JP4081089B2 - 電源装置、試験装置及び電源電圧安定化装置 - Google Patents

電源装置、試験装置及び電源電圧安定化装置 Download PDF

Info

Publication number
JP4081089B2
JP4081089B2 JP2004567660A JP2004567660A JP4081089B2 JP 4081089 B2 JP4081089 B2 JP 4081089B2 JP 2004567660 A JP2004567660 A JP 2004567660A JP 2004567660 A JP2004567660 A JP 2004567660A JP 4081089 B2 JP4081089 B2 JP 4081089B2
Authority
JP
Japan
Prior art keywords
current
unit
output
power supply
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004567660A
Other languages
English (en)
Other versions
JPWO2004104606A1 (ja
Inventor
好弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of JPWO2004104606A1 publication Critical patent/JPWO2004104606A1/ja
Application granted granted Critical
Publication of JP4081089B2 publication Critical patent/JP4081089B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31721Power aspects, e.g. power supplies for test circuits, power saving during test

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

[0001] 本発明は、電源装置、試験装置及び電源電圧安定化装置に関する。特に本発明は、電子デバイスに電源電流を供給する電源装置に関する。
[0002] CMOS半導体等の電子デバイスにおいては、内部回路が動作した場合に、電源電流が大きく変化する。また、従来、電子デバイスの動作特性試験時に負荷に与える電圧の変動が小さい電圧発生回路が知られている(例えば、特許文献1参照。)。
特許文献1:特開平7−333249号公報(第2−4頁、第1−5図)
[0003] 近年の微細化技術の向上により、電子デバイスの高速度化、低電圧化が進み、電子デバイスの電源電圧における変動の許容幅が小さくなっている。そのため、電子デバイスを試験する試験装置においては、更に高い精度の電源装置が必要とされている。
[0004] そこで本発明は、上記の課題を解決することのできる電源装置、試験装置及び電源電圧安定化装置を提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
[0005] 即ち、本発明の第1の形態によると、電子デバイスに電源電流を供給する電源装置であって、少なくとも一部に電源電流を含む出力電流を出力する電流出力部と、電流出力部と電子デバイスとを電気的に接続することにより、電流出力部から受け取る電源電流を、電子デバイスに供給する接続抵抗と、電子デバイスが受け取る電源電流が変化する周波数よりも低いカットオフ周波数を有し、カットオフ周波数よりも高い周波数成分を低減させて、電流出力部の出力電圧を通過させるローパスフィルタと、ローパスフィルタの出力電圧と、接続抵抗における電子デバイスに近いデバイス側端部の電位との電位差を検出する差分検出部と、電流出力部の出力端に対して、接続抵抗と並列に接続され、差分検出部が検出する電位差が予め定められた値よりも小さい場合、電流出力部の出力電流の一部である部分電流を消費し、差分検出部が検出する電位差が予め定められた値よりも大きくなった場合、電流出力部から部分電流を受け取るのを停止する並列負荷部とを備える。
[0006] また、電源電流を、接続抵抗よりも電流方向の上流において平滑化する平滑コンデンサと、平滑コンデンサよりも小さな静電容量を有し、接続抵抗が電子デバイスに与える電源電流を、接続抵抗よりも電流方向の下流において平滑化するデバイス側コンデンサとを更に備えてよい。
[0007] また、ローパスフィルタ、差分検出部、又は並列負荷部の少なくとも一部は、電流出力部と電子デバイスとを電気的に接続する配線が形成されたプリント基板上に設けられ、接続抵抗は、プリント基板上に形成されたパターン抵抗であってよい。
[0008] また、差分検出部は、第1の基準電圧、又は第1の基準電圧よりも小さな第2の基準電圧のいずれかを、ローパスフィルタの出力電圧を分圧することにより出力する基準電圧出力部と、基準電圧出力部が出力する基準電圧と、デバイス側端部の電位とを比較する比較部と、比較部の出力に基づき、デバイス側端部の電位が第1の基準電圧より大きくなった場合、基準電圧出力部に第2の基準電圧を出力させ、デバイス側端部の電位が第2の基準電圧より小さくなった場合、基準電圧出力部に第1の基準電圧を出力させる基準電圧設定部とを有し、並列負荷部は、比較部の出力に基づき、デバイス側端部の電位が第1の基準電圧より大きくなった後、第2の基準電圧より小さくなるまでの期間、電流出力部から受け取る部分電流を、接続抵抗と並列な経路に流すことにより消費し、デバイス側端部の電位が第2の基準電圧より小さくなった後、第1の基準電圧より大きくなるまでの期間、当該並列な経路に部分電流を流すのを停止してよい。
[0009] また、並列負荷部は、接続抵抗と並列に接続され、電子デバイスが受け取る電源電流の変化に対して電流出力部が出力電流を変化させる応答速度よりも低速に開閉する低速スイッチと、接続抵抗と並列、かつ低速スイッチと直列に接続され、電流出力部の応答速度よりも高速に、差分検出部の出力に応じて開閉する高速スイッチとを有してよい。また、ローパスフィルタの出力電圧と、電流出力部の出力電圧とが略等しくなった後に、低速スイッチはオンになってよい。
[0010] また、並列負荷部は、接続抵抗と並列に接続され、差分検出部の出力に応じて開閉するスイッチを有し、当該電源装置は、電子デバイスの平均消費電流の測定期間においてスイッチがオンとなったオン時間又はオフとなったオフ時間を測定する時間測定部を更に備えてもよい。また、時間測定部は、測定期間におけるオン時間又はオフ時間を、測定期間を2のn乗(ただしnは正の整数)で割ったサイクル単位でカウントするカウンタと、
カウンタによりカウントされたサイクル単位のオン時間又はオフ時間をアナログ値に変換するDAコンバータとを有してもよい。
[0011] また、時間測定部により測定されたオン時間又はオフ時間と、出力電流の電流値とに基づいて、測定期間における電子デバイスの平均消費電流を算出する消費電流算出部を更に備えてもよい。また、並列負荷部は、スイッチがオンの状態において、出力電流と同量の部分電流を消費し、消費電流算出部は、測定期間における出力電流の平均値に、測定期間に対するオフ時間の割合を乗じることにより、平均消費電流を算出してもよい。
[0012] また、消費電流算出部は、スイッチがオンの状態における部分電流の電流値に更に基づいて、平均消費電流を算出してもよい。また、消費電流算出部は、スイッチがオンの状態における部分電流の電流値及び測定期間に対するオン時間の割合の積を、測定期間における出力電流の平均値から減じることにより、平均消費電流を算出してもよい。
[0013] また、予め定められた測定期間における出力電流及び部分電流の値に基づいて、測定期間における電子デバイスの平均消費電流を算出する消費電流測定部を更に備えてもよい。
[0014] 本発明の第2の形態によると、電子デバイスを試験する試験装置であって、電子デバイスが受け取るべき電源電流を少なくとも一部に含む出力電流を、出力する電流出力部と、電流出力部と電子デバイスとを電気的に接続することにより、電流出力部から受け取る電源電流を、電子デバイスに供給する接続抵抗と、電子デバイスが受け取る電源電流が変化する周波数よりも低いカットオフ周波数を有し、カットオフ周波数よりも高い周波数成分を低減させて、電流出力部の出力電圧を通過させるローパスフィルタと、ローパスフィルタの出力電圧と、接続抵抗における電子デバイスに近いデバイス側端部の電位との電位差を検出する差分検出部と、電流出力部の出力端に対して、接続抵抗と並列に接続され、差分検出部が検出する電位差が予め定められた値よりも小さい場合、電流出力部の出力電流の一部である部分電流を消費し、差分検出部が検出する電位差が予め定められた値よりも大きくなった場合、電流出力部から部分電流を受け取るのを停止する並列負荷部と、電子デバイスに入力されるべき試験パターンを生成するパターン発生部と、電源電流を受け取る電子デバイスに、試験パターンを供給する信号入力部と、試験パターンに応じて電子デバイスが出力する信号に基づき、電子デバイスの良否を判定する判定部とを備える。
[0015] 本発明の第3の形態によると、電子デバイスに電源電流を供給する電源装置の電源電圧を安定化する電源電圧安定化装置であって、電源装置は、少なくとも一部に電源電流を含む出力電流を出力する電流出力部と、電流出力部と電子デバイスとを電気的に接続することにより、電流出力部から受け取る電源電流を、電子デバイスに供給する接続抵抗とを備え、当該電源電圧安定化装置は、電子デバイスが受け取る電源電流が変化する周波数よりも低いカットオフ周波数を有し、カットオフ周波数よりも高い周波数成分を低減させて、電流出力部の出力電圧を通過させるローパスフィルタと、ローパスフィルタの出力電圧と、接続抵抗における電子デバイスに近いデバイス側端部の電位との電位差を検出する差分検出部と、電流出力部の出力端に対して、接続抵抗と並列に接続され、差分検出部が検出する電位差が予め定められた値よりも小さい場合、電流出力部の出力電流の一部である部分電流を消費し、差分検出部が検出する電位差が予め定められた値よりも大きくなった場合、電流出力部から部分電流を受け取るのを停止する並列負荷部とを備える電源電圧安定化装置を提供する。
[0016] なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
[0017] 本発明によれば、電子デバイスを、高い精度で試験することができる。
[0018] [図1]本発明の一実施形態に係る試験装置100の構成の一例を示す図である。
[図2]電源部106の構成の一例を示す図である。
[図3]試験装置100の動作の一例を示すタイミングチャートである。
[図4]電流消費部306の詳細な構成の一例を示す図である。
[図5]電流消費部306の動作の一例を示すタイミングチャートである。
[図6]電流消費部306の詳細な動作の一例を示すタイミングチャートである。
[図7]静止電流測定用電源204の構成の一例を示す図である。
[図8]スイッチ208の構成の一例を示す図である。
[図9]電源部106の構成の他の例を示す図である。
[図10]電源部106の構成の更なる他の例を示す図である。
[図11]時間測定部1010の構成を示す図である。
[図12]消費電流算出部1020の構成の一例を示す図である。
[図13]測定期間中における電流消費部306の動作の一例を示すタイミングチャートである。
[図14]消費電流算出部1020の構成の他の例を示す図である。
[図15]測定期間中における電流消費部306の動作の他の例を示すタイミングチャートである。
符号の説明
[0019] 50 電子デバイス
100 試験装置
102 パターン発生部
104 信号入力部
106 電源部
108 判定部
110 制御部
150 ユーザインターフェース
202 大電流用電源
204 静止電流測定用電源
206 接続線
208 スイッチ
210 抵抗
212 抵抗
214 コンデンサ
216 コンデンサ
218 抵抗
252 スイッチ
254 スイッチ
302 電流出力部
304 並列負荷部
306 電流消費部
402 ローパスフィルタ
404 ボルテージフォロア
406 基準電圧出力部
408 基準電圧設定部
410 負荷駆動部
412 差分検出部
414 比較部
502 抵抗
504 抵抗
506 抵抗
508 定電圧源
510 抵抗
512 低速スイッチ
514 抵抗
516 高速スイッチ
518 抵抗
602 オペアンプ
604 コンデンサ
606 オペアンプ
608 抵抗
702 MOSFET
704 抵抗
706 ダイオード
708 ダイオード
802 オペアンプ
804 ボルテージフォロア
806 ボルテージフォロア
1000 消費電流測定部
1010 時間測定部
1020 消費電流算出部
1110 論理回路
1120 カウンタ
1130 レジスタ
1140 DAコンバータ
1200 乗算器
1210 表示部
1220 電圧計
1400 減算器
1410 乗算器
1420 減算器
[0020] 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[0021] 図1は、本発明の一実施形態に係る試験装置100の構成の一例を電子デバイス50とともに示す。電子デバイス50は、例えばLSI等の試験対象デバイス(DUT)である。本例の試験装置100は、電子デバイス50の試験を高い精度で行うことを目的とする。試験装置100は、制御部110、電源部106、パターン発生部102、信号入力部104、及び判定部108を備える。制御部110は、電源部106、パターン発生部102、信号入力部104、及び判定部108を制御する。
[0022] 電源部106は、電子デバイス50に電源電流を供給する電源装置である。また、本例において、電源部106は、電子デバイス50に供給した電源電流の大きさを測定して、測定結果を、判定部108に通知する。
[0023] パターン発生部102は、電子デバイス50に入力されるべき試験パターンを生成して、信号入力部104に供給する。信号入力部104は、電源部106から電源電流を受け取る電子デバイス50に、試験パターンを、例えば所定の時間遅延させることにより、予め設定されたタイミングで、供給する。
[0024] 判定部108は、試験パターンに応じて電子デバイス50が出力する信号に基づき、電子デバイス50の良否を判定する。また、本例において、判定部108は、電源部106が電子デバイス50に与える電源電流の大きさに基づき、電子デバイス50の良否を判定する。判定部108は、電源電流を算出する電源電流算出部の機能を有してよい。本例によれば、電子デバイス50の試験を、適切に行うことができる。試験装置100は、電子デバイス50が受け取る電源電流を測定する電流測定装置の機能を有してよい。
[0025] 図2は、電源部106の構成の一例を、電子デバイス50とともに示す。電源部106は、大電流用電源202、静止電流測定用電源204、複数の接続線206a、b、複数のコンデンサ214、216、スイッチ208、及び複数の抵抗210、212、218を有する。また、本例において、電子デバイス50は、コンデンサ216の端子電圧Voを、電源電圧として受け取る。
[0026] 本例において、大電流用電源202の一部である電流消費部306、複数のコンデンサ214、216、スイッチ208、及び複数の抵抗210、212、218は、ユーザインターフェース150上に設けられる。ユーザインターフェース150は、電流出力部302と電子デバイス50とを電気的に接続する配線が形成されたプリント基板の一例であり、例えば、電子デバイス50を裁置するパフォーマンスボードである。尚、試験装置100は、例えば、ウェハ状態の電子デバイス50を試験してもよい。この場合、電子デバイス50は、ユーザインターフェース150と、例えばプローブカートを介して接続される。
[0027] 大電流用電源202は、第1電流供給部の一例であり、電流出力部302及び電流消費部306を含む。電流出力部302は、電子デバイス50に電力を供給するデバイス電源であり、例えば制御部110の指示に基づく電圧を出力することにより、出力電流の少なくとも一部である第1電流iR1を、接続線206a、スイッチ208、抵抗210、及び抵抗212を介して、電子デバイス50に与える。本例において、第1電流iR1は、電子デバイス50が受け取るべき電源電流Ioの一部である。
[0028] 電流消費部306は、本発明に係る電源電圧安定化装置の一例であり、電源部106が電子デバイス50に供給する電源電圧を安定化する。電源電圧を安定化するため、電流消費部306は、例えば制御部110の指示に応じて、電流出力部302の出力電流の一部である部分電流ILを、電子デバイス50と並列な経路に流して消費する。この場合、大電流用電源202は、出力電流から部分電流ILを除いた電流を、第1電流iR1として、電子デバイス50に供給する。
[0029] また、電流消費部306は、抵抗212が生じる電圧に基づき、コンデンサ216の端子電圧Voが低下するのを検出する。そして、端子電圧Voが低下するのを検出した場合、電流消費部306は、部分電流ILの消費を停止する。この場合、大電流用電源202は、出力電流の略全部を、第1電流iR1として、電子デバイス50に供給することにより、第1電流iR1を増加させる。これにより、大電流用電源202は、端子電圧Voを上昇させる。そのため、本例によれば、コンデンサ216の端子電圧Voを、安定に保つことができる。また、これにより、端子電圧Voを電源電圧として受け取る電子デバイス50を、高い精度で試験することができる。
[0030] 静止電流測定用電源204は、第2電流供給部の一例であり、第1電流iR1よりも小さな第2電流iR2を、スイッチ208と並列な経路に設けられた抵抗218を介して、電子デバイス50に供給する。また、本例において、静止電流測定用電源204は、出力した第2電流iR2の大きさを、判定部108に通知する。
[0031] 複数の接続線206a、bは、例えば同軸ケーブルであり、電流出力部302及び静止電流測定用電源204と、ユーザインターフェース150とを電気的に接続する。本例において、接続線206aは、電流出力部302とスイッチ208とを電気的に接続する。接続線206bは、静止電流測定用電源204と抵抗218とを電気的に接続する。
[0032] コンデンサ214は、平滑コンデンサの一例であり、一端が接続線206aを介して電流出力部302と接続され、他端が接地される。これにより、コンデンサ214は、電流出力部302が出力する第1電流iR1を平滑化する。また、コンデンサ214のこの一端は、スイッチ208及び抵抗210を介して、抵抗212と電気的に接続される。コンデンサ214は、電源電流Ioの一部である第1電流iR1を平滑化することにより、電源電流Ioを、抵抗212よりも電流方向の上流において平滑化する。
[0033] コンデンサ216は、デバイス側コンデンサの一例であり、コンデンサ214よりも小さな静電容量を有する。また、コンデンサ216は、一端が電子デバイス50と接続され、他端が接地される。また、コンデンサ216の一端は、抵抗212、抵抗210、及びスイッチ208を介して、コンデンサ214と、電気的に接続される。これにより、コンデンサ216は、抵抗212よりも電流方向の下流において、第1電流iR1を平滑化する。コンデンサ216は、抵抗212が電子デバイス50に与える電源電流Ioを、平滑化してよい。
[0034] スイッチ208は、抵抗212と直列に、コンデンサ214と抵抗210との間に設けられ、オンになった場合に、抵抗210及び抵抗212を介して、コンデンサ214からコンデンサ216へ、第1電流iR1を流す。本例において、スイッチ208は、制御部110の指示に応じてオン又はオフとなる。また、スイッチ208は、抵抗210の両端の電圧が所定の値より大きくなった場合、制御部の指示にかかわらず、第1電流iR1を流す。この場合、コンデンサ216の端子電圧Voが過度に低下するのを防ぐことができる。
[0035] 抵抗210は、第1抵抗の一例であり、スイッチ208と直列に接続されることにより、大電流用電源202の出力電流を制限して、大電流用電源202に、第1電流iR1を出力させる。また、抵抗210は、抵抗212を介してコンデンサ216と電気的に接続されることにより、スイッチ208と、コンデンサ216の一端とを、電気的に接続する。また、これにより、抵抗210は、コンデンサ214の一端と、コンデンサ216の一端とを電気的に接続し、スイッチ208がオンになった場合に、第1電流iR1を、コンデンサ214からコンデンサ216に流す。
[0036] 抵抗212は、接続抵抗の一例であり、抵抗210と直列に、抵抗210と電子デバイス50との間に設けられる。これにより、抵抗212は、電流出力部302と電子デバイス50とを電気的に接続し、抵抗210を介してスイッチ208から受け取る第1電流iR1を、電子デバイス50に供給する。抵抗212は、電流出力部302から受け取る第1電流iR1を、電源電流Ioの少なくとも一部として、電子デバイス50に供給してよい。
[0037] また、抵抗212は、第1電流に応じて両端に生じる電圧を、電流消費部306に与える。この場合、抵抗212は、流れる電流の絶対値ではなく、コンデンサ216の端子電圧Voの低下を検知するために用いられる。そのため、抵抗212は、ユーザインターフェース150上に形成されたパターン抵抗であってよい。抵抗212の電気抵抗は、例えば5mΩ程度であってよく、例えば配線の銅の厚さが35μm、パターン幅が10mm、パターン長が10cm程度のパターン抵抗であってよい。
[0038] 抵抗218は、第2抵抗の一例であり、一端がコンデンサ216の一端と電気的に接続され、他端が、接続線206bを介して、静止電流測定用電源204と電気的に接続される。これにより、抵抗218は、静止電流測定用電源204と、コンデンサ216の一端とを電気的に接続する。また、抵抗218は、抵抗210よりも大きな電気抵抗を有する。これにより、抵抗218は、第1電流iR1よりも小さな第2電流iR2を、静止電流測定用電源204に出力させる。本例によれば、電源電流Ioを電子デバイス50に、適切に供給できる。
[0039] 以下、電源部106及び判定部108の動作について更に詳しく説明する。本例において、スイッチ208は、例えば電子デバイス50の機能試験を行う場合に、オンになる。この場合、電源部106は、第1電流iR1と第2電流iR2との和を、電源電流Ioとして、電子デバイス50に供給する。
[0040] この場合、大電流用電源202及び静止電流測定用電源204は、抵抗210と抵抗218との電気抵抗の比に応じた第1電流iR1及び第2電流iR2を、電子デバイス50に与える。判定部108は、静止電流測定用電源204から通知された第2電流iR2の大きさと、当該電気抵抗の比に基づき、第1電流iR1の大きさを算出してよい。これにより、スイッチ208がオンになった場合、判定部108は、抵抗210の電気抵抗と、抵抗218の電気抵抗との比、及び静止電流測定用電源204が出力した第2電流iR2に基づき、電子デバイス50が受け取る電源電流Ioを算出する。判定部108は、機能試験の間に電子デバイス50が受け取る電源電流Ioを算出してよい。
[0041] ここで、例えば第1電流iR1の大きさを、大電流用電源202が出力した電流に基づいて算出しようとすれば、コンデンサ214の静電容量の影響により誤差が生じる場合がある。しかし、本例において、静止電流測定用電源204は、大きな静電容量を有するコンデンサ214を介さずに、第2電流iR2を電子デバイス50に供給する。そのため、静止電流測定用電源204は、出力した第2電流iR2を高い精度で検知して、判定部108に通知できる。そのため、本例によれば、電子デバイス50の電源電流Ioを、高い精度で算出できる。
[0042] また、スイッチ208は、例えば電子デバイス50の静止電流試験(Iddq試験)を行う場合に、オフになる。この場合、電源部106は、第2電流iR2を、電源電流Ioとして、電子デバイス50に供給する。そのため、スイッチ208がオフになった場合、判定部108は、静止電流測定用電源204が出力した第2電流iR2を、電子デバイス50が受け取る電源電流Ioとして算出する。これにより、判定部108は、静止電流測定用電源204が出力した第2電流iR2に基づき、電源電流Ioを算出する。また、判定部108は、算出した電源電流Ioに基づき、電子デバイス50の良否を判定してよい。本例によれば、電子デバイス50の試験を高い精度で行うことができる。
[0043] 尚、電源電流Ioを平滑化するコンデンサとして、コンデンサ214及びコンデンサ216に代えて、例えば1個のコンデンサを用いるとすれば、コンデンサの容量が小さい場合には、電源電流Ioの変化に伴うコンデンサの端子電圧の変動が大きくなり、電子デバイス50の電源電圧が不安定になることとなる。また、コンデンサの容量が大きい場合には、コンデンサの端子電圧が変化した場合の回復に時間がかかることとなり、電子デバイス50の電源電圧を適切に保つことが困難になる場合がある。
[0044] しかし、本例によれば、電子デバイス50の直近で電源電流Ioを平滑化するコンデンサ216と、機能試験等を行う場合の大きな第1電流iR1を平滑化するコンデンサ214とを設けることにより、例えば機能試験を行う場合に、電源電流Ioの変動に応じた電源電圧の変動を低減できる。また、静止電流測定等を行う場合には、例えばスイッチ208をオフにすることにより、電源電流Ioを高い精度で測定できる。
[0045] ここで、電子デバイス50の電源電圧を、例えば2Vとした場合、電源電圧の変動の許容範囲を5%とすれば、0.5の裕度を更に考慮して、電源電圧の変動は、50mV程度以下である必要がある。この場合、例えば機能試験におけるファンクションレートを10n秒、ピーク電流を1A、ピーク電流が流れる期間を4n秒、大電流用電源202が出力電流を変化させるのに要する応答時間を5μ秒とすれば、コンデンサ214の静電容量は、例えば、(0.4A×5μ秒)/50mV=40μFであってよい。また、コンデンサ216は、第1電流iR1と第2電流iR2との比に応じて、例えば、コンデンサ214の10分の1程度以下の、静電容量を有してよい。
[0046] また、大電流用電源202は、スイッチ208のオン抵抗と、抵抗210の電気抵抗との和に略反比例する第1電流iR1を出力してよい。静止電流測定用電源204は、抵抗218の電気抵抗に略反比例する第2電流iR2を出力してよい。
[0047] スイッチ208のオン抵抗と、抵抗210の電気抵抗との和に対する、抵抗218の電気抵抗の比は、例えば、測定する電源電流Ioの範囲に応じて、予め定められる。スイッチ208のオン抵抗と、抵抗210の電気抵抗との和は、例えば、抵抗218の電気抵抗の1/10倍程度以上であってよい。この場合、静止電流測定用電源204は、第1電流iR1の1/10程度以下の第2電流iR2を出力する。静止電流試験を行う場合の電源電流Ioの最大値を10mA程度とした場合、スイッチ208をオンからオフに切り換えた場合の電圧変動を50mV程度とするためには、抵抗218の電気抵抗は、例えば、50mV/10mA=5Ω程度であってよい。
[0048] また、電源部106は、電子デバイス50の機能試験中において電子デバイス50に供給され、電子デバイス50により消費される電源電流Ioを測定する消費電流測定部1000を更に備えてもよい。ここで、電子デバイス50により消費される電源電流10を消費電流測定部1000により測定する場合、制御部110は、静止電流測定用電源204による第2電流iR2の出力を停止させる。
[0049] 本実施形態に係る電源部106は、例えば機能試験中の予め定められた測定期間における電流出力部302の出力電流の値に基づいて、測定期間における電子デバイス50の平均消費電流を算出する。ここで電源部106は、測定期間における部分電流ILの値に更に基づいて、電子デバイス50の平均消費電流を算出してよい。
[0050] 消費電流測定部1000は、時間測定部1010と、消費電流算出部1020とを有する。時間測定部1010は、電子デバイス50の平均消費電流の測定期間において、電流消費部306が部分電流ILを消費する時間又は消費を停止する時間を測定する。消費電流算出部1020は、時間測定部1010により測定された、電流消費部306が部分電流ILを消費する時間又は消費を停止する時間と、電流出力部302の出力電流の電流値とに基づいて、測定期間における電子デバイス50の平均消費電流を算出して表示する。また、消費電流算出部1020は、電流消費部306が部分電流ILを消費する時間又は消費を停止する時間の、測定期間に対する割合を表示する。
[0051] 図3は、試験装置100の動作の一例を示すタイミングチャートである。本例において、試験装置100は、初期設定及び/又は機能試験と静止電流試験とを行う。これにより、試験装置100は、電子デバイス50に大きな電源電流Ioが流れた後の静止電流を測定する。また、試験装置100は、この静止電流試験の後に、再度、初期設定及び/又は機能試験と静止電流試験とを行う。
[0052] 初期設定及び/又は機能試験を行う場合、スイッチ208はオンであり、電子デバイス50は、電源電流Ioとして、第1電流iR1と、第1電流iR1の1/10程度の大きさの第2電流iR2とを受け取る。また、電子デバイス50は、例えばクロック信号に同期して変化する電源電流Ioを受け取る。この場合、コンデンサ216の端子電圧Voは、電源電流Ioと同期して、電源電流Ioの増減と負の相関で増減する。
[0053] そして、静止電流測定を行う場合、スイッチ208を切り換えるのに先立って、判定部108は、電源電流Ioを測定する。そして、電源電流Ioが所定の範囲内(正常)であれば、制御部110は、スイッチ208をオフにすることにより、第1電流iR1を遮断する。この場合、電子デバイス50は、第2電流iR2を、電源電流Ioとして受け取る。そして、判定部108が電子デバイス50の電源電流Ioを測定した後、制御部110は、スイッチ208を再度オンにする。これにより、試験装置100は、静止電流試験を終了する。
[0054] そして、試験装置100は、再度、初期設定及び/又は機能試験を行い、次の静止電流試験を開始する。この場合も、制御部110がスイッチ208をオフにするのに先立ち、判定部108は、電源電流Ioを測定する。ここで、例えば電源電流Ioが所定の値より大きい場合などの、電源電流Ioが所定の範囲をはずれていた場合(異常)、制御部110は、スイッチ208をオンに保ち、電子デバイス50は、第1電流iR1及び第2電流iR2を、継続して、電源電流Ioとして受け取る。これにより、静止電流測定用電源204の電流供給能力よりも電子デバイス50の静止電流が大きい場合であっても、適切に、静止電流試験を行うことができる。
[0055] 尚、他の例においては、電源電流Ioの測定を先立って行わず、図中に点線で示すように、スイッチ208をオフにしてもよい。この場合、電源電流Ioが異常であれば、コンデンサ216の端子電圧Voの低下に応じて抵抗210の両端の電圧が増大するため 、スイッチ208は、制御部の指示にかかわらず、第1電流iR1を流す。この場合も、電子デバイス50に適切に、電源電流Ioを供給できる。
[0056] 図4は、電流消費部306の詳細な構成の一例を示す。本例において、電流消費部306は、ローパスフィルタ402、差分検出部412、及び並列負荷部304を有する。ローパスフィルタ402、差分検出部412、及び並列負荷部304は、ユーザインターフェース150(図2参照)上に設けられてよい。
[0057] ローパスフィルタ402は、抵抗及びコンデンサを含む。この抵抗は、抵抗212における抵抗210に近い電源側端部と、このコンデンサの一端とを接続する。また、このコンデンサの他端は接地される。これにより、ローパスフィルタ402は、抵抗210を介して、電流出力部302(図2参照)の出力電圧を受け取り、これの高周波成分を低減させて、差分検出部412に供給する。
[0058] 尚、ローパスフィルタ402は、電子デバイス50が受け取る電源電流Ioが変化する周波数よりも低いカットオフ周波数を有するのが好ましい。この場合、ローパスフィルタ402は、このカットオフ周波数よりも高い周波数成分を低減させて、電流出力部302の出力電圧を通過させる。また、本例において、ローパスフィルタ402は、電流出力部302の出力電圧として、抵抗212の電源側端部の電圧Viを受け取り、電圧Viの高周波成分を低減させた電圧Vpを、差分検出部412に与える。
[0059] 差分検出部412は、ボルテージフォロア404、基準電圧出力部406、比較部414、基準電圧設定部408、及び負荷駆動部410を含む。ボルテージフォロア404は、出力が負帰還されたオペアンプである。ボルテージフォロア404は、ローパスフィルタ402の出力電圧を正入力に受け取り、この出力電圧と等しい電圧を、基準電圧出力部406に与える。
[0060] 基準電圧出力部406は、ボルテージフォロア404の出力と、接地電位との間に直列に接続された複数の抵抗502、504、506を有する。基準電圧出力部406は、抵抗502と抵抗504との間のノードの電位を、比較部414に与える基準電圧として、出力する。これにより、複数の抵抗502、504、506の電気抵抗比に基づいて、ローパスフィルタ402の出力電圧を分圧した基準電圧を、基準電圧出力部406は出力する。
[0061] また、基準電圧出力部406は、基準電圧設定部408の出力を、抵抗504と抵抗506との間のノードに受け取る。これにより、基準電圧設定部408の出力に応じて、基準電圧出力部406は、第1の基準電圧、又は第2の基準電圧のいずれかを出力する。
[0062] 比較部414は、基準電圧出力部406が出力する基準電圧を正入力に受け取り、抵抗212における電子デバイス50に近いデバイス側端部の電位を、負入力に受け取る。これにより、比較部414は、当該基準電圧と、デバイス側端部の電位とを比較する。ボルテージフォロア404及び基準電圧出力部406を介してローパスフィルタ402の出力電圧を受け取ることにより、差分検出部412は、ローパスフィルタ402の出力電圧と、抵抗212のデバイス側端部の電位との電位差を検出してよい。そして、比較部414は、これらを比較した結果を、例えばコレクタオープン出力により、基準電圧設定部408に与える。例えば、比較部414は、正入力の電位が負入力の電位より大きい場合、出力をオープンにし、正入力の電位が負入力の電位より小さい場合、出力を接地する。
[0063] 尚、本例において、抵抗212のデバイス側端部は、コンデンサ216の一端と接続されている。そのため、デバイス側端部の電位は、コンデンサ216の端子電圧Voと等しい。比較部414は、ローパスフィルタ402の出力電圧と、端子電圧Voとを比較してよい。
[0064] 基準電圧設定部408は、定電圧源508、及び複数の抵抗510、518を有する。定電圧源508は、予め定められた電圧Vccを出力する。抵抗510は、定電圧源508の正極と、比較部414の出力端とを接続する。抵抗518は、比較部414の出力端と、基準電圧出力部406における抵抗506の上流端とを接続する。
[0065] そのため、基準電圧よりも端子電圧Voが小さい場合、比較部414が出力をオープンにするため、基準電圧設定部408は、抵抗506の上流端に、複数の抵抗510、518を介して、定電圧源508の出力電圧Vccを与える。この場合、ボルテージフォロア404の出力、複数の抵抗502、504、506、510、518の電気抵抗比、及び定電圧源508の出力電圧Vccに基づき、基準電圧出力部406は、第1の基準電圧を出力する。
[0066] また、基準電圧よりも端子電圧Voが大きい場合、比較部414が出力を接地するため、基準電圧設定部408は、抵抗506の上流端を、抵抗518を介して接地する。この場合、抵抗506の上流端の電位が低下するため、ボルテージフォロア404の出力、及び複数の抵抗502、504、506、518の電気抵抗比に基づき、基準電圧出力部406は、第1の基準電圧よりも小さな第2の基準電圧を出力する。
[0067] これにより、基準電圧設定部408は、比較部414の出力に基づき、コンデンサ216の端子電圧Voが第1の基準電圧より大きくなった場合、基準電圧出力部406に第2の基準電圧を出力させる。また、端子電圧Voが第2の基準電圧より小さくなった場合、基準電圧設定部408は、基準電圧出力部406に第1の基準電圧を出力させる。基準電圧出力部406は、基準電圧設定部408の出力に基づき、ヒステリシスを有して変化する基準電圧を出力する。
[0068] また、基準電圧設定部408は、抵抗510と抵抗518との間のノードの電位Vaを、負荷駆動部410に与える。そのため、基準電圧出力部406が出力する基準電圧よりもコンデンサ216の端子電圧Voが小さい場合、比較部414の出力に応じて、基準電圧設定部408は、H信号を、負荷駆動部410に与える。また、基準電圧よりも端子電圧Voが大きい場合、基準電圧設定部408は、L信号を、負荷駆動部410に与える。これにより、基準電圧設定部408は、比較部414の出力を、負荷駆動部410に与える。
[0069] 負荷駆動部410は、例えば反転回路であり、基準電圧設定部408を介して受け取る比較部414の出力を、反転して、並列負荷部304に与える。これにより、負荷駆動部410は、コンデンサ216の端子電圧Voと、基準電圧とを比較した結果に応じた信号を、並列負荷部304に与える。本例において、端子電圧Voが基準電圧よりも大きい場合、負荷駆動部410は、H信号を出力する。また、端子電圧Voが基準電圧よりも小さい場合、負荷駆動部410は、L信号を出力する。これにより、差分検出部412は、ローパスフィルタ402の出力電圧と、コンデンサ216の端子電圧Voとの電位差を検出し、検出した結果を、並列負荷部304に通知する。
[0070] また、負荷駆動部410の出力は、時間測定部1010に対して供給される。負荷駆動部410は、電流消費部306が部分電流ILを消費する時間又は消費を停止する時間を、負荷駆動部410が出力する信号に基づいて測定する。
[0071] 並列負荷部304は、低速スイッチ512、抵抗514、及び高速スイッチ516を含む。低速スイッチ512は、電流出力部302の応答速度よりも低速に開閉するスイッチであり、一端が接続線206aと接続されることにより、抵抗212と並列に接続される。これにより、並列負荷部304は、電流出力部302の出力端に対して、抵抗212と並列に接続される。また、低速スイッチ512は、例えば、制御部110の指示に応じて、開閉する。ここで、電流出力部302の応答速度とは、例えば、電子デバイス50が受け取る電源電流Io変化に対して電流出力部302が出力電流を変化させる速度である。低速スイッチ512は、例えば、MOSFET等の半導体スイッチであってよい。この場合、低速スイッチ512は、制御部110の出力SWを、例えば抵抗を介して受け取ってよい。
[0072] 抵抗514は、低速スイッチ512の下流に、低速スイッチ512と直列に接続される。これにより、抵抗514は、高速スイッチ516を介して電流出力部302から受け取る電流を消費する。
[0073] 高速スイッチ516は、抵抗514の下流に、抵抗514と直列に接続され、ゲート端子に負荷駆動部410の出力を受け取るN型MOSFETである。これにより、高速スイッチ516は、差分検出部412の出力に応じて開閉する。また、高速スイッチ516は、電流出力部302の応答速度よりも高速に開閉する。高速スイッチ516は、コンデンサ216の端子電圧Voが基準電圧よりも大きい場合、オンになる。また、端子電圧Voが基準電圧よりも小さい場合、高速スイッチ516は、オフになる。高速スイッチ516は、抵抗212と並列、かつ低速スイッチ512と直列に接続されてよい。
[0074] ここで、低速スイッチ512及び高速スイッチ516がオンの場合、抵抗514には、電流出力部302の出力電流の一部である部分電流ILが流れ、並列負荷部304は、この部分電流ILを消費する。また、例えば高速スイッチ516がオフになった場合、並列負荷部304は、部分電流ILの消費を停止する。そのため、端子電圧Voが低下した場合、電流消費部306は、抵抗212に流れる電流を増大させる。これにより、電流消費部306は、端子電圧Voを上昇させる。そのため本例によれば、電子デバイス50の電源電圧を安定に保つことができる。
[0075] 尚、例えば電流消費部306を用いずに電流出力部302の出力電流を電子デバイス50に供給するとすれば、コンデンサ216の端子電圧Voは、電子デバイス50の電源電流Ioの変化に応じて大きく変化する場合がある。例えば、電源電流Ioが一時的に増大した場合、端子電圧Voは、アンダーシュートにより、一時的に大きく低下する場合がある。また、電源電流Ioが一時的に減少した場合、端子電圧Voは、オーバーシュートにより、一時的に大きく増大する場合がある。この場合、電子デバイス50の電源電圧が不安定となり、適切な試験を行うのが困難となる場合がある。また、近年の微細化技術の発達により、例えばMOSFETのゲート耐圧は低下しており、電源電圧のオーバーシュートは問題となる場合がある。
[0076] しかし、本例によれば、電流消費部306を用いることにより、電子デバイス50の電源電流Ioの変化に応じて、電流出力部302からコンデンサ216に流れる電流を、適切に変化させることができる。また、これにより、電子デバイス50の電源電圧を安定に保つことができる。
[0077] また、試験装置においては、多数の接続線206を必要とするため、例えば実装上の限界から、接続線206の配線幅を大きくするのも困難な場合もある。また、電流出力部302を電子デバイス50の直近に配置することも、困難な場合がある。この場合、例えばコンデンサ216の端子電圧Voを帰還させることにより電流出力部302の出力電圧を補正するとしても、電流出力部302の応答速度には、例えば接続線206のインダクタンスに基づく限界がある。しかし、本例によれば、高速スイッチ516のオンとオフとを切り換えることにより、適切かつ高速に、コンデンサ216が受け取る電流を変化させることができる。
[0078] また、電子デバイス50の電源電圧は、例えば試験項目や、電子デバイス50の品種毎に異なる場合がある。この場合、比較部414に与える基準電圧を、電子デバイス50の電源電圧に追従させて変化させる必要がある。ここで、この基準電圧を、例えば電流出力部302以外のデバイス電源に出力させるとすれば、例えば試験装置間やユーザインターフェース間に生じる誤差により、十分な精度が得られない場合がある。また、この誤差を補正する補正回路を別途設けるとすれば、回路規模が増大することとなる。
[0079] しかし、本例によれば、基準電圧出力部406は、電流出力部302の出力電圧に基づき、基準電圧を生成する。そのため、本例によれば、電子デバイス50の電源電圧を変化させた場合にも、基準電圧を、適切に生成できる。
[0080] また、本例において、差分検出部412は、電流出力部302の出力電圧を、ローパスフィルタ402を介して受け取る。この場合、抵抗212の電源側端部の電位Viが、例えば電源電流Ioの変化に応じて一時的に変化した場合であっても、安定して、基準電圧を生成できる。ここで、ローパスフィルタ402が、例えば、2kHz程度のカットオフ周波数を有する場合、電源側端部の電位Viが100mV程度変動した場合に、出力の変動を1mV程度とするためには、ローパスフィルタ402は、例えば−40db程度の特性を有すればよい。
[0081] この場合、本例のようなRC一段構成のローパスフィルタ402においては、−3dbとなる周波数は20Hzとなり、RCの時定数τは8m秒程度となる。この場合、例えば電子デバイス50に与える電源電圧が変更された場合、基準電圧を0.1%程度の精度で安定させるまでのセットリング時間は、例えば、6.9×τ=55m秒程度となるため、試験時間に与える影響は小さい。
[0082] また、電子デバイス50の電源電流Ioが1Aであり、コンデンサ216の静電容量が30μFである場合、コンデンサ216の端子電圧Voは、例えば、100n秒あたり3mV程度低下する。この場合、比較部414として、例えば、安価な汎用のコンパレータを用いることができる。
[0083] また、他の例において、並列負荷部304は、例えばスイッチ等で選択可能な、複数の抵抗514を含んでよい。この場合、例えば制御部110は、例えば電子デバイス50の品種に応じて、一の抵抗514を選択してよい。低速スイッチ512及び高速スイッチ516は、選択された抵抗514と接続されてよい。また、並列負荷部304は、抵抗514に代えて、例えば定電流回路を含んでもよい。
[0084] 図5は、電流消費部306の動作の一例を示すタイミングチャートである。本例において、電流出力部302は、時刻T1において動作を開始し、所定の電圧を出力する。電流消費部306は、これに応じて、動作を開始する。そして、ローパスフィルタ402の出力電圧Vpが安定した後、時刻T2において、信号SWの変化に応じて、低速スイッチ512はオンになり、並列負荷部304は、部分電流ILの消費を開始する。低速スイッチ512は、ローパスフィルタ402の出力電圧Vpと、電流出力部302の出力電圧とが略等しくなった後に、オンになってよい。
[0085] 尚、低速スイッチ512は、例えば抵抗を介して信号SWを受け取ることにより、図中に点線で示すように、徐々にオンになってよい。並列負荷部304は、時刻T2からT3にかけて、徐々に部分電流ILを増大させてよい。
[0086] そして、低速スイッチ512の安定化時間を、時刻T4まで待った後、電子デバイス50に対する試験が開始されると、電子デバイス50の動作に応じてコンデンサ216の端子電圧Voが変化するため、高速スイッチ516は、端子電圧Voの変化に応じてオン又はオフとなり、並列負荷部304は、これに応じた部分電流ILを消費する。これにより、電流消費部306は、電子デバイス50の電源電圧を安定させる。
[0087] そして、時刻T5に電子デバイス50の試験が終了した後、時刻T6から時刻T7にかけて、低速スイッチ512はオフになり、低速スイッチ512の安定化時間を時刻T8まで待った後、電流出力部302は、出力電圧を0に低下させる。そして、これに応じて、ローパスフィルタ402の出力電圧Vpが低下した後、時刻T9に、電流消費部306は動作を終了する。尚、試験装置100は、例えば、電流消費部306の動作を一旦終了させた後、例えばローパスフィルタ402の安定化時間を待って、次の試験を開始してよい。本例によれば、電子デバイス50の電源電流Ioを、安定に保つことができる。
[0088] 図6は、時刻T4からT5における、電流消費部306の詳細な動作の一例を示すタイミングチャートである。この期間において、コンデンサ216の端子電圧Voは、電子デバイス50の動作に応じて、例えば、増大及び減少を繰り返す。
[0089] ここで、基準電圧出力部406は、比較部414の出力Vaに応じて、第1の基準電圧VH、又は第2の基準電圧VLを出力する。そして、例えば時刻T41のように、端子電圧Voが第2の基準電圧VLを下回った場合、比較部414は、出力VaをH信号に反転させる。そして、時刻T41よりわずかに遅れた時刻T42において、並列負荷部304は、負荷駆動部410の出力に応じて、部分電流ILの消費を停止する。この場合、電流出力部302からコンデンサ216に流れる電流は増大し、コンデンサ216の端子電圧Voは上昇する。
[0090] この場合、例えば、端子電圧Voが第2の基準電圧VLより小さくなった後、第1の基準電圧VHより大きくなるまでの期間、並列負荷部304は、抵抗212と並列な経路に部分電流ILを流すのを停止してよい。並列負荷部304は、差分検出部412が検出する電位差が予め定められた値よりも大きくなった場合、電流出力部302から部分電流ILを受け取るのを停止してよい。
[0091] また、例えば時刻T43のように、端子電圧Voが第1の基準電圧VHを上回った場合、比較部414は、出力VaをL信号に反転させる。そして、時刻T43よりわずかに遅れた時刻T44において、並列負荷部304は、負荷駆動部410の出力に応じて、部分電流ILの消費を開始する。この場合、電流出力部302からコンデンサ216に流れる電流は減少し、コンデンサ216の端子電圧Voは降下する。
[0092] この場合、並列負荷部304は、比較部414の出力に基づき、コンデンサ216の端子電圧Voが第1の基準電圧VHより大きくなった後、第2の基準電圧VLより小さくなるまでの期間、部分電流ILを、抵抗212と並列な経路に流すことにより消費してよい。並列負荷部304は、差分検出部412が検出する電位差が予め定められた値よりも小さい場合、部分電流ILを消費してよい。
[0093] これにより、電流消費部306は、コンデンサ216の端子電圧Voを、適切な範囲内に安定させる。そのため、本例によれば、電子デバイス50の電源電圧を、安定に保つことができる。
[0094] 尚、例えば時刻T5において試験が終了した後に、例えば時刻T51のように、コンデンサ216の端子電圧Voが上昇した場合にも、並列負荷部304は、部分電流ILの消費を開始する。これにより、端子電圧Voが過度が上昇するのを防止できる。
[0095] 図7は、静止電流測定用電源204の構成の一例を示す。本例において、静止電流測定用電源204は、オペアンプ602、コンデンサ604、オペアンプ606、及び複数の抵抗を有する。
[0096] オペアンプ602は、抵抗608を介して負帰還されており、制御部110から正入力に受け取る電圧に応じた出力電圧を、抵抗608を介して接続線206bに出力する。これにより、オペアンプ602は、制御部110の指示に基づく電圧を出力する。コンデンサ604は、抵抗608と並列に接続されることにより、オペアンプ602の発振を防止する。
[0097] オペアンプ606は、複数の抵抗とともに、差動増幅器(減算回路)を構成する。オペアンプ606は、制御部110がオペアンプ602に与える電圧を、抵抗を介して正入力に受け取り、オペアンプ602の出力を、抵抗を介して負入力にうけとる。そして、オペアンプ606は、正入力及び負入力のそれぞれに受け取る電圧の差分を、判定部108に通知する。
[0098] ここで、負帰還されたオペアンプ602の負入力の電位は、制御部110から正入力に受け取る電位と等しい。そのため、抵抗608は、制御部110がオペアンプ602に与える電圧と、オペアンプ602の出力電圧の差分に比例する電流を流す。これにより、静止電流測定用電源204は、この差分に比例する出力電流を、接続線206bに出力する。
[0099] また、本例によれば、オペアンプ606がこの差分を判定部108に通知するため、判定部108は、この差分、及び抵抗608の電気抵抗に基づき、静止電流測定用電源204の出力電流を算出することができる。
[0100] 図8は、スイッチ208の構成の一例を示す。本例において、スイッチ208は、MOSFET702、抵抗704、及び複数のダイオード706、708を有する。MOSFET702は、ドレイン端子及びソース端子がコンデンサ214及び抵抗210に接続されており、オンになった場合に、コンデンサ214から受け取る電流を、抵抗210及び抵抗212を介して、コンデンサ216に与える。また、MOSFET702のゲート端子は、抵抗704を介して、制御部110と接続される。これにより、MOSFET702を、制御部110の指示に応じて、適切な速度でオン又はオフにできる。また、これにより、例えばコンデンサ216の端子電圧Voに、スパイク状のノイズが発生するのを防止できる。
[0101] ここで、例えばMOSFET702のゲート容量が4000pFの場合、抵抗704の電気抵抗が100Ωとすれば、このゲート容量及び抵抗704の電気抵抗によるRC回路の時定数τ=0.4μ秒程度となり、セットリング時間を10τ程度と考えれば、スイッチ208は、4μ秒程度の時間でオンとオフとが切り換えられる。
[0102] 尚、MOSFET702は、オンになった場合にコンデンサ214とコンデンサ216とを電気的に接続するMOSトランジスタの一例である。また、抵抗704は、一端がMOSFET702のゲート端子に電気的に接続され、他端に抵抗704を制御する制御信号を受け取るゲート抵抗の一例である。
[0103] ダイオード706は、MOSFET702のソース端子とドレイン端子との間に、コンデンサ214からコンデンサ216に向かう方向と逆方向に接続される。これにより、ダイオード706は、例えば電流出力部302(図2参照)が出力電圧を低下させた場合に、コンデンサ216を速やかに放電する。
[0104] また、ダイオード708は、コンデンサ214と抵抗212との間に、MOSFET702及び抵抗210と並列に、コンデンサ214からコンデンサ216に向かう方向に対して順方向に接続される。これにより、例えば抵抗210の両端の電圧がダイオード708の閾電圧より大きくなった場合に、ダイオード708は、MOSFET702の状態によらず、コンデンサ214からコンデンサ216への電流を流す。これにより、ダイオード708は、コンデンサ216の端子電圧Voが過度に低下するのを防止する。本例によれば、電流出力部302とコンデンサ216とを、適切に接続できる。ダイオード708は、例えばショットキーダイオードであってよい。尚、図3を用いて説明したような、静止電流の測定に先だって、電源電流Ioを測定する構成においては、例えば、ダイオード708を省略してもよい。
[0105] 図9は、電源部106の構成の他の例を、電子デバイス50とともに示す。本例において、電源部106は、大電流用電源202、静止電流測定用電源204、複数の接続線206a〜c、複数のコンデンサ214、216、複数のスイッチ208、252、254、及び複数の抵抗210、218を有する。尚、以下に説明する点を除き、図9において、図2と同一の符号を付した構成は、図2における構成と同一又は同様の機能を有するため、説明を省略する。
[0106] スイッチ254は、オンになった場合に、コンデンサ214と大電流用電源202とを、接続線206cを介して電気的に接続する。スイッチ252は、オンになった場合に、コンデンサ216と大電流用電源202とを、接続線206cを介して電気的に接続する。スイッチ252及びスイッチ254は、制御部110の指示に応じて、オン又はオフになってよい。
[0107] 大電流用電源202は、スイッチ252又はスイッチ254を介して、コンデンサ216の端子電圧Vp、又はコンデンサ214の端子電圧Voを受け取り、これに応じて出力電圧を変化させる。この場合、大電流用電源202は、出力電圧を、高い精度で出力することができる。また、本例においても、静止電流測定用電源204が出力する第2電流iR2に基づき、電源電流Ioを、高い精度で算出することができる。そのため、本例によれば、電子デバイス50を、高い精度で試験することができる。
[0108] 図10は、電源部106の構成の更なる他の例を、電子デバイス50とともに示す。本例において、電源部106は、大電流用電源202、複数の接続線206a〜d、複数のコンデンサ214、216、及び抵抗212を有する。尚、以下に説明する点を除き、図10において、図2と同一の符号を付した構成は、図2における構成と同一又は同様の機能を有するため、説明を省略する。
[0109] 本例において、接続線206bは、電流出力部302における接地端子と、ユーザインターフェース150における接地端子とを電気的に接続する。これにより、電流出力部302及びユーザインターフェース150は、高い精度で共通に、接地される。また、接続線206cは、コンデンサ216の一端と、電流出力部302とを電気的に接続する。接続線206は、電子デバイス50の接地端子と、電流出力部302とを電気的に接続する。
[0110] 電流出力部302は、複数のボルテージフォロア804、806、オペアンプ802、及び複数の抵抗を含む。ボルテージフォロア804は、コンデンサ216と、接続線206cを介して接続され、コンデンサ216の端子電圧Voと等しい電圧を、オペアンプ802の負入力に与える。ボルテージフォロア806は、電子デバイス50の接地端子と、接続線206dを介して接続され、電子デバイス50の接地端子に生じている電圧と等しい電圧を、オペアンプ802の正入力に与える。
[0111] オペアンプ802は、制御部110が出力する電圧を、抵抗を介して正入力に受け取り、これに応じた電圧を、抵抗を介して、接続線206aに出力する。ここで、オペアンプ802は、出力電圧に応じてコンデンサ216に生じる端子電圧Vo、及び電子デバイス50の接地端子の電圧を、ボルテージフォロア804及びボルテージフォロア806を介して受け取ることにより、帰還制御されている。そのため、本例によれば、オペアンプ802の出力電圧を、高い精度で制御することができる。また、本例においても、電流消費部306により、コンデンサ216の端子電圧Voを、安定に保つことができる。そのため、本例によれば、電子デバイス50を、高い精度で試験することができる。
[0112] 図11は、時間測定部1010の構成を示す。本実施形態に係る時間測定部1010は、電子デバイス50の平均消費電流の測定期間において高速スイッチ516がオフとなったオフ時間を測定することにより、電流消費部306が部分電流ILの消費を停止している時間を測定する。
[0113] 時間測定部1010は、論理回路1110と、カウンタ1120と、レジスタ1130と、DAコンバータ1140とを有する。論理回路1110は、高速スイッチ516がオフとなっている間、例えば試験装置100の基準クロック等のクロック信号をカウンタ1120に供給する。より具体的には、論理回路1110は、電流消費部306内の負荷駆動部410が出力する信号の反転値とクロック信号との論理積を出力する。これにより、論理回路1110は、負荷駆動部410がL信号を出力している間、すなわち高速スイッチ516がオフとなっている間、クロック信号をカウンタ1120に供給する。
[0114] カウンタ1120は、高速スイッチ516がオフの間論理回路1110から供給されるクロック信号に基づいて、測定期間における高速スイッチ516のオフ時間をカウントする。より具体的には、制御部110は、測定期間の開始前にリセット信号をカウンタ1120へ入力する。これを受けてカウンタ1120は、カウント値を初期化する。次に制御部110は、測定期間の間、スタート/ストップ信号にH論理を供給する。これを受けてカウンタ1120は、カウントをイネーブルされ、論理回路1110から供給されるクロック信号をカウントする。そして、制御部110は、測定期間が終了すると、スタート/ストップ信号をL論理とする。これを受けてカウンタ1120は、カウントを停止する。
[0115] レジスタ1130は、カウンタ1120が出力するカウント値をデータ入力信号Diとして入力し、測定期間の終了時に記憶して、データ出力信号Doとして出力する。より具体的には、レジスタ1130は、測定期間の終了時においてスタート/ストップ信号がH論理からL論理に変化したときにカウント値を記憶する。ここで、レジスタ1130は、カウンタ1120が出力するカウント値のうち、上位の1又は複数ビットのみを記憶して、データ出力信号Doとして出力してもよい。
[0116] DAコンバータ1140は、カウンタ1120によりカウントされ、レジスタ1130に記憶された、サイクル単位の高速スイッチ516のオフ時間を、アナログ値に変換する。
[0117] 以上において、制御部110は、測定期間を、クロック信号の2のn乗サイクル(ただしnは正の整数)となるように設定する。これによりカウンタ1120は、測定期間における高速スイッチ516のオフ時間を、測定期間を2のn乗で割ったサイクル単位でカウントする。このように測定期間を設定することにより、カウント値における下からnビット目を1の位と見なし、n−1ビット目以下を少数点以下の位と見なせば、当該カウント値は、測定期間に対する高速スイッチ516のオフ時間の割合として用いることもできる。
[0118] なお、以上に代えて、論理回路1110を、負荷駆動部410が出力する信号とクロック信号との論理積を出力する論理回路(AND論理)とすれば、高速スイッチ516のオフ時間に代えて高速スイッチ516のオン時間を測定することができる。
[0119] 図12は、消費電流算出部1020の構成の一例を示す。消費電流算出部1020は、時間測定部1010により測定された高速スイッチ516のオン時間又はオフ時間と、電流出力部302の出力電流の電流値とに基づいて、機能試験中の測定期間における電子デバイス50の平均消費電流を算出して表示する。本例における消費電流算出部1020は、高速スイッチ516がオンの状態において、並列負荷部304が、電流出力部302の出力電流と同量の部分電流ILを消費する場合に用いることができる。
[0120] 本例における消費電流算出部1020は、測定期間における電流出力部302の出力電流の平均値に、測定期間に対する高速スイッチ516のオフ時間の割合を乗じることにより、平均消費電流を算出する。消費電流算出部1020は、乗算器1200と、表示部1210と、電圧計1220とを含む。
[0121] 乗算器1200は、測定期間における電流出力部302の出力電流の平均値を電流出力部302から入力し、また、レジスタ1130を介してカウンタ1120のカウント値を入力する。そして、乗算器1200は、測定期間における出力電流の平均値に、測定期間における高速スイッチ516のオフ時間の割合を示すカウンタ1120のカウント値を乗じることにより、電子デバイス50の平均消費電流を算出する。表示部1210は、乗算器1200により算出された電子デバイス50の平均消費電流を表示する。
[0122] 電圧計1220は、DAコンバータ1140が出力するアナログ信号の電圧を計測して表示する。ここで、消費電流測定部1000の使用者は、DAコンバータ1140の出力電圧を読み取って、測定期間における最大のカウント値(2のn乗)に対応するDAコンバータ1140の出力電圧に対する割合を算出すると共に、電流出力部302の出力電流の平均値を読み取れば、これらの値に基づいて乗算器1200と同様にして電子デバイス50の平均消費電流を算出することができる。ここで、DAコンバータ1140と電圧計1220は1本のアナログ信号により接続可能であることから、デジタル信号を配線する場合と比較し簡易に実現することができる。
[0123] 図13は、図11及び図12に示した時間測定部1010及び消費電流算出部1020を用いて電子デバイス50の平均消費電流を測定する場合における、測定期間中の電流消費部306の動作の一例を示す。本例において、並列負荷部304は、高速スイッチ516がオンの状態において、電流出力部302の出力電流IDPSと同量の部分電流ILを消費する。このような状態は、電子デバイス50が動作していないときの消費電流がほぼ0Aとなる場合に起こり得る。
[0124] 電子デバイス50は、測定期間中において機能試験に応じた動作を行う。この結果、電子デバイス50に対して入力される電源電流Ioは、図13に例示したように、例えば0A、1A、及び2Aの間で変動し、電子デバイス50の動作に応じてコンデンサ216の端子電圧Voが変化する。そして、負荷駆動部410の出力SW2は、この端子電圧Voの変動を抑えるべくスイッチングされる。この結果、高速スイッチ516は、端子電圧Voの変動を抑えるように、オン又はオフのいずれかに適切に切り替えられる。
[0125] 高速スイッチ516がオンの状態において、部分電流ILは、出力電流IDPSと同じ値(本例においては2A)となる。一方、高速スイッチ516がオフの状態において、部分電流ILは、0Aとなる。したがって、電子デバイス50の電源電流Ioの平均値、すなわち電子デバイス50の平均消費電流は、以下の式(1)により算出することができる。
[0126] Ioの平均値=IDPSの平均値
×(高速スイッチ516のオフ時間/測定時間) (1)
[0127] したがって消費電流算出部1020は、測定期間における出力電流IDPSの平均値に、測定期間における高速スイッチ516のオフ時間の割合を乗じることにより、電子デバイス50の平均消費電流を算出することができる。また、消費電流測定部1000の使用者は、出力電流IDPSの平均値を電流出力部302から読み取り、高速スイッチ516のオフ時間の割合を電圧計1220から読み取って、電子デバイス50の平均消費電流を計算することも可能である。
[0128] 図14は、消費電流算出部1020の構成の他の例を示す。本例に係る消費電流算出部1020は、時間測定部1010により測定された高速スイッチ516のオン時間又はオフ時間と、出力電流の電流値と、高速スイッチ516がオンの状態における並列負荷部304の部分電流の電流値とに基づいて、機能試験中の測定期間における電子デバイス50の平均消費電流を算出して表示する。本例における消費電流算出部1020は、高速スイッチ516がオンの状態において、並列負荷部304が、電流出力部302の出力電流と異なる部分電流ILを消費する場合に用いることができる。
[0129] 本例における消費電流算出部1020は、高速スイッチ516がオンの状態における部分電流の電流値及び測定期間に対するオン時間の割合の積を、測定期間における出力電流の平均値から減じることにより、平均消費電流を算出する。本例に係る消費電流算出部1020は、減算器1400と、乗算器1410と、減算器1420と、表示部1210と、電圧計1220とを含む。ここで表示部1210及び電圧計1220は、図12に示した表示部1210及び電圧計1220と同様の機能及び構成をとるため、説明を省略する。
[0130] 減算器1400は、測定期間から高速スイッチ516のオフ時間を減じることにより、高速スイッチ516のオン時間を算出する。より具体的には、減算器1400は、測定期間のサイクル数である2のn乗から、高速スイッチ516がオフであるサイクル数、すなわちレジスタ1130を介して供給されるカウント値、を減じることにより高速スイッチ516がオンであるサイクル数を算出する。ここで、減算器1400の出力は、測定期間に対する高速スイッチ516のオン時間の割合としても用いることができる。
[0131] 乗算器1410は、高速スイッチ516がオンの状態における部分電流ILの電流値に、減算器1400により出力された、測定期間に対する高速スイッチ516のオン時間の割合を乗じる。減算器1420は、測定期間における電流出力部302の出力電流IDPSの平均値から、乗算器1410により出力される積を減じる。
[0132] 図15は、図11及び図13に示した時間測定部1010及び消費電流算出部1020を用いて電子デバイス50の平均消費電流を測定する場合における、測定期間中の電流消費部306の動作の一例を示す。本例において、並列負荷部304は、高速スイッチ516がオンの状態において、電流出力部302の出力電流IDPSより小さい部分電流ILを消費する。このような状態は、電子デバイス50が動作していない場合においても消費電流が0Aとならない場合に起こり得る。
[0133] 電子デバイス50は、測定期間中において機能試験に応じた動作を行う。この結果、電子デバイス50に対して入力される電源電流Ioは、図15に例示したように、例えば0A、1A、2A、及び3Aの間で変動し、電子デバイス50の動作に応じてコンデンサ216の端子電圧Voが変化する。そして、負荷駆動部410の出力SW2は、この端子電圧Voの変動を抑えるべくスイッチングされる。この結果、高速スイッチ516は、端子電圧Voの変動を抑えるように、オン又はオフのいずれかに適切に切り替えられる。
[0134] 高速スイッチ516がオンの状態において、部分電流ILは、出力電流IDPS(本例においては3A)と比較し小さな値(本例においては2A)となる。一方、高速スイッチ516がオフの状態において、部分電流ILは、0Aとなる。したがって、電子デバイス50の平均消費電流は、以下の式(2)により算出することができる。
[0135] Ioの平均値=IDPSの平均値
−オン時のIL×[1−(高速スイッチ516のオフ時間/測定時間)](2)
[0136] ここで、[1−(高速スイッチ516のオフ時間/測定時間)]は、(高速スイッチ516のオン時間/測定時間)であるから、消費電流算出部1020は、高速スイッチ516がオンの状態における部分電流ILの電流値及び測定期間に対するオン時間の割合の積を、測定期間における出力電流IDPSの平均値から減じることにより、電子デバイス50の平均消費電流を算出することができる。また、消費電流測定部1000の使用者は、出力電流IDPSの平均値を電流出力部302から読み取り、高速スイッチ516のオフ時間の割合を電圧計1220から読み取って、これらの値及び高速スイッチ516がオンの状態における部分電流ILの電流値に基づいて電子デバイス50の平均消費電流を計算することも可能である。
[0137] 以上に示した消費電流測定部1000によれば、機能試験中等において電子デバイス50の電源電圧の変動を抑えるべく高速スイッチ516を適宜オンとした場合においても、電流出力部302の出力電流、高速スイッチ516のオン時間かオフ時間、及び/又は、高速スイッチ516のオン時における部分電流に基づいて電子デバイス50の平均消費電流を測定できる。これにより、電流出力部302からは一定の出力電流が流れており、電子デバイス50の動作に伴い適宜部分電流が消費される環境においても、電子デバイス50の平均消費電流を適切に測定することができる。
[0138] 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
[0139] 本発明によれば、電子デバイスを、高い精度で試験することができる。

Claims (15)

  1. 電子デバイスに電源電流を供給する電源装置であって、
    少なくとも一部に前記電源電流を含む出力電流を出力する電流出力部と、
    前記電流出力部と前記電子デバイスとを電気的に接続することにより、前記電流出力部から受け取る前記電源電流を、前記電子デバイスに供給する接続抵抗と、
    前記電子デバイスが受け取る前記電源電流が変化する周波数よりも低いカットオフ周波数を有し、前記カットオフ周波数よりも高い周波数成分を低減させて、前記電流出力部の出力電圧を通過させるローパスフィルタと、
    前記ローパスフィルタの出力電圧と、前記接続抵抗における前記電子デバイスに近いデバイス側端部の電位との電位差を検出する差分検出部と、
    前記電流出力部の出力端に対して、前記接続抵抗と並列に接続され、前記差分検出部が検出する前記電位差が予め定められた値よりも小さい場合、前記電流出力部の前記出力電流の一部である部分電流を消費し、前記差分検出部が検出する前記電位差が予め定められた値よりも大きくなった場合、前記電流出力部から前記部分電流を受け取るのを停止する並列負荷部と
    を備える電源装置。
  2. 前記電源電流を、前記接続抵抗よりも電流方向の上流において平滑化する平滑コンデンサと、
    前記平滑コンデンサよりも小さな静電容量を有し、前記接続抵抗が前記電子デバイスに与える前記電源電流を、前記接続抵抗よりも電流方向の下流において平滑化するデバイス側コンデンサと
    を更に備える請求項1に記載の電源装置。
  3. 前記ローパスフィルタ、前記差分検出部、又は前記並列負荷部の少なくとも一部は、前記電流出力部と前記電子デバイスとを電気的に接続する配線が形成されたプリント基板上に設けられ、
    前記接続抵抗は、前記プリント基板上に形成されたパターン抵抗である請求項1に記載の電源装置。
  4. 前記差分検出部は、
    第1の基準電圧、又は前記第1の基準電圧よりも小さな第2の基準電圧のいずれかを、前記ローパスフィルタの出力電圧を分圧することにより出力する基準電圧出力部と、
    前記基準電圧出力部が出力する前記基準電圧と、前記デバイス側端部の電位とを比較する比較部と、
    前記比較部の出力に基づき、前記デバイス側端部の電位が前記第1の基準電圧より大きくなった場合、前記基準電圧出力部に前記第2の基準電圧を出力させ、前記デバイス側端部の電位が前記第2の基準電圧より小さくなった場合、前記基準電圧出力部に前記第1の基準電圧を出力させる基準電圧設定部と
    を有し、
    前記並列負荷部は、前記比較部の出力に基づき、前記デバイス側端部の電位が前記第1の基準電圧より大きくなった後、前記第2の基準電圧より小さくなるまでの期間、前記電流出力部から受け取る前記部分電流を、前記接続抵抗と並列な経路に流すことにより消費し、前記デバイス側端部の電位が前記第2の基準電圧より小さくなった後、前記第1の基準電圧より大きくなるまでの期間、前記並列な経路に前記部分電流を流すのを停止する請求項1に記載の電源装置。
  5. 前記並列負荷部は、
    前記接続抵抗と並列に接続され、前記電子デバイスが受け取る前記電源電流の変化に対して前記電流出力部が前記出力電流を変化させる応答速度よりも低速に開閉する低速スイッチと、
    前記接続抵抗と並列、かつ前記低速スイッチと直列に接続され、前記電流出力部の前記応答速度よりも高速に、前記差分検出部の出力に応じて開閉する高速スイッチと
    を有する請求項1に記載の電源装置。
  6. 前記ローパスフィルタの出力電圧と、前記電流出力部の出力電圧とが略等しくなった後に、前記低速スイッチはオンになる請求項5に記載の電源装置。
  7. 前記並列負荷部は、前記接続抵抗と並列に接続され、前記差分検出部の出力に応じて開閉するスイッチを有し、
    当該電源装置は、前記電子デバイスの平均消費電流の測定期間において前記スイッチがオンとなったオン時間又はオフとなったオフ時間を測定する時間測定部を更に備える
    請求項1に記載の電源装置。
  8. 前記時間測定部は、
    前記測定期間における前記オン時間又は前記オフ時間を、前記測定期間を2のn乗(ただしnは正の整数)で割ったサイクル単位でカウントするカウンタと、
    前記カウンタによりカウントされたサイクル単位の前記オン時間又は前記オフ時間をアナログ値に変換するDAコンバータと
    を有する請求項7に記載の電源装置。
  9. 前記時間測定部により測定された前記オン時間又は前記オフ時間と、前記出力電流の電流値とに基づいて、前記測定期間における前記電子デバイスの平均消費電流を算出する消費電流算出部を更に備える請求項7に記載の電源装置。
  10. 前記並列負荷部は、前記スイッチがオンの状態において、前記出力電流と同量の前記部分電流を消費し、
    前記消費電流算出部は、前記測定期間における前記出力電流の平均値に、前記測定期間に対する前記オフ時間の割合を乗じることにより、前記平均消費電流を算出する
    請求項9に記載の電源装置。
  11. 前記消費電流算出部は、前記スイッチがオンの状態における前記部分電流の電流値に更に基づいて、前記平均消費電流を算出する請求項9に記載の電源装置。
  12. 前記消費電流算出部は、前記スイッチがオンの状態における前記部分電流の電流値及び前記測定期間に対する前記オン時間の割合の積を、前記測定期間における前記出力電流の平均値から減じることにより、前記平均消費電流を算出する請求項11に記載の電源装置。
  13. 予め定められた測定期間における前記出力電流及び前記部分電流の値に基づいて、前記測定期間における前記電子デバイスの平均消費電流を算出する消費電流測定部を更に備える請求項1に記載の電源装置。
  14. 電子デバイスを試験する試験装置であって、
    前記電子デバイスが受け取るべき電源電流を少なくとも一部に含む出力電流を、出力する電流出力部と、
    前記電流出力部と前記電子デバイスとを電気的に接続することにより、前記電流出力部から受け取る前記電源電流を、前記電子デバイスに供給する接続抵抗と、
    前記電子デバイスが受け取る前記電源電流が変化する周波数よりも低いカットオフ周波数を有し、前記カットオフ周波数よりも高い周波数成分を低減させて、前記電流出力部の出力電圧を通過させるローパスフィルタと、
    前記ローパスフィルタの出力電圧と、前記接続抵抗における前記電子デバイスに近いデバイス側端部の電位との電位差を検出する差分検出部と、
    前記電流出力部の出力端に対して、前記接続抵抗と並列に接続され、前記差分検出部が検出する前記電位差が予め定められた値よりも小さい場合、前記電流出力部の前記出力電流の一部である部分電流を消費し、前記差分検出部が検出する前記電位差が予め定められた値よりも大きくなった場合、前記電流出力部から前記部分電流を受け取るのを停止する並列負荷部と、
    前記電子デバイスに入力されるべき試験パターンを生成するパターン発生部と、
    前記電源電流を受け取る前記電子デバイスに、前記試験パターンを供給する信号入力部と、
    前記試験パターンに応じて前記電子デバイスが出力する信号に基づき、前記電子デバイスの良否を判定する判定部と
    を備える試験装置。
  15. 電子デバイスに電源電流を供給する電源装置の電源電圧を安定化する電源電圧安定化装置であって、
    前記電源装置は、
    少なくとも一部に前記電源電流を含む出力電流を出力する電流出力部と、
    前記電流出力部と前記電子デバイスとを電気的に接続することにより、前記電流出力部から受け取る前記電源電流を、前記電子デバイスに供給する接続抵抗と
    を備え、
    当該電源電圧安定化装置は、
    前記電子デバイスが受け取る前記電源電流が変化する周波数よりも低いカットオフ周波数を有し、前記カットオフ周波数よりも高い周波数成分を低減させて、前記電流出力部の出力電圧を通過させるローパスフィルタと、
    前記ローパスフィルタの出力電圧と、前記接続抵抗における前記電子デバイスに近いデバイス側端部の電位との電位差を検出する差分検出部と、
    前記電流出力部の出力端に対して、前記接続抵抗と並列に接続され、前記差分検出部が検出する前記電位差が予め定められた値よりも小さい場合、前記電流出力部の前記出力電流の一部である部分電流を消費し、前記差分検出部が検出する前記電位差が予め定められた値よりも大きくなった場合、前記電流出力部から前記部分電流を受け取るのを停止する並列負荷部と
    を備える電源電圧安定化装置。
JP2004567660A 2003-05-21 2004-05-21 電源装置、試験装置及び電源電圧安定化装置 Expired - Fee Related JP4081089B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003143726 2003-05-21
JP2003143726 2003-05-21
JP2004051740 2004-02-26
JP2004051740 2004-02-26
PCT/JP2004/006934 WO2004104606A1 (ja) 2003-05-21 2004-05-21 電源装置、試験装置及び電源電圧安定化装置

Publications (2)

Publication Number Publication Date
JPWO2004104606A1 JPWO2004104606A1 (ja) 2006-07-20
JP4081089B2 true JP4081089B2 (ja) 2008-04-23

Family

ID=33478959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004567660A Expired - Fee Related JP4081089B2 (ja) 2003-05-21 2004-05-21 電源装置、試験装置及び電源電圧安定化装置

Country Status (7)

Country Link
US (1) US7330024B2 (ja)
EP (1) EP1666897A4 (ja)
JP (1) JP4081089B2 (ja)
KR (1) KR101063123B1 (ja)
CN (1) CN1791802B (ja)
TW (1) TWI316607B (ja)
WO (1) WO2004104606A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049476A1 (ja) 2005-10-27 2007-05-03 Advantest Corporation 試験装置、及び試験方法
KR101044706B1 (ko) * 2006-06-01 2011-06-28 가부시키가이샤 어드밴티스트 전원 장치, 시험 장치, 및 안정화 장치
FR2910657B1 (fr) * 2006-12-22 2012-11-16 Ingenico Sa Procede de verification de conformite d'une plateforme electronique et/ou d'un programme informatique present sur cette plateforme, dispositif et programme d'ordinateur correspondants.
US7969124B2 (en) * 2007-06-01 2011-06-28 Advantest Corporation Power supply apparatus, test apparatus, and electronic device
JP2009168533A (ja) * 2008-01-11 2009-07-30 Mitsubishi Heavy Ind Ltd 計測または制御手段における信号状態の診断装置
TWI397812B (zh) * 2009-06-01 2013-06-01 Inventec Corp 測試板
US7768292B1 (en) * 2009-06-06 2010-08-03 James Kristian Koch Non-invasive power supply tester
JP5735910B2 (ja) * 2010-04-22 2015-06-17 株式会社アドバンテスト ピンカードおよびそれを用いた試験装置
TW201248383A (en) * 2011-05-25 2012-12-01 Hon Hai Prec Ind Co Ltd Power supplying circuit
US10701794B2 (en) * 2018-10-26 2020-06-30 Pegatron Corporation Printed circuit board and power copper surface configuration method thereof
US11860189B2 (en) 2019-12-12 2024-01-02 Innova Electronics Corporation Rotational electrical probe
US11320462B2 (en) 2019-12-12 2022-05-03 Innova Electronics Corporation Electrical probe
US11767955B2 (en) 2020-06-01 2023-09-26 National Signal Llc Energy management of a portable solar lighting tower
USD1003254S1 (en) 2020-06-01 2023-10-31 National Signal Llc Solar light tower control user interface

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353080A (en) * 1964-08-06 1967-11-14 Walden Electronics Corp Regulated power supply having separate regulators responsive to different error signal frequency components
US4757433A (en) * 1987-01-07 1988-07-12 Display Components, Inc. Power supply
JPH0736298Y2 (ja) * 1989-01-26 1995-08-16 日本電気株式会社 測定用電源
CN1022203C (zh) * 1990-07-04 1993-09-22 华东工学院 电量变送器和电表的检验仪
US5274336A (en) * 1992-01-14 1993-12-28 Hewlett-Packard Company Capacitively-coupled test probe
JPH0736298A (ja) 1993-07-19 1995-02-07 Fuji Xerox Co Ltd 定着装置
JP3072880B2 (ja) * 1994-06-02 2000-08-07 株式会社アドバンテスト Ic試験用電圧発生回路
US5773990A (en) * 1995-09-29 1998-06-30 Megatest Corporation Integrated circuit test power supply
JPH09145749A (ja) * 1995-11-29 1997-06-06 Toyota Motor Corp 電流検出回路
US6073259A (en) * 1997-08-05 2000-06-06 Teradyne, Inc. Low cost CMOS tester with high channel density
US5945257A (en) * 1997-10-29 1999-08-31 Sequent Computer Systems, Inc. Method of forming resistors
KR100588704B1 (ko) * 2001-06-06 2006-06-12 주식회사 아도반테스토 전원회로 및 시험장치
JP4043743B2 (ja) * 2001-09-17 2008-02-06 シャープ株式会社 半導体試験装置
US7162652B2 (en) * 2003-06-20 2007-01-09 Texas Instruments Incorporated Integrated circuit dynamic parameter management in response to dynamic energy evaluation

Also Published As

Publication number Publication date
US7330024B2 (en) 2008-02-12
KR101063123B1 (ko) 2011-09-07
WO2004104606A1 (ja) 2004-12-02
JPWO2004104606A1 (ja) 2006-07-20
TWI316607B (en) 2009-11-01
EP1666897A1 (en) 2006-06-07
US20060072273A1 (en) 2006-04-06
EP1666897A4 (en) 2011-03-16
KR20060003118A (ko) 2006-01-09
TW200506382A (en) 2005-02-16
CN1791802B (zh) 2010-05-12
CN1791802A (zh) 2006-06-21

Similar Documents

Publication Publication Date Title
US7330024B2 (en) Power supply device, test apparatus, and power supply voltage stabilizing device
US7362104B2 (en) Current measurement device and test device
JP3072880B2 (ja) Ic試験用電圧発生回路
KR20070065900A (ko) 전원 장치 및 시험 장치
JP4547147B2 (ja) 電源回路、及び試験装置
JP2000305668A (ja) 電源電圧変動抑制回路
EP1952214A1 (en) Device and method for compensating for voltage drops
JP4412917B2 (ja) 電流測定装置及び試験装置
US8466701B2 (en) Power supply stabilizing circuit, electronic device and test apparatus
US9702942B2 (en) Measurement device, semiconductor device and impedance adjustment method
JP2001004692A (ja) 半導体試験装置
US9166468B2 (en) Voltage regulator circuit with soft-start function
JPH10124159A (ja) 電圧印加回路
TW434873B (en) Current measurement method and current measurement device
US7129712B1 (en) Attofarad capacitance measurement
JP2005172796A (ja) 電流−電圧変換回路
US7847578B2 (en) Power supply circuit and test apparatus
JP3851871B2 (ja) ドライバ回路
US20240097618A1 (en) Inductor current reconstruction circuit, controller and switched-mode power supply
JP2002277505A (ja) Dc特性測定用電源装置及び半導体試験装置
JP2723688B2 (ja) 半導体集積回路の周波数特性測定装置
JP2014211360A (ja) 半導体試験装置
JP2023168161A (ja) 電源を有する装置および試験ボード
JP4912263B2 (ja) 負荷システム
US20050179477A1 (en) Integrated circuit and method for generating a ready signal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees