JP4078975B2 - Method for producing 3,4-dihydroxybenzonitrile - Google Patents

Method for producing 3,4-dihydroxybenzonitrile Download PDF

Info

Publication number
JP4078975B2
JP4078975B2 JP2002378963A JP2002378963A JP4078975B2 JP 4078975 B2 JP4078975 B2 JP 4078975B2 JP 2002378963 A JP2002378963 A JP 2002378963A JP 2002378963 A JP2002378963 A JP 2002378963A JP 4078975 B2 JP4078975 B2 JP 4078975B2
Authority
JP
Japan
Prior art keywords
reaction
reaction solution
dihydroxybenzonitrile
oxygen
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002378963A
Other languages
Japanese (ja)
Other versions
JP2004210647A (en
Inventor
昌志 白井
晃司 斯波
慎一郎 貞池
敏男 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002378963A priority Critical patent/JP4078975B2/en
Publication of JP2004210647A publication Critical patent/JP2004210647A/en
Application granted granted Critical
Publication of JP4078975B2 publication Critical patent/JP4078975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機溶媒中、3,4−メチレンジオキシベンゾニトリルと五塩化リンを反応させた後、水又はアルコールを加えることで3,4−ジヒドロキシベンゾニトリルを製造する方法に関する。3,4−ジヒドロキシベンゾニトリルは、写真撮影剤など光学材料の原料として用いられる。(特許文献1参照)
【0002】
【従来の技術】
従来、3,4−メチレンジオキシベンゾニトリルから3,4−ジヒドロキシベンゾニトリルを製造する方法としては、例えば、非特許文献1に、N,N’−ジメチルイミダゾリジノン中、185℃の高温下にて、3,4−メチレンジオキシベンゾニトリルと、これに対して過剰量(2.5倍モル以上)のナトリウムビストリメチルシリルアミド又はリチウムジイソプロピルアミドを反応させて、収率95〜96%で3,4−ジヒドロキシベンゾニトリルを製造する方法が開示されている。しかしながら、この方法は、発火性が高いリチウムジイソプロピルアミド又はリチウムジイソプロピルアミドを多量に用いており、更に前記高温下で反応を行う点で、安全性に問題があり、工業的な製造法としては好ましくない。
【0003】
【非特許文献1】
J.Org.Chem.1997,62,p.4097
【特許文献1】
欧州特許第399847号明細書
【0004】
【発明が解決しようとする課題】
本発明は、即ち、上記問題点を解決し、高収率かつ簡便な3,4−ジヒドロキシベンゾニトリルの製法を提供するものである。
【0005】
【課題を解決するための手段】
本発明の課題は、下式(1)で示される3,4−メチレンジオキシベンゾニトリルと
【0006】
【化3】

Figure 0004078975
有機溶媒と五塩化リンを混合し、空気又は酸素の流通下、或は空気又は酸素を反応液中に吹き込みながら反応させた後、水又はアルコールを加えることを特徴とする下式(2)で示される3,4−ジヒドロキシベンゾニトリルの製法によって解決される。
【0007】
【化4】
Figure 0004078975
【0008】
【発明の実施の形態】
本発明は、例えば、3,4−メチレンジオキシベンゾニトリルと有機溶媒と五塩化リンを混合し、空気又は酸素の流通下、或は空気又は酸素を反応液中に吹き込みながら攪拌して反応させた後、水又はアルコールを加える方法によって行われる。なお、水又はアルコールを加える前に、反応液を濃縮しても良い。
【0009】
上記、空気又は酸素の流量は、3,4−メチレンジオキシベンゾニトリル1モルに対し、酸素換算で1時間当り好ましくは0.5〜50モル、更に好ましくは1〜10モルである。
【0010】
ここで用いられる酸素は市販のものを用いることが出来る。
空気は、例えばコンプレッサーなど用いて反応に使用する事ができる。
これらの気体は、特に乾燥を必要としないが、好ましくは塩化カルシウムなどで乾燥して用いるのが好ましい。
【0011】
本発明の反応において使用される有機溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、クメン、t-ブチルベンゼンなどの芳香族炭化水素類、クロロベンゼン、ブロモベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素類、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの脂肪族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、ジブロモエタンなどのハロゲン化脂肪族炭化水素類、蟻酸メチル、蟻酸エチル、蟻酸イソプロピル、蟻酸ブチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチルなどのカルボン酸エステル類、炭酸ジメチル、炭酸ジエチル類などの炭酸エステル類が挙げられるが、好ましくは芳香族炭化水素類、カルボン酸エステル類、炭酸エステル類、更に好ましくは芳香族炭化水素類が使用される。
芳香族炭化水素類としては、トルエンが好ましい。
【0012】
前記溶媒の使用量は、特に限定はされないが、3,4−メチレンジオキシベンゾニトリル1gに対して好ましくは1〜50ml、更に好ましくは3〜30mlである。また、これら溶媒は、単独又は二種以上を混合して使用しても良い。
【0013】
本発明において使用される五塩化リンの使用量は、3,4−メチレンジオキシベンゾニトリル1モルに対して、好ましくは2〜20モル、さらに好ましくは、2〜10モルである。
【0014】
本発明の反応における反応温度は、好ましくは0〜150℃、更に好ましくは5〜100℃である。
【0015】
本発明の反応は、通常、常圧下で行うが、必要ならば加圧あるいは減圧下で行っても良い。
【0016】
反応液への水又はアルコールの添加において使用される水又はアルコールの量は、五塩化リン1モルに対して、好ましくは3〜100モル、更に好ましくは3〜30モルである。
【0017】
ここで用いられるアルコールとしては、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、又はイソブチルアルコールなどの炭素原子数1〜4の脂肪族飽和アルコールが挙げられるが、好ましくはメタノール、エタノール、プロピルアルコール、イソプロピルアルコールである。
【0018】
反応液へ水又はアルコールを添加した後の反応液の温度は、好ましくは0〜100℃、更に好ましくは5〜70℃である。
【0019】
本反応は、加圧条件下で行う事も出来るが、常圧が好ましい。
【0020】
合成された3,4−ジヒドロキシベンゾニトリルは、例えば、反応後に析出した結晶を濾過、又は有機溶媒で抽出することで容易に取得でき、カラムクロマトグラフィー及び再結晶などの一般的な方法によって分離精製することができる。
【0021】
【実施例】
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。生成した3,4−ジヒドロキシベンゾニトリルの収率は、3,4−メチレンジオキシベンゾニトリルに対するモル換算で算出した。
【0022】
実施例1
攪拌装置、温度計およびガス導入管を備えた内容積25mlのフラスコに、3,4−メチレンジオキシベンゾニトリル1.47g(10mmol)を秤取り、トルエン14.7mlを加えた。ガス導入管より、酸素ガスを18.7ml/min(酸素:5当量/hr)の流速で反応液にバブリングさせ、攪拌しながら70℃まで昇温した。次いで、五塩化リン6.24g(30mmol)を添加し、同温度(70℃)で3時間反応させた。
反応終了後、反応液を25℃以下に冷却し、反応液を濃縮した。濃縮液を氷水20gに加え、50℃に昇温し、1時間反応を行った。
反応終了後、反応液をアセトニトリル均一溶液とし、高速液体クロマトグラフィー(絶対検量法)により定量した結果、3,4−ジヒドロキシベンゾニトリルの収率は84%であった。
【0023】
実施例2〜5
実施例1において、使用する五塩化リンの量、酸素流量及び反応時間を変更した以外は、実施例1と同様に反応を行った。その結果を表1に示す。
【0024】
【表1】
Figure 0004078975
※酸素および五塩化リンの当量は、3,4−メチレンジオキシベンゾニトリルに対する値
【0025】
実施例6
攪拌装置、温度計およびガス導入管を備えた内容積50mlのフラスコに、3,4−メチレンジオキシベンゾニトリル1.47g(10mmol)を秤取り、トルエン14.7mlを加えた。ガス導入管より、乾燥空気を35.5ml/min(酸素:2当量/hr、ここで酸素の導入量は、標準状態の空気中に21体積%の酸素が含まれているものとして算出した。)の流速で反応液にバブリングさせ、攪拌しながら70℃まで昇温した。次いで、五塩化リン6.24g(30mmol)を添加し、同温度で7時間反応させた。
反応終了後、反応液を25℃以下に冷却し、反応液を濃縮した。
次いで、濃縮液を氷水10gに添加した後、40℃に昇温し、1時間加水分解反応を行った。加水分解反応終了後、反応液にアセトニトリル約100mlを加え、均一溶液とし、高速液体クロマトグラフィー(絶対検量法)により定量した結果、3,4−ジヒドロキシベンゾニトリルの収率は82%であった。
【0026】
実施例7
攪拌装置、温度計およびガス導入管を備えた内容積25mlのフラスコに、3,4−メチレンジオキシベンゾニトリル1.47g(10mmol)を秤取り、トルエン14.7mlを加えた。ガス導入管より、酸素ガスを18.7ml/min(酸素:5当量/hr)の流速で反応液にバブリングさせ、攪拌しながら70℃まで昇温した。次いで、五塩化リン5.20g(25mmol)を添加し、同温度(70℃)で3時間反応させた。
反応終了後、反応液を25℃以下に冷却し、反応液を濃縮した。濃縮液にメタノール10mlを加え、50℃に昇温し、30分間反応を行った。
反応終了後、反応液をアセトニトリル均一溶液とし、高速液体クロマトグラフィー(絶対検量法)により定量した結果、3,4−ジヒドロキシベンゾニトリルの収率は98%であった。
【0027】
比較例1
攪拌装置、温度計およびガス導入管を備えた内容積50mlのフラスコに、3,4−メチレンジオキシベンゾニトリル1.47g(10mmol)を秤取り、トルエン14.7mlを加えた。ガス導入管より、アルゴンガスを7.1ml/minの流速で反応液にバブリングさせ、攪拌しながら70℃まで昇温した。次いで、五塩化リン6.24g(30mmol)を添加し、同温度で4時間反応させた。反応終了後、反応液を25℃以下に冷却し、反応液を濃縮した。次いで、アセトニトリル15mlを添加した後、氷水10gを加えた。40℃に昇温し、1時間加水分解反応を行った。反応終了後、反応液をアセトニトリル均一溶液とし、高速液体クロマトグラフィー(絶対検量法)により定量した結果、3,4−ジヒドロキシベンゾニトリルの収率は18%であった。
【0028】
比較例2
攪拌装置、温度計およびガス導入管を備えた内容積50mlのフラスコに、3,4−メチレンジオキシベンゾニトリル1.47g(10mmol)を秤り取り、トルエン14.7mlを加えた。ガス導入管より、酸素ガスを18.7ml/min(酸素:5当量/hr)の流速で反応液にバブリングさせ、攪拌しながら70℃まで昇温した。次いで、五塩化リン2.08g(10mmol)を添加し、同温度で4時間反応させた。反応終了後、反応液を25℃以下に冷却し、反応液を濃縮した。次いで、アセトニトリル15mlを添加した後、氷水10gを加えた。40℃に昇温し、1時間加水分解反応を行った。反応終了後、反応液をアセトニトリル均一溶液とし、高速液体クロマトグラフィー(絶対検量法)により定量した結果、3,4−ジヒドロキシベンゾニトリルの収率は50%であった。
【0029】
比較例3
開放系で、攪拌装置および温度計を備えた内容積25mlのフラスコに、3,4−メチレンジオキシベンゾニトリル1.47g(10mmol)を秤取り、トルエン14.7mlを加えた。反応容器を密閉して、攪拌しながら70℃まで昇温した。次いで、五塩化リン6.24g(30mmol)を添加し、同温度で3時間反応させた。反応終了後、反応液を25℃以下に冷却し、反応液を濃縮した。次いで、氷水20gを加えた後、50℃に昇温し、1時間加水分解反応を行った。加水分解反応終了後、反応液にアセトニトリル300mlを添加して、均一溶液とし、高速液体クロマトグラフィー(絶対検量法)により定量した結果、3,4−ジヒドロキシベンゾニトリルの収率は26%であった。
【0030】
【発明の効果】
本発明により、3,4−メチレンジオキシベンゾニトリルから、高収率かつ簡便に3,4−ジヒドロキシベンゾニトリルを製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing 3,4-dihydroxybenzonitrile by reacting 3,4-methylenedioxybenzonitrile and phosphorus pentachloride in an organic solvent and then adding water or alcohol. 3,4-Dihydroxybenzonitrile is used as a raw material for optical materials such as photographic agents. (See Patent Document 1)
[0002]
[Prior art]
Conventionally, as a method for producing 3,4-dihydroxybenzonitrile from 3,4-methylenedioxybenzonitrile, for example, Non-Patent Document 1 describes that in N, N′-dimethylimidazolidinone at a high temperature of 185 ° C. In the reaction, 3,4-methylenedioxybenzonitrile and an excess amount (2.5 times mole or more) of sodium bistrimethylsilylamide or lithium diisopropylamide are reacted with each other to obtain 3 in a yield of 95 to 96%. A process for producing 1,4-dihydroxybenzonitrile is disclosed. However, this method uses a large amount of lithium diisopropylamide or lithium diisopropylamide having high ignitability, and further has a safety problem in that the reaction is performed at the high temperature, which is preferable as an industrial production method. Absent.
[0003]
[Non-Patent Document 1]
J. et al. Org. Chem. 1997, 62, p. 4097
[Patent Document 1]
European Patent No. 399847 Specification
[Problems to be solved by the invention]
That is, the present invention solves the above problems and provides a simple method for producing 3,4-dihydroxybenzonitrile with high yield.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide 3,4-methylenedioxybenzonitrile represented by the following formula (1):
[Chemical 3]
Figure 0004078975
In the following formula (2), an organic solvent and phosphorus pentachloride are mixed and reacted under the flow of air or oxygen, or air or oxygen is blown into the reaction solution, and then water or alcohol is added. It is solved by the process of 3,4-dihydroxybenzonitrile shown.
[0007]
[Formula 4]
Figure 0004078975
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, for example, 3,4-methylenedioxybenzonitrile, an organic solvent, and phosphorus pentachloride are mixed, and the reaction is performed by stirring while blowing air or oxygen into the reaction solution under the flow of air or oxygen. After that, it is carried out by a method of adding water or alcohol. The reaction solution may be concentrated before adding water or alcohol.
[0009]
The flow rate of air or oxygen is preferably 0.5 to 50 mol, more preferably 1 to 10 mol per hour in terms of oxygen per mol of 3,4-methylenedioxybenzonitrile.
[0010]
Commercially available oxygen can be used here.
Air can be used for the reaction using, for example, a compressor.
These gases do not particularly require drying, but are preferably used after being dried with calcium chloride or the like.
[0011]
Examples of the organic solvent used in the reaction of the present invention include aromatic hydrocarbons such as toluene, xylene, ethylbenzene, cumene, and t-butylbenzene, and halogenated aromatic hydrocarbons such as chlorobenzene, bromobenzene, and dichlorobenzene. , Aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane, n-nonane, n-decane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylene chloride, chloroform, carbon tetrachloride, dichloroethane , Halogenated aliphatic hydrocarbons such as dibromoethane, methyl formate, ethyl formate, isopropyl formate, butyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, methyl propionate, ethyl propionate, isopropyl propionate, propion Calves such as butyl acid Examples include acid esters, carbonate esters such as dimethyl carbonate and diethyl carbonates, preferably aromatic hydrocarbons, carboxylic acid esters, carbonate esters, and more preferably aromatic hydrocarbons. .
As the aromatic hydrocarbon, toluene is preferable.
[0012]
Although the usage-amount of the said solvent is not specifically limited, Preferably it is 1-50 ml with respect to 1 g of 3, 4- methylenedioxybenzonitrile, More preferably, it is 3-30 ml. Moreover, you may use these solvents individually or in mixture of 2 or more types.
[0013]
The amount of phosphorus pentachloride used in the present invention is preferably 2 to 20 mol, more preferably 2 to 10 mol, per 1 mol of 3,4-methylenedioxybenzonitrile.
[0014]
The reaction temperature in the reaction of the present invention is preferably 0 to 150 ° C, more preferably 5 to 100 ° C.
[0015]
The reaction of the present invention is usually carried out under normal pressure, but may be carried out under pressure or under reduced pressure if necessary.
[0016]
The amount of water or alcohol used in the addition of water or alcohol to the reaction solution is preferably 3 to 100 mol, more preferably 3 to 30 mol, per 1 mol of phosphorus pentachloride.
[0017]
Examples of the alcohol used herein include aliphatic saturated alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, or isobutyl alcohol, preferably methanol, ethanol, propyl alcohol. Isopropyl alcohol.
[0018]
The temperature of the reaction solution after adding water or alcohol to the reaction solution is preferably 0 to 100 ° C, more preferably 5 to 70 ° C.
[0019]
This reaction can be carried out under pressure, but normal pressure is preferred.
[0020]
The synthesized 3,4-dihydroxybenzonitrile can be easily obtained, for example, by filtering the crystals precipitated after the reaction or extracting them with an organic solvent, and is separated and purified by general methods such as column chromatography and recrystallization. can do.
[0021]
【Example】
Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto. The yield of the produced 3,4-dihydroxybenzonitrile was calculated in terms of mole relative to 3,4-methylenedioxybenzonitrile.
[0022]
Example 1
1.47 g (10 mmol) of 3,4-methylenedioxybenzonitrile was weighed into a flask having an internal volume of 25 ml equipped with a stirrer, a thermometer and a gas introduction tube, and 14.7 ml of toluene was added. From the gas introduction tube, oxygen gas was bubbled through the reaction solution at a flow rate of 18.7 ml / min (oxygen: 5 equivalents / hr), and the temperature was raised to 70 ° C. while stirring. Next, 6.24 g (30 mmol) of phosphorus pentachloride was added and reacted at the same temperature (70 ° C.) for 3 hours.
After completion of the reaction, the reaction solution was cooled to 25 ° C. or lower, and the reaction solution was concentrated. The concentrated solution was added to 20 g of ice water, heated to 50 ° C., and reacted for 1 hour.
After completion of the reaction, the reaction solution was made into a uniform acetonitrile solution and quantified by high performance liquid chromatography (absolute calibration method). As a result, the yield of 3,4-dihydroxybenzonitrile was 84%.
[0023]
Examples 2-5
In Example 1, the reaction was performed in the same manner as in Example 1 except that the amount of phosphorus pentachloride used, the oxygen flow rate, and the reaction time were changed. The results are shown in Table 1.
[0024]
[Table 1]
Figure 0004078975
* Equivalent amounts of oxygen and phosphorus pentachloride are relative to 3,4-methylenedioxybenzonitrile.
Example 6
1.47 g (10 mmol) of 3,4-methylenedioxybenzonitrile was weighed into a 50-ml flask equipped with a stirrer, a thermometer, and a gas introduction tube, and 14.7 ml of toluene was added. From the gas inlet tube, dry air was calculated to be 35.5 ml / min (oxygen: 2 equivalents / hr, where the amount of oxygen introduced was calculated assuming that 21% by volume of oxygen was contained in the air in the standard state. ) Was bubbled into the reaction solution at a flow rate, and the temperature was raised to 70 ° C. while stirring. Next, 6.24 g (30 mmol) of phosphorus pentachloride was added and reacted at the same temperature for 7 hours.
After completion of the reaction, the reaction solution was cooled to 25 ° C. or lower, and the reaction solution was concentrated.
Subsequently, after adding a concentrate to 10 g of ice water, it heated up at 40 degreeC and performed the hydrolysis reaction for 1 hour. After completion of the hydrolysis reaction, about 100 ml of acetonitrile was added to the reaction solution to obtain a homogeneous solution, which was quantified by high performance liquid chromatography (absolute calibration method). As a result, the yield of 3,4-dihydroxybenzonitrile was 82%.
[0026]
Example 7
1.47 g (10 mmol) of 3,4-methylenedioxybenzonitrile was weighed into a flask having an internal volume of 25 ml equipped with a stirrer, a thermometer and a gas introduction tube, and 14.7 ml of toluene was added. From the gas introduction tube, oxygen gas was bubbled through the reaction solution at a flow rate of 18.7 ml / min (oxygen: 5 equivalents / hr), and the temperature was raised to 70 ° C. while stirring. Next, 5.20 g (25 mmol) of phosphorus pentachloride was added and reacted at the same temperature (70 ° C.) for 3 hours.
After completion of the reaction, the reaction solution was cooled to 25 ° C. or lower, and the reaction solution was concentrated. 10 ml of methanol was added to the concentrate, the temperature was raised to 50 ° C., and the reaction was performed for 30 minutes.
After completion of the reaction, the reaction solution was made into a homogeneous acetonitrile solution and quantified by high performance liquid chromatography (absolute calibration method). As a result, the yield of 3,4-dihydroxybenzonitrile was 98%.
[0027]
Comparative Example 1
1.47 g (10 mmol) of 3,4-methylenedioxybenzonitrile was weighed into a 50-ml flask equipped with a stirrer, a thermometer, and a gas introduction tube, and 14.7 ml of toluene was added. From the gas introduction tube, argon gas was bubbled into the reaction solution at a flow rate of 7.1 ml / min, and the temperature was raised to 70 ° C. while stirring. Next, 6.24 g (30 mmol) of phosphorus pentachloride was added and reacted at the same temperature for 4 hours. After completion of the reaction, the reaction solution was cooled to 25 ° C. or lower, and the reaction solution was concentrated. Next, 15 ml of acetonitrile was added, and then 10 g of ice water was added. The temperature was raised to 40 ° C., and the hydrolysis reaction was carried out for 1 hour. After completion of the reaction, the reaction solution was made into a homogeneous acetonitrile solution and quantified by high performance liquid chromatography (absolute calibration method). As a result, the yield of 3,4-dihydroxybenzonitrile was 18%.
[0028]
Comparative Example 2
1.47 g (10 mmol) of 3,4-methylenedioxybenzonitrile was weighed into a 50-ml flask equipped with a stirrer, a thermometer, and a gas introduction tube, and 14.7 ml of toluene was added. From the gas introduction tube, oxygen gas was bubbled through the reaction solution at a flow rate of 18.7 ml / min (oxygen: 5 equivalents / hr), and the temperature was raised to 70 ° C. while stirring. Next, 2.08 g (10 mmol) of phosphorus pentachloride was added and reacted at the same temperature for 4 hours. After completion of the reaction, the reaction solution was cooled to 25 ° C. or lower, and the reaction solution was concentrated. Next, 15 ml of acetonitrile was added, and then 10 g of ice water was added. The temperature was raised to 40 ° C., and the hydrolysis reaction was carried out for 1 hour. After completion of the reaction, the reaction solution was made into a homogeneous acetonitrile solution and quantified by high performance liquid chromatography (absolute calibration method). As a result, the yield of 3,4-dihydroxybenzonitrile was 50%.
[0029]
Comparative Example 3
In an open system, 1.47 g (10 mmol) of 3,4-methylenedioxybenzonitrile was weighed into a 25-ml flask equipped with a stirrer and a thermometer, and 14.7 ml of toluene was added. The reaction vessel was sealed and heated to 70 ° C. with stirring. Next, 6.24 g (30 mmol) of phosphorus pentachloride was added and reacted at the same temperature for 3 hours. After completion of the reaction, the reaction solution was cooled to 25 ° C. or lower, and the reaction solution was concentrated. Next, 20 g of ice water was added, the temperature was raised to 50 ° C., and a hydrolysis reaction was performed for 1 hour. After completion of the hydrolysis reaction, 300 ml of acetonitrile was added to the reaction solution to obtain a homogeneous solution, which was quantified by high performance liquid chromatography (absolute calibration method). As a result, the yield of 3,4-dihydroxybenzonitrile was 26%. .
[0030]
【The invention's effect】
According to the present invention, 3,4-dihydroxybenzonitrile can be easily produced from 3,4-methylenedioxybenzonitrile in a high yield.

Claims (2)

溶媒中、酸素存在下、下式(1)で示される3,4−メチレンジオキシベンゾニトリルと
Figure 0004078975
五塩化リンを反応させた後、水又はアルコールを加えて反応させることを特徴とする下式(2)で示される3,4−ジヒドロキシベンゾニトリルの製法。
Figure 0004078975
In a solvent, in the presence of oxygen, 3,4-methylenedioxybenzonitrile represented by the following formula (1)
Figure 0004078975
A process for producing 3,4-dihydroxybenzonitrile represented by the following formula (2), characterized by reacting phosphorus pentachloride with water and then adding alcohol.
Figure 0004078975
請求項1において、酸素存在下が、空気又は酸素の流通下、加圧下、或は反応液中への吹き込みである3,4−ジヒドロキシベンゾニトリルの製法。The method for producing 3,4-dihydroxybenzonitrile according to claim 1, wherein the presence of oxygen is air or oxygen flow, pressurization, or blowing into the reaction solution.
JP2002378963A 2002-12-27 2002-12-27 Method for producing 3,4-dihydroxybenzonitrile Expired - Fee Related JP4078975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378963A JP4078975B2 (en) 2002-12-27 2002-12-27 Method for producing 3,4-dihydroxybenzonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378963A JP4078975B2 (en) 2002-12-27 2002-12-27 Method for producing 3,4-dihydroxybenzonitrile

Publications (2)

Publication Number Publication Date
JP2004210647A JP2004210647A (en) 2004-07-29
JP4078975B2 true JP4078975B2 (en) 2008-04-23

Family

ID=32815611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378963A Expired - Fee Related JP4078975B2 (en) 2002-12-27 2002-12-27 Method for producing 3,4-dihydroxybenzonitrile

Country Status (1)

Country Link
JP (1) JP4078975B2 (en)

Also Published As

Publication number Publication date
JP2004210647A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
CN107141248B (en) A kind of method of visible light catalytic synthesis three ketene compound of 3- sulfuryl loop coil
CN110878084A (en) Preparation method of nicosulfuron original drug
CN108586399A (en) A kind of synthetic method of Fei Luokao former times
JP4846568B2 (en) Process for producing N, N'-carbonyldiimidazole
JP4078975B2 (en) Method for producing 3,4-dihydroxybenzonitrile
CN101370795B (en) Method for producing thiazole compound
JP4321074B2 (en) Process for producing 6,7-dihydroxycoumarin
JP2011051904A (en) Method for producing tertiary alcohol
JP4631262B2 (en) Process for producing (cis) -4-hydroxyproline derivative
KR20110124790A (en) Chemical process for the production of haloalkenone ethers
JP2000169456A (en) Production of 3-aryldihydro-1,3-benzoxazine compound
CN110092802B (en) Method for preparing trepetidine intermediate
JP3845977B2 (en) Method for producing 4,4'-bischloromethylbiphenyl
JP2004250334A (en) Method for producing protocatechualdehyde
JP4421802B2 (en) Method for producing chlorocarbonate
JPS5828874B2 (en) Method for producing 2,2'-bis(4-substituted phenol) sulfide
JP2006312644A (en) METHOD FOR PRODUCING beta-KETONITRILES
JP2001114744A (en) Method for producing n-hydrocarbon oxycarbonylamino acid
JP4483183B2 (en) Process for producing 6,7-dihydroxycoumarin-3-carboxylic acid derivative and its intermediate
JP4825969B2 (en) Method for producing tertiary alcohol
JP4513285B2 (en) Method for producing chlorosilane compound
JP5071689B2 (en) 3-alkoxycarbonyl-6,7-chloromethylenedioxycoumarin compound and method for producing the same.
JPS6125713B2 (en)
JP2003064062A (en) Method for producing cyclic urethane
JP2004359553A (en) Method for preparing catechol derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees