹脂の含浸効果)
以上、本発明に係るRD−Sm2Fe17N3系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドはHDDR−Nd2Fe14B系希土類磁石粉末と不飽和ポリエステル樹脂との顆粒状コンパウンドと任意の割合で混合しても本発明に係る温間圧縮粉末成形で配向した高密度グリーンコンパクトを作製することができる。しかし、両者を特定の割合で混合することにより、更に高密度のグリーンコンパクトとすることができる。しかしながら、このグリーンコンパクトを加熱して、不飽和ポリエステル樹脂を硬化しても堅い鉛筆の芯のような状態の異方性ボンド磁石となる。したがって、例えば紙と摩擦摺動するとRD−Sm2Fe17N3系希土類磁石粉末が紙面に移着して、その軌跡を描く。したがって、永久磁石型モータとして使用するには機械強度を改善する必要がある。そこで、溶剤型不飽和ポリエステル樹脂ワニスに浸漬して、ワニス1.5−2.0wt.%含浸し、当該ワニスを硬化した。すると、恰も鉛筆のような性状は解消し、通常の希土類ボンド磁石と同等の28.9MPaの抗折力を示した。以上の含浸処理はバッチ処理で大量に処理できるので、生産性が極めて高く、得られた本発明に係る異方性ボンド磁石は40℃、97.5%RHの環境下に1000hrs暴露しても磁束の低下や目視による際立つ発錆は観測されなかった。
【0058】
以上のような含浸処理は本発明に係るグリーンコンパクト、或いはそれを熱処理し、不飽和ポリエステル樹脂を硬化した後でも差支えない。また、例えば積層鉄心の磁石スロットに前記グリーンコンパクト、或いはその不飽和ポリエステル樹脂硬化物を挿入、或いは冶具をもちいて貼付した後に含浸処理を行って、当該積層鉄心と一体的に剛体化しても差支えない。本発明に係る異方性ボンド磁石とワニス処理によって積層鉄心等の支持部材を一体的に剛体化すれば、永久磁石型モータとして運転時の騒音や振動を低減する効果も生まれる。
【0059】
【磁気特性とモータの基本特性】
(磁気特性)
図10は本発明に係るRD−Sm2Fe17N3系希土類磁石粉末と2wt.%の不飽和ポリエステル樹脂との顆粒状コンパウンドをダイ温度70−100℃のキャビティに充填し、圧縮する前に1.4MA/m程度の磁界を印加して当該顆粒状コンパウンドを特定の方向に配列させ、500MPa以上の圧力で温間圧縮して密度5Mg/m3を越えるグリーンコンパクトを作製し、該グリーンコンパクトに溶剤型不飽和ポリエステル樹脂ワニスを含浸し、150℃15min熱硬化した異方性希土類ボンド磁石の4MA/mパルス着磁後の(BH)maxを密度に対して示した特性図である。ただし、図中に示した従来例とはRD−Sm2Fe17N3系希土類磁石粉末と12−PAとのコンパウンドを磁界中射出成形して得られた異方性希土類ボンド磁石の密度と(BH)maxの関係を示す。図1で既に説明したように、RD−Sm2Fe17N3系希土類磁石粉末のような粉末粒子径5μm以下の微細な粉末は、磁石作製のプロセスとして従来、押出やカレンダリング▲3▼−aや射出成形▲3▼−bの方法しか開示されていなかった。したがって、得られる異方性希土類ボンド磁石も密度5Mg/m3に到達することはなかった。しかしながら、本発明に係る異方性希土類ボンド磁石はRD−Sm2Fe17N3系希土類磁石粉末のような粉末粒子径5μm以下の微細な粉末を使用しても、粉末成形が可能な顆粒状コンパウンドに調整し、不飽和ポリエステル樹脂の軟化状態で顆粒を一旦崩壊せしめ、磁界印加によって短時間に磁石粉末を特定方向に配列したのち、圧縮するため比較的低圧で密度5Mg/m3を越えるグリーンコンパクトが得られる。そして、明らかに高い磁気特性を確保できるのである。
【0060】
(モータ特性)
2wt.%の不飽和ポリエステル樹脂とRD−Sm2Fe17N3系希土類磁石粉末から構成した顆粒状コンパウンドをダイ温度70−100℃のキャビティに充填し、圧縮する前に1.4MA/m程度の磁界を印加して当該顆粒状コンパウンドを特定の方向に配列させ、500MPa以上の圧力で温間圧縮して密度5Mg/m3を越えるグリーンコンパクトを作製することが望ましい。そこで、外半径25.15mm、内半径23.15−23.73mm、肉厚2−1.4mm、密度5.0−5.1Mg/m3、(BH)max128kJ/m3の円弧状グリーンコンパクトを作製し、積厚24mmの積層鉄心に貼付た。次いで、溶剤型不飽和ポリエステル樹脂ワニスを含浸処理・熱硬化して鉄心と磁石とを一体的に剛体化した。最終的に回転軸を挿入して8極表面磁石(SPM)ロータとした。図11(a)は本発明に係る磁石ロータの斜視外観図であり、ロータの直径は50.3mmである。また、図11(b)はハードフェライトとPAとのコンパウンドから射出成形した(BH)max17kJ/m3の表面磁石(SPM)ロータで、その直径は(a)に等しい。一方、RD−Sm2Fe17N3系希土類磁石粉末と2wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドへのHDDR−Nd2Fe14B系希土類磁石粉末と0.5wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合を50wt.%としたものから図11(a)の磁石ロータを作製した。ただし、この磁石ロータの本発明に係る磁石の(BH)maxは142kJ/m3である。
【0061】
上記、磁石ロータを固定子に組込み、永久磁石型モータとした。次いで、永久磁石型モータの誘起電圧を図11(b)の従来型モータ基準で比較した特性図を図12に示す。ただし、図中1はRD−Sm2Fe17N3系希土類磁石粉末と2wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドから作製した異方性希土類ボンド磁石ロータ、2は前記コンパウンドに対してHDDR−Nd2Fe14B系希土類磁石粉末と0.5wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合を50wt.%としたものから作成した異方性希土類ボンド磁石ロータを示す。図から明らかなように、従来のハードフェライト磁石モータを基準とした場合の本発明に係る永久磁石型モータの誘起電圧の増加は顕著である。例えば、RD−Sm2Fe17N3系希土類磁石粉末と2wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドから作製した異方性希土類ボンド磁石ロータの場合であっても、円弧状磁石の肉厚が1.4−2.0mmの範囲で1.5−1.6倍の高出力化が見込まれる。また、HDDR−Nd2Fe14B系希土類磁石粉末と0.5wt.%不飽和ポリエステル樹脂との顆粒状コンパウンドの混合割合を50wt.%としたものから作成した異方性希土類ボンド磁石ロータでは2倍以上の高出力化が見込まれる。
ところで、モータの効率ηは機械出力P、損失をWとすると
(式4)
n=[P/(P+W)]
である。したがって、本発明の目的のひとつである高出力化によるモータの高効率化が実現できると結論づけることができる。
ところで、本発明に掛かる永久磁石型モータのように電機子鉄心と界磁磁石との空隙磁束密度を増加させると一般的にコギングトルクの増大を招くことがある。ここで言うコギングトルクとはロータと対向する固定子鉄心の外周表面に固定子鉄心ティースとスロットが存在するため、ロータの回転に伴ってパーミアンス係数Pcが変化することにより発生するトルク脈動である。本発明に掛かる磁石のように高い(BH)maxの磁石を実装したモータではコギングトルクが増大するため、モータの振動や騒音の増加要因となったり、位置制御の精度に障害が発生する原因となることがある。コギングトルクについては、当該モータの設計思想に委ねるところである。しかし、本発明に掛かる異方性希土類ボンド磁石は最終的に用いる効率的なモータのコギングトルク低減のために、予めグリーンコンパクトを不等幅としたり、不等肉厚とすることで、固定子鉄心と磁石ロータとの空隙を正弦波状に近づけ、コギングトルクの増加を抑制する手段を容易に採用することができる。なお、本発明に掛かる粉末状のコンパウンドにおいて、希土類磁石粉末に代えて飽和磁化1.3T以上のFe、Fe−Ni、Fe−Co、Fe−Si、Fe−N、Fe−Bの群から選ばれる1種または2種以上のソフト磁性粉末の顆粒状コンパウンドを調整し、グリーンコンパクトとしたものを成形型キャビティに装填し、然る後、本発明に掛かる顆粒状コンパウンドをキャビティに充填して温間圧縮する。すると、異種機能をもったグリーンコンパクトの複合体が得られる。この複合体を含浸処理するとバックヨーク付きの異方性希土類ボンド磁石が得られる。
【0062】
【発明の効果】
以上のように、新規な概念の導入により鋭意研究した結果、本発明は平均粒子径5μm以下の希土類磁石粉末と堅い熱硬化性樹脂組成物との顆粒状コンパウンドを温間圧縮と熱硬化性樹脂組成物の含浸とを必須工程とする異方性希土類ボンド磁石の製造方法を骨子とするものである。とくに、本発明の5μm以下の希土類磁石粉末を使用した希土類ボンド磁石は、従来の成形加工方法(カレンダーリング、押出成形、射出成形)などのように200℃を越える成形加工が不要で、希土類磁石粉末本来の高い磁気性能をモータ性能に反映させることができる。したがって、フェライト磁石や磁気的に等方性のメルトスパン−Nd2Fe14B系希土類ボンド磁石を搭載した従来の小型モータの出力を顕著に上回るため、高出力化によるモータの高効率化が実現できる。よって、電気電子機器への小型・高出力化に関する寄与ばかりか、幅広い普及によって電力消費削減や省資源化に効果を奏することが期待される。
【図面の簡単な説明】
【図1】ボンド磁石作製における3大要素技術、すなわち磁石粉末、結合剤システム、成形加工方法の連携を示す概念図
【図2】永久磁石型モータのロータ構造を示す概念図
【図3】保磁力と不可逆磁束損失の関係を示す特性図
【図4】粉末成形動作を示す概念図
【図5】温間圧縮におけるダイ温度と密度の関係を示す特性図
【図6】温間圧縮における圧力と密度の関係を示す特性図
【図7】磁界印加時間と磁束の関係を示す特性図
【図8】顆粒状コンパウンドの混合割合と密度、磁束の変化を示す特性図
【図9】温間圧縮におけるダイ温度と磁束の関係を示す特性図
【図10】RD−Sm2Fe17N3系希土類磁石粉末のような粉末粒子径5μm以下の微細な粉末から従来法により作製した磁石と本発明例による磁石の密度と(BH)maxの関係を示す特性図
【図11】(a)本発明に係る永久磁石型ロータの斜視外観を示す特性図(a)従来ロータの斜視外観を示す特性図
【図12】永久磁石型モータの高出力化を誘起電圧で示した特性図
【符号の説明】
▲1▼−a フェライト系磁石粉末
▲1▼−b アルニコ系磁石粉末
▲1▼−c 希土類磁石粉末(本発明に掛かる)
▲2▼−a 柔軟な結合剤(ゴム、熱可塑性エラストマー)
▲2▼−b 堅い熱可塑性樹脂結合剤
▲2▼−c 堅い熱硬化性樹脂結合剤(本発明に掛かる)
▲3▼−a カレンダーリングまたは/および押出成形
▲3▼−b 射出成形
▲3▼−c 圧縮成形
▲3▼−d 温間圧縮と含浸(本発明に掛かる)
▲4▼ 効率的な小型モータ(本発明に掛かる)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a granular compound comprising a rare earth magnet powder and a thermosetting resin composition, a method for producing an anisotropic rare earth bonded magnet using warm compression and impregnation as essential steps, and an efficient permanent magnet type using them. It relates to the motor. For example, the estimated number of small motors produced from 1992 to 2000 has already exceeded 2.4 to 4.7 billion. The increase in the production number of DC motors, brushless motors, stepping motors, and ironless core motors was particularly remarkable, increasing 2.6 billion from 1992 to 2000. Moreover, we can estimate an average annual growth rate of 9% in the future. However, the production numbers of small induction motors and small synchronous motors are gradually decreasing. This trend suggests the development of efficient small motors with high performance magnets in the small motor industry and the high demand for efficient small motors in the field of electrical and electronic equipment. About 70% of small motors produced are direct current motors. For general small DC motors, ferrite rubber magnets are used. For high-performance small DC motors, Nd-Fe-B flaky rare earth magnet powder prepared by melt spinning is compressed with a hard thermosetting resin such as epoxy resin. Molded annular magnets are mainly used.
[0002]
On the other hand, according to statistics from the Ministry of Economy, Trade and Industry and the Agency for Natural Resources and Energy, the total electricity consumption in Japan was 2000 billion kWh in 2000. Based on the data, the power consumption by the motor is estimated to exceed 50% of the total domestic demand. The power consumption of the motor is not necessarily a large capacity power motor. For example, the power consumption of a 2.5 inch HDD spindle motor exceeds 50% of the power consumption of a PC in an idle state. (J. G. W. West, Power Engineering J. April. 77, 1994). That is, for a small motor, the power consumption of the motor itself is a few tens of watts or less at most. However, considering the high demand for advanced electrical and electronic equipment, wide use and widespread use of efficient small motors is strongly necessary from the viewpoint of environmental conservation and resource saving. The present invention relates to an efficient small motor used in various advanced electric and electronic devices mainly composed of the above-described efficient small motor, and a novel manufacturing method of an anisotropic rare earth bonded magnet adapted thereto.
[0003]
[Prior art]
Small motors used in various advanced electrical and electronic devices are required to be small, high output, or highly efficient as the motor size is further reduced as the devices become smaller and lighter. Permanent magnet type motors have become popular since the 1960s because the application of magnets has led to a reduction in motor loss, which in turn was effective in the production of efficient small motors. In the development of such a small motor, in the case of a bonded magnet in which magnet powder is hardened with a binder, the magnet powder, the binder, and the molding method are equally important as the three major element technologies.
[0004]
Regarding the above-mentioned bonded magnets widely used in small motors, Hirosawa, Tomizawa et al., “Recent Progress in Research and Development Related to Bonded Rare-Erth Permanent Magnets”, Journal of Applied Magnetics Society of Japan, Vol. 21, no. 4-1. 161-167 (1997) briefly explains. Therefore, using FIG. 1 based on the cited document, the three major element technologies in bond magnet production, that is, cooperation of magnet powder, binder, and molding method will be described.
[0005]
First, the magnetic powder (1) is ferrite (1) -a, alnico (1) -b, rare earth (1) -c, and the binder (2) is flexible (rubber, thermoplastic elastomer). 2 ▼ -a, rigid thermoplastic resin (2) -b, rigid thermosetting resin (2) -c, processing method (3) as calendering / extrusion molding (3) -a, injection molding (3)- b, compression molding (3) -c. These linkages are organized as shown by the solid line in the figure.
[0006]
For example, K.K. According to Ohmori, “New Era of Bonded SmFeN Magnets”, Polymer bonded magnet 2002, April, Chicago, US, 2000, Sm-Fe—N rare earth magnet powder with a particle diameter of 5 μm or less imparted with weather resistance -C is flexible (rubber, thermoplastic elastomer) (2) -a as binder (2), or rigid thermoplastic resin (2) -b, and calendering / extrusion as molding method (3) Anisotropic rare earth bonded magnets linked by the elements (3) -a and injection molding (3) -b have been introduced. Such Sm-Fe-N rare earth magnet powders and SmCo5 rare earth magnet powders having a powder particle diameter of 5 μm or less are a cooperating element between hard thermosetting resin (2) -c and compression molding (3) -c. It is not found in the technical information that can be known to those skilled in the art that it is used industrially below. It is thought that the green compact density obtained by compressing rare earth magnet powder with a powder particle diameter of 5 μm or less cannot be obtained higher than the processing techniques generally introduced such as injection molding. . This is because it is extremely rare to be used industrially under the cooperation of hard thermosetting resin (2) -c and compression molding (3) -c even with hard ferrite magnet powder (1) -a. It is also understood that there is.
[0007]
[Non-Patent Document 1]
Satoshi Hirosawa and 1 other person, “Recent Progress in Research and Development Related to Bonded Rare-Erth Permanent Magnets”, Journal of Japan Society of Applied Magnetics, Vol. 21, no. 4-1. 161-167 (1997)
[0008]
[Problems to be solved by the invention]
By the way, the Sm—Fe—N rare earth magnet powder (1) -c, hard thermoplastic resin (2) -b, and injection molding (3) -b having a powder particle diameter of 5 μm or less as described above are well known. The application of radial anisotropic rare earth bonded magnets fabricated with cooperating elements as a means to increase the efficiency of brushless motors for blowers, Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi et al., RM-01- 161 (2001). Table 1 shows the representative characteristics and motor characteristics of the rare earth bonded magnets reported.
[0009]
[Table 1]
Figure 0004042505
[0010]
However, Ferrite in Table 1 is an example of a conventional magnet, and will be described with reference to the cooperating elements in FIG. 1. Hard ferrite magnet powder (1) -a, rigid thermoplastic resin (2) -b, injection molding (3) -b It is a polar anisotropy ferrite-bonded magnet that cooperates with other elements. Compared with the anisotropic ferrite bonded magnet with a maximum energy product (BH) max of 16 kJ / m3, the Sm-Fe-N radial anisotropic anisotropic rare earth bonded magnet with (BH) max of 79 kJ / m3 is used for the motor. By applying this, high output of the motor is realized and the efficiency is improved by 5%. However, the (BH) max of the Sm—Fe—N magnet powder itself is 323 kJ / m 3. Therefore, it is estimated that the anisotropic rare earth bonded magnet actually used in the motor is about 1/4 of (BH) max of the magnet powder itself. Thus, Sm-Fe-N rare earth magnet powder (1) -c is replaced with (2H) -a or fat (2) -b, (3) -a or (3) -b (BH) It is expected that it is difficult to stably produce an anisotropic rare earth bonded magnet having a max exceeding 100 kJ / m3 on an industrial scale.
[0011]
The level of (BH) max is 79 kJ / m3 is a melt-spun magnetically isotropic Nd2Fe14B rare earth magnet powder (1) -c, hard thermosetting resin (2) -c, compression molding (3) The (BH) max of the bonded magnet produced by cooperation of -c is almost the same as 80 kJ / m3. Moreover, considering that the magnet powder itself has a (BH) max value of approximately 120 kJ / m 3, the three major elements in the bond magnet manufacturing were reviewed, and an Sm—Fe—N rare earth magnet having an average particle size of 5 μm or less. There is a need for a technology that can efficiently extract the original magnetic properties of powder and improve motor efficiency.
[0012]
[Means for Solving the Problems]
In the present invention, as shown by the thick solid line in FIG. 1, a granular compound and molding process of rare earth magnet powder (1) -c having a mean particle size of 5 μm or less and a hard thermosetting resin composition (2) -c. Is a method for producing an anisotropic rare earth bonded magnet, which comprises warm compression and impregnation of thermosetting resin composition (3) -d as essential steps. Granular compound of rare earth magnet powder (1) -c having an average particle diameter of 5 μm or less, rare earth magnet powder (1) -c having an average particle diameter of 50 μm or more, and a hard thermosetting resin composition (2) -c A method for producing an anisotropic rare earth bonded magnet, in which the molding process includes warm compression and impregnation of thermosetting resin composition {circle around (3)}-d. Furthermore, a granular compound mainly composed of rare earth magnet powder (1) -c and hard thermosetting resin composition (2) -c is warm-compressed, and the obtained green compact and support member are assembled. A method for producing an anisotropic rare earth bonded magnet in which a thermosetting resin composition is impregnated simultaneously {circle around (3)}-d, and is thermoset and rigidized integrally with a support member. In addition, after the green compact obtained by warm-compressing a granular compound mainly composed of the rare earth magnet powder (1) -c and the hard thermosetting resin composition (2) -c is thermally cured, The manufacturing method of an anisotropic rare earth bonded magnet that is assembled and further impregnated simultaneously with the thermosetting resin composition {circle around (3)}-d and thermoset to make it rigid integrally with the support member is essential.
[0013]
In the present invention, the rare earth magnet powder (BH) max is 300 kJ / m3 or more and the average particle diameter is 5 μm or less is preferably a rare earth magnet powder {1} -c mainly composed of a weather-resistant Sm2Fe17N3 intermetallic compound or (BH ) A rare earth magnet powder having an average particle size of 5 μm or less with a max of 160 kJ / m 3 or more is mainly composed of rare earth magnet powder {circle around (1)}-c whose main component is an Sm—Co5 intermetallic compound. However, together with the rare earth magnet powder having an average particle diameter of 5 μm or less, the rare earth magnet powder having an average particle diameter of 50 μm or more is a rare earth magnet powder {1} -c whose average component is a weather-resistant Nd2Fe (Co) 14B-based intermetallic compound. A rare earth magnet powder having a particle diameter of 50 μm or more is a magnetically isotropic rare earth magnet powder {circle around (1)}-c whose main component is an Nd2Fe (Co) 14B intermetallic compound, and a rare earth magnet powder having an average particle diameter of 50 μm or more is Nd2Fe. Magnetically isotropic nanocomposite magnet powder (1) -c of (Co) 14B intermetallic compound and soft phase such as Fe3B and Fe, rare earth magnet powder having an average particle diameter of 50 μm or more is Sm2Fe17N3 intermetallic compound Magnetically isotropic nanocomposite magnet powder (1) -c or a combination of two or more of soft phases such as Fe may be used. Yes.
[0014]
On the other hand, the hard thermosetting resin composition {circle around (2)}-b is preferably composed mainly of an unsaturated polyester resin. Further, the unsaturated polyester alkyd constituting the unsaturated polyester resin is a solid terephthalic acid-based non-polymer at room temperature. The copolymerizable monomer constituting the saturated polyester alkyd and unsaturated polyester resin is an allyl copolymerizable monomer having an allyl group, and the polymerization start temperature (kick-off temperature) of the unsaturated polyester resin is 110 ° C. It is desirable to use the above organic peroxide as an active ingredient. In particular, the organic peroxide is preferably composed mainly of dicumyl peroxide, which is solid at room temperature, in order to ensure storage stability at room temperature and stability during warm compression of the granular compound according to the present invention.
[0015]
Furthermore, when 10 PHR or more of pentaerythritol stearic acid triester is added to the unsaturated polyester resin, alignment of the magnet powder in a specific direction by applying a magnetic field is promoted, which is effective in improving productivity.
[0016]
As a means for producing a granular compound according to the present invention, first, an unsaturated polyester resin that is solid at room temperature is dissolved in an organic solvent and wet-mixed with rare earth magnet powder. Next, it is desirable to crush the mixture from which the organic solvent has been removed by heating or the like to obtain a granular compound. In particular, 50 wt. % Or more is effective in obtaining an anisotropic rare-earth bonded magnet having a high density at a low pressure and filling ability in the mold cavity. In addition, one or more lubricants selected from higher fatty acids, higher fatty acid amides, and higher fatty acid metal soaps having a higher melting point than the thermoforming mold for warm compression of the compound are added to the surface of the granular compound at 0.1 wt. . When it adheres more than%, it becomes possible to improve the filling property of the granular compound into the thin cavity of 1 mm or less.
[0017]
On the other hand, the ratio of the thermosetting resin composition of the granular compound in the present invention is 2 wt. It is effective to draw the original (BH) max of the rare earth magnet powder with the rare earth bonded magnet.
[0018]
Further, in the present invention, warm compression is as follows: (1) The granular compound in the feeder box is filled in a mold cavity heated to a temperature higher than the softening temperature of the thermosetting resin composition, and the granular compound is not bonded to the nonmagnetic upper and lower punches. The process of sealing with a magnetic die. (2) A step of demagnetizing the green compact in the compressed mold by applying a magnetic field to the granular compound and compressing the rare earth magnet powder while arranging it in a predetermined direction. (3) The process consists of releasing the green compact, but in the warm compression step, steps (1) and (3) are separated from steps (2) and (1) and (2). When the granular compound containing the rare earth magnet powder leaked from the feeder box and cavity is recovered in the non-magnetized state when moving to the above process, the generation of magnetized rare earth magnet powder is suppressed and the production of the material yield is realized. Can do. Furthermore, it is desirable to compress the granular compound at 500 MPa or more after applying a magnetic field of 0.1 sec or more in the warm compression step.
[0019]
The green compact produced by the above process has an unequal width, an unequal thickness, and a thickness of 1 mm or less with respect to the magnetic field application direction, or Fe, Fe—Ni, Fe—Co having a saturation magnetization of 1.3 T or more. The green compact containing one or more soft magnetic powders selected from the group of Fe-Si, Fe-N, and Fe-B and the green compact containing rare earth magnet powders are integrally formed. It is left to the design philosophy to produce an efficient motor.
[0020]
The above-mentioned green compact and / or impregnation into the thermosetting product is normal pressure immersion in a thermosetting resin composition, and the thermosetting resin composition to be further impregnated is a solvent type mainly composed of an unsaturated polyester resin. A varnish is preferred.
[0021]
On the other hand, a permanent magnet motor having a green compact and / or a surface magnet rotor type rotor and an embedded magnet type rotor mounted with an anisotropic rare earth bonded magnet according to the present invention composed of the thermosetting material and laminated electromagnetic steel sheet In a DC motor using a rare earth bonded magnet according to the present invention as a permanent magnet field, the maximum energy product (BH) max at room temperature after 4 MA / m pulse magnetization is 140 kJ / m3 or more. A permanent magnet motor equipped with an anisotropic rare earth bonded magnet is preferred.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Regarding the conditions to be provided for the granular compound of the rare earth magnet powder (1) -c and the binder (2) -d of FIG. 1 according to the present invention, the granular compound is a rare earth magnet powder due to the adhesive force of the thermosetting resin. In addition to preventing mechanical separation of the binder and rare earth magnet powder before compression molding, the role of quickly arranging the rare earth magnet powder in a specific direction by applying a magnetic field to the granular compound in the mold cavity, as low as possible It is important to provide a function capable of producing a rare earth bonded magnet by a short heat treatment. As a specific means for that purpose, the binder is an unsaturated polyester resin imparted with a ratio of an unsaturated polyester alkyd that is solid at room temperature and a copolymerizable monomer that is liquid at room temperature, and a polymerization initiator. It is preferable that the composition is composed of additives that are appropriately added according to the conditions.
[0023]
The unsaturated polyester resin is a copolymerized monomer solution of unsaturated polyester alkyd, and is obtained by reacting an unsaturated polybasic acid, a saturated polybasic acid and a glycol. Examples of the unsaturated polybasic acid include maleic anhydride, fumaric acid, itaconic acid, citraconic acid and the like. Saturated polybasic acids are, for example, phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, sebacic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, het acid, tetrabromophthalic anhydride, etc. is there. Examples of glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1-3-butanediol, 1-6-hexanediol, hydrogenated bisphenol A, bisphenol A propylene oxide compound, and dibromoneopentyl. Such as glycol.
[0024]
Vinyl compounds or allyl compounds are, for example, styrene, vinyl toluene, divinylbenzene, α-methylstyrene, methyl methacrylate, vinyl acetate, diallyl orthophthalate, diallyl isophthalate, triallyl cyanurate, diallyl tetrabromophthalate, phenoxyethyl acrylate, 2-hydroxyethyl acrylate, 1-6 hexanediol diacrylate, and the like can be used.
[0025]
In the above, terephthalic acid-based unsaturated polyester alkyd, which is a linear aromatic polyester alkyd that is solid at room temperature, which is considered to have excellent heat resistance, and diallyl orthophthalate, diallyl isophthalate, triaryl which have high vapor pressure and are difficult to volatilize. An unsaturated polyester resin that is solid at room temperature and is composed of one or more allylic copolymerizable monomers such as lucyanurate and is flexible is preferable. The unsaturated polyester resin is, for example, an allylic copolymerizable monomer such as diallyl orthophthalate, diallyl isophthalate, or triallyl cyanurate with respect to a terephthalic acid unsaturated polyester alkyd having a softening temperature of 90 to 100 ° C. It can adjust arbitrarily by making 1 type or 2 types or more into 5 to 50 weight%.
[0026]
Next, examples of the rare earth magnet powder having an average particle diameter of 5 μm or less include magnetically anisotropic Sm—Fe—N rare earth magnet powder prepared by RD (oxidation reduction) treatment. Desirably, the surface of the powder is deactivated, and (BH) max at 20 ° C. after 4 MA / m pulse magnetization is 300 kJ / m 3 or more. Moreover, SmCo5-based rare earth magnet powder can also be mentioned as the rare earth magnet powder having an average particle diameter of 5 μm or less.
[0027]
On the other hand, as rare earth magnet powders having an average particle diameter of 50 μm or more, Nd—Fe—B based powders prepared by hot upsetting (Die-Up-Setting) (for example, M. Doser, V. Panchanathan; “Pulverizing anisotropy rapidy”). solidified Nd-Fe-B materials for bonded magnet "; J. Appl. Phys. 70 (10), 15, 1993). Nd—Fe—B rare earth magnet powder prepared by HDDR treatment (hydrogen decomposition / recombination), that is, hydrogenation of Nd 2 (Fe, Co) 14 B phase of Nd—Fe (Co) —B alloy (Hydrogenation, Nd2 [Fe, Co] 14 BHx), phase decomposition at 650 to 1000 ° C. (Decomposition, NdH 2 + Fe + Fe 2 B), dehydrogenation (Desorption), recombination HDDR treatment (T. Takeshita and R. Nakayama: Proc. Of the 10th RE Magnets and Ther Applications, Kyoto, Vol. 1,551 1989). In particular, a powder obtained by inactivating the surface of the powder with Zn or the like previously photolyzed (for example, K. Macida, K. Noguchi, M. Nashimura, Y. Hamaguchi, G. Adachi, Proc. 9th Int. Workshop). on Rare-Earth Magnets and Ttheir Applications, Sendai, Japan, II, 845 2000, or K. Macida, Y. Hamaguchi, K. Noguchi, G. Adachi, Digests 25. Can be mentioned. The coercive force of these magnet powders at 20 ° C. after 4 MA / m pulse magnetization is preferably 1.1 MA / m or more.
[0028]
The rare earth magnet powder having an average particle diameter of 50 μm or more is, for example, F.R. Yamashita, Y. et al. Yamagata, H .; Fukunaga, "Nisotropic Nd-Fe-B Based Flexible Bonded Magnet Current to the Ring for Small Permanent Magnet Motors" IEEE. Trans. Magn. Vol. 36, no. 5, pp. 3366-3369 (2000), it is known that when the particle size of the powder is reduced, the magnetic properties are deteriorated.
[0029]
The rare earth magnet powder having an average particle diameter of 50 μm or more is a magnetically isotropic rare earth magnet powder mainly composed of Nd2Fe (Co) 14B intermetallic compound, Nd2Fe (Co) 14B intermetallic compound and Fe3B, Fe. Magnetically isotropic nanocomposite magnet powder with soft phase such as Sm2Fe17N3 intermetallic compound and magnetically isotropic nanocomposite magnet powder with soft phase such as Fe They can be used together.
[0030]
FIG. 2 shows an example of a typical rotor structure of a permanent magnet type motor (SPM, IPM) which is a target of the present invention in which the rare earth bonded magnet according to the present invention and a laminated electrical steel sheet are combined as a four-pole structure.
[0031]
However, (a) is a surface magnet type (SPM) rotor in which an annular magnet is disposed on the surface of an iron core, and is often seen in motors of 750 W or less. In (b), magnets are independent for each pole, and an uneven-arc magnet is also seen. (C) is an Insert-Magnet with a magnet inserted into an iron core, and a reluctance torque can be used in combination with a surface magnet type (SPM). In the surface magnet type (SPM), a non-magnetic sleeve may be used on the outer periphery as shown in FIG. Further, (e) in which the non-magnetic portion of (d) is made of a magnetic material includes those in which a magnetic ring is arranged on the outer periphery and those in which a magnet is inserted into the slot of the iron core, but a large reluctance torque cannot be expected. There is also (f) in which the amount of rare earth bonded magnet is increased. The magnet-embedded (IPM) rotor (g) is arranged so that the magnetization direction of the flat magnet is parallel to the circumferential direction of the shaft, and the gap magnetic flux density with the stator core is further increased depending on the shape of the iron core. Can be increased. The magnet-embedded (IPM) rotor (h) has a structure in which flat magnets magnetized parallel to the radial direction of the shaft are arranged, and the reluctance torque can be increased. In addition, an embedded magnet (IPM) rotor (i), which forms one pole with two flat magnets arranged in a V shape, can adjust motor characteristics by magnet position and angle. It can be said that the effect of j) was aimed at with a flat magnet. On the other hand, an embedded magnet (IPM) rotor (j) in which reverse arc-shaped magnets are arranged over the entire pole width can increase the gap magnetic flux density and the reluctance torque. The magnet-embedded (IPM) rotor (k) having a plurality of reverse arc magnets has a higher reluctance torque and a higher gap magnetic flux density. As another example of the permanent magnet motor shown in FIG. 1 according to the present invention, there can be mentioned a permanent magnet field type DC motor using an arc magnet or the like as a permanent magnet field.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
[0033]
[material]
In this example, as the rare earth magnet powder having an average particle diameter of 5 μm or less, a magnetically anisotropic Sm2Fe17N3 rare earth magnet powder by an RD (Reduction & Diffusion) method of 5 μm or less was used. Further, as the rare earth magnet powder having an average particle diameter of 50 μm or more, a magnetically anisotropic Nd—Fe (Co) —B rare earth magnet powder (Nd12.3Dy0.n) prepared by HDDR treatment (hydrogen decomposition / recombination) is used. 3Fe64.7Co12.3B6.0Ga0.6Zr0.1) was used. The specific surface area S of these rare earth magnet powders is measured by a BET-1 point method by cooling the powder to liquid nitrogen temperature using a specific surface area meter, adsorbing an N2 / He mixed gas (3: 7 vol. Ratio). And calculated from the relationship between the first and second formulas.
[0034]
(Formula 1)
Vm = V [1- (P / Ps)]
(Formula 2)
S (m2 / g) = Vm × {(16.2 × 10−20 × 6.02 × 1023) / 22400}
Where Vm is the adsorption amount of a single molecule, P is the adsorption equilibrium pressure, Ps is the saturated vapor pressure of the adsorbed gas, 6.02 × 1023 is the Avogadro number (mol−1), 22400 is the molecular volume of the gas (cm 3), 16. 2 × 10 −20 is an area (N2: Å) occupied by one adsorbed gas. As a result, the specific surface areas of the RD-Sm2Fe17N3 rare earth magnet powder and the HDDR-Nd2Fe14B rare earth magnet powder were 1.6 m2 / g and 0.007 m2 / g, respectively. Further, (BH) max at room temperature after 4 MA / m pulse magnetization of these rare earth magnet powders themselves is 290 to 310 kJ / m3 without demagnetizing correction by a VSM (sample vibration type magnetometer), and the coercive force at room temperature. Hci was 804 kA / m and 1180 kA / m, respectively. Here, the reason why the high coercive force material of 1 MA / m is selected for the HDDR-Nd2Fe14B rare earth magnet powder is that the magnetically isotropic melt span-Nd2Fe14B rare earth magnet powder has the same irreversible magnetic flux loss as shown in FIG. This is to ensure.
[0035]
On the other hand, as a constituent of the thermosetting resin composition of the granular compound according to the present invention, first, as unsaturated polyester alkyd, solid terephthalic acid-based unsaturated polyester alkyd (softening temperature 90-100 ° C., powder of 40 mesh or less) ), O-diallyl phthalate as a comonomer, and dicumyl peroxide as an organic peroxide as a polymerization initiator. For the preparation of such an unsaturated polyester resin, first, 80 parts by weight of unsaturated polyester alkyd, 20 parts by weight of o-diallyl phthalate and 0.5 parts by weight of dicumyl peroxide were weighed, A 50% organic solvent solution was made with acetone.
[0036]
Furthermore, pentaerythritol stearic acid triester according to the present invention is obtained by esterifying 1 mol of pentaerythritol and 3 mol of stearic acid according to a standard method, and has a melting point of 50-55 ° C., and its structure is represented by the following formula: .
[0037]
[Chemical 1]
Figure 0004042505
[0038]
[Granular compound]
The granular compound according to the present invention is a dry compound of the above-mentioned pentaerythritol stearic acid triester having a melting point of about 50-55 ° C. and RD-Sm2Fe17N3 rare earth magnet powder having an average particle size of 5 μm or less, or HDDR-Nd2Fe14B rare earth magnet powder. Mixed. Pentaerythritol stearic acid triester is insoluble in ketone organic solvents and copolymerizable monomers, but is uniformly dispersed in each rare earth magnet powder while being pulverized by a mixing operation.
[0039]
Next, 5 kg of rare earth magnet powder in which pentaerythritol stearic acid triester compound was dispersed was charged into a 5 liter Σ blade mixer heated to 60 ° C., and 50 wt. % Acetone solution was added dropwise. However, in the case of RD-Sm2Fe17N3 rare earth magnet powder, unsaturated polyester resin 2 wt. %, HDDR-Nd2Fe14B rare earth magnet powder is 0.5 wt. It was dripped on the basis of%. The pentaerythritol stearate triester previously mixed with rare earth magnet powder was based on 10 PHR with respect to the unsaturated polyester resin.
[0040]
When stirring was continued, unsaturated polyester resin 50 wt. After dropwise addition of the% acetone solution, a granular compound of unsaturated polyester resin and rare earth magnet powder dried for about 5 minutes was obtained. Such granular compound was sieved with a 350 μm stainless steel screen, and the recovered granular compound of 350 μm or less was used as a reference for the examples according to the present invention. The average particle size of the granular compound adjusted to 350 μm or less of unsaturated polyester resin and RD-Sm2Fe17N3 rare earth magnet powder having a particle size of 5 μm or less is about 150 μm, the apparent density is 2.2 Mg / m3, and is a normal powder molding It had powder flowability that could be used in the machine. Further, in this example, 0.2 to 0.4 parts by weight of calcium stearate powder having a particle size of 10 μm or less as a lubricant was added to 100 parts by weight of the granular compound for the experiment, and dry-mixed.
[0041]
The granular compound of unsaturated polyester resin and HDDR-Nd2Fe14B rare earth magnet powder has a resin component of 0.5 wt. However, the powder fluidity similar to that of the granular compound of the RD-Sm2Fe17N3 rare earth magnet powder was shown by the influence of the difference in the specific surface area of the rare earth magnet powder, and it was found that both can be uniformly mixed with each other at an arbitrary ratio.
[0042]
[Green compact]
(Powder molding of granular compound)
The green compact according to the present invention was produced by a powder molding machine equipped with a die set incorporating a magnetic field orientation electromagnet as shown in FIG. As shown in the figure, a granular compound according to the present invention was charged into a feeder cup of a powder molding machine, and a granular compound according to the present invention was filled into a mold cavity. However, only the upper and lower punches of the mold and the periphery of the cavity are heated to 50 to 100 ° C. The granular compound containing magnetically anisotropic rare earth magnet powder filled in the cavity was compressed by a vertical punch under an axial magnetic field of 1.4 MA / m and demagnetized to produce a green compact. This green compact had sufficient handling.
[0043]
In the present invention, the warm compression is as follows: (1) The granular compound in the feeder box is filled in a mold cavity heated to a temperature higher than the softening temperature of the thermosetting resin composition, and the granular compound is separated from the nonmagnetic upper and lower punches. The process of sealing with a magnetic die. (2) A step of demagnetizing the green compact in the compressed mold by applying a magnetic field to the granular compound and compressing the rare earth magnet powder while arranging it in a predetermined direction. (3) The process consists of releasing the green compact, but in the warm compression step, steps (1) and (3) are separated from steps (2) and (1) and (2). When the granular compound containing the rare earth magnet powder leaked from the feeder box and cavity is recovered in the non-magnetized state when moving to the above process, the generation of magnetized rare earth magnet powder is suppressed and the production of the material yield is realized. Can do.
[0044]
(Fillability into the cavity)
A cavity having a width of 1.25 mm, a length of 70.5 mm, and a depth of 12 mm was filled with the granular compound of the RD-Sm2Fe17N3 rare earth magnet powder according to the present invention by dropping from a feeder cup according to a conventional method of powder molding. The upper limit of the particle size of the compound is gradually reduced to 250 μm, 150 μm, 105 μm, or even if RD-Sm 2 Fe 17 N 3 rare earth magnet powder is directly filled into the cavity, the uniform filling into the cavity is not possible, and the density of the green compact is also 5 Mg / m 3 Was found to be less than. In addition, when the particle size distribution of the granular compound of the RD-Sm2Fe17N3 rare earth magnet powder having an upper limit of the particle size of 350 μm was examined, granules having a particle size of 75 μm or more were 50 wt. % Was included. Therefore, granules of 75 μm or more are 50 wt. When the filling property of a granular compound containing at least% and having a particle diameter upper limit of 105 μm was examined, homogeneous filling was possible. As described above, in order to ensure powder moldability in a normal powder molding machine and a thin green compact, granules having a particle diameter of 75 μm or more are 50 wt. It is desirable to use a granular compound containing at least%.
[0045]
(Effect of warm compression)
Next, the effect of warm compression when producing a green compact from the granular compound according to the present invention will be described in Examples. 2 wt. When a green compact is produced by compressing a granular compound composed of% unsaturated polyester resin and RD-Sm2Fe17N3 rare earth magnet powder at 490 MPa, the relationship of the density of the green compact to the die temperature is shown in FIG. However, the lower punch temperature was almost equal to the die temperature, and the upper punch was 10-20 ° C. lower. As is apparent from the figure, the density of the green compact increases as the die temperature increases, but the density saturates at about 70 ° C. where the unsaturated polyester resin melts. Further, as shown in the figure, the density difference between the die temperature of 70-90 ° C. and room temperature (20 ° C.) was about 0.16 Mg / m 3. When the difference of density 0.15 g / m3 is converted to (BH) max in this system, it is estimated that the difference is approximately 10 kJ / m3. Therefore, as in this example, the green compact according to the present invention is obtained by warm compression. It is desirable to produce. However, since the unsaturated polyester resin is immediately cured by radical polymerization accompanying thermal decomposition of the organic peroxide as is well known, it is necessary to set the warm compression below the so-called kick-off temperature of the resin.
[0046]
Next, 2 wt. FIG. 6 shows the relationship between the compression pressure and the green compact density when warm compressing a granular compound composed of% unsaturated polyester resin and RD-Sm2Fe17N3 rare earth magnet powder. However, as shown in FIG. 5, the die temperature is 70 ° C. at which a high-density green compact can be obtained. As is clear from the figure, when the compression pressure P (MPa) is increased, the density D (Mg / m3) of the green compact increases, but the relationship is expressed by the following regression equation (correlation coefficient 0.986). Can do.
[0047]
(Formula 3)
D = -5 * 10 <-7> P2 + 0.0015P + 4.3352
That is, a green compact having a density of 5 Mg / m 3 or more can be obtained at a compression pressure of about 500 MPa. This value is, for example, the maximum value of the density of a conventional rare earth bonded magnet obtained by injection molding a compound of RD-Sm2Fe17N3 rare earth magnet powder and a thermoplastic resin (12PA), for example, 4.9 Mg / m3 (K. Ohmori, “New Era of Bonded SmFeN Magnets ", Polymerbonded magnet 2002, April, Chicago, US, 2002).
[0048]
As described above, the 2 wt. % Compact polyester resin and RD-Sm2Fe17N3 rare earth magnet powder, when compacted warmly at about 500MPa or more, a green compact of 5Mg / m3 or more, which was not possible with conventional injection molded magnets, is easy It was found that can be produced. Under warm compression, 2 wt. Even if it is less than%, the density of the green compact is almost unchanged.
[0049]
(Effect of pentaerythritol stearic acid triester)
Next, the effect of dispersing pentaerythritol stearic acid triester in rare earth magnet powder will be described using examples. In order to produce the anisotropic rare earth bonded magnet according to the present invention, for example, 2 wt. It is necessary to fill the cavity with a granular compound composed of% unsaturated polyester resin and RD-Sm2Fe17N3 rare earth magnet powder and to apply the magnetic field before compression to arrange the granular compound in a specific direction. Magnetic flux after 4 MA / m pulse magnetization of green compact as a function of time to temporarily pause upper punch and apply 1.4 MA / m axial direction magnetic field when warm compressed at 70-100 ° C. at about 500 MPa The quantity was measured with a search coil. FIG. 7 is a characteristic diagram showing the results.
[0050]
As is apparent from the figure, when pentaerythritol stearic acid triester is not present, the magnetic field application time required for the arrangement is 1 sec or longer. However, with the presence of 10 PHR against the unsaturated polyester resin, a magnetic field application of 0.1 sec is required. RD-Sm2Fe17N3 rare earth magnet powder can be aligned in a specific direction. However, as shown in the figure, there was no significant change even when the amount was increased to 40 PHR. Therefore, if the amount of pentaerythritol stearate triester added to the granular compound is 10 PHR on the basis of unsaturated polyester resin, high-speed alignment of RD-Sm2Fe17N3 rare earth magnet powder is possible. The productivity of the conductive rare earth bonded magnet can be improved.
[0051]
Pentaerythritol stearic acid triester has three lipophilic alkyl groups having 17 carbon atoms and one hydrophilic alcoholic hydroxyl group. Therefore, a hydroxyl group part has affinity with hydrophilic 12-PA. Due to the alkyl group, 10 PHR (per hundred resin) pentaerythritol stearate triester used in this example is insoluble in the unsaturated polyester resin. Therefore, it is inferred that the pentaerythritol stearate triester in the granular compound according to the present invention exists in a fine particle state in a state of being dispersed around the interface between the RD-Sm2Fe17N3 rare earth magnet powder and the unsaturated polyester resin. Therefore, when a magnetic field is applied to the granular compound heated to 70 ° C. or higher in the warm compression cavity, the molten pentaerythritol stearate triester from the interface between the RD-Sm2Fe17N3 rare earth magnet powder and the unsaturated polyester resin. The RD-Sm2Fe17N3-based rare earth magnet powder is arranged in a predetermined direction. After that, when the compound is compressed and densified, part of the eluted pentaerythritol stearic acid triester is responsible for lubrication at the interface between the RD-Sm2Fe17N3 rare earth magnet powder and the die wall surface. Conceivable. Such drugs are generally referred to as lubricants and include hydrocarbons, fatty acid amides, fatty acid esters, higher alcohols, and the like, but typically fatty acids (stearic acid) and metal salts thereof are known. However, even when fatty acid (stearic acid) and its metal salts were added to the quenched powder and the compound according to the present invention, the remarkable effect as observed with pentaerythritol stearate triester was not obtained.
[0052]
(Mixing effect of granular compound)
The granular compound with HDDR-Nd2Fe14B rare earth magnet powder has a resin component of 0.5 wt. % And less. Therefore, even if this compound is applied to the production method according to the present invention, it is difficult to produce an anisotropic rare earth bonded magnet having stable performance and quality on the industrial scale intended by the present invention. In particular, in the case of HDDR-Nd2Fe14B rare earth bonded magnet, the temperature coefficient of coercive force is about -0.5% / ° C, for example, -0.4% of magnetically isotropic melt span-Nd2Fe14B rare earth magnet powder. The coercive force after pulse magnetization of 4 MA / m at room temperature is preferably 1.1 MA / m or more. The anisotropic rare earth bonded magnet according to the present invention prepared from such HDDR-Nd2Fe14B rare earth magnet powder may cause a problem of magnetic flux loss when exposed to high temperature for a long time. However, recently, it has been reported that the problem of magnetic flux loss when the HDDR-Nd2Fe14B rare earth magnet powder is exposed to a high temperature for a long period of time can be overcome. For example, K.K. Macida, K .; Noguchi, M .; Nushimura, Y .; Hamaguchi, G .; Adachi, Proc. 9th Int. Works on Rare-Earth Magnets and Ttheir Applications, Sendai, Japan, (II), 845 (2000). Alternatively, K. Macida, Y .; Hamaguchi, K .; Noguchi, G .; Adachi, Digests of the 25th Annual Conference on Magnets in Japan, 28aC-6 (2001), and the like, the technology is disclosed, and a granular compound of RD-Sm2Fe17N3 rare earth magnet powder and unsaturated polyester resin Granular compounds of Nd2Fe14B rare earth magnet powder and unsaturated polyester resin are also in an environment where they can be actively used.
[0053]
The granular compound of the RD-Sm2Fe17N3 rare earth magnet powder and the unsaturated polyester resin according to the present invention may be mixed with the granular compound of the HDDR-Nd2Fe14B rare earth magnet powder and the unsaturated polyester resin at an arbitrary ratio. It is possible to produce a high-density green compact oriented by warm compression powder molding according to the above. However, by mixing both at a specific ratio, a higher density green compact can be obtained. FIG. 8 shows RD-Sm2Fe17N3 rare earth magnet powder and 2 wt. % HDDR-Nd2Fe14B rare earth magnet powder into a granular compound with a% unsaturated polyester resin and 0.5 wt. It is a characteristic view which shows the density of a green compact, and the magnetic flux after 4 MA / m Vals magnetization by making into a function the mixing ratio of the granular compound with% unsaturated polyester resin. However, the die temperature in warm compression is 70 ° C., magnetic field application is 1 sec, and compression is 500 MPa.
[0054]
As shown in the figure, the density varies depending on the mixing ratio of the granular compound of HDDR-Nd2Fe14B rare earth magnet powder and unsaturated polyester resin, but the ratio is 50-60 wt. A local maximum is observed near%. The obtained magnetic flux is almost linked to the density change, but the maximum point in the regression equation is about 50 wt. %. This is presumably because if the density of HDDR-Nd2Fe14B-based rare earth magnet powder having a large particle diameter is high, the powder is damaged during densification and the orientation is disturbed if the density is substantially the same. Therefore, the mixing ratio of the HDDR-Nd2Fe14B rare earth magnet powder according to the present invention is a range in which the powder is not easily damaged. That is, 50 wt. % Or less is desirable.
[0055]
(Continuous formability of granular compounds)
As described above, in the present invention, for example, 2 wt. % Granular polyester resin and RD-Sm2Fe17N3 rare earth magnet powder are filled into a cavity having a die temperature of 70-100 ° C. and a magnetic field of about 1.4 MA / m is applied before compression. It is desirable to produce a green compact having a density exceeding 5 Mg / m3 by arranging granular compounds in a specific direction and performing warm compression at a pressure of 500 MPa or more. Therefore, 30 arc green compacts having an outer radius of 25.15 mm, an inner radius of 23.15 mm, and a wall thickness of 2 mm were continuously formed. The obtained green compact had an average thickness of 2.037 mm, a standard deviation of 0.118 mm, a density of 5.385 Mg / m3, and a standard deviation of 0.055 Mg / m3, and there was no obstacle in production.
[0056]
9 shows RD-Sm2Fe17N3 rare earth magnet powder and 2 wt. % Unsaturated polyester resin and 0.5 wt.% Of the compound and HDDR-Nd2Fe14B rare earth magnet powder. The mixing ratio of the granular compound with the% unsaturated polyester resin is 50 wt. It is a characteristic view which shows the relationship between the die | dye temperature of warm compression using the thing made into%, and the magnetic flux after the 4MA / m pulse magnetization of an anisotropic bond magnet. However, in the figure, 1 is RD-Sm2Fe17N3 rare earth magnet powder and 2 wt. An anisotropic rare earth bonded magnet prepared from a granular compound with a% unsaturated polyester resin, 2 represents an HDDR-Nd2Fe14B rare earth magnet powder and 0.5 wt. The mixing ratio of the granular compound with the% unsaturated polyester resin is 50 wt. An anisotropic rare-earth bonded magnet made from the above is shown. As the die temperature increases, the ratio of magnetic flux between 1 and 2 decreases, but there is a difference of about 1.06 times at the kick-off temperature of the unsaturated polyester resin (in this case, about 120 ° C.).
[0057]
(Impregnation effect of unsaturated polyester resin)
As described above, the granular compound of the RD-Sm2Fe17N3 rare earth magnet powder and the unsaturated polyester resin according to the present invention can be mixed with the granular compound of the HDDR-Nd2Fe14B rare earth magnet powder and the unsaturated polyester resin at an arbitrary ratio. A high-density green compact oriented by warm compression powder molding according to the present invention can be produced. However, by mixing both at a specific ratio, a higher density green compact can be obtained. However, even when this green compact is heated and the unsaturated polyester resin is cured, it becomes an anisotropic bonded magnet in the state of a hard pencil core. Therefore, for example, when frictionally sliding with paper, the RD-Sm2Fe17N3 rare earth magnet powder is transferred to the paper surface, and the locus is drawn. Therefore, it is necessary to improve the mechanical strength for use as a permanent magnet type motor. Therefore, it was immersed in a solvent-type unsaturated polyester resin varnish to obtain a varnish of 1.5-2.0 wt. % Impregnation and the varnish was cured. As a result, the pencil-like properties disappeared, and the bending strength of 28.9 MPa was the same as that of a normal rare earth bonded magnet. Since the above impregnation treatment can be carried out in a large amount by batch treatment, the productivity is extremely high, and the obtained anisotropic bonded magnet according to the present invention can be exposed to 1000 hrs in an environment of 40 ° C. and 97.5% RH. No magnetic flux reduction or visual rusting was observed.
[0058]
The impregnation treatment as described above may be performed after the green compact according to the present invention or the heat treatment of the green compact and the unsaturated polyester resin is cured. Also, for example, the green compact or its unsaturated polyester resin cured product is inserted into the magnet slot of the laminated iron core, or is applied with a jig and then impregnated, so that it can be rigidized integrally with the laminated iron core. Absent. If the support member such as the laminated iron core is integrally made rigid by the anisotropic bonded magnet and the varnish treatment according to the present invention, an effect of reducing noise and vibration during operation as a permanent magnet type motor is produced.
[0059]
[Magnetic characteristics and basic motor characteristics]
(Magnetic properties)
FIG. 10 shows RD-Sm2Fe17N3 rare earth magnet powder according to the present invention and 2 wt. Fill the cavity with a polyester compound of 70% unsaturated polyester resin into a cavity with a die temperature of 70-100 ° C. and apply a magnetic field of about 1.4 MA / m before compression to arrange the granular compound in a specific direction. An anisotropic rare earth bond that was warm-compressed at a pressure of 500 MPa or more to produce a green compact exceeding a density of 5 Mg / m3, impregnated with a solvent-type unsaturated polyester resin varnish, and thermally cured at 150 ° C. for 15 minutes. It is the characteristic view which showed (BH) max after 4 MA / m pulse magnetization of the magnet with respect to the density. However, the relationship between (BH) max and the density of an anisotropic rare earth bonded magnet obtained by injection molding a compound of RD-Sm2Fe17N3 rare earth magnet powder and 12-PA in a magnetic field is different from the conventional example shown in the figure. Indicates. As already described with reference to FIG. 1, fine powders having a particle size of 5 μm or less, such as RD-Sm2Fe17N3 rare earth magnet powder, have been conventionally used as a process for magnet production by extrusion, calendering (3) -a and injection molding. Only the method 3 ▼ -b was disclosed. Therefore, the obtained anisotropic rare earth bonded magnet did not reach the density of 5 Mg / m 3. However, the anisotropic rare earth bonded magnet according to the present invention is adjusted to a granular compound that can be molded even if a fine powder having a powder particle diameter of 5 μm or less such as RD-Sm2Fe17N3 rare earth magnet powder is used, After the granules are once disintegrated in the softened state of the unsaturated polyester resin, the magnetic powder is arranged in a specific direction in a short time by applying a magnetic field, and then compressed, a green compact exceeding a density of 5 Mg / m3 is obtained at a relatively low pressure. And obviously high magnetic properties can be secured.
[0060]
(Motor characteristics)
2 wt. % Granular polyester resin and RD-Sm2Fe17N3 rare earth magnet powder are filled into a cavity having a die temperature of 70-100 ° C. and a magnetic field of about 1.4 MA / m is applied before compression. It is desirable to produce a green compact having a density exceeding 5 Mg / m3 by arranging granular compounds in a specific direction and performing warm compression at a pressure of 500 MPa or more. Therefore, an arc-shaped green compact having an outer radius of 25.15 mm, an inner radius of 23.15-23.73 mm, a wall thickness of 2-1.4 mm, a density of 5.0-5.1 Mg / m3, and (BH) max 128 kJ / m3 is manufactured. And affixed to a laminated core having a thickness of 24 mm. Subsequently, the solvent type unsaturated polyester resin varnish was impregnated and thermoset to integrally harden the iron core and the magnet. Finally, a rotating shaft was inserted to obtain an 8-pole surface magnet (SPM) rotor. FIG. 11A is a perspective external view of a magnet rotor according to the present invention, and the diameter of the rotor is 50.3 mm. FIG. 11B shows a (BH) max 17 kJ / m3 surface magnet (SPM) rotor injection-molded from a compound of hard ferrite and PA, the diameter of which is equal to (a). On the other hand, RD-Sm2Fe17N3 rare earth magnet powder and 2 wt. % HDDR-Nd2Fe14B rare earth magnet powder into a granular compound with a% unsaturated polyester resin and 0.5 wt. The mixing ratio of the granular compound with the% unsaturated polyester resin is 50 wt. From FIG. 11A, the magnet rotor shown in FIG. However, (BH) max of the magnet according to the present invention of this magnet rotor is 142 kJ / m 3.
[0061]
The above-described magnet rotor was incorporated into the stator to obtain a permanent magnet type motor. Next, FIG. 12 shows a characteristic diagram in which the induced voltage of the permanent magnet type motor is compared based on the conventional motor reference in FIG. However, in the figure, 1 is RD-Sm2Fe17N3 rare earth magnet powder and 2 wt. An anisotropic rare earth bonded magnet rotor made from a granular compound with a% unsaturated polyester resin, 2 represents HDDR-Nd2Fe14B rare earth magnet powder and 0.5 wt. The mixing ratio of the granular compound with the% unsaturated polyester resin is 50 wt. 1 shows an anisotropic rare earth bonded magnet rotor made from the following. As is apparent from the figure, the increase in the induced voltage of the permanent magnet type motor according to the present invention is remarkable when the conventional hard ferrite magnet motor is used as a reference. For example, RD-Sm2Fe17N3 rare earth magnet powder and 2 wt. Even in the case of an anisotropic rare earth bonded magnet rotor made from a granular compound with a% unsaturated polyester resin, the thickness of the arc-shaped magnet is 1.5-1. 6 times higher output is expected. Also, HDDR-Nd2Fe14B rare earth magnet powder and 0.5 wt. The mixing ratio of the granular compound with the% unsaturated polyester resin is 50 wt. An anisotropic rare earth bonded magnet rotor made from the above is expected to have a power output more than doubled.
By the way, if motor efficiency η is mechanical output P and loss is W
(Formula 4)
n = [P / (P + W)]
It is. Therefore, it can be concluded that high efficiency of the motor can be realized by high output, which is one of the objects of the present invention.
By the way, when the gap magnetic flux density between the armature core and the field magnet is increased as in the permanent magnet type motor according to the present invention, generally the cogging torque may be increased. The cogging torque referred to here is torque pulsation generated when the permeance coefficient Pc changes with the rotation of the rotor because the stator core teeth and the slots exist on the outer peripheral surface of the stator core facing the rotor. In motors with high (BH) max magnets such as the magnet according to the present invention, the cogging torque increases, which may cause an increase in motor vibration and noise, or cause a failure in position control accuracy. May be. The cogging torque is left to the design concept of the motor. However, the anisotropic rare earth bonded magnet according to the present invention can reduce the cogging torque of the motor to be used finally, by making the green compact in advance an unequal width or an unequal wall thickness. Means that suppress the increase in cogging torque by making the gap between the iron core and the magnet rotor close to a sine wave shape can be easily adopted. In the powdered compound according to the present invention, it is selected from the group of Fe, Fe—Ni, Fe—Co, Fe—Si, Fe—N, and Fe—B having a saturation magnetization of 1.3 T or more instead of the rare earth magnet powder. The granular compound of one or more kinds of soft magnetic powders to be prepared is prepared, and the green compact is loaded into the mold cavity, and then the granular compound according to the present invention is filled into the cavity and heated. Compress for a while. As a result, a green compact composite having different functions can be obtained. When this composite is impregnated, an anisotropic rare earth bonded magnet with a back yoke is obtained.
[0062]
【The invention's effect】
As described above, as a result of diligent research through the introduction of a new concept, the present invention shows that a granular compound of a rare earth magnet powder having an average particle size of 5 μm or less and a hard thermosetting resin composition is warm-compressed and thermosetting resin. The manufacturing method of the anisotropic rare earth bonded magnet which makes the impregnation of the composition an essential process is the main point. In particular, the rare earth bonded magnet using the rare earth magnet powder of 5 μm or less of the present invention does not require a molding process exceeding 200 ° C. as in the conventional molding process (calendering, extrusion molding, injection molding), etc. The inherent high magnetic performance of the powder can be reflected in the motor performance. Therefore, since the output of a conventional small motor equipped with a ferrite magnet or a magnetically isotropic melt-spun-Nd2Fe14B rare earth bonded magnet is remarkably exceeded, high efficiency of the motor can be realized by high output. Therefore, it is expected not only to contribute to miniaturization and high output to electrical and electronic equipment, but also to have an effect on reducing power consumption and saving resources by widespread use.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the cooperation of three major element technologies in bond magnet production, that is, magnet powder, a binder system, and a molding method.
FIG. 2 is a conceptual diagram showing a rotor structure of a permanent magnet type motor.
FIG. 3 is a characteristic diagram showing the relationship between coercive force and irreversible magnetic flux loss.
FIG. 4 is a conceptual diagram showing a powder forming operation.
FIG. 5 is a characteristic diagram showing the relationship between die temperature and density in warm compression.
FIG. 6 is a characteristic diagram showing the relationship between pressure and density in warm compression.
FIG. 7 is a characteristic diagram showing the relationship between magnetic field application time and magnetic flux.
FIG. 8 is a characteristic diagram showing changes in mixing ratio, density and magnetic flux of granular compound.
FIG. 9 is a characteristic diagram showing the relationship between die temperature and magnetic flux in warm compression.
FIG. 10 is a characteristic diagram showing the relationship between (BH) max and the density of a magnet produced by a conventional method from a fine powder having a powder particle diameter of 5 μm or less, such as RD-Sm2Fe17N3 rare earth magnet powder, and the magnet according to the example of the present invention.
11A is a characteristic diagram showing a perspective appearance of a permanent magnet type rotor according to the present invention. FIG. 11A is a characteristic diagram showing a perspective appearance of a conventional rotor.
FIG. 12 is a characteristic diagram showing the increase in output of a permanent magnet type motor with an induced voltage.
[Explanation of symbols]
(1) -a Ferrite magnet powder
(1) -b Alnico magnet powder
(1) -c rare earth magnet powder (according to the present invention)
(2) -a Flexible binder (rubber, thermoplastic elastomer)
(2) -b Rigid thermoplastic resin binder
(2) -c Hard thermosetting resin binder (according to the present invention)
(3) -a Calendar ring and / or extrusion molding
(3) -b Injection molding
(3) -c Compression molding
(3) -d Warm compression and impregnation (according to the present invention)
(4) Efficient small motor (according to the present invention)

Claims (33)

材料が平均粒子径5μm以下の希土類磁石粉末と平均粒子径50μm以上の希土類磁石粉末、および熱硬化性樹脂組成物との顆粒状コンパウンドで、
前記平均粒子径50μm以上の希土類磁石粉末の顆粒状コンパウンドの割合が50wt.%以下であり、
成形加工に少なくとも温間圧縮と熱硬化性樹脂組成物の含浸の工程を有する異方性希土類ボンド磁石の製造方法。
The material is a granular compound of a rare earth magnet powder having an average particle diameter of 5 μm or less, a rare earth magnet powder having an average particle diameter of 50 μm or more, and a thermosetting resin composition,
The ratio of the granular compound of the rare earth magnet powder having an average particle diameter of 50 μm or more is 50 wt. % Or less,
A method for producing an anisotropic rare earth bonded magnet having a molding process including at least a step of warm compression and impregnation with a thermosetting resin composition.
希土類磁石粉末と熱硬化性樹脂組成物とを主成分とした顆粒状コンパウンドを温間圧縮し、
得られたグリーンコンパクトと支持部材とを組立て、
熱硬化性樹脂組成物を同時に含浸、熱硬化して支持部材と一体的に剛体化する
請求項1に記載の異方性希土類ボンド磁石の製造方法。
Warm compression of a granular compound composed mainly of a rare earth magnet powder and a thermosetting resin composition,
Assemble the obtained green compact and support member,
Simultaneously impregnating and thermosetting the thermosetting resin composition to make it rigid with the support member
The method for producing an anisotropic rare earth bonded magnet according to claim 1 .
希土類磁石粉末と熱硬化性樹脂組成物とを主成分とした顆粒状コンパウンドを温間圧縮したグリーンコンパクトを熱硬化した後、
支持部材と組立て、
更に、熱硬化性樹脂組成物を同時に含浸、熱硬化して支持部材と一体的に剛体化する
請求項1に記載の異方性希土類ボンド磁石の製造方法。
After thermosetting the green compact in which the granular compound composed mainly of rare earth magnet powder and thermosetting resin composition is compressed,
Assembling with the support member,
Furthermore, the thermosetting resin composition is impregnated at the same time and thermoset to make it rigid with the support member.
The method for producing an anisotropic rare earth bonded magnet according to claim 1 .
平均粒子径5μm以下の希土類磁石粉末が耐候性Sm2Fe17N3系金属間化合物を主成分とする請求項1から請求項のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to any one of claims 1 to 3 , wherein the rare earth magnet powder having an average particle diameter of 5 µm or less contains a weather resistant Sm2Fe17N3 intermetallic compound as a main component. 平均粒子径5μm以下の希土類磁石粉末がSm−Co5系金属間化合物を主成分とする請求項1から請求項3のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to any one of claims 1 to 3, wherein the rare earth magnet powder having an average particle diameter of 5 µm or less contains an Sm-Co5 intermetallic compound as a main component. 平均粒子径50μm以上の希土類磁石粉末が耐候性Nd2Fe(Co)14B系金属間化合物を主成分とする請求項1から請求項のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to any one of claims 1 to 5 , wherein the rare earth magnet powder having an average particle diameter of 50 µm or more contains a weather-resistant Nd2Fe (Co) 14B-based intermetallic compound as a main component. . 平均粒子径50μm以上の希土類磁石粉末がNd2Fe(Co)14B系金属間化合物を主成分とする磁気的に等方性の材料である請求項1から請求項のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。Different according to claims 1, which is the material of the magnetically isotropic average particle size 50μm or more of the rare earth magnet powder is mainly composed of Nd2Fe (Co) 14B intermetallic compound in any one of claims 5 A method for producing an isotropic rare earth bonded magnet. 平均粒子径50μm以上の希土類磁石粉末がNd2Fe(Co)14B系金属間化合物とFe3B、Fe等のソフト相との磁気的に等方性のナノコンポジット材料である請求項1から請求項5のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。 Any average particle size 50μm or more of the rare earth magnet powder Nd2Fe (Co) 14B intermetallic compound and FE3b, claim 1 is magnetically nanocomposite material of isotropic soft phase such as Fe in claim 5 A method for producing an anisotropic rare earth bonded magnet according to claim 1 . 平均粒子径50μm以上の希土類磁石粉末がSm2Fe17N3系金属間化合物とFe等のソフト相との磁気的に等方性のナノコンポジット材料である請求項1から請求項のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。The average particle size 50μm or more of the rare earth magnet powder according to any one of claims 1 to 5 magnetically a nanocomposite material of isotropic soft phase such as Fe and Sm2Fe17N3-based intermetallic compound An anisotropic rare earth bonded magnet manufacturing method. 熱硬化性樹脂組成物が不飽和ポリエステル樹脂を主成分とする請求項1から請求項のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to any one of claims 1 to 9 , wherein the thermosetting resin composition contains an unsaturated polyester resin as a main component. 不飽和ポリエステル樹脂を構成する不飽和ポリエステルアルキッドが室温で固体のテレフタル酸系不飽和ポリエステルアルキッドである請求項10記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 10, wherein the unsaturated polyester alkyd constituting the unsaturated polyester resin is a terephthalic acid unsaturated polyester alkyd that is solid at room temperature. 不飽和ポリエステル樹脂を構成する共重合性単量体がアリル基を有するアリル系共重合性単量体である請求項10記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 10 , wherein the copolymerizable monomer constituting the unsaturated polyester resin is an allylic copolymerizable monomer having an allyl group. 不飽和ポリエステル樹脂が重合開始温度(キックオフ温度)110℃以上となる有機過酸化物を有効成分とする請求項10記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 10, wherein the unsaturated polyester resin contains an organic peroxide whose polymerization initiation temperature (kickoff temperature) is 110 ° C. or higher as an active ingredient. 前記有機過酸化物が室温で固体のジクミルパーオキサイドを主成分とする請求項13記載の異方性希土類ボンド磁石の製造方法。 The method for producing an anisotropic rare earth bonded magnet according to claim 13, wherein the organic peroxide is mainly composed of dicumyl peroxide which is solid at room temperature. 前記不飽和ポリエステル樹脂に対して10PHR以上のペンタエリスリトールステアリン酸トリエステルを添加した請求項14記載の異方性希土類ボンド磁石の製造方法。 The method for producing an anisotropic rare earth bonded magnet according to claim 14, wherein 10 PHR or more of pentaerythritol stearic acid triester is added to the unsaturated polyester resin. 顆粒状コンパウンドは室温で固体の不飽和ポリエステル樹脂を有機溶媒に溶解して希土類磁石粉末と湿式混合し、
溶媒を除去した当該混合物を解砕し、
粒子径75μm以上の顆粒を50wt.%以上とする請求項1から請求項15のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。
The granular compound is prepared by dissolving a solid unsaturated polyester resin in an organic solvent at room temperature and wet-mixing it with rare earth magnet powder.
Crushing the mixture from which the solvent has been removed,
A granule having a particle diameter of 75 μm or more is 50 wt. Method for producing an anisotropic rare earth bonded magnet according to any one of claims 1 to 15 to more than%.
成形型よりも高融点の高級脂肪酸、高級脂肪酸アミド、高級脂肪酸金属石鹸類から選ばれる1種または2種以上の滑剤を顆粒状コンパウンドの表面に0.1wt.%以上付着せしめる請求項16記載の異方性希土類ボンド磁石の製造方法。One or more lubricants selected from higher fatty acids, higher fatty acid amides and higher fatty acid metal soaps having a melting point higher than that of the mold are added to the surface of the granular compound by 0.1 wt. The method for producing an anisotropic rare earth bonded magnet according to claim 16, wherein at least% is adhered. 顆粒状コンパウンドの熱硬化性樹脂組成物の割合が2wt.%以下である請求項16記載の異方性希土類ボンド磁石の製造方法。The ratio of the thermosetting resin composition of the granular compound is 2 wt. The method for producing an anisotropic rare earth bonded magnet according to claim 16, which is not more than%. 温間圧縮が
フィーダボックス内の顆粒状コンパウンドを熱硬化性樹脂組成物の軟化温度以上に加熱した成形型キャビティに充填し、顆粒状コンパウンドを非磁性上下パンチと非磁性ダイとで密閉する第一工程と、
前記顆粒状コンパウンドに磁界を印加して希土類磁石粉末を所定の方向に配列しながら圧縮し、圧縮された成形型内のグリーンコンパクトを脱磁する第2工程と、
グリーンコンパクトを離型する第3工程と、である請求項1から請求項18のいずれか1項に記載の異方性希土類ボンド磁石の製造方法。
Warm compression,
The granular compound in the feeder box filled into a mold cavity heated to above the softening temperature of the thermosetting resin composition, a first step of sealing the granular compound in the non-magnetic upper and lower punches and the non-magnetic die,
A second step of applying a magnetic field to the granular compound and compressing the rare earth magnet powder in a predetermined direction to demagnetize the green compact in the compressed mold ;
The method for producing an anisotropic rare earth bonded magnet according to any one of claims 1 to 18 , which is a third step of releasing the green compact.
温間圧縮工程において(1)(3)の工程が(2)の工程と隔離され、(1)(2)の工程に移動する際にフィーダボックス並びにキャビティから漏洩した希土類磁石粉末を含む顆粒状コンパウンドを非帯磁状態で回収する請求項19記載の異方性希土類ボンド磁石の製造方法。In the warm compression step, the steps (1) and (3) are separated from the step (2) , and when moving to the steps (1) and (2) , the rare earth magnet powder leaked from the feeder box and the cavity is included. 20. The method for producing an anisotropic rare earth bonded magnet according to claim 19 , wherein the granular compound is recovered in a non-magnetized state. 温間圧縮工程において0.1sec以上の磁界を印加したのち顆粒状コンパウンドを圧縮する請求項19記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 19, wherein the granular compound is compressed after applying a magnetic field of 0.1 sec or more in the warm compression step. 顆粒状コンパウンドの温間圧縮が500MPa以上である請求項19記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 19 , wherein the warm compression of the granular compound is 500 MPa or more. グリーンコンパクトが磁界印加方向に対して不等幅である請求項19記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 19 , wherein the green compact has an unequal width with respect to the magnetic field application direction. グリーンコンパクトが磁界印加方向に対して不等肉厚である請求項19記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 19 , wherein the green compact has an unequal thickness with respect to the magnetic field application direction. 飽和磁化1.3T以上のFe、Fe−Ni、Fe−Co、Fe−Si、Fe−N、Fe−Bの群から選ばれる1種または2種以上のソフト磁性粉末を含有したグリーンコンパクトと希土類磁石粉末を含有したグリーンコンパクトを一体的に成形する請求項19記載の異方性希土類ボンド磁石の製造方法。Green compact and rare earth containing one or more soft magnetic powders selected from the group consisting of Fe, Fe—Ni, Fe—Co, Fe—Si, Fe—N, and Fe—B having a saturation magnetization of 1.3 T or more The method for producing an anisotropic rare earth bonded magnet according to claim 19 , wherein a green compact containing magnet powder is integrally formed. グリーンコンパクトの厚さが2mm以下である請求項19記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 19 , wherein the green compact has a thickness of 2 mm or less. グリーンコンパクトおよび/または該熱硬化物への含浸が熱硬化性樹脂組成物への常圧浸漬である請求項または請求項に記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 2 or 3 , wherein the green compact and / or the impregnation of the thermosetting product is atmospheric pressure immersion in a thermosetting resin composition. 含浸する熱硬化性樹脂組成物が不飽和ポリエステル樹脂を主成分とする溶剤型ワニスである請求項27記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 27, wherein the thermosetting resin composition to be impregnated is a solvent-type varnish mainly composed of an unsaturated polyester resin. グリーンコンパクトおよび/または該熱硬化物の支持部材が積層電磁鋼板である請求項または請求項記載の異方性希土類ボンド磁石の製造方法。The method for producing an anisotropic rare earth bonded magnet according to claim 2 or 3, wherein the green compact and / or the support member of the thermoset is a laminated electromagnetic steel sheet. 請求項1から請求項29のいずれか1項に記載の異方性希土類ボンド磁石の製造方法により製造された異方性希土類ボンド磁石と積層電磁鋼板とから構成した表面磁石回転子型ロータを有する永久磁石型モータ。A surface magnet rotor type rotor comprising an anisotropic rare earth bonded magnet manufactured by the method for manufacturing an anisotropic rare earth bonded magnet according to any one of claims 1 to 29 and a laminated electromagnetic steel sheet. Permanent magnet type motor. 請求項1から請求項29のいずれか1項に記載の異方性希土類ボンド磁石の製造方法により製造された異方性希土類ボンド磁石と積層電磁鋼板とから構成した埋込磁石型ロータを有する永久磁石型モータ。A permanent magnet having an embedded magnet type rotor composed of an anisotropic rare earth bonded magnet manufactured by the method of manufacturing an anisotropic rare earth bonded magnet according to any one of claims 1 to 29 and a laminated electrical steel sheet. Magnet type motor. 請求項1から請求項29のいずれか1項に記載の異方性希土類ボンド磁石の製造方法により製造された異方性希土類ボンド磁石を永久磁石界磁とした直流モータ。30. A DC motor using, as a permanent magnet field, an anisotropic rare earth bonded magnet manufactured by the method for manufacturing an anisotropic rare earth bonded magnet according to any one of claims 1 to 29 . 4MA/mパルス着磁後の室温における最大エネルギー積(BH)maxが130kJ/m3以上の請求項1から請求項31のいずれか1項に記載の異方性希土類ボンド磁石を搭載した永久磁石型モータ。32. A permanent magnet type equipped with the anisotropic rare earth bonded magnet according to any one of claims 1 to 31, wherein a maximum energy product (BH) max at room temperature after 4 MA / m pulse magnetization is 130 kJ / m 3 or more. motor.
JP2002264494A 2002-09-10 2002-09-10 Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor Expired - Fee Related JP4042505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264494A JP4042505B2 (en) 2002-09-10 2002-09-10 Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264494A JP4042505B2 (en) 2002-09-10 2002-09-10 Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor

Publications (2)

Publication Number Publication Date
JP2004103871A JP2004103871A (en) 2004-04-02
JP4042505B2 true JP4042505B2 (en) 2008-02-06

Family

ID=32263920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264494A Expired - Fee Related JP4042505B2 (en) 2002-09-10 2002-09-10 Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor

Country Status (1)

Country Link
JP (1) JP4042505B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080115A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Anisotropic rare earth/iron-based bond magnet
JP4655651B2 (en) * 2005-02-02 2011-03-23 パナソニック株式会社 Method for manufacturing perpendicular magnetic anisotropic thin plate magnet
JP4124215B2 (en) * 2005-07-20 2008-07-23 愛知製鋼株式会社 Brushless motor
JP2007088354A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JP5094111B2 (en) * 2006-12-28 2012-12-12 日立オートモティブシステムズ株式会社 Permanent magnet rotating electrical machine, method of manufacturing the same, and automobile equipped with permanent magnet rotating electrical machine
JP2013027075A (en) * 2011-07-15 2013-02-04 Nidec Sankyo Corp Rotor, motor, and method of manufacturing rotor
JP6158499B2 (en) * 2012-11-28 2017-07-05 ミネベアミツミ株式会社 Spherical magnet compound and rare earth-iron bond magnet
JP6179037B2 (en) * 2013-08-30 2017-08-16 ミネベアミツミ株式会社 Bond magnet manufacturing method and bond magnet
JP6373505B2 (en) * 2015-08-12 2018-08-15 三菱電機株式会社 Electric motor and air conditioner
CN112951581B (en) * 2021-02-08 2023-08-29 绵阳巨星永磁材料有限公司 Forming device of permanent magnet material

Also Published As

Publication number Publication date
JP2004103871A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
JP3956760B2 (en) Manufacturing method of flexible magnet and its permanent magnet type motor
JP4042505B2 (en) Manufacturing method of anisotropic rare earth bonded magnet and its permanent magnet type motor
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
KR100981218B1 (en) Permanent magnet rotor and motor using the same
JP2007088354A (en) METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JP3985707B2 (en) Hybrid rare earth bonded magnet, magnetic field compression molding apparatus, and motor
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
JP4364487B2 (en) Rare earth bonded magnet from sheet to film and permanent magnet motor using the same
JP2006049554A (en) Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JPWO2008065898A1 (en) Radial gap type magnet motor
JP3933040B2 (en) Rare earth bonded magnet manufacturing method and permanent magnet motor having the same
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JP4577026B2 (en) Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP4089705B2 (en) Multi-layered multipole magnet rotor
JP2002329628A (en) Method of manufacturing annular magnet structure and motor
JP2006073880A (en) Flexible rare earth bond magnet integral with fiber reinforced layer
Yamashita et al. Anisotropic Nd-Fe-B based flexible bonded magnet for small permanent magnet motors
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JP2005116936A (en) Method for manufacturing annular rare earth bond magnet, and motor
JP4622536B2 (en) Radial magnetic anisotropic magnet motor
JP4635583B2 (en) Manufacturing method of radial anisotropic magnet motor
JP2004296872A (en) Method for manufacturing heat shrinkable rare earth magnet and permanent magnet motor
JP2006080115A (en) Anisotropic rare earth/iron-based bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees