JP4074757B2 - Modified graphite particles, production method thereof, and electrode material for secondary battery - Google Patents

Modified graphite particles, production method thereof, and electrode material for secondary battery Download PDF

Info

Publication number
JP4074757B2
JP4074757B2 JP2001355391A JP2001355391A JP4074757B2 JP 4074757 B2 JP4074757 B2 JP 4074757B2 JP 2001355391 A JP2001355391 A JP 2001355391A JP 2001355391 A JP2001355391 A JP 2001355391A JP 4074757 B2 JP4074757 B2 JP 4074757B2
Authority
JP
Japan
Prior art keywords
particles
spheroidized
graphite
parts
graphite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001355391A
Other languages
Japanese (ja)
Other versions
JP2003119014A (en
Inventor
哲史 久保田
直樹 的場
真吾 朝田
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2001355391A priority Critical patent/JP4074757B2/en
Publication of JP2003119014A publication Critical patent/JP2003119014A/en
Application granted granted Critical
Publication of JP4074757B2 publication Critical patent/JP4074757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、特殊な粒子構造を有し、殊に二次電池用電極材料として用いたときの二次電池の性能がすぐれた改質黒鉛粒子およびその製造方法に関するものである。また、そのようにして得られた改質黒鉛粒子を用いた二次電池用電極材料に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化の観点から、鉛蓄電池、ニッカド電池に替わる高容量電池、殊にリチウムイオン二次電池が注目され、実用化されている。その中でも負極に炭素材料を用いたものは、高い安全性、高容量、高電圧などの点で有利であり、これらの材料が負極用材料として使用されている。
【0003】
天然黒鉛や人造黒鉛は、二次電池の電極材料、殊にリチウムイオン二次電池用負極材料として用いることができる。特に鱗片状天然黒鉛は、この目的に適している。
【0004】
鱗片状天然黒鉛をこの用途に用いるときは、鱗片状天然黒鉛を溶媒およびバインダーと混合してスラリー化し、対象物に塗布することが多い。この場合、鱗片状天然黒鉛が文字通り鱗片状(板状)の形状を有することから、溶媒およびバインダーとの混合時の流動性が悪く、所定の粘性を得るためには大量の溶媒の使用が必要となり、所定厚みの塗布層を形成できないことがある。そこで流動性を改善するために、従来は、粒子径が数μm になるまで粉砕する方法、各種の界面活性剤を添加して流動性を確保する方法、長時間強撹拌する方法などがとられていた。
【0005】
ところが、流動性を確保するために鱗片状天然黒鉛を微細に粉砕する方法は、黒鉛が滑りやすいために5μm 以下にすること自体が実際には容易ではなく、またそれ以上の大きさでは流動性の改善効果が小さい。そして用途によっては粒子径を過度に小さくすることが制限されることがあるが、そのような場合には対処しえないことになる。界面活性剤の添加は、流動性の改善に効果があるものの、界面活性剤の選定とその混合量のバランスが難しく、たえず最適な状態を保持することが困難であることが多い。また用途によっては界面活性剤の添加が制限されるので、そのような用途には不適当となる。長時間強撹拌することで流動性を改善する方法は、時間と労力を要するので工業的に不利となることを免かれず、また長時間の強撹拌によっても必要な流動性が得られないことが多い。
【0006】
そこで本出願人は、原料である鱗片状天然黒鉛粒子の良さを維持しながらもそれを改質加工して、独特の構造および特性を有する球形化粒子からなる鱗片状天然黒鉛改質粒子を提案している。すなわち、特開平11−263612号公報には、鱗片状天然黒鉛粒子を球形に近づくように改質した球形化粒子であって、該球形化粒子が、円形度が0.86以上であること、破断面の顕微鏡観察では、黒鉛切片が種々の方向に向かうキャベツ状の外観を有していること、および、配向のランダム性の指標となるX線回折(反射法)による 002面(黒鉛層と水平な面)と 110面(黒鉛層に垂直な面)のピーク強度比Ih110/Ih002が0.0050以上であること、の要件を全て満たしている鱗片状天然黒鉛改質粒子が開示されている。
【0007】
【発明が解決しようとする課題】
上述の特開平11−263612号公報に開示の鱗片状天然黒鉛改質粒子は、これを二次電池用電極材料として用いたときには、その独特の構造のため、スラリー特性が良好で、大きな放電電流値での放電容量の低下が小さいという性質を有している。
【0008】
しかしながら、この鱗片状天然黒鉛改質粒子は、黒鉛切片が種々の方向に向かうキャベツ状の外観を有しているという独特の構造を持っているため、微視的には粒子内部に複数の黒鉛層からなる空隙が生じており、二次電池用電極材料としての性能に一定の限界があることが判明した。
【0009】
本発明は、このような背景下において、本出願人の出願にかかる特開平11−263612号公報に開示の球形化改質粒子をさらに改良することにより、二次電池用電極材料としての性能が一段と向上した特殊な粒子構造を有する改質黒鉛粒子およびその製造法を提供すること、および、そのようにして得られた改質黒鉛粒子からなる二次電池用電極材料を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の改質黒鉛粒子は、
鱗片状黒鉛粒子を球形に近づくように改質した平均粒子径1〜200μ m 球形化改質黒鉛粒子であって、該球形化改質黒鉛粒子が、
破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有していること
ここで、球形化粒子 (A) の粒子径は平均粒子径で1〜200μ m の範囲内にあり、一方球形化粒子 (a) の粒子径は平均粒子径で1〜200μ m の範囲内でかつ前者の球形化粒子 (A) の内部空隙に包含される大きさであること、および、
球形化粒子 (A) の内部空隙に球形化粒子 (a) が多数包含された構造を有する球形化改質黒鉛粒子の100重量部に占める後者の球形化粒子 (a) の割合が5〜60重量部の範囲内にあること、
を特徴とするものである。
【0011】
本発明の改質黒鉛粒子の製造法は、
鱗片状黒鉛粒子からなる平均粒子径が1〜200μ m の範囲内の原料粒子(x) と、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有すると共に平均粒子径が1〜200μ m の範囲内でかつ原料粒子 (x) の平均粒子径よりも小さい原料球形化粒子(y) とを、両者の合計量を100重量部とするとき前者の原料粒子 (x) が95〜40重量部で後者の原料球形化粒子 (y) が5〜60重量部となるような割合で混合して流動状態で衝突させることにより、
破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有する平均粒子径が1〜200μ m の球形化改質黒鉛粒子を得ること、および、
そのときの球形化改質黒鉛粒子100重量部に占める後者の球形化粒子 (a) の割合が5〜60重量部の範囲内にあること、
を特徴とするものである。
【0012】
本発明の二次電池用電極材料は、上記の改質黒鉛粒子からなることを特徴とするものである。
【0013】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0014】
〈改質黒鉛粒子〉
本発明の改質黒鉛粒子は、鱗片状黒鉛粒子を球形に近づくように改質した平均粒子径1〜200μ m 球形化改質黒鉛粒子であり、次のような特殊な粒子構造を有する。
【0015】
すなわち、
本発明の改質黒鉛粒子は、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有する。
・ここで、球形化粒子 (A) の粒子径は平均粒子径で1〜200μ m の範囲内にあり、一方球形化粒子 (a) の粒子径は平均粒子径で1〜200μ m の範囲内でかつ前者の球形化粒子 (A) の内部空隙に包含される大きさである。
・球形化粒子 (A) の内部空隙に球形化粒子 (a) が多数包含された構造を有する球形化改質黒鉛粒子の100重量部に占める後者の球形化粒子 (a) の割合は、5〜60重量部の範囲内にある。
【0016】
〈改質黒鉛粒子の製造法〉
上記の特殊な粒子構造を有する改質黒鉛粒子、つまり、キャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、キャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有する平均粒子径が1〜200μ m 改質黒鉛粒子は、典型的には、鱗片状黒鉛粒子からなる平均粒子径が1〜200μ m の範囲内の原料粒子(x) と、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有すると共に平均粒子径が1〜200μ m の範囲内でかつ原料粒子 (x) の平均粒子径よりも小さい原料球形化粒子(y) とを、両者の合計量を100重量部とするとき前者の原料粒子 (x) が95〜40重量部で後者の原料球形化粒子 (y) が5〜60重量部となるような割合で混合して流動状態で衝突させることにより製造される。得られた球形化改質黒鉛粒子100重量部に占める後者の球形化粒子 (a) の割合は、5〜60重量部の範囲内にある。
【0017】
以下、改質黒鉛粒子の製造法をより詳しく述べると、まず、原料粒子(x) である鱗片状黒鉛粒子としては、好適には、鱗片状天然黒鉛が用いられる。鱗片状天然黒鉛は、通常85%から99%を上まわる程度の純度で入手できるので、もし必要なら、適当な手段でさらに純度を高めておくことができる。鱗片状黒鉛粒子の粒度は平均粒子径で1〜200μm の範囲内とされ、殊に10〜100μm 程度とすることが多い。原料粒子(x) である鱗片状黒鉛粒子としては、鱗片状人工黒鉛を用いることもできる。
【0018】
次に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する原料球形化粒子(y) は、鱗片状黒鉛粒子を原料として用い、先に述べた特開平11−263612号公報に開示の方法あるいはそれに類する方法を実施することにより得られる。
【0019】
すなわち、ジェット気流同士が衝突する衝突域と流動域とを有する槽(1) を用い、フィーダー(2) から槽(1) 内に原料となる鱗片状黒鉛粒子を仕込むと共に、槽(1) の下部側に設けた対向ノズル(3) からジェット気流を吹き込むことにより、槽(1) 内の下部側の衝突域では粒子同士を衝突させ、槽(1) 内の上部側の流動域では粒子を循環流動させ、一方分級限界以下の微粉は槽(1) の上部に設けた分級機(4) により槽外に排出させる。この操作は、バッチで行うことが好ましい。これにより、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する球形化粒子(y) が得られる。この方法を、後述の図1を参照しながらもう少し詳しく説明する。
【0020】
上記の槽(1) としては、たとえば、市場にある流動層式カウンタージェットミルを転用したり、それを本発明の目的に改良したりしたものを用いることができる。フィーダー(2) からは、槽(1) 内に原料となる鱗片状黒鉛粒子を仕込む。フィーダー(2) は、ホッパー式として槽(1) の適当個所に設置することが好ましく、その場合にはフィーダー(2) を球形化黒鉛粒子(y) の取出口として利用することができる。またフィーダー(2) は、スクリュー式として槽(1) の下部に設けることもできる。槽(1) 内への原料となる鱗片状黒鉛粒子の仕込み量は、槽(1) の有効スペースを考慮して決定されるが、それほどの厳密性は要求されない。ただし、仕込み量が極端に少ないときは粒子の流動が円滑に行われず、仕込み量が極端に多いときは粒子の破砕が過多となって目的性状の原料球形化粒子(y) が得られがたくなる。
【0021】
槽(1) の下部側には槽壁を貫通して対向ノズル(3) を設け、対向ノズル(3) からジェット気流を吹き込むことにより、槽(1) 内の下部側の衝突域では気流に入った粒子同士を衝突させる。この対向ノズル(3) は、複数個、殊に3個を配することが好ましい。対向ノズル(3) から吹き込むジェット気流の速度、吹き込みガス量、槽圧などは、円滑な衝突と流動が達成できるように設定され、操作時間を適宜に設定することにより所望の程度の球形化が図られるようにする。
【0022】
槽(1) 内の下部側の衝突域では粒子同士の衝突が起こるが、槽(1) 内の上部側の流動域では粒子の循環流動が起こる。定常状態においては、粒子は概ね、槽(1) の中心部で吹き上がり、槽(1) の壁際に沿って舞い降りる。
【0023】
槽(1) の上部には分級機(4) を設け、分級限界以下の微粉を槽外に排出させる。分級機(4) は、高速回転分級機を用いるのが通常である。このときの排出量は、原料となる鱗片状黒鉛粒子の粒度によって異なる。
【0024】
上記の操作はバッチで行うことが好ましい。通常のジェットミル粉砕のように操作を連続で行い、原料となる鱗片状黒鉛粒子を連続的に供給し、槽の上部から粉砕後の粒子を連続的に取り出したのでは、目的とする原料球形化粒子(y) を得ることができない。
【0025】
上記の操作を、条件を調節して行うことにより、原料球形化粒子(y) が得られる。原料球形化粒子(y) の粒度は、平均粒子径で1〜200μm の範囲内とされ、殊に10〜100μm 程度とすることが多い。なお、この原料球形化粒子(y) は、先に述べた原料粒子(x) よりも平均粒子径の小さいものを用いるようにする。
【0026】
そして本発明においては、先に述べた鱗片状黒鉛粒子からなる原料粒子(x) に、上記のようにして得た原料球形化粒子(y) (破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する原料球形化粒子(y) )を混合して流動状態で衝突させる。
【0027】
このときの条件は、上述の原料球形化粒子(y) の製造法と同様にして行うことができる。ただし、原料球形化粒子(y) を得るときの原料となる鱗片状黒鉛粒子に代えて、原料粒子(x) と原料球形化粒子(y) との混合物を用いるわけである。槽(1) への仕込みは、両者を混合してから行ってもよく、それぞれを別々に仕込んでもよい。
【0028】
原料粒子(x) と原料球形化粒子(y) との混合割合は、両者の合計量を100重量部とするとき、原料粒子(x) が95〜40重量部(好ましくは90〜45重量部)、原料球形化粒子(y) が5〜60重量部(好ましくは10〜55重量部)となるようにする。原料粒子(x) の過多(原料球形化粒子(y) の過少)は、目的物である改質黒鉛粒子の内部の空隙が充分には埋められないため、導電性が不足する傾向がある。一方、原料粒子(x) の過少(原料球形化粒子(y) の過多)は、空隙を埋めてもなお余りがあるので、材料の無駄使いを招く上、原料平均径の小径化により、改質黒鉛粒子の粒度低下等物性が大幅に変わってしまうおそれがある。
【0029】
このようにして、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含されている球形化粒子(改質黒鉛粒子)を得ることができる。この球形化粒子(改質黒鉛粒子)の粒度は、平均粒子径で1〜200μm であり、殊に10〜100μm 程度好ましい。なお、球形化粒子(改質黒鉛粒子)の粒度は、分級操作により、さらに調整することができる。得られた球形化改質黒鉛粒子100重量部に占める後者の球形化粒子 (a) の割合は、5〜60重量部の範囲内にある。
【0030】
〈用途、二次電池用電極材料、二次電池〉
このようにして得られた改質黒鉛粒子は、二次電池用の電極材料、殊にリチウムイオン二次電池用の負極材料として有用である。リチウムイオン二次電池用の負極材料のほか、ポリマー電池(ペーパー電池)などの電極材料としても用いることができる。このような電極材料に限らず、導電性塗料、ブレーキディスク用摺動材、電気粘性流体の構成粒子をはじめとする種々の用途にも使うことができる。
【0031】
リチウムイオン二次電池における正極材料としては、たとえば、改質MnO2、LiCoO2、LiNiO2、LiNi1-yCoyO2、LiMnO2、LiMn2O4 、LiFeO2などが用いられる。電解液としては、たとえば、エチレンカーボネートなどの有機溶媒や、該有機溶媒とジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6 、LiBF4 、LiClO4、LiCF3SO3などの電解液溶質を溶解した溶液が用いられる。
【0032】
リチウムイオン二次電池の場合の充放電反応は下式の通りであり(左辺から右辺への反応が充電反応、右片から左辺への反応が放電反応)、リチウムイオンが正極と負極の間を行き来する。
C + LiCoO2 = CLix + Li1-xCoO2 (0<x<1)
【0033】
〈作用〉
本発明の改質黒鉛粒子(球形化粒子)は、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含されているという特異な構造を有している。
【0034】
そして、その特異な粒子構造のため、粒子の空隙量、粒子の密度、粒子の硬さが最適範囲にコントロールされ、本発明の改質黒鉛粒子(球形化粒子)を二次電池用の電極材料(殊にリチウムイオン二次電池用の負極材料)として用いた場合、特開平11−263612号公報に開示の改質黒鉛粒子に比し、導電性、サイクル特性が一段と向上し、さらには、極板に作製した場合に粒子が潰れにくくなるので、電解液の吸液が良くなる。また、負荷特性も向上する。
【0035】
【実施例】
次に実施例をあげて本発明をさらに説明する。以下、「部」とあるのは「重量部」である。
【0036】
(製造装置)
図1は球形化粒子の製造装置の模式図である。この試験装置は円筒状の槽(1) からなり、槽(1) の下部側には3個の対向ノズル(3) (ノズル内径 2.5mm)を中心を向くように対向配置してあり(図1にはそのうちの1個のみを示してある)、槽(1) の頂部には分級機(4) の一例としての高速回転分級機を配置してある。フィーダー(2) は槽(1) の側壁に設けてあり、槽(1) の底部には吹き上げノズル(5) を設けてある。
【0037】
(球形化粒子の製造)
中国産の鱗片状天然黒鉛(粒度:100メッシュ90%以上通過、純度:99%以上)をカウンター式ジェットミルにて平均粒子径が60μm になるまで粉砕し、純度99.9%以上の高純度化処理を行ってから、これを原料となる鱗片状黒鉛粒子として用いた。
【0038】
この鱗片状黒鉛粒子をフィーダー(2) から槽(1) に仕込み、3個の対向ノズル(3) のそれぞれから空気を吹き込み、所定時間かけて粒子の改質加工を行った。その間、頂部に設けた分級機(4) からは、吹き込んだ空気の排気と共に、約5μm 以下の微粉が排出された。なお、改質加工時の条件は次のように設定した。
原料仕込み量:200 g
ノズル吐出空気圧:0.13 MPa
操作時間:30 min
【0039】
上記の操作後、槽(1) から粒子を取り出し、分級操作を行って、平均粒子径10μm の球形化粒子を得、これを原料球形化黒鉛粒子(y) として用いた。
【0040】
実施例1〜3、比較例1
(改質黒鉛粒子の製造)
原料粒子(x) として、上記の球形化粒子の製造に用いた原料の鱗片状黒鉛粒子と同じ平均粒子径60μm の粒子を用いた。そして、この原料粒子(x) を、上記で取得した平均粒子径10μm の球形化粒子(原料球形化粒子(y) )と混合した。(x):(y) の混合割合は、50部:50部(実施例1)、70部:30部(実施例2)、85部:15部(実施例3)、100部:0部(比較例1)に設定した。
【0041】
これらの混合物を用いたほかは、先に述べた球形化粒子の製造のときと同じ条件で改質操作を行った。改質加工終了後の球形化粒子(改質黒鉛粒子)を槽(1) から取り出し、粒子径を揃えるため分級操作を行い、平均粒子径44μm の試料を得た。
【0042】
(外観)
得られた球形化粒子(改質黒鉛粒子)につき、破断面の顕微鏡観察を行った。すなわち、球形化粒子(改質黒鉛粒子)をエポキシ樹脂で固定し、液体窒素で冷凍固化後、破断し、その破断面を顕微鏡写真で判断した。
【0043】
実施例1〜3で得られた球形化粒子(改質黒鉛粒子)は、いずれも、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有していた。図2に、実施例1で得た球形化粒子(改質黒鉛粒子)の顕微鏡写真を示す。倍率は2000倍である。
【0044】
一方、比較例1で得た球形化粒子(改質黒鉛粒子)は、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有していたが、空隙を多く含んでいた。図3に、比較例1の改質黒鉛粒子の顕微鏡写真を示す。倍率は2000倍である。
【0045】
実施例1〜3および比較例1のいずれの改質黒鉛粒子も、黒鉛切片が種々の方向に向かうキャベツ状の外観を有していて、鱗片状天然黒鉛の層状構造を含みながらも、その構造がキメラ状に改質されている点では共通していた。ちなみに、最初の操作の個所で述べた球形化粒子の製造のために用いた原料となる鱗片状黒鉛粒子についても顕微鏡観察を行ったが、黒鉛切片が単にほぼ同一方向にのみ層状になっていた。
【0046】
(性状、電極特性)
実施例1〜3および比較例1で得られた改質黒鉛粒子の性状(平均粒子径、ピーク強度比、表面積、導電性の程度(電気抵抗))および電極性能(放電容量、初期効率、負荷特性、充電特性)を調べた。結果を表1および表2に分けて示す。
【0047】
【表1】

混合割合 改質黒鉛粒子の性状 導電性
(x):(y) 平均粒子 ピーク 表面積 電気抵抗
( ) ( μ m) 強度比 (m 2 /g) ( Ω )
実施例1 50 : 50 44 0.0096 3.8 0.75
実施例2 70 : 30 44 0.0092 3.6 0.80
実施例3 85 : 15 44 0.0104 4.0 0.89
比較例1 100 : 0 44 0.0090 3.8 0.98
(注)(x) の平均粒子径は60μ m 、(y) の平均粒子径は10μm 。
【0048】
【表2】

電 極 性 能
放電容量 初期効率 負荷特性 充電特性
(mAh/g) (%) (%) (%)
実施例1 366 94 94 55
実施例2 366 94 93 57
実施例3 366 94 93 49
比較例1 366 94 90 35
【0049】
(ピーク強度比)
配向のランダム性の指標となるX線回折(反射法)による 002面(黒鉛層と水平な面)と 110面(黒鉛層に垂直な面)のピーク強度比Ih110/Ih002である(本出願人の出願にかかる特開平11−263612号公報の段落0045を参照)。
【0050】
(表面積)
株式会社島津製作所製の「ASAP−2405」を用いて測定。
【0051】
(電気抵抗)
試料を上下面の面積が各0.12cm2 、高さが2cm、密度が1.25g/cm3 の円柱体に圧縮成形して、成形体を得、その成形体の上下両面間の電気抵抗を測定。
【0052】
(電極性能)
負極材料100重量部と、バインダーとしてのポリフッ化ビニリデン3重量部と、溶媒としてのN−メチルピロリドンの適量とを混合し、液相で均一に撹拌した。得られたスラリーを銅箔上に塗布し、乾燥後、プレス機により加圧成形し、負極極板を作製してから、150℃で6時間真空乾燥を行った。次に、リチウム箔をステンレス板に圧着したものをセパレータを介して対極とし、2極式セルを組み立てた。組み立ては、水分値20ppm 以下に調整したドライボックス内で行い、電解液としては 1M-LiPF6 /(EC+DEC(1:1)) 、すなわちエチレンカーボネートとジエチルカーボネートとの容積比で1:1の混合溶媒にLiPF6 を1Mの割合で溶解したものを用いた。
【0053】
充電は、0.2 mA/cm2(0.05C)の定電流値で0Vになるまで充電した後、0Vの定電位で電流値が0.01 mA/cm2 となるまで行った。放電は、0.2 mA/cm2の電流値で1Vになるまで行った。各サンプルの1回目の充電容量と放電容量とにより、
初期効率(%)=100×放電容量/充電容量
を計算した。
【0054】
負荷特性は、10時間で放電した放電容量に対する30分で放電した放電容量の割合(%)である。
【0055】
充電特性は、10時間で充電した定電流充電容量に対する1時間で充電した定電流充電容量の割合(%)である。
【0056】
【発明の効果】
本発明の改質黒鉛粒子は、基本的には、球形化している上、キャベツ状の外観を有していることから、スラリー化時に固形分濃度を高くしても(つまり溶媒の使用量を少なくしても)、塗布に適した粘度にすることができ、スラリーの操作性が良く、銅箔等に塗布して極板を作るときの塗布性、結着性が容易である。
【0057】
しかも、本発明の改質黒鉛粒子は、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含されているという特殊な粒子構造を有しているため、粒子の空隙量、粒子の密度、粒子の硬さが最適範囲にコントロールされ、この改質黒鉛粒子を二次電池用の電極材料(殊にリチウムイオン二次電池用の負極材料)として用いた場合、特開平11−263612号公報に開示の改質黒鉛粒子に比し、導電性、負荷特性、サイクル特性をはじめとする二次電池用電極材料としての性能が一段と向上している。さらには、極板に作製したときに粒子が潰れにくくなるので、電解液の通液性が良くなっている。
【図面の簡単な説明】
【図1】 球形化粒子の製造装置の模式図である。
【図2】 実施例1で得た球形化粒子(改質黒鉛粒子)の顕微鏡写真である(倍率は2000倍)。
【図3】 比較例1の改質黒鉛粒子の顕微鏡写真である(倍率は2000倍)。
【符号の説明】
(1) …槽、
(2) …フィーダー、
(3) …対向ノズル、
(4) …分級機、
(5) …吹き上げノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to modified graphite particles having a special particle structure, and particularly excellent performance of a secondary battery when used as an electrode material for a secondary battery, and a method for producing the same. The present invention also relates to an electrode material for a secondary battery using the modified graphite particles thus obtained.
[0002]
[Prior art]
In recent years, high capacity batteries, in particular lithium ion secondary batteries, that replace lead-acid batteries and nickel-cadmium batteries have attracted attention and are put into practical use from the viewpoint of miniaturization of electronic devices. Among these, those using a carbon material for the negative electrode are advantageous in terms of high safety, high capacity, high voltage, and the like, and these materials are used as negative electrode materials.
[0003]
Natural graphite or artificial graphite can be used as an electrode material for a secondary battery, particularly as a negative electrode material for a lithium ion secondary battery. In particular, scaly natural graphite is suitable for this purpose.
[0004]
When flaky natural graphite is used for this purpose, flaky natural graphite is often mixed with a solvent and a binder to form a slurry, which is applied to an object. In this case, since the scaly natural graphite literally has a scaly (plate-like) shape, the fluidity when mixed with the solvent and the binder is poor, and a large amount of solvent is required to obtain a predetermined viscosity. Thus, a coating layer having a predetermined thickness may not be formed. Therefore, in order to improve fluidity, conventionally, a method of pulverizing until the particle size becomes several μm, a method of ensuring fluidity by adding various surfactants, a method of stirring vigorously for a long time, etc. have been taken. It was.
[0005]
However, the method of finely pulverizing scaly natural graphite in order to secure fluidity is not easy in practice to make it 5 μm or less because graphite is slippery. The improvement effect is small. Depending on the application, it may be restricted to make the particle size too small, but such a case cannot be dealt with. Although the addition of the surfactant is effective in improving the fluidity, it is often difficult to balance the selection of the surfactant and the amount of the surfactant, and constantly maintain the optimum state. Moreover, since addition of a surfactant is restricted depending on the use, it is unsuitable for such use. The method of improving fluidity by vigorous stirring for a long time is time consuming and labor intensive, so it cannot be avoided from being industrially disadvantageous, and the necessary fluidity cannot be obtained even by vigorous stirring for a long time. There are many.
[0006]
Therefore, the present applicant proposes modified flaky natural graphite particles composed of spheroidized particles with unique structure and characteristics, while maintaining the goodness of the raw flaky natural graphite particles while maintaining the goodness. is doing. That is, JP-A-11-263612 discloses spheroidized particles obtained by modifying flaky natural graphite particles so as to approximate a sphere, and the spheroidized particles have a circularity of 0.86 or more, a fracture surface. In the microscopic observation, the graphite section has a cabbage-like appearance in various directions, and the 002 plane (which is horizontal with the graphite layer) by X-ray diffraction (reflection method) that is an index of randomness of orientation. Scale-like natural graphite modified particles satisfying all of the requirements that the peak intensity ratio Ih 110 / Ih 002 of the (plane) and the 110 plane (plane perpendicular to the graphite layer) is 0.0050 or more.
[0007]
[Problems to be solved by the invention]
When the scale-like natural graphite modified particles disclosed in JP-A-11-263612 described above is used as an electrode material for a secondary battery, because of its unique structure, the slurry characteristics are good and the discharge current is large. It has the property that the decrease in discharge capacity by value is small.
[0008]
However, this scale-like natural graphite modified particle has a unique structure in which the graphite section has a cabbage-like appearance in various directions. It has been found that voids formed of layers are generated, and there is a certain limit in performance as an electrode material for a secondary battery.
[0009]
Under such circumstances, the present invention has improved performance as an electrode material for a secondary battery by further improving the spheroidized modified particles disclosed in Japanese Patent Application Laid-Open No. 11-263612 according to the applicant's application. An object of the present invention is to provide modified graphite particles having a specially improved particle structure and a method for producing the same, and to provide an electrode material for a secondary battery comprising the modified graphite particles thus obtained. To do.
[0010]
[Means for Solving the Problems]
The modified graphite particles of the present invention are
The flake graphite particles be spherical of modified graphite particles having an average particle diameter 1~200Myu m which was modified so as to approach the sphere, the sphere formulated modified graphite particles,
Microscopic observation of the fracture surface shows that the graphite section has a cabbage-like appearance in various directions. the diameter of the spherical particles (a) has a number inclusion structure having a cabbage-like appearance towards,
Here, the particle diameter of the spherical particles (A) is in the range of 1~200Myu m in average particle diameter, whereas the particle diameter of the spherical particles (a) is in the range of 1~200Myu m in average particle size And the size of the former spheroidized particles (A) is included in the internal voids, and
The ratio of the latter spheroidized particles (a) to 100 parts by weight of the spheroidized modified graphite particles having a structure in which a large number of spheroidized particles (a) are included in the internal voids of the spheroidized particles (A) is 5 to 60. Within the range of parts by weight,
It is characterized by.
[0011]
The method for producing the modified graphite particles of the present invention includes:
The raw material particles within an average particle size consisting of scaly graphite particles is 1~200μ m (x), graphite pieces in microscopy of fracture surface average particle diameter and has a cabbage-like appearance various directions and 1~200Myu m range a and the raw material particles (x) average particle size less raw material spherical particles than for the (y), the former raw material particles when the total amount of both is 100 parts by weight (x) is By mixing the latter raw material spheroidized particles (y) at a ratio of 95 to 40 parts by weight at a ratio of 5 to 60 parts by weight and colliding in a fluidized state,
Microscopic observation of the fracture surface shows that the graphite section has a cabbage-like appearance in various directions. an average particle size having a structure in which small diameter spherical particles (a) were included a number having a cabbage-like appearance towards obtaining a spheroidized modified graphite particles 1~200Myu m, and,
The ratio of the latter spheroidized particles (a) to 100 parts by weight of the spheroidized modified graphite particles at that time is in the range of 5 to 60 parts by weight,
It is characterized by.
[0012]
The electrode material for a secondary battery of the present invention is characterized by comprising the above modified graphite particles.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0014]
<Modified graphite particles>
Modified graphite particles of the present invention, the scaly graphite particles are spheroidized modified graphite particles having an average particle diameter 1~200Myu m which was modified so as to approach the spherical, with special particle structure as follows.
[0015]
That is,
Reforming graphite particles of the present invention, the internal void of the large-diameter spherical particles of graphite pieces in microscopy of the fracture surface has a cabbage-like appearance towards the different directions (A), the fracture surface It has a structure in which a large number of small-diameter spheroidized particles (a) having a cabbage-like appearance in which the graphite slices are directed in various directions by microscopic observation are included.
- Here, the particle diameter of the spherical particles (A) is in the range of 1~200Myu m in average particle diameter, whereas the particle diameter of the spherical particles (a) in the range of 1~200Myu m in average particle size And the size contained in the internal voids of the former spherical particles (A) .
The ratio of the latter spheroidized particles (a) to 100 parts by weight of the spheroidized modified graphite particles having a structure in which many spheroidized particles (a) are included in the internal voids of the spheroidized particles (A) is 5 Within the range of -60 parts by weight.
[0016]
<Method for producing modified graphite particles>
Modified graphite particles having the above-mentioned special particle structure, that is, small-diameter spheroidized particles having a cabbage-like appearance in the internal voids of large-diameter spheroidized particles (A) having a cabbage-like appearance ( modified graphite particles having an average particle diameter of 1~200Myu m which a) has multiple inclusion structures are typically the raw material particles within an average particle size consisting of scaly graphite particles is 1~200Myu m and (x), than the average mean particle diameter of the particle size and raw material particles in the range of 1~200μ m (x) with graphite piece having a cabbage-like appearance various directions by microscopic observation of the fracture surface When the total amount of the raw material spheroidized particles (y) is 100 parts by weight, the former raw material particles (x) are 95 to 40 parts by weight and the latter raw material spheroidized particles (y) are 5 to 60 parts by weight. It is manufactured by mixing at a ratio such that it becomes a part and colliding in a fluid state. The proportion of the latter spheroidized particles (a) in 100 parts by weight of the obtained spheroidized modified graphite particles is in the range of 5 to 60 parts by weight.
[0017]
Hereinafter, the method for producing the modified graphite particles will be described in more detail. First, scaly natural graphite is preferably used as the scaly graphite particles as the raw material particles (x). Since scaly natural graphite is usually available in a purity exceeding 85% to 99%, if necessary, the purity can be further increased by an appropriate means. The particle size of the scaly graphite particles is in the range of 1 to 200 μm as an average particle size, and is often about 10 to 100 μm. As the scaly graphite particles as the raw material particles (x), scaly artificial graphite can also be used.
[0018]
Next, the raw material spheroidized particles (y) having a cabbage-like appearance in which the graphite slices are directed in various directions by microscopic observation of the fracture surface are obtained by using scaly graphite particles as raw materials, and the above-mentioned JP-A-11-263612. It can be obtained by carrying out the method disclosed in the publication No. or similar method.
[0019]
That is, using a tank (1) having a collision area where a jet stream collides with and a flow area, the scaly graphite particles as a raw material are charged into the tank (1) from the feeder (2), and the tank (1) By blowing a jet stream from the opposed nozzle (3) provided on the lower side, particles collide with each other in the lower collision area in the tank (1), and particles in the upper flow area in the tank (1). While circulating, the fine powder below the classification limit is discharged out of the tank by the classifier (4) provided at the top of the tank (1). This operation is preferably performed in batches. Thereby, spheroidized particles (y) having a cabbage-like appearance in which the graphite slices are directed in various directions are obtained by microscopic observation of the fracture surface. This method will be described in more detail with reference to FIG.
[0020]
As said tank (1), what diverted the fluidized bed type counter jet mill in the market, or improved it for the objective of this invention can be used, for example. From the feeder (2), scale-like graphite particles as raw materials are charged into the tank (1). The feeder (2) is preferably installed at an appropriate location in the tank (1) as a hopper type. In this case, the feeder (2) can be used as an outlet for the spherical graphite particles (y). The feeder (2) can also be provided at the bottom of the tank (1) as a screw type. The amount of scale-like graphite particles used as a raw material in the tank (1) is determined in consideration of the effective space of the tank (1), but not so strict. However, when the amount charged is extremely small, the flow of the particles is not smoothly performed, and when the amount charged is extremely large, the particles are excessively crushed and it is difficult to obtain the raw material spherical particles (y). Become.
[0021]
On the lower side of the tank (1), a counter nozzle (3) is provided through the tank wall, and a jet stream is blown from the counter nozzle (3), so that air flows in the collision area on the lower side in the tank (1). Collide the particles inside. The counter nozzle (3) is preferably provided in a plurality, especially three. The speed of the jet stream blown from the opposed nozzle (3), the amount of blown gas, the tank pressure, etc. are set so that smooth collision and flow can be achieved, and the desired degree of spheroidization can be achieved by setting the operation time appropriately. As illustrated.
[0022]
In the lower collision zone in the tank (1), particles collide with each other, but in the upper flow zone in the tank (1), circulating particles flow. In the steady state, the particles generally blow up in the center of the tank (1) and fall down along the wall of the tank (1).
[0023]
A classifier (4) is installed at the top of the tank (1) to discharge fine powder below the classification limit to the outside of the tank. As the classifier (4), a high-speed rotating classifier is usually used. The discharge amount at this time varies depending on the particle size of the scaly graphite particles used as a raw material.
[0024]
The above operation is preferably performed in a batch. The operation is continuously performed like normal jet mill pulverization, the scaly graphite particles as raw materials are continuously supplied, and the pulverized particles are continuously taken out from the upper part of the tank. Particles (y) cannot be obtained.
[0025]
The raw material spheroidized particles (y) can be obtained by performing the above operation while adjusting the conditions. The particle size of the raw material spheroidized particles (y) is in the range of 1 to 200 μm as an average particle size, and is often about 10 to 100 μm. As the raw material spheroidized particles (y), particles having an average particle diameter smaller than that of the raw material particles (x) described above are used.
[0026]
In the present invention, the raw material particles (x) composed of the above-mentioned scaly graphite particles, the raw material spheroidized particles (y) obtained as described above (the graphite slices in various directions by microscopic observation of the fracture surface) The raw material spheroidized particles (y)) having a cabbage-like appearance toward are mixed and collided in a fluidized state.
[0027]
The conditions at this time can be performed in the same manner as in the method for producing the raw material spheroidized particles (y) described above. However, a mixture of the raw material particles (x) and the raw material spheroidized particles (y) is used in place of the scaly graphite particles used as the raw material for obtaining the raw material spheroidized particles (y). The charging to the tank (1) may be performed after mixing both, or each may be charged separately.
[0028]
The mixing ratio of the raw material particles (x) and the raw material spheroidized particles (y) is 95 to 40 parts by weight (preferably 90 to 45 parts by weight) when the total amount of both is 100 parts by weight. ), And the raw material spheroidized particles (y) are 5 to 60 parts by weight (preferably 10 to 55 parts by weight) . Excessive raw material particles (x) (raw raw material spheroidized particles (y)) is not sufficient to fill the voids inside the modified graphite particles, which are the target, and therefore tends to lack electrical conductivity. On the other hand, a shortage of raw material particles (x) (excessive raw material spheroidized particles (y)) still has a surplus even if the voids are filled, leading to waste of materials and reducing the average raw material diameter. There is a possibility that the physical properties such as particle size reduction of the graphite particles may change drastically.
[0029]
In this way, in the internal voids of the large-diameter spheroidized particles (A) having a cabbage-like appearance in which the graphite section is directed in various directions in the microscopic observation of the fracture surface, It is possible to obtain spheroidized particles (modified graphite particles) including a large number of small-diameter spheroidized particles (a) having a cabbage-like appearance in various directions. The particle size of the spherical particles (modified graphite particles) are 1~200μm in average particle diameter, particularly about 10~100μm are preferred. The particle size of the spheroidized particles (modified graphite particles) can be further adjusted by a classification operation. The proportion of the latter spheroidized particles (a) in 100 parts by weight of the obtained spheroidized modified graphite particles is in the range of 5 to 60 parts by weight.
[0030]
<Applications, secondary battery electrode materials, secondary batteries>
The modified graphite particles thus obtained are useful as electrode materials for secondary batteries, particularly as negative electrode materials for lithium ion secondary batteries. In addition to a negative electrode material for a lithium ion secondary battery, it can also be used as an electrode material for a polymer battery (paper battery). It can be used not only for such electrode materials but also for various uses including conductive paints, brake disk sliding materials, and electrorheological fluid constituent particles.
[0031]
As the cathode material in a lithium ion secondary battery, for example, reforming MnO 2, LiCoO 2, LiNiO 2 , LiNi 1-y Co y O 2, LiMnO 2, LiMn 2 O 4, LiFeO 2 and the like are used. Examples of the electrolytic solution include an organic solvent such as ethylene carbonate, and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, and ethoxymethoxyethane. A solution in which an electrolyte solute such as LiPF 6 , LiBF 4 , LiClO 4 , or LiCF 3 SO 3 is dissolved in a mixed solvent is used.
[0032]
In the case of a lithium ion secondary battery, the charge / discharge reaction is as follows (the reaction from the left side to the right side is a charge reaction, the reaction from the right piece to the left side is a discharge reaction), and lithium ions pass between the positive electrode and the negative electrode. go and come.
C + LiCoO 2 = CLi x + Li 1-x CoO 2 (0 <x <1)
[0033]
<Action>
The modified graphite particles (spheroidized particles) of the present invention are formed in the internal voids of the large-diameter spheroidized particles (A) having a cabbage-like appearance in which the graphite sections are directed in various directions by microscopic observation of the fracture surface. It has a unique structure in which a large number of small-diameter spheroidized particles (a) having a cabbage-like appearance in which the graphite slices face in various directions are observed by microscopic observation of the fracture surface.
[0034]
And because of its unique particle structure, the void volume of the particles, the density of the particles, and the hardness of the particles are controlled within the optimum range, and the modified graphite particles (spheroidized particles) of the present invention are used as electrode materials for secondary batteries. When used as a negative electrode material (especially for a lithium ion secondary battery), the conductivity and cycle characteristics are further improved as compared with the modified graphite particles disclosed in JP-A-11-263612. Since the particles are less likely to be crushed when made on a plate, the electrolyte absorption is improved. Also, load characteristics are improved.
[0035]
【Example】
The following examples further illustrate the invention. Hereinafter, “parts” means “parts by weight”.
[0036]
(Manufacturing equipment)
FIG. 1 is a schematic diagram of an apparatus for producing spheroidized particles. This test equipment consists of a cylindrical tank (1), with three counter nozzles (3) (nozzle inner diameter 2.5 mm) facing each other on the lower side of the tank (1) (Fig. 1 shows only one of them), and a high-speed rotating classifier as an example of a classifier (4) is arranged at the top of the tank (1). The feeder (2) is provided on the side wall of the tank (1), and a blowing nozzle (5) is provided at the bottom of the tank (1).
[0037]
(Manufacture of spherical particles)
Slaked natural graphite from China (particle size: passing 100 mesh 90% or more, purity: 99% or more) is pulverized with a counter-type jet mill until the average particle size reaches 60 μm, and high purity treatment with a purity of 99.9% or more This was used as flake graphite particles as a raw material.
[0038]
The scaly graphite particles were charged into the tank (1) from the feeder (2), and air was blown from each of the three opposed nozzles (3) to modify the particles over a predetermined time. Meanwhile, fine powder of about 5 μm or less was discharged from the classifier (4) provided at the top together with the exhausted air. The conditions during the reforming process were set as follows.
Raw material charge: 200 g
Nozzle discharge air pressure: 0.13 MPa
Operation time: 30 min
[0039]
After the above operation, the particles were taken out from the tank (1) and classified to obtain spheroidized particles having an average particle diameter of 10 μm, which were used as raw material spheroidized graphite particles (y).
[0040]
Examples 1-3, Comparative Example 1
(Production of modified graphite particles)
As the raw material particles (x), particles having the same average particle diameter of 60 μm as the raw scaly graphite particles used for the production of the spheroidized particles were used. Then, the raw material particles (x) were mixed with the spheroidized particles (raw material spheroidized particles (y)) having an average particle diameter of 10 μm obtained above. The mixing ratio of (x) :( y) is 50 parts: 50 parts (Example 1), 70 parts: 30 parts (Example 2), 85 parts: 15 parts (Example 3), 100 parts: 0 parts. Set to (Comparative Example 1).
[0041]
Except for using these mixtures, the reforming operation was performed under the same conditions as in the production of the spherical particles described above. The spheroidized particles (modified graphite particles) after the modification processing were taken out of the tank (1) and classified to make the particle diameter uniform, thereby obtaining a sample having an average particle diameter of 44 μm.
[0042]
(appearance)
The obtained spheroidized particles (modified graphite particles) were observed with a microscope of the fracture surface. That is, spheroidized particles (modified graphite particles) were fixed with an epoxy resin, frozen and solidified with liquid nitrogen, and then fractured, and the fracture surface was judged by a micrograph.
[0043]
Each of the spheroidized particles (modified graphite particles) obtained in Examples 1 to 3 has a large-diameter spherical shape having a cabbage-like appearance in which the graphite section faces in various directions by microscopic observation of the fracture surface. The internal voids of the particles (A) had a structure in which a large number of small-diameter spheroidized particles (a) having a cabbage-like appearance in which the graphite slices faced in various directions were observed by microscopic observation of the fracture surface. FIG. 2 shows a micrograph of the spheroidized particles (modified graphite particles) obtained in Example 1. The magnification is 2000 times.
[0044]
On the other hand, the spheroidized particles (modified graphite particles) obtained in Comparative Example 1 had a cabbage-like appearance in which the graphite sections faced in various directions by microscopic observation of the fracture surface, but contained many voids. . In FIG. 3, the microscope picture of the modified graphite particle of the comparative example 1 is shown. The magnification is 2000 times.
[0045]
Each of the modified graphite particles of Examples 1 to 3 and Comparative Example 1 has a cabbage-like appearance in which the graphite slices are directed in various directions and includes a layered structure of scaly natural graphite. Are common in that they are modified into chimeras. Incidentally, microscopic observation was also performed on the scaly graphite particles used as the raw material used for the production of the spheroidized particles described in the first operation section, but the graphite sections were layered only in almost the same direction. .
[0046]
(Properties, electrode characteristics)
Properties (average particle diameter, peak intensity ratio, surface area, degree of conductivity (electrical resistance)) and electrode performance (discharge capacity, initial efficiency, load) of the modified graphite particles obtained in Examples 1 to 3 and Comparative Example 1 Characteristics and charging characteristics). The results are shown in Table 1 and Table 2.
[0047]
[Table 1]

Properties conductive mixing ratio modified graphite particles
(x) :( y) Average particle Peak surface area Electrical resistance
(Parts) diameter (mu m) intensity ratio (m 2 / g) ( Ω )
Example 1 50: 50 44 0.0096 3.8 0.75
Example 2 70:30 30 0.0092 3.6 0.80
Example 3 85: 15 44 0.0104 4.0 0.89
Comparative Example 1 100: 0 44 0.0090 3.8 0.98
(Note) Average particle diameter of 60 mu m in (x), the average particle diameter of 10μm in (y).
[0048]
[Table 2]

Electrode performance
Discharge capacity Initial efficiency Load characteristics Charging characteristics
(mAh / g) (%) (%) (%)
Example 1 366 94 94 55
Example 2 366 94 93 57
Example 3 366 94 93 49
Comparative Example 1 366 94 90 35
[0049]
(Peak intensity ratio)
The peak intensity ratio Ih 110 / Ih 002 on the 002 plane (plane parallel to the graphite layer) and 110 plane (plane perpendicular to the graphite layer) by X-ray diffraction (reflection method), which is an index of randomness of orientation (See paragraph 0045 of Japanese Patent Laid-Open No. 11-263612 concerning the applicant's application).
[0050]
(Surface area)
Measured using “ASAP-2405” manufactured by Shimadzu Corporation.
[0051]
(Electrical resistance)
The sample is compression molded into a cylindrical body with an upper and lower surface area of 0.12 cm 2 each, a height of 2 cm, and a density of 1.25 g / cm 3 to obtain a molded body, and the electrical resistance between the upper and lower surfaces of the molded body is measured. .
[0052]
(Electrode performance)
100 parts by weight of the negative electrode material, 3 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methylpyrrolidone as a solvent were mixed and stirred uniformly in a liquid phase. The obtained slurry was applied onto a copper foil, dried, and then pressure-formed with a press to produce a negative electrode plate, followed by vacuum drying at 150 ° C. for 6 hours. Next, a lithium electrode pressed onto a stainless steel plate was used as a counter electrode through a separator to assemble a bipolar cell. Assembly is performed in a dry box adjusted to a moisture value of 20 ppm or less, and the electrolyte is 1M-LiPF 6 / (EC + DEC (1: 1)), that is, 1: 1 by volume ratio of ethylene carbonate and diethyl carbonate. A solution obtained by dissolving LiPF 6 at a ratio of 1 M in a mixed solvent of
[0053]
Charging was performed until the voltage reached 0 V at a constant current value of 0.2 mA / cm 2 (0.05 C) until the current value reached 0.01 mA / cm 2 at a constant potential of 0 V. Discharging was performed until the voltage reached 1 V at a current value of 0.2 mA / cm 2 . By the first charge capacity and discharge capacity of each sample,
Initial efficiency (%) = 100 × discharge capacity / charge capacity was calculated.
[0054]
The load characteristic is a ratio (%) of the discharge capacity discharged in 30 minutes to the discharge capacity discharged in 10 hours.
[0055]
The charge characteristic is a ratio (%) of the constant current charge capacity charged in 1 hour to the constant current charge capacity charged in 10 hours.
[0056]
【The invention's effect】
Since the modified graphite particles of the present invention are basically spherical and have a cabbage-like appearance, even if the solid content concentration is increased during slurrying (that is, the amount of solvent used is reduced). Even if it is less, the viscosity can be made suitable for coating, the operability of the slurry is good, and the coating property and binding property when coating on a copper foil or the like to make an electrode plate are easy.
[0057]
Moreover, the modified graphite particles of the present invention have a fracture surface in the internal voids of the large-diameter spheroidized particles (A) having a cabbage-like appearance in which the graphite sections are directed in various directions by microscopic observation of the fracture surface. The microscopic observation of the graphite section has a special particle structure in which a large number of small-diameter spheroidized particles (a) having a cabbage-like appearance directed in various directions are included. In the case where the modified graphite particles are used as an electrode material for a secondary battery (particularly, a negative electrode material for a lithium ion secondary battery), the density and particle hardness are controlled within the optimum ranges. Compared to the modified graphite particles disclosed in Japanese Patent No. 3, the performance as an electrode material for secondary batteries including conductivity, load characteristics and cycle characteristics is further improved. Furthermore, since the particles are less likely to be crushed when manufactured on an electrode plate, the electrolyte permeability is improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an apparatus for producing spheroidized particles.
FIG. 2 is a photomicrograph of spheroidized particles (modified graphite particles) obtained in Example 1 (magnification is 2000 times).
FIG. 3 is a micrograph of modified graphite particles of Comparative Example 1 (magnification is 2000 times).
[Explanation of symbols]
(1)… tank,
(2)… Feeder,
(3)… opposed nozzle,
(4)… Classifier,
(5)… Blow-up nozzle

Claims (3)

鱗片状黒鉛粒子を球形に近づくように改質した平均粒子径1〜200μ m 球形化改質黒鉛粒子であって、該球形化改質黒鉛粒子が、
破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有していること、
ここで、球形化粒子 (A) の粒子径は平均粒子径で1〜200μ m の範囲内にあり、一方球形化粒子 (a) の粒子径は平均粒子径で1〜200μ m の範囲内でかつ前者の球形化粒子 (A) の内部空隙に包含される大きさであること、および、
球形化粒子 (A) の内部空隙に球形化粒子 (a) が多数包含された構造を有する球形化改質黒鉛粒子の100重量部に占める後者の球形化粒子 (a) の割合が5〜60重量部の範囲内にあること、
を特徴とする改質黒鉛粒子。
The flake graphite particles be spherical of modified graphite particles having an average particle diameter 1~200Myu m which was modified so as to approach the sphere, the sphere formulated modified graphite particles,
Microscopic observation of the fractured surface shows that the graphite section has a cabbage-like appearance in various directions. Having a structure including a large number of small-diameter spheroidized particles (a) having an outward cabbage-like appearance ;
Here, the particle diameter of the spherical particles (A) is in the range of 1~200Myu m in average particle diameter, whereas the particle diameter of the spherical particles (a) is in the range of 1~200Myu m in average particle size And the size of the former spheroidized particles (A) is contained in the internal voids, and
The ratio of the latter spheroidized particles (a) to 100 parts by weight of the spheroidized modified graphite particles having a structure in which a large number of spheroidized particles (a) are included in the internal voids of the spheroidized particles (A) is 5 to 60. Within the range of parts by weight,
Modified graphite particles characterized by
鱗片状黒鉛粒子からなる平均粒子径が1〜200μ m の範囲内の原料粒子(x) と、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有すると共に平均粒子径が1〜200μ m の範囲内でかつ原料粒子 (x) の平均粒子径よりも小さい原料球形化粒子(y) とを、両者の合計量を100重量部とするとき前者の原料粒子 (x) が95〜40重量部で後者の原料球形化粒子 (y) が5〜60重量部となるような割合で混合して流動状態で衝突させることにより、
破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有している大径の球形化粒子(A) の内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の外観を有する小径の球形化粒子(a) が多数包含された構造を有する平均粒子径が1〜200μ m の球形化改質黒鉛粒子を得ること、および、
そのときの球形化改質黒鉛粒子100重量部に占める後者の球形化粒子 (a) の割合が5〜60重量部の範囲内にあること、
を特徴とする改質黒鉛粒子の製造法。
The raw material particles within an average particle size consisting of scaly graphite particles is 1~200μ m (x), graphite pieces in microscopy of fracture surface average particle diameter and has a cabbage-like appearance various directions and 1~200Myu m range a and the raw material particles (x) average particle size less raw material spherical particles than for the (y), the former raw material particles when the total amount of both is 100 parts by weight (x) is By mixing the latter raw material spheroidized particles (y) in a proportion of 5 to 60 parts by weight in 95 to 40 parts by weight ,
Microscopic observation of the fractured surface shows that the graphite section has a cabbage-like appearance in various directions. an average particle size having a structure in which small diameter spherical particles (a) were included a number having a cabbage-like appearance towards obtaining a spheroidized modified graphite particles 1~200Myu m, and,
The ratio of the latter spheroidized particles (a) to 100 parts by weight of the spheroidized modified graphite particles at that time is in the range of 5 to 60 parts by weight,
A process for producing modified graphite particles characterized by
請求項1の改質黒鉛粒子からなることを特徴とする二次電池用電極材料。  An electrode material for a secondary battery comprising the modified graphite particles according to claim 1.
JP2001355391A 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery Expired - Lifetime JP4074757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355391A JP4074757B2 (en) 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355391A JP4074757B2 (en) 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery

Publications (2)

Publication Number Publication Date
JP2003119014A JP2003119014A (en) 2003-04-23
JP4074757B2 true JP4074757B2 (en) 2008-04-09

Family

ID=19167104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355391A Expired - Lifetime JP4074757B2 (en) 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery

Country Status (1)

Country Link
JP (1) JP4074757B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499498B2 (en) * 2003-07-16 2010-07-07 関西熱化学株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
JP4401185B2 (en) * 2004-02-06 2010-01-20 関西熱化学株式会社 Manufacturing method and manufacturing apparatus for electrode material for secondary battery
JP4274090B2 (en) * 2004-09-17 2009-06-03 ソニー株式会社 Graphite powder and non-aqueous electrolyte secondary battery
JP5277487B2 (en) * 2008-03-31 2013-08-28 イビデン株式会社 Graphite elastic body and method for producing the same
EP2913299B1 (en) * 2014-02-27 2020-02-26 Kangwon National University University Industry Coorporation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6906891B2 (en) * 2015-09-02 2021-07-21 三菱ケミカル株式会社 Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries
JP6801171B2 (en) * 2015-09-24 2020-12-16 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2003119014A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
US10777807B2 (en) Silicon particle-containing anode materials for lithium ion batteries
JP3787030B2 (en) Scale-like natural graphite modified particles, process for producing the same, and secondary battery
CN111630002B (en) Positive electrode material for rechargeable lithium ion battery and preparation method thereof
JP5740079B2 (en) Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
CN100524911C (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
KR101140089B1 (en) Positive electrode active material sintered body for battery
JP4499498B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
JP3718072B2 (en) Secondary battery electrode material and method for producing coated body using the same
WO2007069664A1 (en) Graphite particle, carbon-graphite composite particle and their production processes
EP2750224A1 (en) Composite active material for lithium secondary batteries and method for producing same
JP2017130274A (en) Negative electrode material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
WO2011033731A1 (en) Silicon oxide, and negative electrode material for lithium ion secondary battery
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
WO2019031543A1 (en) Negative electrode active material for secondary battery, and secondary battery
JP4209649B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery containing the negative electrode material, and lithium ion secondary battery using the negative electrode
EP2840630B1 (en) Anode active material for lithium secondary battery and lithium secondary battery including same
JP4074757B2 (en) Modified graphite particles, production method thereof, and electrode material for secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
WO2000022687A1 (en) Carbonaceous material for cell and cell containing the carbonaceous material
JP6090032B2 (en) Method for forming electrode layer for secondary battery
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP4133151B2 (en) Manufacturing method for secondary battery electrode materials
KR100793691B1 (en) Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode
JP2002179419A (en) Method for manufacturing reformed graphite particle and electrode material for secondary battery
CN114391190A (en) Spheroidized carbonaceous negative electrode active material, method for producing same, and negative electrode and lithium secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350