JP4079576B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4079576B2
JP4079576B2 JP2000167496A JP2000167496A JP4079576B2 JP 4079576 B2 JP4079576 B2 JP 4079576B2 JP 2000167496 A JP2000167496 A JP 2000167496A JP 2000167496 A JP2000167496 A JP 2000167496A JP 4079576 B2 JP4079576 B2 JP 4079576B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature regenerator
supplied
heat transfer
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000167496A
Other languages
Japanese (ja)
Other versions
JP2001349631A (en
Inventor
俊之 星野
正之 大能
伸一 上篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000167496A priority Critical patent/JP4079576B2/en
Publication of JP2001349631A publication Critical patent/JP2001349631A/en
Application granted granted Critical
Publication of JP4079576B2 publication Critical patent/JP4079576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コージェネレーション装置などから供給される排熱を利用して成績係数を改善するようにした吸収冷凍機に係わるものである。
【0002】
【従来の技術】
この種の吸収冷凍機として、例えばガスバーナなどの燃焼加熱手段1Aにより吸収液を加熱して冷媒を蒸発分離する高温再生器1、高温再生器1から供給される冷媒蒸気を熱源として吸収液を加熱し冷媒を蒸発分離する低温再生器2、それに併設され、低温再生器2から供給される冷媒蒸気を凝縮する凝縮器3、冷媒液を蒸発させて冷水を得る蒸発器4、蒸発器4で蒸発した冷媒を吸収液に吸収させる吸収器5、図示しないコージェネレーション装置などから排熱供給管11を介して供給される温排水を熱源として吸収液を加熱し冷媒を蒸発分離する排熱再生器5、それに併設され、排熱再生器6から供給される冷媒蒸気を凝縮する排熱凝縮器7、吸収液ポンプP1、P2、冷媒ポンプP3などを備えた図6に示す構成の吸収冷凍機が周知である。
【0003】
また、図7に示したように、低温再生器2と排熱再生器6とが凝縮器3を共有するように並設された吸収冷凍機も周知である。
【0004】
【発明が解決しようとする課題】
図6に示した構成の吸収冷凍機においては、広い設置スペースが必要となる、配管が複雑になる、と云った問題点があり、図7に示した構成の吸収冷凍機においては、濃度の異なる吸収液を同じ胴内に保有するため冷媒ロスが発生する、機内配管が複雑になる、と云った問題点があり、他の設備から供給される排熱を利用して成績係数を改善しながらも、構成が複雑にならない吸収冷凍機を提供する必要があった。
【0005】
【課題を解決するための手段】
本発明は上記従来技術の課題を解決するための具体的手段として、冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成されエリミネータを通って供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が冷媒ポンプにより伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器とを備え、外部から供給される排熱熱流体が内側を流れる排熱伝熱管を低温再生器の内部に一体の管群として設け、中間吸収液を散布させる吸収冷凍機において、前記低温再生器の内部には、前記排熱伝熱管と前記高温再生器から供給される冷媒蒸気が内側に流れる冷媒伝熱管とが、前記排熱伝熱管が前記エリミネータ側に配置されその反対側に前記冷媒伝熱管が配置されるように横並びに設置された第1構成の吸収冷凍機と、
【0006】
冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、高温再生器で生成した冷媒蒸気で吸収液を加熱して冷媒を蒸発分離する低温再生器と、この低温再生器で吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成されエリミネータを通って供給される冷媒蒸気を冷却して冷媒液を得る凝縮器とこの凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が冷媒ポンプにより伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にする吸収器とを備え、外部から供給される排熱熱流体が内側を流れる排熱伝熱管を低温再生器の内部に一体の管群として設け、稀吸収液を散布させる吸収冷凍機において、前記低温再生器の内部には、前記排熱伝熱管と前記高温再生器から供給される冷媒蒸気が内側に流れる冷媒伝熱管とが、前記排熱伝熱管が前記エリミネータ側に配置されその反対側に前記冷媒伝熱管が配置されるように横並びに設置され前記吸収器で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液が、前記高温再生器と前記低温再生器に分岐して供給され、前記高温再生器で冷媒を蒸発分離して濃縮された吸収液と、前記低温再生器で冷媒を蒸発分離して濃縮された吸収液とが、前記吸収器に戻されるように吸収液管を配管した第2構成の吸収冷凍機と、
【0007】
冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、高温再生器で生成した冷媒蒸気で吸収液を加熱して冷媒を蒸発分離する低温再生器と、この低温再生器で吸収液を加熱して凝縮しこの高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成されエリミネータを通って供給される冷媒蒸気を冷却して冷媒液を得る凝縮器とこの凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が冷媒ポンプにより伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を高温再生器から供給される吸収液に吸収させて稀吸収液にする吸収器とを備え、外部から供給される排熱熱流体が内側を流れる排熱伝熱管を低温再生器の内部に一体の管群として設け、稀吸収液を散布させる吸収冷凍機において、前記低温再生器の内部には、前記排熱伝熱管と前記高温再生器から供給される冷媒蒸気が内側に流れる冷媒伝熱管とが、前記排熱伝熱管が前記エリミネータ側に配置されその反対側に前記冷媒伝熱管が配置されるように横並びに設置され前記吸収器で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液が、先ず前記低温再生器に供給され、前記低温再生器で冷媒を蒸発分離して濃縮された吸収液が前記高温再生器に供給され、前記高温再生器でさらに冷媒を蒸発分離して濃縮された吸収液が前記高温再生器から前記吸収器に戻されるように吸収液管を配管した第3構成の吸収冷凍機と、
を提供することにより、前記した従来技術の課題を解決するものである。
【0008】
【発明の実施の形態】
〔第1の実施形態〕
以下、本発明の第1の実施形態を図1と図2に基づいて詳細に説明する。なお、理解を容易にするため、これらの図においても前記図6、図7において説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0009】
本発明の吸収冷凍機の低温再生器2には、高温再生器1で生成し、冷媒管14を介して供給される冷媒蒸気が内側を流れる冷媒伝熱管14Aと共に、例えば排熱供給管11を介して図示しないコージェネレーション装置のエンジン発電機を冷却して循環供給される88℃程度に加熱されたエンジン冷却水が内側を流れる排熱伝熱管11Aが配管され、高温再生器1から吸収液管15を介して供給され、上方から散布される中間吸収液を加熱して冷媒を蒸発分離し、吸収液を濃縮するようになっている。
【0010】
そして、この第1の実施形態の吸収冷凍機では、低温再生器2の内部に配管される排熱伝熱管11Aと冷媒伝熱管14Aは、図2に示したように排熱伝熱管11Aが冷媒伝熱管14Aの上に位置するように配置され、その排熱伝熱管11Aの上に高温熱交換器9を経由して高温再生器1から供給される中間吸収液が散布されるようになっている。
【0011】
したがって、この第1の実施形態の吸収冷凍機においては、冷却水管12に冷却水を流し、排熱供給管11を介して低温再生器2内の排熱伝熱管11Aに約80℃のエンジン冷却水を循環供給すると共に、ガスバーナなどの燃焼加熱手段1Aに点火して高温再生器1で吸収液を加熱すると、高温再生器1においては吸収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して吸収液の濃度が高くなった中間吸収液とが得られる。
【0012】
高温再生器1で生成された高温、例えば90℃の冷媒蒸気は、冷媒管14を介して低温再生器2に入り、排熱供給管11を介して排熱伝熱管11Aに循環供給されるエンジン冷却水と共同して、高温再生器1で生成され吸収液管15により高温熱交換器9を経由して低温再生器2に入った中間吸収液を各伝熱管の管壁を介して加熱し、放熱凝縮して凝縮器3に入る。
【0013】
低温再生器2で排熱伝熱管11Aの内側を流れるエンジン冷却水と冷媒伝熱管14Aの内側を流れる冷媒蒸気により加熱されて中間吸収液から蒸発分離した冷媒はエリミネータ20を通って凝縮器3へ入り、冷却水管12内を流れる水と熱交換して凝縮液化し、14Aで凝縮して供給される冷媒と一緒になって冷媒管14を通って蒸発器4に入る。
【0014】
蒸発器4に入って冷媒液溜まりに溜まった冷媒液は、冷水管13に接続された冷水伝熱管13Aの上に冷媒ポンプP3によって散布され、冷水管13を介して供給される水と熱交換して蒸発し、冷水伝熱管13Aの内部を流れる水を冷却する。
【0015】
蒸発器4で蒸発した冷媒は、蒸発器4に併設された吸収器5に入り、低温再生器2で加熱されて冷媒を蒸発分離し、吸収液の濃度が一層高まった吸収液、すなわち吸収液管15により低温熱交換器8を経由して供給され、上方から散布される濃吸収液に吸収される。この吸収液による冷媒の吸収作用により、蒸発器4における冷媒の蒸発作用が促進される。
【0016】
吸収器5で冷媒を吸収して濃度の薄くなった吸収液、すなわち稀吸収液は吸収液ポンプP1の運転により、低温熱交換器8・高温熱交換器9を経由して高温再生器1へ吸収液管15から送られる。
【0017】
上記のように吸収冷凍機の運転が行われると、蒸発器4の内部に配管された冷水伝熱管13Aにおいて冷媒の気化熱によって冷却された冷水が、冷水管13を介して図示しない冷却負荷に循環供給できるので、冷房運転などが行える。
【0018】
そして、本発明の第1の実施形態の吸収冷凍機においては、排熱供給管11を介して供給されるエンジン冷却水が内側を流れる排熱伝熱管11Aと、冷媒管14を介して供給される冷媒蒸気が内側を流れる冷媒伝熱管14Aとを、低温再生器2の内部に上下に配置する一体構造としたので、機内配管が簡略化され、且つ、装置のコンパクト化も図れ、これにより製造コストの削減が可能となった。
【0019】
また、排熱伝熱管11Aと、冷媒伝熱管14Aとを同じ胴内に配置する構成であるが、同じ吸収液を加熱する構成となっているので、飽和温度より温度が低い吸収液が散布されても冷媒ロスは発生しない。
【0020】
しかも、上側に配置した排熱伝熱管11Aに相対的に温度の低いエンジン冷却水を流し、下に配置した冷媒伝熱管14Aに相対的に温度の高い冷媒を流し、排熱伝熱管11Aに吸収液を散布する構成としたので、温度の低いエンジン冷却水が冷媒を多く含んでいる吸収液を加熱し、冷媒が少なくなった吸収液をより高温の冷媒蒸気によって加熱するので、吸収液に含まれる冷媒の蒸発分離は効果的になされる。
【0021】
〔第2の実施形態〕
本発明の第2の実施形態を図3に基づいて説明する。理解を容易にするため、この図3においても前記図面で説明した部分と同様の機能を有する部分には、同一の符号を付した。
【0022】
この第2の実施形態の吸収冷凍機においては、約88℃のエンジン冷却水が供給される排熱伝熱管11Aが凝縮器3、すなわちエリミネータ20の側に、約90℃の冷媒蒸気が供給される冷媒伝熱管14Aがその反対側に位置するように横並びに配設されており、その他の構成は前記第1の実施形態の吸収冷凍機と同じである。
【0023】
上記構成の吸収冷凍機においても、低温再生器2の内部に排熱伝熱管11Aと冷媒伝熱管14Aとを配置した一体構造となっているので、機内配管が簡略化され、且つ、装置のコンパクト化と製造コストの削減が図れる。
【0024】
なお、この第2の実施形態の吸収冷凍機においては、吸収液の濃度差を利用したエンジン冷却水による冷媒の蒸発分離作用を促進する作用効果は期待できないが、機器配置上でメリットがある場合に有効であり、排熱伝熱管11Aと冷媒伝熱管14Aとをこのように横並びに配置する場合は、排熱伝熱管11Aを凝縮器3の側に配置する方が、冷媒蒸気流による圧損を受け難く有利である。
【0025】
なお、本発明は上記実施形態に限定されるものではないので、特許請求の範囲に記載の趣旨から逸脱しない範囲で各種の変形実施が可能である。
【0026】
例えば、図4に示したように、吸収器5で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液が、高温再生器1と低温再生器2に分岐して供給され、高温再生器1で冷媒を蒸発分離して濃縮された吸収液と、低温再生器2で冷媒を蒸発分離して濃縮された吸収液とが吸収器5に戻されるように吸収液管15を配管しても良い。
【0027】
また、図5に示したように、吸収器5で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液が、先ず低温再生器2に供給され、低温再生器2で冷媒を蒸発分離して濃縮された吸収液が高温再生器1に供給され、高温再生器1でさらに冷媒を蒸発分離して濃縮された吸収液が高温再生器1から吸収器5に戻されるように吸収液管15を配管しても良い。
【0028】
そして、図4、図5に示したように、吸収器5で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液の一部または全部を低温再生器2に供給するように吸収液管15を配管した吸収冷凍機においては、高温再生器1で冷媒を蒸発分離して濃縮された中間吸収液を低温再生器2に供給する図1に示した第1の実施形態の吸収冷凍機よりも、排熱供給管11を介して温度が比較的低いエンジン冷却水などを排熱伝熱管11Aに供給して行う、低温再生器2における冷媒の蒸発分離操作が一層効果的に行えると云った利点がある(排熱伝熱管11Aと冷媒伝熱管14Aとは、図3に示した配置関係であっても良い)。
【0029】
また、高温再生器1で吸収液を加熱して冷媒を蒸発分離する熱源としては、150〜190℃程度の高温水、400〜800kPa程度の飽和蒸気などであっても良いし、排熱供給管11を介して低温再生器2に供給する熱流体としては、85〜95℃程度の低温水、100〜130℃程度の高温水、100〜150kPa程度の飽和蒸気であっても良い。
【0030】
【発明の効果】
以上説明したように本発明によれば、コージェネレーション装置などの他の装置から供給される排熱を搬送する熱流体が内側を流れる排熱伝熱管と、高温再生器で生成した冷媒蒸気が内側を流れる冷媒伝熱管とを、低温再生器の内部に並設する一体構造としたので、機内配管が簡略化され、且つ、装置のコンパクト化も図れ、これにより製造コストの削減が可能となった。
【0031】
また、排熱伝熱管と冷媒伝熱管とを同じ胴内に配置する構成であるが、同じ吸収液を加熱する構成となっているので、飽和温度より温度が低い吸収液が散布されても冷媒ロスは発生しない。
【0032】
さらに、請求項2及び請求項3の構成によって、吸収器で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液の一部または全部を低温再生器に供給するように吸収液管を配管した吸収冷凍機においては、高温再生器で冷媒を蒸発分離して濃縮された中間吸収液を低温再生器に供給する吸収冷凍機よりも、排熱供給管を介して温度が比較的低いエンジン冷却水などを排熱伝熱管に供給して行うところの、低温再生器における冷媒の蒸発分離操作が一層効果的に行えると云った利点がある。
【図面の簡単な説明】
【図1】第1の実施形態を示す説明図である。
【図2】第1の実施形態の要部を示す説明図である。
【図3】第2の実施形態の要部を示す説明図である。
【図4】実施可能な他の例を示す説明図である。
【図5】実施可能なさらに他の例を示す説明図である。
【図6】従来技術を示す説明図である。
【図7】他の従来技術を示す説明図である。
【符号の説明】
1 高温再生器
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 排熱再生器
7 排熱凝縮器
8 低温熱交換器
9 高温熱交換器
11 排熱供給管
11A 排熱伝熱管
12 冷却水管
13 冷水管
14 冷媒管
14A 冷媒伝熱管
15 吸収液管
16 冷水管
20 エリミネータ
P1 吸収液ポンプ
P2 冷媒ポンプ
P3 吸収液ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator that uses a waste heat supplied from a cogeneration apparatus or the like to improve a coefficient of performance.
[0002]
[Prior art]
As this type of absorption refrigerator, for example, a high-temperature regenerator 1 that evaporates and separates refrigerant by heating the absorption liquid by a combustion heating means 1A such as a gas burner, and heats the absorption liquid using refrigerant vapor supplied from the high-temperature regenerator 1 as a heat source. The low-temperature regenerator 2 that evaporates and separates the refrigerant, the condenser 3 that condenses the refrigerant vapor supplied from the low-temperature regenerator 2, the evaporator 4 that evaporates the refrigerant liquid to obtain cold water, and the evaporator 4 evaporates. An absorber 5 that absorbs the absorbed refrigerant into the absorbing liquid, and an exhaust heat regenerator 5 that evaporates and separates the refrigerant by heating the absorbing liquid by using hot wastewater supplied from a cogeneration device (not shown) through the exhaust heat supply pipe 11 as a heat source. An absorption refrigerating machine having the configuration shown in FIG. 6, which includes an exhaust heat condenser 7 that condenses refrigerant vapor supplied from the exhaust heat regenerator 6, an absorption liquid pump P 1, P 2, a refrigerant pump P 3, etc., is well known. so That.
[0003]
Further, as shown in FIG. 7, an absorption refrigerator in which the low-temperature regenerator 2 and the exhaust heat regenerator 6 are arranged side by side so as to share the condenser 3 is also well known.
[0004]
[Problems to be solved by the invention]
The absorption refrigerator having the configuration shown in FIG. 6 has problems such as requiring a large installation space and complicated piping. In the absorption refrigerator having the configuration shown in FIG. There are problems such as refrigerant loss occurring because different absorbents are held in the same cylinder, and in-machine piping becomes complicated, and the coefficient of performance is improved by using exhaust heat supplied from other equipment. However, it is necessary to provide an absorption refrigerator that does not have a complicated configuration.
[0005]
[Means for Solving the Problems]
The present invention is a specific means for solving the above-described problems of the prior art, by heating a rare absorbent that absorbs a large amount of refrigerant, evaporating and separating the refrigerant, and obtaining a refrigerant vapor and an intermediate absorbent from the rare absorbent. The regenerator and the intermediate absorbing liquid generated and supplied by the high temperature regenerator are heated with the refrigerant vapor generated by the high temperature regenerator to further evaporate and separate the refrigerant, thereby obtaining the refrigerant vapor and the concentrated absorbing liquid from the intermediate absorbing liquid. A low-temperature regenerator and a refrigerant liquid obtained by heating and condensing the intermediate absorption liquid in the low-temperature regenerator are supplied, and the refrigerant vapor generated in the low-temperature regenerator and supplied through the eliminator is cooled to obtain a refrigerant liquid A condenser and an evaporator in which the refrigerant liquid supplied from the condenser and accumulated in the refrigerant liquid reservoir is dispersed on the heat transfer pipe by the refrigerant pump, and heat is taken from the fluid flowing in the heat transfer pipe to evaporate the refrigerant; Produced and supplied by this evaporator The refrigerant vapor is separated from the low-temperature regenerator and absorbed into the concentrated absorbent supplied to make a rare absorbent, and the absorber is supplied to the high-temperature regenerator. In the absorption chiller in which the exhaust heat transfer tube flowing inside is provided as an integral tube group inside the low temperature regenerator and the intermediate absorption liquid is sprayed , the exhaust heat transfer tube and the high temperature regeneration are provided inside the low temperature regenerator. A refrigerant heat transfer tube in which refrigerant vapor supplied from the vessel flows inward is disposed side by side so that the exhaust heat transfer tube is disposed on the eliminator side and the refrigerant heat transfer tube is disposed on the opposite side . An absorption refrigerator with a configuration;
[0006]
The high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant to evaporate and separate the refrigerant, obtains the refrigerant vapor and the intermediate absorbent from the rare absorbent, and heats the absorbent with the refrigerant vapor generated by the high-temperature regenerator. The low-temperature regenerator for evaporating and separating the refrigerant and the refrigerant liquid condensed by heating the absorption liquid with this low-temperature regenerator are supplied, and the refrigerant vapor generated by the low-temperature regenerator and supplied through the eliminator is cooled. The condenser that obtains the refrigerant liquid and the refrigerant liquid that has been supplied from the condenser and accumulated in the refrigerant liquid reservoir are scattered on the heat transfer pipe by the refrigerant pump, and the refrigerant evaporates by taking heat from the fluid flowing in the heat transfer pipe. And an absorber that absorbs the refrigerant vapor generated and supplied by the evaporator from the low-temperature regenerator and absorbs the refrigerant vapor into the concentrated absorbent supplied to form a rare absorbent. Waste heat heat fluid supplied from the inside flows In the absorption chiller in which the heat transfer tube is provided as an integral tube group inside the low temperature regenerator and the rare absorption liquid is sprayed, the low temperature regenerator is supplied from the exhaust heat transfer tube and the high temperature regenerator. refrigerant vapor and a refrigerant heat transfer tube flows inside that, the refrigerant heat exchanger tube is disposed side by side so as to be disposed in the waste heat heat exchanger tube is disposed in the eliminator side opposite side, the refrigerant vapor in the absorber A rare absorption liquid having a reduced absorption liquid concentration by being absorbed and supplied to the high temperature regenerator and the low temperature regenerator, the absorption liquid concentrated by evaporating and separating the refrigerant in the high temperature regenerator, An absorption refrigerator having a second configuration in which an absorption liquid pipe is piped so that the absorption liquid concentrated by evaporating and separating the refrigerant in a low-temperature regenerator is returned to the absorber;
[0007]
The high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant to evaporate and separate the refrigerant, obtains the refrigerant vapor and the intermediate absorbent from the rare absorbent, and heats the absorbent with the refrigerant vapor generated by the high-temperature regenerator. The low-temperature regenerator that evaporates and separates the refrigerant and the intermediate absorption liquid that is generated and supplied by the high-temperature regenerator is heated with the refrigerant vapor generated by the high-temperature regenerator. The refrigerant is further separated by evaporating to obtain refrigerant vapor and concentrated absorbent from the intermediate absorption liquid, and the refrigerant liquid condensed by heating the intermediate absorption liquid in the low temperature regenerator is supplied, and the low temperature regenerator The condenser that cools the refrigerant vapor generated and supplied through the eliminator to obtain the refrigerant liquid, and the refrigerant liquid that is supplied from the condenser and accumulated in the refrigerant liquid reservoir is scattered on the heat transfer tube by the refrigerant pump. Heat from the fluid flowing in the heat transfer tube An evaporator that evaporates the refrigerant, and an absorber that absorbs the refrigerant vapor generated and supplied by the evaporator into the absorbing liquid supplied from the high-temperature regenerator to form a rare absorbing liquid. In an absorption chiller in which a waste heat transfer pipe in which a waste heat heat fluid flows inside is provided as an integral tube group inside the low temperature regenerator and sprays a rare absorbent, the exhaust heat is disposed inside the low temperature regenerator. A heat transfer tube and a refrigerant heat transfer tube through which refrigerant vapor supplied from the high-temperature regenerator flows are arranged side by side so that the exhaust heat transfer tube is disposed on the eliminator side and the refrigerant heat transfer tube is disposed on the opposite side. A rare absorbing liquid which is installed in the absorber and has absorbed refrigerant vapor in the absorber to reduce the concentration of the absorbing liquid is first supplied to the low temperature regenerator, and is concentrated by evaporating and separating the refrigerant in the low temperature regenerator. Is supplied to the high temperature regenerator and the high temperature A third configuration of the absorption refrigerator of the absorption liquid which is concentrated further refrigerant raw instrument evaporated off to has piping absorption liquid pipe so returned to the absorber from the high temperature generator,
By providing the above, the above-described problems of the prior art are solved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. In order to facilitate understanding, in these drawings, parts having the same functions as those described in FIGS. 6 and 7 are denoted by the same reference numerals.
[0009]
The low-temperature regenerator 2 of the absorption refrigerator according to the present invention includes, for example, an exhaust heat supply pipe 11 together with a refrigerant heat transfer pipe 14A generated by the high-temperature regenerator 1 and supplied through the refrigerant pipe 14 along with the refrigerant heat transfer pipe 14A. An exhaust heat transfer pipe 11A in which engine cooling water heated to about 88 ° C., which is circulated and supplied by cooling an engine generator of a cogeneration apparatus (not shown), flows through the inside, and is piped from the high-temperature regenerator 1 to an absorption liquid pipe. The intermediate absorption liquid supplied through 15 and sprayed from above is heated to evaporate and separate the refrigerant, thereby concentrating the absorption liquid.
[0010]
In the absorption refrigerator of the first embodiment, the exhaust heat transfer tube 11A and the refrigerant heat transfer tube 14A piped inside the low temperature regenerator 2 are composed of the exhaust heat transfer tube 11A as shown in FIG. It arrange | positions so that it may be located on the heat exchanger tube 14A, and the intermediate | middle absorption liquid supplied from the high temperature regenerator 1 via the high temperature heat exchanger 9 is spread | dispersed on the waste heat exchanger tube 11A. Yes.
[0011]
Therefore, in the absorption refrigerator of the first embodiment, the cooling water is allowed to flow through the cooling water pipe 12, and the engine heat of about 80 ° C. is supplied to the exhaust heat transfer pipe 11A in the low temperature regenerator 2 via the exhaust heat supply pipe 11. When water is circulated and the combustion heating means 1A such as a gas burner is ignited and the high-temperature regenerator 1 heats the absorption liquid, the high-temperature regenerator 1 separates the refrigerant vapor evaporated from the absorption liquid and the refrigerant vapor. Thus, an intermediate absorption liquid having a high concentration of the absorption liquid is obtained.
[0012]
The high temperature, for example, 90 ° C. refrigerant vapor generated in the high temperature regenerator 1 enters the low temperature regenerator 2 through the refrigerant pipe 14 and is circulated and supplied to the exhaust heat transfer pipe 11A through the exhaust heat supply pipe 11. In cooperation with the cooling water, the intermediate absorption liquid generated in the high-temperature regenerator 1 and entering the low-temperature regenerator 2 via the high-temperature heat exchanger 9 by the absorption liquid pipe 15 is heated through the wall of each heat transfer pipe. The heat is condensed and enters the condenser 3.
[0013]
In the low-temperature regenerator 2, the engine coolant that flows inside the exhaust heat transfer pipe 11 </ b> A and the refrigerant that is heated and evaporated and separated from the intermediate absorption liquid by the refrigerant vapor flowing inside the refrigerant heat transfer pipe 14 </ b> A passes through the eliminator 20 to the condenser 3. It enters into the evaporator 4 through the refrigerant pipe 14 together with the refrigerant supplied by condensing and condensing with the water flowing through the cooling water pipe 12 and condensed in 14A.
[0014]
The refrigerant liquid that has entered the evaporator 4 and accumulated in the refrigerant liquid pool is sprayed by the refrigerant pump P3 on the cold water heat transfer pipe 13A connected to the cold water pipe 13, and exchanges heat with water supplied through the cold water pipe 13. Then, it evaporates and cools the water flowing inside the cold water heat transfer tube 13A.
[0015]
The refrigerant evaporated in the evaporator 4 enters the absorber 5 attached to the evaporator 4 and is heated in the low-temperature regenerator 2 to evaporate and separate the refrigerant. It is supplied via the pipe 15 via the low-temperature heat exchanger 8 and is absorbed by the concentrated absorbent dispersed from above. The refrigerant evaporating action in the evaporator 4 is promoted by the refrigerant absorbing action of the absorbing liquid.
[0016]
Absorbing liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 5, that is, the rare absorbing liquid, is transferred to the high temperature regenerator 1 via the low temperature heat exchanger 8 and the high temperature heat exchanger 9 by the operation of the absorbing liquid pump P 1. It is sent from the absorption liquid tube 15.
[0017]
When the absorption chiller is operated as described above, the chilled water cooled by the heat of vaporization of the refrigerant in the chilled water heat transfer pipe 13A piped inside the evaporator 4 becomes a cooling load (not shown) via the chilled water pipe 13. Since it can be circulated, it can be used for cooling operation.
[0018]
And in the absorption refrigerator of the first embodiment of the present invention, the engine cooling water supplied through the exhaust heat supply pipe 11 is supplied through the exhaust heat transfer pipe 11A flowing inside and the refrigerant pipe 14. The refrigerant heat transfer tube 14A in which the refrigerant vapor flows inside is integrated with the inside of the low-temperature regenerator 2 so that the piping in the machine is simplified and the apparatus can be made compact. Cost reduction has become possible.
[0019]
Further, the exhaust heat transfer tube 11A and the refrigerant heat transfer tube 14A are arranged in the same cylinder, but the same absorption liquid is heated, so that the absorption liquid having a temperature lower than the saturation temperature is dispersed. However, no refrigerant loss occurs.
[0020]
In addition, a relatively low temperature engine coolant flows through the exhaust heat transfer tube 11A disposed on the upper side, a relatively high temperature refrigerant flows through the refrigerant heat transfer tube 14A disposed below, and the exhaust heat transfer tube 11A absorbs the coolant. Since the liquid is sprayed, the low-temperature engine coolant heats the absorption liquid that contains a large amount of refrigerant, and the low-refrigerant absorption liquid is heated by the higher-temperature refrigerant vapor. Evaporation and separation of the refrigerant is effectively performed.
[0021]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. In order to facilitate understanding, in FIG. 3 as well, parts having the same functions as those explained in the drawings are given the same reference numerals.
[0022]
In the absorption refrigerator of the second embodiment, the exhaust heat transfer tube 11A to which engine cooling water of about 88 ° C. is supplied is supplied with refrigerant vapor of about 90 ° C. to the condenser 3, that is, the eliminator 20 side. The refrigerant heat transfer tubes 14A are arranged side by side so as to be positioned on the opposite side, and the other configurations are the same as those of the absorption refrigerator of the first embodiment.
[0023]
Also in the absorption refrigerator having the above configuration, the exhaust heat transfer tube 11A and the refrigerant heat transfer tube 14A are arranged in the low temperature regenerator 2 so that the in-machine piping is simplified and the apparatus is compact. And manufacturing costs can be reduced.
[0024]
In the absorption refrigerator according to the second embodiment, the effect of promoting the evaporative separation of the refrigerant by the engine cooling water using the concentration difference of the absorbing liquid cannot be expected, but there is a merit in equipment arrangement. In the case where the exhaust heat transfer tube 11A and the refrigerant heat transfer tube 14A are arranged side by side in this manner, the exhaust heat transfer tube 11A is arranged on the condenser 3 side so that the pressure loss due to the refrigerant vapor flow is reduced. It is hard to receive and is advantageous.
[0025]
In addition, since this invention is not limited to the said embodiment, various deformation | transformation implementation is possible in the range which does not deviate from the meaning as described in a claim.
[0026]
For example, as shown in FIG. 4, a rare absorbing liquid whose absorption liquid concentration is reduced by absorbing refrigerant vapor in the absorber 5 is branched and supplied to the high temperature regenerator 1 and the low temperature regenerator 2, and the high temperature regenerator Even if the absorption liquid pipe 15 is piped so that the absorption liquid concentrated by evaporating and separating the refrigerant in 1 and the absorption liquid concentrated by evaporating and separating the refrigerant in the low-temperature regenerator 2 are returned to the absorber 5. good.
[0027]
In addition, as shown in FIG. 5, the rare absorbing liquid whose absorption liquid concentration is reduced by absorbing the refrigerant vapor by the absorber 5 is first supplied to the low temperature regenerator 2, and the refrigerant is evaporated and separated by the low temperature regenerator 2. The concentrated absorption liquid is supplied to the high-temperature regenerator 1, and the absorption liquid pipe 15 is arranged so that the high-pressure regenerator 1 evaporates and separates the refrigerant and returns the concentrated absorption liquid to the absorber 5 from the high-temperature regenerator 1. May be piped.
[0028]
As shown in FIGS. 4 and 5, the absorption liquid pipe is used to supply a part or all of the rare absorbent whose absorption liquid concentration is reduced by absorbing the refrigerant vapor in the absorber 5 to the low temperature regenerator 2. In the absorption refrigerator having the piping 15, the intermediate absorption liquid concentrated by evaporation and separation of the refrigerant in the high temperature regenerator 1 is supplied to the low temperature regenerator 2 from the absorption refrigerator of the first embodiment shown in FIG. In addition, the refrigerant evaporative separation operation in the low-temperature regenerator 2 performed by supplying engine cooling water or the like having a relatively low temperature to the exhaust heat transfer pipe 11A via the exhaust heat supply pipe 11 can be performed more effectively. There is an advantage (the exhaust heat transfer tube 11A and the refrigerant heat transfer tube 14A may have the arrangement relationship shown in FIG. 3).
[0029]
Moreover, as a heat source for heating and absorbing the absorption liquid in the high-temperature regenerator 1, high-temperature water of about 150 to 190 ° C., saturated steam of about 400 to 800 kPa, or the like, or an exhaust heat supply pipe The hot fluid supplied to the low-temperature regenerator 2 via 11 may be low-temperature water of about 85 to 95 ° C., high-temperature water of about 100 to 130 ° C., and saturated steam of about 100 to 150 kPa.
[0030]
【The invention's effect】
As described above, according to the present invention, the exhaust heat transfer tube in which the thermal fluid that transports the exhaust heat supplied from another device such as a cogeneration device flows inside, and the refrigerant vapor generated by the high-temperature regenerator is inside. Since the refrigerant heat transfer tubes that flow through are integrated into the low-temperature regenerator, the piping inside the machine is simplified and the equipment can be made more compact, which makes it possible to reduce manufacturing costs. .
[0031]
Moreover, although it is the structure which arrange | positions a waste heat transfer tube and a refrigerant | coolant heat exchanger tube in the same trunk | drum, since it becomes the structure which heats the same absorption liquid, even if absorption liquid whose temperature is lower than saturation temperature is sprayed, it is a refrigerant | coolant. There is no loss.
[0032]
Further, according to the configuration of claim 2 and claim 3, the absorption liquid pipe is piped so as to supply a part or all of the rare absorbent whose absorption liquid concentration is reduced by absorbing the refrigerant vapor with the absorber to the low temperature regenerator. In the absorption refrigeration machine, the engine cooling, which has a relatively low temperature through the exhaust heat supply pipe, than the absorption chiller that supplies the intermediate absorption liquid concentrated by evaporating and separating the refrigerant in the high temperature regenerator to the low temperature regenerator. There is an advantage that the operation of evaporating and separating the refrigerant in the low-temperature regenerator can be more effectively performed by supplying water or the like to the exhaust heat transfer tube.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment.
FIG. 2 is an explanatory diagram showing a main part of the first embodiment.
FIG. 3 is an explanatory diagram showing a main part of a second embodiment.
FIG. 4 is an explanatory diagram showing another example that can be implemented;
FIG. 5 is an explanatory diagram showing still another example that can be implemented;
FIG. 6 is an explanatory diagram showing a conventional technique.
FIG. 7 is an explanatory diagram showing another conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Exhaust heat regenerator 7 Exhaust heat condenser 8 Low temperature heat exchanger 9 High temperature heat exchanger 11 Exhaust heat supply pipe 11A Exhaust heat transfer pipe 12 Cooling water pipe 13 Cold water pipe 14 Refrigerant pipe 14A Refrigerant heat transfer pipe 15 Absorption liquid pipe 16 Cold water pipe 20 Eliminator P1 Absorption liquid pump P2 Refrigerant pump P3 Absorption liquid pump

Claims (3)

冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、この高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成されエリミネータを通って供給される冷媒蒸気を冷却して冷媒液を得る凝縮器と、この凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が冷媒ポンプにより伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にし、高温再生器に供給する吸収器とを備え、外部から供給される排熱熱流体が内側を流れる排熱伝熱管を低温再生器の内部に一体の管群として設け、中間吸収液を散布させる吸収冷凍機において、前記低温再生器の内部には、前記排熱伝熱管と前記高温再生器から供給される冷媒蒸気が内側に流れる冷媒伝熱管とが、前記排熱伝熱管が前記エリミネータ側に配置されその反対側に前記冷媒伝熱管が配置されるように横並びに設置されたことを特徴とする吸収冷凍機。A high-temperature regenerator that heats a rare absorbent that absorbs a large amount of refrigerant to evaporate and separate the refrigerant to obtain refrigerant vapor and an intermediate absorbent from the rare absorbent, and an intermediate absorbent that is generated and supplied by the high-temperature regenerator Is heated with the refrigerant vapor generated in the high-temperature regenerator to further evaporate and separate the refrigerant, and the low-temperature regenerator obtains the refrigerant vapor and the concentrated absorption liquid from the intermediate absorption liquid, and the intermediate absorption liquid is heated and condensed in this low-temperature regenerator And a condenser that cools the refrigerant vapor that is generated by the low-temperature regenerator and that is supplied through the eliminator and obtains the refrigerant liquid, and the refrigerant that is supplied from the condenser and accumulates in the refrigerant liquid reservoir The liquid is sprayed onto the heat transfer tube by the refrigerant pump, the evaporator takes heat from the fluid flowing in the heat transfer tube and the refrigerant evaporates, and the refrigerant vapor generated and supplied by the evaporator is supplied from the low temperature regenerator to the refrigerant Concentrated absorption supplied by separating steam The absorber is supplied as a rare absorbent and supplied to the high-temperature regenerator, and the exhaust heat transfer tubes through which the exhaust heat fluid supplied from outside flows inside are integrated into the low-temperature regenerator as a group of tubes. In the absorption refrigerator that is provided and sprays an intermediate absorption liquid , the exhaust heat transfer tube and the coolant heat transfer tube through which the refrigerant vapor supplied from the high temperature regenerator flows inside are disposed in the low temperature regenerator. An absorption refrigerator , wherein the heat transfer tubes are arranged side by side so that the heat transfer tubes are arranged on the eliminator side and the refrigerant heat transfer tubes are arranged on the opposite side . 冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、高温再生器で生成した冷媒蒸気で吸収液を加熱して冷媒を蒸発分離する低温再生器と、この低温再生器で吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成されエリミネータを通って供給される冷媒蒸気を冷却して冷媒液を得る凝縮器とこの凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が冷媒ポンプにより伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を低温再生器から冷媒蒸気を分離して供給される濃吸収液に吸収させて稀吸収液にする吸収器とを備え、外部から供給される排熱熱流体が内側を流れる排熱伝熱管を低温再生器の内部に一体の管群として設け、稀吸収液を散布させる吸収冷凍機において、前記低温再生器の内部には、前記排熱伝熱管と前記高温再生器から供給される冷媒蒸気が内側に流れる冷媒伝熱管とが、前記排熱伝熱管が前記エリミネータ側に配置されその反対側に前記冷媒伝熱管が配置されるように横並びに設置され前記吸収器で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液が、前記高温再生器と前記低温再生器に分岐して供給され、前記高温再生器で冷媒を蒸発分離して濃縮された吸収液と、前記低温再生器で冷媒を蒸発分離して濃縮された吸収液とが、前記吸収器に戻されるように吸収液管を配管したことを特徴とする吸収冷凍機。 The high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant to evaporate and separate the refrigerant, obtains the refrigerant vapor and the intermediate absorbent from the rare absorbent, and heats the absorbent with the refrigerant vapor generated by the high-temperature regenerator. The low-temperature regenerator for evaporating and separating the refrigerant and the refrigerant liquid condensed by heating the absorption liquid with this low-temperature regenerator are supplied, and the refrigerant vapor generated by the low-temperature regenerator and supplied through the eliminator is cooled. The condenser that obtains the refrigerant liquid and the refrigerant liquid that has been supplied from the condenser and accumulated in the refrigerant liquid reservoir are scattered on the heat transfer pipe by the refrigerant pump, and the refrigerant evaporates by taking heat from the fluid flowing in the heat transfer pipe. And an absorber that absorbs the refrigerant vapor generated and supplied by the evaporator from the low-temperature regenerator and absorbs the refrigerant vapor into the concentrated absorbent supplied to form a rare absorbent. Waste heat heat fluid supplied from the inside flows In the absorption chiller in which the heat transfer tube is provided as an integral tube group inside the low temperature regenerator and the rare absorption liquid is sprayed, the low temperature regenerator is supplied from the exhaust heat transfer tube and the high temperature regenerator. refrigerant vapor and a refrigerant heat transfer tube flows inside that, the refrigerant heat exchanger tube is disposed side by side so as to be disposed in the waste heat heat exchanger tube is disposed in the eliminator side opposite side, the refrigerant vapor in the absorber A rare absorption liquid having a reduced absorption liquid concentration by being absorbed and supplied to the high temperature regenerator and the low temperature regenerator, the absorption liquid concentrated by evaporating and separating the refrigerant in the high temperature regenerator, An absorption refrigerator, wherein an absorption liquid pipe is piped so that an absorption liquid concentrated by evaporating and separating a refrigerant in a low-temperature regenerator is returned to the absorber. 冷媒を多量に吸収した稀吸収液を加熱して冷媒を蒸発分離し、稀吸収液から冷媒蒸気と中間吸収液を得る高温再生器と、高温再生器で生成した冷媒蒸気で吸収液を加熱して冷媒を蒸発分離する低温再生器と、この低温再生器で吸収液を加熱して凝縮しこの高温再生器で生成して供給される中間吸収液を高温再生器で生成した冷媒蒸気で加熱してさらに冷媒を蒸発分離し、中間吸収液から冷媒蒸気と濃吸収液を得る低温再生器と、この低温再生器で中間吸収液を加熱して凝縮した冷媒液が供給されると共に、低温再生器で生成されエリミネータを通って供給される冷媒蒸気を冷却して冷媒液を得る凝縮器とこの凝縮器から供給されて冷媒液溜まりに溜まった冷媒液が冷媒ポンプにより伝熱管の上に散布され、伝熱管内を流れる流体から熱を奪って冷媒が蒸発する蒸発器と、この蒸発器で生成して供給される冷媒蒸気を高温再生器から供給される吸収液に吸収させて稀吸収液にする吸収器とを備え、外部から供給される排熱熱流体が内側を流れる排熱伝熱管を低温再生器の内部に一体の管群として設け、稀吸収液を散布させる吸収冷凍機において、前記低温再生器の内部には、前記排熱伝熱管と前記高温再生器から供給される冷媒蒸気が内側に流れる冷媒伝熱管とが、前記排熱伝熱管が前記エリミネータ側に配置されその反対側に前記冷媒伝熱管が配置されるように横並びに設置され前記吸収器で冷媒蒸気を吸収して吸収液濃度が低下した稀吸収液が、先ず前記低温再生器に供給され、前記低温再生器で冷媒を蒸発分離して濃縮された吸収液が前記高温再生器に供給され、前記高温再生器でさら に冷媒を蒸発分離して濃縮された吸収液が前記高温再生器から前記吸収器に戻されるように吸収液管を配管したことを特徴とする吸収冷凍機。 The high-temperature regenerator that heats the rare absorbent that has absorbed a large amount of refrigerant to evaporate and separate the refrigerant, obtains the refrigerant vapor and the intermediate absorbent from the rare absorbent, and heats the absorbent with the refrigerant vapor generated by the high-temperature regenerator. The low-temperature regenerator that evaporates and separates the refrigerant and the intermediate absorption liquid that is generated and supplied by the high-temperature regenerator is heated with the refrigerant vapor generated by the high-temperature regenerator. The refrigerant is further separated by evaporating to obtain refrigerant vapor and concentrated absorbent from the intermediate absorption liquid, and the refrigerant liquid condensed by heating the intermediate absorption liquid in the low temperature regenerator is supplied, and the low temperature regenerator The condenser that cools the refrigerant vapor generated and supplied through the eliminator and obtains the refrigerant liquid, and the refrigerant liquid supplied from the condenser and accumulated in the refrigerant liquid reservoir is dispersed on the heat transfer tube by the refrigerant pump. Heat from the fluid flowing in the heat transfer tube An evaporator that evaporates the refrigerant, and an absorber that absorbs the refrigerant vapor generated and supplied by the evaporator into the absorbing liquid supplied from the high-temperature regenerator to form a rare absorbing liquid. In an absorption chiller in which a waste heat transfer pipe in which a waste heat heat fluid flows inside is provided as an integral tube group inside the low temperature regenerator and sprays a rare absorbent, the exhaust heat is disposed inside the low temperature regenerator. A heat transfer tube and a refrigerant heat transfer tube through which refrigerant vapor supplied from the high-temperature regenerator flows are arranged side by side so that the exhaust heat transfer tube is disposed on the eliminator side and the refrigerant heat transfer tube is disposed on the opposite side. A rare absorbing liquid which is installed in the absorber and has absorbed refrigerant vapor in the absorber to reduce the concentration of the absorbing liquid is first supplied to the low temperature regenerator, and is concentrated by evaporating and separating the refrigerant in the low temperature regenerator. Is supplied to the high temperature regenerator and the high temperature Absorption refrigerating machine, characterized in that the absorbing liquid enriched refrigerant evaporation separated by a further has a pipe absorption liquid pipe so returned to the absorber from the high temperature generator in the raw device.
JP2000167496A 2000-06-05 2000-06-05 Absorption refrigerator Expired - Fee Related JP4079576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167496A JP4079576B2 (en) 2000-06-05 2000-06-05 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167496A JP4079576B2 (en) 2000-06-05 2000-06-05 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001349631A JP2001349631A (en) 2001-12-21
JP4079576B2 true JP4079576B2 (en) 2008-04-23

Family

ID=18670646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167496A Expired - Fee Related JP4079576B2 (en) 2000-06-05 2000-06-05 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4079576B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342379B1 (en) * 2012-02-03 2013-12-16 엘지전자 주식회사 Low temperature generator and absorption type chiller-heater including the same
KR101342378B1 (en) * 2012-02-03 2013-12-16 엘지전자 주식회사 Absorption type chiller-heater
KR20140073142A (en) * 2012-12-06 2014-06-16 엘지전자 주식회사 low temperature generator and a absoption system including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315855B2 (en) * 2004-04-14 2009-08-19 三洋電機株式会社 Absorption refrigerator
CN100453927C (en) * 2007-02-12 2009-01-21 庞启东 Exhaust gas heat exchanger used in ammonia water absorption refrigeration device using residual heat of exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342379B1 (en) * 2012-02-03 2013-12-16 엘지전자 주식회사 Low temperature generator and absorption type chiller-heater including the same
KR101342378B1 (en) * 2012-02-03 2013-12-16 엘지전자 주식회사 Absorption type chiller-heater
KR20140073142A (en) * 2012-12-06 2014-06-16 엘지전자 주식회사 low temperature generator and a absoption system including the same
KR102043195B1 (en) * 2012-12-06 2019-11-11 엘지전자 주식회사 low temperature generator and a absoption system including the same

Also Published As

Publication number Publication date
JP2001349631A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
US4337625A (en) Waste heat driven absorption refrigeration process and system
KR100445616B1 (en) Absorbed refrigerator
US5467614A (en) Dual-circuit, multiple-effect refrigeration system and method
JP4079576B2 (en) Absorption refrigerator
JP2004324977A (en) Absorption type refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP4266697B2 (en) Absorption refrigerator
JP2008020094A (en) Absorption type heat pump device
KR20040095692A (en) Single-and Double-Effect Absorption Refrigerator
JP3889655B2 (en) Absorption refrigerator
JP4260095B2 (en) Single double effect absorption refrigerator
JPS6122225B2 (en)
JP2004257704A (en) Absorption heat pump device
JPS5825234Y2 (en) Single effect absorption refrigerator
JP2007120811A (en) Absorption heat pump
KR0113790Y1 (en) Absorption refrigerating machine
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPS5829819Y2 (en) Absorption heat pump
JP4282225B2 (en) Absorption refrigerator
KR100261545B1 (en) Absorption type refrigerator
JP4201403B2 (en) Absorption refrigerator
JPH0350373Y2 (en)
JPS6122224B2 (en)
JP5168102B2 (en) Absorption refrigeration system
JP2003014326A (en) Absorption refrigeration machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees