JP4083239B2 - 箔マノメータ - Google Patents

箔マノメータ Download PDF

Info

Publication number
JP4083239B2
JP4083239B2 JP54323198A JP54323198A JP4083239B2 JP 4083239 B2 JP4083239 B2 JP 4083239B2 JP 54323198 A JP54323198 A JP 54323198A JP 54323198 A JP54323198 A JP 54323198A JP 4083239 B2 JP4083239 B2 JP 4083239B2
Authority
JP
Japan
Prior art keywords
measurement
layer
resistor
pressure
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP54323198A
Other languages
English (en)
Other versions
JP2001517313A (ja
Inventor
マスト、カール−フリードリッヒ
シュラム、ゲロルド
ミュンヒ、マルティン
Original Assignee
マツクス−プランク−ゲゼルシャフト ツール フエルデルングデル ヴイツセンシャフテン エー フアウ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツクス−プランク−ゲゼルシャフト ツール フエルデルングデル ヴイツセンシャフテン エー フアウ filed Critical マツクス−プランク−ゲゼルシャフト ツール フエルデルングデル ヴイツセンシャフテン エー フアウ
Publication of JP2001517313A publication Critical patent/JP2001517313A/ja
Application granted granted Critical
Publication of JP4083239B2 publication Critical patent/JP4083239B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/10Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured
    • G01L21/14Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured using thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Pressure Sensors (AREA)
  • Glass Compositions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、熱伝導マノメータとして動作される圧力測定装置、並びにこの種圧力測定装置を使用して圧力を測定する方法に関する。
平均自由行程長が容器のディメンションと比較可能であるときに、低圧での気体の特別な熱伝導率は、気体の圧力に依存しており、このことは、圧力を測定するための熱伝導マノメータで利用されている。最も単純な場合、熱伝導マノメータは、測定される気体の中に入れられる自己支持抵抗ワイヤーを有する。この抵抗ワイヤーは、一定の電力で加熱される。そして、気体粒子の平均自由行程長が、ワイヤーの径のディメンションに達したときにすぐに、気体の熱伝導率は、圧力に対応するようになる。圧力が低下するのに従って、気体により伝導される熱流は、低くなり、この結果、ワイヤーの温度は、一定の加熱パワーでの圧力に依存する。低圧限界以下で、気体を通る放熱は、伝導もしくは熱放射による放熱と比較して無視され得るので、伝導される熱流は、圧力とは独立し、かくして、抵抗ワイヤーの温度は、一定となる。
このワイヤーの温度は、ワイヤーの抵抗値から決定され得る。ピラニマノメータにおいて、抵抗値は、1つの抵抗体が測定抵抗ワイヤーにより形成され、かつ測定抵抗ワイヤーと同じデザインの基準抵抗値が一定の圧力下で動作されるホイートストンブリッジにより測定される。
ピラニマノメータとしてデザインされた熱伝導マノメータは、一般的に、以下の欠点を有する。可能な限り径を細くすることによって、可能な限り初期圧力を高くする抵抗ワイヤー(上述)は、一般に、比較的高い抵抗値の材料(例えば、タングステンもしくはモリブデン)により形成されている。このような高抵抗材料は、単に、直流によって測定ブリッジ回路の動作を可能にしている。さらに、電磁障害による影響は大きく、これは、プラズマ物理実験では特に欠点となっている。従って、一般のピラニマノメータで制限がある。さらに、自己支持抵抗ワイヤーを備えたデザインのマノメータは、機械的ストレス並びに受ける通風に敏感である。最後に、コンパクトなデザインではない一般のピラニマノメータを設置することは、これらマノメータの使用が真空プラントの動作での特別ではない圧力測定に一般的に制限されることを意味する。
例えば、US5,557,972、DE−OS4310324、並びにDE−OS4413349から知られている他の熱伝導マノメータは、上述したワイヤーの形態の代わりに平坦な層の形態の測定抵抗体を有する。このような抵抗マノメータは、比較的高い感度を呈するが、動的応答性と機械的安定性の面に欠点がある。高い感度を得るために、測定抵抗体をマノメータの他の部分から断熱する方法がある。これにより、測定される気体と測定抵抗体との間の熱均衡を設定するためには比較的長い時間を必要とし、この結果、熱均衡を設定するための時間よりも短い時間の圧力変動が測定され得ない。従来の熱伝導マノメータにおいて、測定抵抗体は、半導体技術で形成される膜により製造され(測定抵抗体とキャリアー膜との厚さは約1μm)、このことは、機械的感度が極めて高いことを意味する。従って、層の形態の測定抵抗体を使用した従来の熱伝導マノメータのデザインは、センサーを小形にするのには限度がある。このことは、また、圧力測定の感度が低下することにもなる。
DE−OS4308434は、規格化された熱伝導マノメータでの温度補償のための電気回路を開示している。
本発明の目的は、広範囲での使用が可能で、特に小型で障害の影響を受けないようにデザインされ、高精度で動作され得る改良された圧力測定装置を提供することである。
この目的は、請求項1の態様を有する圧力測定装置により達成される。本発明の効果的な構成は、従属請求項によっている。
本発明は、熱伝導の原理に基づく圧力測定装置で、従来の構造とは別に層構造体を使用するアイディアに基づいており、少なくとも1つの測定抵抗体と熱伝導層とがキャリアー箔に層状に配設されている。
前記熱伝導層は、熱バス(高熱容量)として機能する熱コンタクト層に接続されており、かくして、圧力測定装置の他の部分への測定抵抗体の所定の熱的カップリングとして機能する。かくして、従来の熱伝導マノメータとは異なり、本発明は、熱伝導層内で測定抵抗体からの規定された放熱を果たす手段を形成している。熱伝導層は、また、キャリアー箔が金の熱伝導性に比較され得る充分な熱伝導性を呈するのであれば、キャリアー箔の一部であり得る。
本発明のデザインは、第1の時間において、測定抵抗体の熱均衡の設定の加速を果たし、応答時間を早くし、かくして、非常に早い圧力変化(kHzのオーダ)の検出を可能にする。
熱伝導層を装着する他の効果は、圧力測定装置のフィードバック動作を可能にすることである。図2を参照して以下に説明されるこのフィードバック動作は、測定抵抗体が直接的もしくは間接的な加熱により規定された方法で変更されることを、例えば、一定の温度に設定されることを意味する。必要な加熱パワーが放熱に、かくして媒体の圧力に依存することを考慮すると、瞬間的な圧力値は、加熱パワーから直接決定され得る。熱源(可能であれば、特別な加熱抵抗体)の影響を受ける測定抵抗体と、ヒートシンクとして機能する熱伝導層との温度上の均衡は、所望の温度範囲で非常に早く設定され得る。
可能ならば吸収層並びに/もしくは表面構造体を有する熱伝導層と、測定抵抗体もしくはキャリアー箔とは、測定抵抗体から媒体への熱流が大部分で層を垂直に通るようにディメンションが決定されている。熱伝導層の追加は、測定抵抗体と測定される媒体との間の温度勾配の規定された設定を可能にする。本発明の好ましい構造において、測定抵抗体は、キャリアー箔の一側に設けられ、また、熱伝導層は、測定抵抗体と対応する領域で他側に設けられている。しかし、他の層のシーケンスは、測定抵抗体から熱伝導層を通って媒体に流れる実質的に垂直な放熱を可能にし、この結果、圧力測定装置の感度もしくは応答時間が決定される。キャリアー箔の反対側で、測定抵抗体は、媒体と直接接触するか、吸収層を支持する(単一もしくは2重の層)。
本発明に係わる圧力測定装置は、ブリッジ回路を備えたピラニマノメータとして好ましくは動作される。第1の実施の形態において、同じデザインの測定抵抗体と基準抵抗体とが、互いに離れてキャリアー箔に設けられ、後者は、良熱伝導性のブロックの形態で設けられており、これは、測定抵抗体がキャリアー箔に配設され、また基準抵抗体が配設されたキャリアー箔の領域の周りで形状的に合った領域内で、測定される媒体を収容する凹所を有する。かくして、基準抵抗体は、熱バス(非常に高い熱容量)に全体的に接続されており、この結果、温度のいかなる圧力依存性変化をも受けない。
本発明の第2の実施の形態において、説明されているデザインは、測定抵抗体と同様に基準抵抗体もキャリアー箔の自己支持領域に配置されるように変更されている。この場合、基準抵抗体は、熱バスにより囲まれてはおらず、測定される媒体と熱的に接触するようにもたらされている。この圧力測定装置は、上述したように、キャリアー箔、測定抵抗体、並びに熱伝導層からなる層構造を備えたセンサー部分と、基準抵抗体、キャリアー箔、並びに熱伝導層からなる層構造を同様に備えた基準部分とを有する。これらセシサー並びに基準部分は、同じ機何学的形状を有することが好ましいが、これらの熱伝導層は、厚さは異なる。かくして、以下のように、区別が、第2の実施の形態に関連して、基準熱伝導層とセンサー熱伝導層との間でなされている。この基準熱伝導層は、センサー熱伝導層よりも好ましくは厚い(例えば、約4ないし5倍)。好ましい構造において、測定抵抗体は、基準抵抗体と同様に(基準加熱抵抗体)、別の加熱抵抗体(セシサーか熱抵抗体)を有し得る。
本発明に係わる圧力測定装置は、機械的安定性が増したマノメータのデザインを可能にしている。これは、測定もしくは基準抵抗体と環境との熱的カップリングを改良するための方法によっている。従って、安定したキャリアーフイルム箔を有する新規なデザインが得られる。このデザインは、換気動作に充分に耐えられ、また、層構造を有する従来の抵抗マノメータと比較して大きいセンサー領域を可能としている。これは、また、圧力測定装置の感度を高めている。
また、本発明の層構造は、圧力測定装置の圧力感知センサー部分の小形化を可能にしている。本発明の他の実施の形態において、多数の圧力測定装置が、圧力の測定における位置感知分解能のための熱伝導マノメータにおいてマトリックスのように構成される。
本発明の装置の効果的な使用において、圧力プロフィールは、例えば、容器の所定の領域内でリニアーもしくはフラットに配設された多数の圧力センサーを使用して媒体で検出され、また、全ての圧力センサーの圧力値の同様の検出のために意図されている。
本発明の詳細は、添付の図面を参照した以下のことから与えられる。
図1は、本発明に係わる圧力測定装置の第1の実施の形態の概略的な断面図である。
図2は、本発明に係わる圧力測定装置を作動させるブリッジ回路を説明するためのブロック図である。
図3は、圧力に対するブリッジ出力電圧曲線図である。
図4は、多数のセンサーを備えた本発明に係わる熱伝導マノメータのキャリアー箔の前方の概略図である。
図5は、図3に係わる熱伝導マノメータのキャリアー箔の後方の概略図である。
図6は、蛇行構造の測定抵抗体の拡大図である。
図7は、熱伝導層の異なる構造を示す概略的断面図(A−D)である。
図8は、本発明に係わる圧力測定装置の第2の実施の形態の概略的断面図である。
第1の実施の形態
図1は、本発明に係わる圧力測定装置の第1の実施の形態の概略的な断面図である。明確にするために、この図は、実際の寸法では示されていない。以下の説明において、圧力測定装置、即ち、図1に示す個々の層状要素の上側が前と称され、下側が後ろと称されている。これは、本発明に係わる圧力測定装置の所定の部品の配置に関して、前方もしくは後方で限定することを意味しているのではなく、漠然とした表示である。熟練者は、動作状態における前方は、容器の内部に関してのモノメータの無差別に向けられた側であることは、理解できるであろう。
本発明に係わる圧力測定装置は、センサー部分10(破線のアウトライン)を有する。このセンサー部分10は、自己支持キャリアー箔11を有する。この箔の前側には、熱コンタクト層121が設けられ、また、後ろ側には、測定抵抗体131を有する抵抗体並びにリード層130が設けられている。測定抵抗体131と中心を同じとしかつ反対側で、熱コンタクト層121は、凹所122を有し、ここからの延出部が、所定の厚さの薄い熱伝導層123となっている。この熱伝導層123の前側で、凹所122の中には、測定される媒体と接触する吸収層124が配置されている。この吸着層の取着は絶対的な本質ではない。本発明に係わる圧力測定装置は、また、凹所の底に設けられた前記熱伝導層のみが、吸収層がなくて側方に接続する熱コンタクト層121の関連して設けられるように、デザインされ得る。この熱伝導層をデザインするための可能性は、図7Aないし7Dを参照して後で説明される。前記キャリアー箔11の後ろ側には、層状の測定抵抗体131に加えて、層状のリード132が配置されている。
キャリアー箔11と、これに取着された熱コンタクト層121と,熱伝導層123と、測定抵抗体131と、リード層132とからなる前記層構造は、パッケージ14(ハッチングで概略的に示されている)により囲まれている。このパッケージ14の前側には、ガス入口、即ち、換気ダクト141が形成されており、これを通って測定される媒体が前記凹所内に入り得る。また、パッケージ14の後ろ側で、主に測定抵抗体131の延びた領域には、凹所133が形成されている。この凹所のディメンション(特に、層の面に平行な方向)は、前記凹所122と対応している。測定される媒体は、また、センサー部分10の後ろ側の部分に、別の換気ダクト142を通って入り得る。このことは、センサー部分への機械的ストレスを減じる効果がある。前記換気ダクト141,142は、キャリアー箔11の平面に垂直な基準線に対して傾斜するように配置されている。このことは、電磁放射線(特に熱放射線)に対するセンサー部分のシールドを果たしている。圧力測定装置の特別なデザインにおいて、キャリアー箔の後ろ側の凹所133は、省略され得る(後で説明する)。
圧力補償のための凹所133と測定抵抗体とを備えたキャリアー箔の後ろ側の圧力測定装置のデザインは、以下の形態のうちの1つに選定され得る。第1の例において、測定抵抗体を備えたキャリアー箔の領域は、測定されるガスと直接に接触するように露出されている。熱抵抗値の改良は、測定抵抗体に吸収層(図示せず)を加えることにより得られる。吸収層が電気的に絶縁体の場合には、蛇行形状の測定抵抗体とこれらの間のキャリアー箔の自由領域とを直接覆う。また、吸収層が電気的に導体の場合には、電気的な絶縁層が測定抵抗体と吸収層との間に設けられる。さらなる例(図1に示す)において、測定抵抗体と加熱抵抗体135との間に、機能が後で説明される絶縁層134が設けられる。
前記パッケージ14は、熱良導性の材料で形成されている。このパッケージ14は、キャリアー箔11により支持された全層構造体を強固にクランプている。測定抵抗体131並びに熱伝導層123の領域で、層構造体は、自己支持している。電気的に加熱された測定抵抗体131からの熱は、主に熱伝導層123を通って、パッケージ、並びに圧力Pが測定される周囲の媒体へと伝えと、所定の方法で伝えられる。この媒体は、大気圧以下の圧力を有する気体である。前記測定抵抗体131は、圧力に依存している気体を介しての熱伝達により温度T(p)に加熱される。測定抵抗体の温度係数により、その抵抗値R(p)もまた、圧力に依存している。
図1に係われば、各基準抵抗体136は、測定抵抗体131並びに接続リード132と同一平面に配設されているが、測定される気体とは熱的に接触していない。基準抵抗体136の代わりに、直接の圧縮全表面が、パッケージ14とのしっかりとした熱接触となり、かくして電磁放射線並びに気体粒子に対して充分にシールドされる。このことは、電気的に加熱される基準抵抗体136の温度がパッケージの温度(ヒートバス)と同じであり、圧力には依存していないことを意味する。
キャリアー箔11と熱伝導層123とを通る測定抵抗体131からの熱伝導は、規定された幾何学的パラメータの仮定のもとで、以下のように示される。尚、キャリアー箔11と熱伝導層123とは、1つの熱伝導層とみなされ得る。前記幾何学的パラメータは、キャリアー箔11の厚さd11と、熱伝導層123の厚さd123と、熱伝導層123の(即ち凹所122のベース領域の)表面の側方長さa並びにbとを、特に含む。測定される気体への段階状衝撃の後に、熱伝導層の温度は、以下のようになる。
Figure 0004083239
ここで、f(po)は、基準圧力poのための校正可能な熱除去容量、<K>は、キャリアー箔11と熱伝導層123との伝導率の平均係数、<c>は、キャリアー箔11と熱伝導層123との平均熱容量,そして、<T>(t)は、熱伝導層の領域全体に渡っての平均温度である。また、添字m,nは、所謂、熱状態のモードを示す自然、奇数である。以下の式に係わる数値λmnは、熱伝導層123の側方長さa,bに依存している。
Figure 0004083239
かくして、所定のモードナンバーm,nのための以下の式で表される時間定数は、熱伝導層(キャリアー箔を備えた)の幾何学的形状と、固有熱容量と、熱状態とに依存する。
Figure 0004083239
これらの量を通じて、測定抵抗体131と、測定される媒体との間の熱流の所望の時間定数を設定するととが可能である。代表的な時間定数τ11は、1msないし数百msの範囲にあり、例えば、側方長さa=0.1cm,b=0.3cm、並びに、熱伝導層の異なる厚さd123に対するキャリアー箔の厚さ10x10-6mの場合には以下の値を有する。
123=1μm: τ11=5.4x10-3s,
11=0.1μm: τ11=38.9x10-3s,
11=10μm: τ11=1.2x10-3
均質な熱伝導層においては、モードは、比較的高いm,n値に対して早く減少し、この結果、モード=1,n=3(もしくは、これの逆)は、例えば、基本モードの約15%のみである。
熱的特性は、熱補償層もしくは吸収層が加えられる場合には、より複雑になる。かくして、所定のパラメータの設定は、固体において利用可能な数値の主ミレーション方法を使用してなされる。熱補償層の厚さは、熱伝導層123の厚さよりも厚く(代表的には50ないし100のファクター)、一般に選定される。
温度依存性抵抗値R(p)の検出は、2つの測定抵抗体21(131に対応)と、2つの基準抵抗体22(136に対応)とにより構成されたブリッジ回路を有するピラニマノメータの場合でのように、好ましくはなされる。これら基準抵抗体22は、測定抵抗体21と同じデザイン(同じ材料,同じ幾何学的形状)ではあるが、これらの温度が圧力を夫々独立して設定するように第1の実施の形態では形成されている。また、前記基準抵抗体も、これらが測定抵抗体よりも大きい抵抗値を有するように、設定され得る。この大きい抵抗値は、以下の考察の結果である。
ブリッジ供給電圧Vacが印加されたときに、測定抵抗体の抵抗値(R)は、
ΔRMesa=(α/2)x(τ/c)xVrms 2(ここで、VrmsはVasの実効値、αは温度係数、τは測定箔の時間定数、そして、cは測定箔の温度容量である)。基準抵抗体は、パッケージにより、パッケージ温度に維持されており、かくして、これらの抵抗体値は変化しない(ΔRRef=0)。ブリッジは、これが全くされないか僅かに調節され得るようにΔRMesaにより誤調節(mistune)される。このために、ΔRRefは、Vrmsが印加されたときに、均衡するように、完全な状態に対して、ΔRMesaだけ大きくなるように選定される。τは、数的に計算され得る。
図2に係わるブリッジ回路は、AC電圧とロック・イン(fが100kHzへと高い)で動作される。図示の実施の形態において、2対の測定並びに基準抵抗体21,22は、後ろへと動作される。しかし、また、1対の測定並びに基準抵抗体は、ブリッジ配列のために固定基準抵抗体に変更され得る。正弦波ブリッジ出力電圧VBの振幅変調ΔVBは、温度に対する最小依存性(dΔVB/dT)に対して、圧力に対する高い依存性(dΔVB/dp最大)を呈する。第1の測定方法において、ブリッジ回路の抵抗体は、動作電圧Vacで一定の熱パワー(周期的、例えば、正弦波熱電流)が供給され、また、圧力が適当な矯正の後に、測定されたブリッジ出力電圧ΔVBから検出される。
代わって、直接の加熱に加えて、測定抵抗体から媒体への熱流を部分的もしくは全体的に補償するために、特別の加熱抵抗体23(図1:測定抵抗体131、加熱抵抗体135)により間接的に(第2の実施の形態を参照)各測定抵抗体21もしくは基準抵抗体22を加熱することが可能である。この測定方法において、可変電流が、ブリッジ出力電圧ΔVBが一定になるように、加熱抵抗体23に与えられる。かくして、この加熱抵抗体23の加熱パワーは、測定抵抗体から測定される気体への熱伝導の、かくして気体の圧力の直接計量である。
このマノメータのフィードバック動作に加えて、加熱抵抗体は、また、インターフェイス信号、ドリフト、もしくは放射性放射(“核”加熱)による加熱の加熱並びに/もしくはブリッジの均衡化のために機能する。フイードバック動作は、システムのスペクトル帯域(周波数の機能)を大きくすることを可能にする。感度のロスは、ロック・インにより補償される。フイードバックは、ブリッジ出力電圧ΔVBに比例した、測定抵抗体21もしくは基準抵抗体22上の加熱抵抗体23の加熱パワーを選定することにより、実行される。自身の比例ファクターは、周波数に依存してか依存しないで選定され得る。フイードバック制御での周波数に依存した比例ファクターは、臨界周波数以上の周波数に対する感度の低下を防ぐ効果を奏する。
測定ブリッジの校正は、夫々の種類の気体が固有の粒子移動度を、かくして固有の熱伝導を有するので、気体に対して特別にできる。振幅変調ブリッジ出力電圧ΔVBは、好ましくは、ロック・インによりなされる。しかし、DC電圧で動作するブリッジ回路の変更もある。
図3は、2つの異なるモノメータ(I,II)のための測定される気体圧力に対するブリッジ出力電圧ΔVBの依存性の例を示す。この測定は、動作気体として空気を使用してなされた。
図1に係わる圧力測定装置のデザインは、例えば、以下の材料とディメンションとを使用いて可能である。キャリアー箔11は、絶縁材料、好ましくはマイカ(白雲母)で形成されている。代わって、ダイヤモンド箔の使用が可能であり、これは極めて高い熱伝導性を示す。また、キャリアー箔11は、導電性材料、好ましくは、Siウエハ材料、高品位スチール、もしくはニッケルにより形成され得、この場合には、抵抗体並びに接続リードを支持する箔側には、絶縁介在層が設けられる。キャリアー箔11の厚さは、約15μmである。一般的に、このようなキャリアー箔11は、高温でさえも膨張しない、安定かつ平坦な材料で形成される。特に、キャリアー箔の材料は、凹所122,123の深さ(夫々最小15μm並びに1μm)が再現性良く形成され得るような平坦な表面を有することが必要である。このような要求は、マイカ箔により、得に良く満たされる。
前記熱伝導層123は、好ましくは、金により形成される。この熱伝導層123の厚さは、圧力測定の感度を決定する。これは、熱伝導層123が規定された熱ダメを呈し、かくして、吸収層124の温度が熱伝導層123の厚さにより主として決定されるからである。気体への熱電流は、センサー(特に、吸収体)方向への温度勾配と比例するので、測定は、高温の吸収層124でなされることが好ましい。この温度は、測定抵抗体131に送られる電力を増し、かつ熱伝導層123の厚さを減じるか、熱伝導層123の面積を大きくすることにより、発生され得る。この熱伝導層123の厚さは、例えば、0.2μmである。前記熱接触層121は、一定の厚さの金で好ましくは形成され、熱伝導層123の領域を除いて、キャリアー箔の前面全体を覆っている。
前記吸収層124は、絶対に必要なものではないが、圧力測定において高感度を達成するためには好ましい。この吸収層124は、近接する気体と良好な熱接触を果たすように意図されている。この目的のために、吸収層124は、微視的に粗い面を好ましくは有する。この別体の吸収層124の代わりに、適当な表面処理が熱伝導層123になされ得る。
前記キャリアー箔11の後ろにある測定並びに基準抵抗体層131,136の厚さは、約0.02μmである。また、接続リード132のための層の厚さは、約1μmである。厚さの相違、並びに図1に概略的に示すことから異なるので、段差が接続リード層132への移行の所での測定並びに基準抵抗層131,136の領域に形成される。この方法で、パッケージ14内の前記凹所133を省略して、ダクト142を測定抵抗体までのびるようにパッケージ14の後部を貫通させることができる。キャリアー箔の例は、図4ないし6を参照して後述される。
加熱される測定抵抗体は、本発明に係わる圧力測定装置では大きいフォーマットではあるが、これは、測定され得る圧力の範囲の上限を制限するものではない。層構造、特に、キャリアー箔11の極めて平坦な面は、一方では、吸収層124と、パッケージの面する壁との間に極めて狭いスペース(約10μm)を形成し、また他方では、測定抵抗体の後面と凹所133内のパッケージの面する壁との間に極めて狭いスペース(1μmまで)を形成する。気体内の粒子の平均自由行程長さに対する前記スペースの関係は、圧力上限を決定する。
熱伝導層、可能ならば吸収層の領域での、本発明に係わる圧力測定装置の形状は、圧力測定の応答時間を決定する。吸収層がなく、また、熱伝導層が熱伝達を促進するような構造(例えば、粗さ)を有する場合には、圧力測定の応答時間は、熱伝導層が上記構成を持たないで、均質の面を有し、かつ吸収層が設けられたデザインの場合よりも短い。この熱伝導層の表面の構造は、熱伝導層への放熱(例えば、圧力衝撃を受けたとき)の時間は、1つの時間定数を有する1つの指数函数で正確に表し得る。
好ましい装置において、本発明に係わる熱伝導モノメータは、図1に示すような圧力測定装置が多数設けられている。層構造は、必要な測定に応じて小形化され得るマトリックスもしくはアレイ配列を可能にしている。測定抵抗体と基準抵抗体との間の間隔は、基準抵抗体が圧力の函数としての影響を受けないように充分に大きくなければならないことを果たす唯一の事項である。図4は、本発明に従って覆われたキャリアー箔11の拡大平面図である。エッジにアラインメント並びに接続領域を有する箔の外側のディメンションは、2x3cm2である。このキャリアー箔11は、熱接触層121と、熱伝導層123と、吸収層124とを有するセンサーユニット10を支持している。また、吸収層は、熱伝導層を全体的に覆うことが可能である。図示したセンサーユニットの各々は、基準ユニット20に割り当てられている。センサーユニット10の場合とは異なり、基準ユニット20の領域内には、熱接触層121のみが存在する。
前記下囲みシェル11の後ろ側には、図5に示すように、センサーユニット10と基準ユニット20と対向し、間に接続リード132を有する測定並びに基準抵抗層131,136が設けられている。
図5に示す各測定並びに基準抵抗層131,136は、蛇行し、挟むような形態で、箔に配設された測定並びに基準抵抗体を有することが最も好ましい。ようにして、測定並びに基準抵抗層131,136の各対は、1つのセンサーユニット10に2つの測定抵抗体が、また、基準ユニット20に2つの基準抵抗体がある,図2に係わる完全な測定ブリッジを形成している。測定並びに基準抵抗体の蛇行の形態の例は、図6に拡大して示されている。
図6において、2つの測定もしくは基準抵抗体51,52は、キャリアー箔の後方に層形状で形成されている。各抵抗体は、蛇行の形態で多数の抵抗部材を有する。この部材の幅は、抵抗体間の接続リードの幅よりも実質的に狭い。挟まれた蛇行部51,52は、近接した2つのリードに反対方向の電流が流れるので、本発明に係わる圧力測定装置が強い磁界に干渉されることがなく、動作されうる効果を奏する。この結果、磁界による力は、互いに打ち消される。このことは、強い磁界のもとでの使用に一般に適していない従来のピラニマノメータと比較して特別な効果がある。また、挟まれた蛇行は、箔の同じ領域の感度を2つの測定抵抗体により測定可能としている。同様のことが基準抵抗体に対してもいえる。さらに、蛇行の形状は、リードループの領域を最小にする。
マトリックス形状のセンサー外形を有する熱伝導マノメータが、可撓性のあるマノメータ箔としてデザインされ得る。これは、興味のある領域での圧力プロフィールを検出するための本発明に係わる方法により、拡張される。
図7Aないし7Dは、本発明に係わる圧力測定装置の熱伝導層の異なる形態を示している。図7Aに係わる均質の熱伝導層において、余分な層を形成しないで、異なる温度分布を有する幾つかのモードが、圧力衝撃により熱伝導層123に与えられる。各モードは、それぞれ独自の時間定数と振幅とを有する。基本モードは、時間定数と振幅とに対して最大値を有する。これら値は、高いモード数で顕著に減少する。そして、圧力衝撃のための圧力測定装置のターン・オン並びにターン・オフ応答は、多数の時間定数の重ね合わせにより示されている。これは、また、図7Bに示すような、均質な熱伝導層、並びに熱伝導層の全体に渡均質な吸収層の構造の場合である。
圧力測定装置のターン・オン並びにターン・オフ応答のタイミングを簡単にするために、衝撃応答が1つの時間定数に良く近似して示されるような、構造の熱伝導層を導入することが可能である。熱伝導層を構成するために、図7Cに係わる熱補償層125が、例えば、設けられ得る。この熱補償層125は、前記熱伝導層123よりも厚い(50ないし100のファクターである)。(上述したように)熱伝導層123の側方長さ、a=0.1cm並びにb=0.3cmを仮定した場合の好ましいパラメータは、約100の厚さ比を有する熱補償層125の側方長さc=0.4cm並びにd=0.2cmである。
熱伝導層と同様に、前記熱補償層125は、金で形成されていることが好ましい。また、熱補償層125の形態は、熱伝導層123の中心にある測定抵抗体と対向している。熱補償層125により、高いモードが押さえられ、高いモードのみが(上述したように)励起され、モード数の変化に対する時間定数の変化は僅かである。値dτ/dN(τ=数Nのモードの時間定数)は小さい。かくして、衝撃応答は、特に、≧1msの圧力衝撃の上昇もしくは下降時間になるまでの単一の時間定数により示され得る。具体的な横方向並びに長さ方向の側方長さの比と厚さの比との決定は、単一の指数関数に関連して熱伝導率を最適にすることにより、数値的シュミレーションの方法によりなされる。前記熱補償層125と測定抵抗層131とは、可能な限り同じサイズ(面積のディメンション)であるべきである。
さらなる変形において、吸収層124が、図7Dに示されるように、熱補償層125の上に設けられ得る。
また、図7Aないし7Dは、熱コンタクト層121に形成された凹所122(もしくは、熱伝導層123の面積のディメンション)は、測定抵抗体131の面積のディメンションよりも大きくされ得る。
第2の実施の形態
図8は、本発明に係わる圧力測定装置の第2の実施の形態の概略断面図である。第1の実施の形態についての上述したもの、即ち、測定抵抗体の抵抗値の測定、多数のセンサー部材のアレイ形態、圧力測定装置を使用するための方法は、従って、センサー部分10に適用される。しかし、第1の実施の形態とは異なり、第2の実施の形態において、各測定並びに基準抵抗体対に対して2つの自己支持キャリアー箔領域(測定並びに基準キャリアー箔)が設けられている。この結果、測定抵抗体と基準抵抗体との両方が、測定される媒体、即ち、気体と熱的に接触され得る。ここでは、前記センサー部分10と類似したデザインの基準部分20のみが示されている。以下に示すように、第2の実施の形態において、測定抵抗体と基準抵抗体との両方は、それぞれ(異なる温度応答性を有する)測定抵抗体を形成しているが、明確にするために、これらは、測定もしくは基準抵抗体として説明されるように連続しているであろう。
センサー部分20(図8に示すように)は、パッケージ14に囲まれた、キャリアー箔11と、基準抵抗体136と、熱コンタクト層121が接続された熱伝導層223とにより構成された層構造である。吸収層224と、分離層234と、加熱抵抗体235とは、(センサー部分10に対してのオプションとして)特別な層として追加され得る。パッケージは、前部に、熱コンタクト層121からの熱伝導層223(もしくは、熱伝導層並びに吸収層)のテーパ付けによら形成されたガス入口、即ち、換気ダクト241を有する。このダクトを通って、測定される媒体は、凹所222に入る。パッケージ14は、後部で、前記センサー部分の凹所122に類似し、他の換気ダクト242を備えた凹所233を有する。
前記基準部分20の熱伝導層223は、所定のファクター(>1)だけ、前記センサー部分10の熱伝導層123よりも厚い。このファクターは、好ましくは、3ないし10、例えば、4ないし5の範囲であろう。後者の場合、もし、熱伝導層123が、約0.1ないし0.5μmの厚さであれば、基準熱伝導層の厚さは、約0.4ないし2.5μmであろう。
露出された基準部分を有するデザインは、温度ドリフトが補償され得る特別な効果を有する。測定抵抗体と基準抵抗体との抵抗率は、特に比較的高温(例えば、200ないし500℃)で、即ち、使用のポイントでの核反応の結果として、圧力測定装置の動作を変え得る(多分非線形に)。ブリッジ回路での無限小温度ドリフトΔVB(dΔVB/dT=0)、と抵抗値RM(測定抵抗体)並びにRR(基準抵抗体)に対して関係式
[RM(TM)/RR(TR)=f(α)RM(TO)/RR(TO
が与えられる。ここで、TMは、測定抵抗体の温度、TRは、基準抵抗体の温度、そして、TOは、基準温度である。かくして、基準部分を露出することにより、基準抵抗体の温度は、変えられ得る。この結果、温度ドリフトは、補償され得る。厚さの異なる、基準部分20の熱伝導層223をセンサー部分10の熱伝導層123にすることにより、基準抵抗体の温度の、圧力依存性が考慮される。
好ましいデザインにおいて、抵抗体131,136の温度が、異なる加熱抵抗体135,235により設定される。この結果、温度変動率は、ブリッジ回路の供給電圧とは関係無くされ得る。かくして、低周波(例えば、1kHz)で加熱回路(図2での抵抗体23を加熱する)を、また、高周波(約10ないし100kHz,好ましくは、50kHz)でブリッジ測定回路を動作させることを可能にする。測定抵抗体と基準抵抗体との異なる加熱は、センサー部分10と基準部分20との間の熱絶縁が改良される特別な効果を与える。本発明に係わる圧力測定装置において、センサー部分と基準部分との間の熱クロス・カップリングは、圧力測定の達成される精度内で除去される。
センサー部分10の層構造と、基準部分20の層構造とは、同じ断面のディメンション、即ち、層の面に平行な方向で同じ面積と体積とを、最も良く有する。センサーもしくは基準部分10,20の凹所の領域でのキャリアー箔11は、測定もしくは基準箔として考えられ得、好ましくは、第1の実施の形態では、マイカ、もしくは絶縁材がコーティングされた金属箔(例えば、スチール,ニッケル,チタニウム)として形成される。キャリアー箔11は、例えば、金層(20μmまでの厚さ)で形成された熱コンタクト層121でコーティングされている。この特別なコーティングは、多数の圧力センサーからなるアレイを装着するための特別な効果を有するキャリアー箔自己支持を可能にしている。好ましくは、金属で形成された高熱伝導性のホルダー14は、容器もしくはパッケージとして機能し、圧力測定装置を適当に強固にする。
測定もしくは基準抵抗体は、圧力測定装置の形成において、好ましくは、蛇行形状に同時に形成される。この方法で、両抵抗体は、同じ特性を有する。接続リード132(図1,8を参照)を備えた4つの同じ、温度依存蛇行抵抗体は、一緒になって完全なホイストーン測定ブリッジを形成する。同じ処理でのスパッターリング、蒸着、もしくは電気メッキにより、2つの抵抗体は、測定箔の上に堆積され、また、2つの抵抗体は、基準箔の上に堆積される。これは、抵抗値、温度係数、熱伝導率、キャパシタンス、並びにインダクタンスのような全ての物理パラメータに関して高度に対称なブリッジを形成する。抵抗層に対向した、測定並びに基準箔の表面上の熱伝導層は、層領域の全体に渡って一定の厚さを有し、良熱伝導性の材料、好ましくは金で形成されている。熱伝導層223の厚さは、熱伝導層123の厚さよりも実質的に大きい。デザインに応じて、一方もしくは両方の熱伝導層の中心部には、吸収層として機能する良熱伝導性の厚い層が設けられ得る。構造体の全体に渡っての所定の熱伝導応答性を得るために、吸収層は、長さ方向と幅方向とに所定のデイメンションを有し、下の熱伝導層の長さ方向並びに幅方向のデイメンションに(かくして、露出したセンサー領域)に関係した矩形であることが好ましい。熱伝導層と吸収層との全ての幾何学的パラメータは、熱伝導の法則に従う。
熱伝導層は、露出したセンサー領域のエッジで熱コンタクト層と接続している。熱コンタクト層と熱伝導層との間の厚さの相違により形成される凹所(122もしくは222)は、ダクト141もしくは241を除いてホルダー14により閉塞される。凹所の自由高さ、即ち、箔ホルダーの後ろと熱伝導層もしくは吸収層の表面との間の空間は、好ましくは10μm以下である。
前記加熱抵抗体135もしくは235は、測定回路とは独立して電流もしくは電圧源により電流が供給される。上記説明に係われば、加熱抵抗体は、加熱流の圧力依存規則で、10-5ないし103mbarの全圧力範囲に渡って温度ドリフトを押さえることができる。溶融反応炉での使用で核加熱により例えば生じるインターフェアリング信号は、全体に渡って補償され得る。センサー箔の加熱フイードバックは、時間依存のネガテブ・フイードバックにより好ましくは実行される。このネガテブ・フイードバックは、早い変化圧力信号に対するよりも、遅い変化圧力信号に対して大きい。これは、一般的に箔マノメータの特徴である、センサー箔の一体的な行動を補償する。さらに、早い圧力変化(1 msの領域)が、高感度で測定され得る。
実施の形態の効果
上記実施の形態に係わる圧力測定装置は、以下の効果を有する。この装置は、コンパクトで安定性があり、プラズマ物理での試験に特に適している。そして、装置の周りにある測定されるガス媒体のサージに対してはほとんど感度を有さない。また、この装置は、ロック・インモードで動作され得る。交流での動作は、電流の函数としての材料の変更が電流の向きの周期的な変更により防げ得るという特別な効果を有する。また、全体のデザインは、また、層構造体は、測定されるガスとの特に良好な熱接触を可能にし、この結果、測定が高められた精度のもとで広い圧力範囲において可能である。圧力は、大気圧力から高真空までの範囲での測定が可能である。そして、例えば、一般の電離真空ゲージと比較して、電流消費が極めて少ない。本発明の実施の形態に係わる圧力測定装置は、広い領域での真空技術で使用され得、また、放射線測定器具(ボロメータ)と組み合わされ得る。
本発明の実施の形態の他の硬化は、高磁界中での、その使用にある(約10 Tまで拘束を受けない)。圧力測定装置は、300℃までの測定で、500℃まで加熱され得る。
別の熱伝導層をキャリアー箔に付加することは、放熱の時間定数が熱伝導層の幾何学的パラメータ(例えば、Au層の厚さ)によって精度良く設定され得るという効果がある。熱伝導層としてのキャリアー箔の形成は、充分に高い熱伝導性を可能にする。また、キャリアー箔としてのダイヤモンド箔の導入は、パッケージに熱伝導層を持たせることを可能にする。しかし、この欠点は、このようなダイヤモンド箔の厚さを設定することが難しく、高エネルギー放射の後に効果が変ってしまうことである。

Claims (15)

  1. ガス媒体の圧力を測定するための、圧力測定装置であって、
    キャリアー箔(11)と、
    このキャリアー箔(11)の下側に層として支持され、測定されるガス媒体と熱的に接触し、自身の電気抵抗値がガス媒体の圧力に対応する少なくとも1つの電気的に加熱可能な測定抵抗体(131)と、
    前記キャリアー箔(11)の上側に支持され、高熱容量の熱バスとして機能する熱接触層(121)と、
    前記測定抵抗体(131)に対向する領域内に前記測定されるガス媒体を収容するように、前記熱接触層(121)に形成された第1の測定凹所(122)と、
    前記キャリアー箔(11)と前記第1の測定凹所(122)との間の、前記熱接触層(121)の部分により形成され、熱接触層(121)よりも薄い厚さを有する測定熱伝導層(123)と、
    この測定熱伝導層(123)の上側に設けられ、前記第1の測定凹所(122)内で、測定されるガス媒体と接触する吸収層(124)と、
    前記キャリアー箔(11)の下側に設けられて、前記測定抵抗体(131)と離間し、かつ電気的に接続されて、抵抗測定ブリッジ回路の一部を測定抵抗体と共に構成する少なくとも1つの基準抵抗体(136、236)とを具備し、
    熱流が、前記測定抵抗体(131)から、前記第1の測定凹所(122)内のガス媒体へと、キャリアー箔(11)、測定熱導伝層(123)、並びに吸収層(124)を通って流れる、圧力測定装置。
  2. 層の形態で、前記キャリアー箔(11)の前記下側に設けられ、前記測定抵抗体(131)と基準抵抗体(136)とを電気的に接続する接続リード(132)と、
    前記熱接触層(121)と、前記キャリアー箔(11)と、前記接続リード(132)とを囲んでいるパッケージ(14)と、
    このパッケージ(14)の上側に形成され、前記第1の測定凹所(122)へと延びた少なくとも1つの第1のガス媒体入口ダクト(141)と、
    前記パッケージ(14)の下側に、前記測定抵抗体(131)と対向するように形成され、第2のガス媒体入口ダクト(142)を有する第2の測定凹所(133)とを更に具備する請求項1の圧力測定装置。
  3. 層の形態で、前記キャリアー箔(11)の前記下側に設けられ、前記測定抵抗体(131)と基準抵抗体(236)とを電気的に接続する接続リード(132)と、
    ガス媒体を収容するように、前記熱接触層(121)に形成された第1の基準凹所(222)とを更に具備し、
    前記熱接触層(121)は、前記第1の基準凹所(222)と、基準抵抗体(236)との間の部分により、基準熱伝導層(223)を形成し、この基準熱伝導層(223)は、前記熱接触層(121)よりも薄い厚さを有する、請求項1の圧力測定装置。
  4. 前記基準熱伝導層(223)は、前記測定熱伝導層(123)よりも厚い厚さを有する請求項3の圧力測定装置。
  5. 前記第2の測定凹所と、第2の基準凹所(233)とが、前記接続リードよりも薄い厚さの測定抵抗体と、基準抵抗体とを与えることにより、形成されている請求項2の圧力測定装置。
  6. 前記抵抗測定ブリッジ回路は、ホイートストンブリッジ回路である請求項1ないし5のいずれか1の圧力測定装置。
  7. 前記抵抗測定ブリッジ回路のブリッジ出力電圧VBは、測定されるガス媒体の圧力の測定値である請求項1ないし6のいずれか1の圧力測定装置。
  8. 前記測定抵抗体と基準抵抗体体との少なくとも一方は、加熱抵抗体と熱的に接触し、この加熱抵抗体の加熱パワーは、ブリッジ出力電圧VBが一定となるように、かくして、加熱抵抗体の加熱パワーが測定されるガス媒体の圧力の測定値であるように、制御され得る請求項1ないし7のいずれか1の圧力測定装置。
  9. 前記抵抗測定ブリッジ回路は、交流電圧で動作されるようになっている請求項1ないし8のいずれか1の圧力測定装置。
  10. 前記キャリアー箔(11)は、マイカで形成されている請求項1ないし9のいずれか1の圧力測定装置。
  11. 前記測定抵抗体と基準抵抗体とは、層状の蛇行形状で配置された細線により形成されている請求項1ないし10のいずれか1の圧力測定装置。
  12. 多数対の測定抵抗体と基準抵抗体とがマトリックス状に配置されている請求項1ないし11のいずれか1の圧力測定装置。
  13. 前記マトリックス状の配置は、部分的圧力測定に適したフォイル形式の可撓性マノメータを形成している請求項12の圧力測定装置。
  14. 前記測定熱伝導層(123)と基準熱伝導層(223)との少なくとも一方の上には、熱補償層(125)が設けられ、この熱補償層(125)のディメンションは、前記測定熱伝導層もしくは基準熱伝導層から熱接触層への指数関数的な放熱を与えるように設定されている請求項3もしくは4の圧力測定装置。
  15. 前記熱補償層(125)は、前記測定もしくは基準熱伝導層(123,223)よりも厚い厚さを有する請求項14の圧力測定装置。
JP54323198A 1997-03-21 1998-03-19 箔マノメータ Expired - Fee Related JP4083239B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19711874A DE19711874C2 (de) 1997-03-21 1997-03-21 Folienmanometer
DE19711874.7 1997-03-21
PCT/EP1998/001621 WO1998043058A1 (de) 1997-03-21 1998-03-19 Folienmanometer

Publications (2)

Publication Number Publication Date
JP2001517313A JP2001517313A (ja) 2001-10-02
JP4083239B2 true JP4083239B2 (ja) 2008-04-30

Family

ID=7824167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54323198A Expired - Fee Related JP4083239B2 (ja) 1997-03-21 1998-03-19 箔マノメータ

Country Status (7)

Country Link
US (1) US6382031B1 (ja)
EP (1) EP0968407B1 (ja)
JP (1) JP4083239B2 (ja)
AT (1) ATE207613T1 (ja)
DE (2) DE19711874C2 (ja)
ES (1) ES2165164T3 (ja)
WO (1) WO1998043058A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053501A (ko) * 2000-07-13 2003-06-28 미쓰비시덴키 가부시키가이샤 압력 센서
US6901808B1 (en) * 2002-02-12 2005-06-07 Lam Research Corporation Capacitive manometer having reduced process drift
US7252011B2 (en) * 2002-03-11 2007-08-07 Mks Instruments, Inc. Surface area deposition trap
DE102004009272A1 (de) * 2004-02-26 2005-09-15 Robert Bosch Gmbh Hochdrucksensor zur druckunabhängigen Temperaturmessung
US7051594B1 (en) * 2004-11-17 2006-05-30 Mohamed Fazni Aziz Pressure gauge and medical apparatus with same
EP2088413A1 (en) * 2008-02-08 2009-08-12 Paul Scherrer Institut Sensor and method for determining the pressure in a fluid
JP2014159977A (ja) * 2013-02-19 2014-09-04 Renesas Electronics Corp 圧力センサ、及び半導体装置
US9335231B2 (en) * 2014-03-25 2016-05-10 Mks Instruments, Inc. Micro-Pirani vacuum gauges
DE202014007298U1 (de) * 2014-09-12 2015-12-16 Vacuubrand Gmbh + Co Kg Gasdruckmessvorichtung
DE102018133056A1 (de) 2018-12-20 2020-06-25 Endress+Hauser SE+Co. KG Druckmessaufnehmer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203940A (en) * 1981-06-11 1982-12-14 Nissan Motor Co Ltd Gas sensor
US4682503A (en) * 1986-05-16 1987-07-28 Honeywell Inc. Microscopic size, thermal conductivity type, air or gas absolute pressure sensor
US4812801A (en) * 1987-05-14 1989-03-14 The United States Of America As Represented By The Secretary Of The Air Force Solid state gas pressure sensor
US4784721A (en) * 1988-02-22 1988-11-15 Honeywell Inc. Integrated thin-film diaphragm; backside etch
DE4308434A1 (de) * 1993-03-17 1994-09-22 Leybold Ag Temperaturkompensation bei einem geregelten Wärmeleitungsvakuummeter
US5347869A (en) * 1993-03-25 1994-09-20 Opto Tech Corporation Structure of micro-pirani sensor
DE4414349A1 (de) * 1993-12-23 1995-06-29 Heimann Optoelectronics Gmbh Thermoelektrischer Mikrovakuumsensor
EP0660096B1 (de) * 1993-12-23 1999-03-17 Heimann Optoelectronics GmbH Mikrovakuumsensor
US5557972A (en) * 1994-09-13 1996-09-24 Teledyne Industries, Inc. Miniature silicon based thermal vacuum sensor and method of measuring vacuum pressures
US5898359A (en) * 1997-12-19 1999-04-27 Delco Electronics Corp. Diffusion-barrier materials for thick-film piezoresistors and sensors formed therewith

Also Published As

Publication number Publication date
WO1998043058A1 (de) 1998-10-01
US6382031B1 (en) 2002-05-07
DE19711874C2 (de) 1999-08-12
JP2001517313A (ja) 2001-10-02
DE19711874A1 (de) 1998-09-24
EP0968407B1 (de) 2001-10-24
DE59801867D1 (de) 2001-11-29
ATE207613T1 (de) 2001-11-15
ES2165164T3 (es) 2002-03-01
EP0968407A1 (de) 2000-01-05

Similar Documents

Publication Publication Date Title
US6227056B1 (en) Methods of pressure measurement
EP1552265B1 (en) Apparatus and methods for heat loss pressure measurement
JP4831879B2 (ja) 質量流量計
JP4083239B2 (ja) 箔マノメータ
US5159267A (en) Pneumatic energy fluxmeter
US5159264A (en) Pneumatic energy fluxmeter
Völklein et al. Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and high vacuum regime
US6799468B2 (en) Apparatus and methods for heat loss pressure measurement
JP4590100B2 (ja) 圧力センサ、圧力測定装置およびチャンバで圧力をモニタするための方法
JP3457826B2 (ja) 薄膜式抵抗体及びその製造方法、流量センサ、湿度センサ、ガスセンサ、温度センサ
EP0825717A1 (en) High thermal gain oven
JP4537067B2 (ja) 質量流量制御装置の熱管理のための装置及び方法
KR20050023008A (ko) 교류 방식 유속 측정 장치 및 이에 사용되는 유속 데이터맵핑 방법
KR100791874B1 (ko) 열판 및 스프링을 구비한 압력 변환기
CN109561528B (zh) 原子气室加热芯片
JP2001165739A (ja) 測定装置の動作方法
KR100614674B1 (ko) 비열측정형 진공게이지
US5351537A (en) Heat-sensitive flow rate sensor having a longitudinal wiring pattern for uniform temperature distribution
JP2642460B2 (ja) 放熱式レベルセンサ
US2315672A (en) Pressure gauge
JPH0734341U (ja) 圧力センサ
JPH0334653Y2 (ja)
WO1992006574A1 (en) Pneumatic energy fluxmeter
JPH09243767A (ja) 核融合炉用磁場検出器
JPH05223837A (ja) 流速センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070501

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees