JP4074385B2 - Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment - Google Patents

Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment Download PDF

Info

Publication number
JP4074385B2
JP4074385B2 JP23201398A JP23201398A JP4074385B2 JP 4074385 B2 JP4074385 B2 JP 4074385B2 JP 23201398 A JP23201398 A JP 23201398A JP 23201398 A JP23201398 A JP 23201398A JP 4074385 B2 JP4074385 B2 JP 4074385B2
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
corrosion resistance
resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23201398A
Other languages
Japanese (ja)
Other versions
JP2000063978A (en
Inventor
実 伊藤
明 宇佐見
学 久保田
譲児 田村
康児 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23201398A priority Critical patent/JP4074385B2/en
Publication of JP2000063978A publication Critical patent/JP2000063978A/en
Application granted granted Critical
Publication of JP4074385B2 publication Critical patent/JP4074385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は橋梁、建築等の鋼構造物において、800MPa以上の引張強さを有し、かつ海岸地帯や融雪塩を散布する地域等、塩素イオンの多い腐食環境で耐食性の要求される高強度ボルトやPC鋼棒等の部材に使用される高耐候性機械構造用鋼に関するものである。
【0002】
【従来の技術】
従来、一般に800MPa以上の引張強さを有する機械構造用合金鋼は、例えば、0.30%C−1%Crの組成を有するJIS・SCR430鋼や、0.30%C−1%Cr−0.2%Moの組成を有するJIS・SCM430鋼や、さらに0.15%C−2.25%Ni−0.35%Crの組成を有するJIS・SNC415鋼、0.3%C−1.8Ni−0.8%Cr−0.2%Moの組成を有するJIS・SNCM431鋼等の熱延材、または焼鈍材に必要に応じて冷間鍛造を行った後、焼入れ、焼もどし処理を施すことによって製造されている。
【0003】
また、使用環境により必要にして十分な耐食性を有するということで、前記の機械構造用合金鋼にCu等を含有させた種々の耐候性高強度ボルト用鋼が鉄鋼各社により開発され、実用化されている(例えば、特開昭51−56045号公報、特開平9−53144号公報、特開平9−53152号公報参照)。これらは大気暴露によって鋼表面に形成される錆皮膜が高い防食機能を有する安定錆となることが特徴である。
【0004】
上記従来技術における耐候性ボルト用鋼は、大気腐食環境においては優れた耐食性を示すが、海岸地帯など塩素イオンの多い環境では上述の安定錆は形成され難い。さらに、使用中の遅れ破壊が問題となる引張強さ1000MPaを越えるものは、上記のような厳しい腐食環境では遅れ破壊を起こす危険性が特に増大するため、実際の使用には供し得ないものであった。
【0005】
【発明が解決しようとする課題】
上記のような開示された方法では、通常の大気腐食環境では使用することができるが、海岸地帯など塩素イオンの多い環境では十分な耐食性を得ることができず、なおかつ引張強さ1000MPaを超える高強度ボルトに適用した場合、遅れ破壊を起こす危険性が飛躍的に増大するため、実際の使用に供することができない。
【0006】
本発明は以上の如き問題点を解決するためになされたもので、800MPa以上の引張強さを有し、かつ海岸地帯や融雪塩を散布する地域等、塩素イオンの多い腐食環境で耐食性の要求される高強度ボルトやPC鋼棒等の部材に使用される高耐候性機械構造用鋼を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、耐候性高強度ボルト用鋼が飛来海塩粒子の多い大気環境で、耐食性に優れた保護さび膜を形成しにくいことに着目し、従来の耐侯性高強度ボルト用鋼の成分系を基にして、研究を重ねてきた。その結果、飛来海塩粒子の少ない内陸部では鋼材の耐侯性向上に有効であるCrは、海浜地区や融雪塩を散布する地区などの高飛来海塩粒子環境では、耐候性に対して顕著な悪影響があることを見いだした。さらにNiは、海浜地区での安定さび形成能を向上させ、地鉄界面への塩化物イオンの侵入を抑制することが判明した。
【0008】
一方、高飛来海塩粒子環境における引張強さ1000MPaを超える鋼材の遅れ破壊促進機構に関して鋭意検討した結果、以下のことがわかった。
塩素イオンの多い環境での遅れ破壊の促進機構は次のように考えられる。まず、地鉄界面への塩化物イオンの侵入は、地鉄とさび層内の界面で溶出した鉄イオンの加水分解反応を加速し、界面のpHを急速に低下させる作用がある。pHの低下に伴い、腐食反応における水素発生反応速度が増大するため、遅れ破壊の原因となる鋼中の拡散性水素量が増大し、遅れ破壊を起こしやすくなる。そこで発明者らはCr含有量を極力低減し、かつNiを微量のCuと共に添加すると、塩素イオンの侵入を抑制するさび層を形成し、地鉄界面でのpH低下を抑制して耐遅れ破壊性を向上させることができることを見いだした。
【0009】
本発明はかかる知見に基づくものであり、以下の構成を要旨とする。
すなわち本発明は、質量%で、
C :0.15〜0.45%、 Si:0.01〜0.50%、
Mn:0.10〜1.50%、 Cu:0.05〜2.00%、
Ni:1.5〜7.0%、 Mo:0.05〜0.39%、
Al:0.005〜0.080%
を含有し、
Cr:0.50%以下(0%を含む)
に制限し、さらに
P :0.015%以下(0%を含む)、
S :0.015%以下(0%を含む)、
O :0.0050%以下(0%を含む)、
N :0.0100%以下(0%を含む)
に各々制限し、残部Fe及び不可避的不純物よりなることを特徴とする、800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼である。
【0010】
また、本発明の他の特徴は、上記鋼成分に加えて、質量%で、
Ti:0.005〜0.100%、 V :0.01〜0.40%、
Nb:0.005〜0.100%
のうちの1種または2種を含有する、800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼である。
また、本発明の他の特徴は、上記鋼成分に加えて、質量%で、
B :0.0003〜0.0050%
を含有する、800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼である。
【0011】
また、本発明の他の特徴は、上記鋼成分に加えて、質量%で、
Ca :0.0005〜0.0100%、
Mg :0.0005〜0.0100%、
REM:0.0010〜0.0050%
のうちの1種または2種を含有する、800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼である。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
C:Cは強度確保のため添加するが、0.15%未満では所望の強度を確保することができず、一方、0.45%を超えると鋼材の靭性が劣化するので、0.30%を上限とした。
【0013】
Si:Siは脱酸のために0.01%以上を必要とするが、0.50%を超えると耐食性が劣化するのみならず冷間鍛造性も劣化するので、0.50%を上限とし、0.01〜0.50%の範囲にした。
【0014】
Mn:Mnは脱酸、焼入れ性向上のため0.1%以上添加するが、1.5%を超えると耐遅れ破壊特性が劣化するので、1.5%を上限とした。
【0015】
Cu:Cuは0.05%以上添加すると、大気環境における鋼材表面の溶解活性点を微細分散させ、鋼材の均一溶解を促進し、かつ生成する錆コロイド粒子を級密にするメカニズムにより、錆層の防食性能を向上させるが、その効果は2.0%を超えると飽和するので、0.05〜2.0%の範囲とした。
【0016】
Ni:Niは錆層に濃縮することで、環境中のClイオンの地鉄界面への浸入を抑制するメカニズムにより鋼の耐食性を向上させる上で有効な元素であり、かつ、上述のCuの添加効果を助長する効果のある元素である。確実な効果を得るためには、1.5%以上の添加が望ましい。一方、7.0%を超えるとコストアップの原因となり、効果も飽和するので、7.0%を上限とした。
【0017】
Al:Alは通常脱酸元素として用いられている0.005〜0.080%の範囲とした。
【0018】
Cr:Crは0.5%を超えて含まれると海浜耐候性を阻害すると共に、地鉄界面のpH低下を加速して耐遅れ破壊特性も阻害するため、0.50%以下とした。好ましくは0.10%以下である。下限は少なければ少ないほどよく、0%としてもよい。
【0019】
Mo:Moは0.05%以上添加すると、焼入れ性の向上と同時に、使用中に発生した孔食中のpHの低下を抑制するメカニズムにより、孔食の成長を抑制する効果がある。また、焼もどし軟化抵抗及び焼もどし二次硬化によって焼もどし温度を高くすることができ、耐遅れ破壊特性が向上できるが、過剰の添加は効果が飽和するので、0.05〜0.39%の範囲とした。
【0020】
Ti:Tiは結晶粒を微細化し、さらに焼もどし時に炭化物として析出することによって鋼材の強度を向上させる効果を持つため、0.005%以上添加するが、0.100%を超える添加は鋼材を脆化させるので、0.1%を上限とした。
【0021】
V:VはTiと同様に、結晶粒を微細化し、焼もどし軟化抵抗及び焼もどし二次硬化によって焼もどし温度を高くすることができ、耐遅れ破壊特性が向上できる。また、焼もどし時に析出するVの炭窒化物は結晶粒内における水素のトラップサイトとして働き、耐遅れ破壊特性が顕著に向上できるので、0.01%以上添加するが、過剰の添加は効果が飽和するのみならず冷間鍛造性も劣化するので、0.40%を上限とした。
【0022】
Nb:NbはTi,Vと同様に、結晶粒を微細化し、耐遅れ破壊特性を著しく向上せしめる。その効果を確保するためには、0.005%以上添加するが、0.1%を超えて添加するとその効果が飽和するので、その範囲を0.005〜0.100%とした。
【0023】
B:Bは0.0003%以上添加すると焼入れ性を一段と向上させ、さらに、鋼表面の保護皮膜のカソード還元溶解速度を抑制するというメカニズムにより、鋼表面の保護皮膜の保護機能を向上させる。これらの効果は、0.0050%までで十分なので、その範囲を0.0003〜0.0050%とした。
【0024】
Ca:Caは0.0005%以上添加すると、鋼表面での鋼材の溶解に伴うpH低下を抑制し、鉄の溶解速度を抑制するというメカニズムにより、耐食性を向上させ、さらに、MnSの形態を制御し、低温靭性を向上させるが、その効果は0.010%までで十分なので、その範囲を0.0005〜0.010%とした。
【0025】
Mg:MgはCaと同様に、0.0005%以上添加すると、鋼表面での鋼材の溶解に伴うpH低下を抑制し、鉄の溶解速度を抑制するというメカニズムにより、耐食性を向上させ、さらに、MnSの形態を制御し、低温靭性を向上させるが、その効果は0.010%までで十分なので、その範囲を0.0005〜0.010%とした。
【0026】
REM:REMは0.0010%以上添加すると、MnSの形態を制御し、低温靭性を向上させるが、その効果は0.0050%までで十分なので、その範囲を0.0010〜0.0050%とした。
【0027】
P:Pは粒界偏析し、粒界強度を低下させ、耐遅れ破壊特性を劣化させるため、0.015%を上限としたが、低いほど好ましく、下限は0%であってもよい。
【0028】
S:SはMnと結合して割れの起点となり、さらに、単独でも粒界に偏析して脆化を促進するため、0.015%以下に限定したが、低いほど好ましく、下限は0%であってもよい。
【0029】
O:Oは溶鋼中に不可避的に混入し、低温靭性を劣化させる。量が多いとCaと結合してMnSの形態制御に有効なCa量を減少させると共に、粗大な酸化物系介在物を生成するようになるため、低温靭性から好ましくない。このため上限を0.005%とし、下限は低いほどよく、0%であってもよい。
【0030】
N:NはOと同様に、溶鋼中に不可避的に混入し、低温靭性を劣化させる。低温靭性の確保から0.0100%以下に限定したが、低いほど好ましく、0%であってもよい。
【0031】
本発明は熱処理条件を規定していないが、ボルト等のように途中に冷間鍛造工程が入るものについては、冷間鍛造性を向上させるため、熱間圧延後の素材に焼鈍、または球状化焼鈍処理を施してもよい。
【0032】
鋼に強度を付与するために焼入れ処理を行うが、通常はAc3 点以上の温度に加熱した後、水冷または油冷によって焼入れ処理を行っている。他方、加熱温度が高すぎると結晶粒の粗大化を招き、靭性及び遅れ破壊特性の劣化を招くため、あまり高い温度に加熱するのは好ましくない。本発明の成分範囲では、焼入れ加熱温度を800〜950℃とするのが好適である。
【0033】
焼入れままの鋼は降伏点が低く、機械構造用鋼として使用する場合、使用中に応力緩和の増大が生じ、さらに焼入れのままでは靭性、延性、遅れ破壊特性などが良好でないという問題がある。従って、鋼に所定の強度及び靭性を付与するためには、焼入れ後に焼もどしを行う必要がある。一般に鋼の焼もどしは、Ac1 点以下の温度で行うが、一般には150〜600℃の温度範囲で行われる。しかし、300〜400℃の範囲では低温焼もどし脆化を生じやすく、耐遅れ破壊特性を劣化させる傾向があるので、この範囲での焼きもどしは避けることが好ましい。また、成分的にも所要の強度を得るための焼もどし温度がこの範囲にならないよう配慮することが好ましい。
【0034】
【実施例】
以下に、実施例により本発明をさらに説明する。
表1に示す組成を有する転炉溶製鋼を連続鋳造し、必要に応じて均熱拡散処理工程、分塊圧延工程を経て162mm角の圧延素材とした。続いて圧延素材を線材形状に熱間圧延した。
【0035】
次に、これらの材料の遅れ破壊特性を調査するため、実際にボルトを製作した。圧延材に必要により焼鈍を、または球状化焼鈍を施し、冷間鍛造によってM22のボルト形状に成形した。その後880℃×30分の条件で加熱し、油槽中に焼入れ、表2の条件で焼もどしを行った。
【0036】
上記の工程で製作したボルト10本を、降伏点相当の軸力で治具に締め付け、JIS Z 2371の5%塩水噴霧試験環境に1000時間暴露し、破断の有無を調査した。1000時間のうちに1本でも破断したものは、高海塩粒子環境での遅れ破壊特性に劣ると判断した。
【0037】
耐食性試験は、海岸地帯などの特に塩素イオンの多い腐食環境を再現するため、5%塩水を1日1回散布する促進耐食性試験(塩水散布暴露試験)を1年間実施し、腐食減量及び目視観察による層状剥離さびの生成有無の判定で海浜耐候性の評価を行った。
【0038】
これらの各種試験結果を表2に示す。
これらの表から明らかなように、本発明で規定する条件を全て満たすものは、比較例に比べて高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示している。
【0039】
【表1】

Figure 0004074385
【0040】
【表2】
Figure 0004074385
【0041】
【発明の効果】
本発明の機械構造用鋼を用いれば、従来、腐食及び遅れ破壊の問題から、鋼構造物を使用することができなかった海岸地帯や融雪塩を散布する地域等、塩素イオンの多い腐食環境においても、橋梁、建築等に適用することが可能な、高い耐食性を持ち、かつ耐遅れ破壊特性に優れた引張強さ800MPa以上の高強度ボルトやPC鋼棒等の部材を提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a high-strength bolt that has a tensile strength of 800 MPa or more and is required to have corrosion resistance in a corrosive environment with a lot of chloride ions, such as a coastal area or a region where snow melting salt is sprayed, in steel structures such as bridges and buildings. The present invention relates to a steel for high weather resistance mechanical structures used for members such as steel bars and PC steel bars.
[0002]
[Prior art]
Conventionally, alloy steels for mechanical structures having a tensile strength of generally 800 MPa or more are, for example, JIS / SCR430 steel having a composition of 0.30% C-1% Cr, or 0.30% C-1% Cr-0. JIS SCM430 steel having a composition of 0.2% Mo, and JIS SNC415 steel having a composition of 0.15% C-2.25% Ni-0.35% Cr, 0.3% C-1.8Ni -Cold-forged as necessary to hot-rolled or annealed materials such as JIS / SNCM431 steel having a composition of -0.8% Cr-0.2% Mo, and then subjected to quenching and tempering treatment. Is manufactured by.
[0003]
In addition, because it has sufficient corrosion resistance as required by the usage environment, various weather-resistant high-strength bolt steels containing Cu and the like in the above-mentioned alloy steel for machine structures have been developed and put to practical use by steel companies. (See, for example, JP-A-51-56045, JP-A-9-53144, and JP-A-9-53152). These are characterized in that the rust film formed on the steel surface by exposure to the atmosphere becomes stable rust having a high anticorrosion function.
[0004]
Although the steel for weatherproof bolts in the above prior art shows excellent corrosion resistance in an atmospheric corrosive environment, the above-mentioned stable rust is hardly formed in an environment with a lot of chlorine ions such as a coastal area. Furthermore, if the tensile strength exceeds 1000 MPa, which causes delayed fracture during use, the risk of delayed fracture is particularly increased in the severe corrosive environment as described above, so it cannot be used for actual use. there were.
[0005]
[Problems to be solved by the invention]
In the disclosed method as described above, it can be used in a normal atmospheric corrosive environment, but sufficient corrosion resistance cannot be obtained in an environment with a lot of chloride ions such as a coastal area, and the tensile strength exceeds 1000 MPa. When applied to a strength bolt, the risk of causing delayed fracture increases dramatically, so it cannot be used for actual use.
[0006]
The present invention has been made to solve the above-described problems, and has a tensile strength of 800 MPa or more, and requires corrosion resistance in corrosive environments with a lot of chloride ions such as coastal areas and areas where snow melting salt is sprayed. The present invention provides a high weather-resistant steel for mechanical structure used for members such as high-strength bolts and PC steel bars.
[0007]
[Means for Solving the Problems]
The present inventors pay attention to the fact that the weather-resistant high-strength bolt steel is difficult to form a protective rust film having excellent corrosion resistance in an atmospheric environment with a lot of incoming sea salt particles. Based on the component system, research has been repeated. As a result, Cr, which is effective in improving the weathering resistance of steel in inland areas where there are few flying sea salt particles, is prominent in weather resistance in high flying sea salt particle environments such as beach areas and areas where snow melting salt is sprayed. I found that there was an adverse effect. Further, Ni has been found to improve the ability to form stable rust in the beach area and to suppress the intrusion of chloride ions to the iron-iron interface.
[0008]
On the other hand, as a result of earnest examination on the delayed fracture promoting mechanism of steel materials having a tensile strength exceeding 1000 MPa in a high flying sea salt particle environment, the following was found.
The mechanism for promoting delayed fracture in an environment rich in chloride ions is considered as follows. First, the intrusion of chloride ions to the interface between the iron and iron has the effect of accelerating the hydrolysis reaction of iron ions eluted at the interface between the iron and the rust layer and rapidly lowering the pH of the interface. As the pH decreases, the hydrogen generation reaction rate in the corrosion reaction increases, so the amount of diffusible hydrogen in the steel that causes delayed fracture increases, and delayed fracture is likely to occur. Therefore, the inventors reduced the Cr content as much as possible and added Ni together with a small amount of Cu to form a rust layer that suppresses the penetration of chlorine ions, and suppresses the pH drop at the interface between the iron and iron, thus preventing delayed fracture. I found that I can improve the sex.
[0009]
The present invention is based on such knowledge and has the following structure.
That is, the present invention is mass %,
C: 0.15-0.45%, Si: 0.01-0.50%,
Mn: 0.10 to 1.50%, Cu: 0.05 to 2.00%,
Ni: 1.5 to 7.0%, Mo: 0.05 to 0.39 %,
Al: 0.005-0.080%
Containing
Cr: 0.50% or less (including 0%)
P: 0.015% or less (including 0%),
S: 0.015% or less (including 0%),
O: 0.0050% or less (including 0%),
N: 0.0100% or less (including 0%)
Steel having a tensile strength of 800 MPa or more and excellent corrosion resistance and delayed fracture resistance in a high sea salt particle environment, characterized by comprising the remainder Fe and inevitable impurities. It is.
[0010]
In addition to the above steel components, the other feature of the present invention is mass%,
Ti: 0.005 to 0.100%, V: 0.01 to 0.40%,
Nb: 0.005 to 0.100%
It is a steel for mechanical structures containing one or two of them, having a tensile strength of 800 MPa or more and exhibiting excellent corrosion resistance and delayed fracture resistance in a high sea salt particle environment.
In addition to the above steel components, the other feature of the present invention is mass %,
B: 0.0003 to 0.0050%
Is a steel for mechanical structures having a tensile strength of 800 MPa or more and exhibiting excellent corrosion resistance and delayed fracture resistance in a high sea salt particle environment.
[0011]
In addition to the above steel components, the other feature of the present invention is mass %,
Ca: 0.0005 to 0.0100%,
Mg: 0.0005 to 0.0100%,
REM: 0.0010 to 0.0050%
It is a steel for mechanical structures containing one or two of them, having a tensile strength of 800 MPa or more and exhibiting excellent corrosion resistance and delayed fracture resistance in a high sea salt particle environment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
C: C is added for securing the strength. However, if it is less than 0.15%, the desired strength cannot be secured. On the other hand, if it exceeds 0.45%, the toughness of the steel material deteriorates, so 0.30% Was the upper limit.
[0013]
Si: Si needs 0.01% or more for deoxidation, but if it exceeds 0.50%, not only the corrosion resistance deteriorates but also the cold forgeability deteriorates, so 0.50% is made the upper limit. , 0.01 to 0.50% of range.
[0014]
Mn: Mn is added in an amount of 0.1% or more for improving deoxidation and hardenability, but if it exceeds 1.5%, delayed fracture resistance deteriorates, so 1.5% was made the upper limit.
[0015]
Cu: When 0.05% or more of Cu is added, a rust layer is formed by a mechanism that finely disperses dissolution active sites on the surface of the steel in the air environment, promotes uniform dissolution of the steel, and classifies the generated rust colloid particles. Although the anti-corrosion performance is improved, the effect is saturated when it exceeds 2.0%.
[0016]
Ni: Ni is an element effective in improving the corrosion resistance of steel by concentrating it in the rust layer, thereby suppressing the intrusion of Cl ions in the environment into the iron-iron interface, and the addition of Cu described above It is an element that has an effect of promoting the effect. In order to obtain a reliable effect, addition of 1.5% or more is desirable. On the other hand, if it exceeds 7.0%, it causes a cost increase and the effect is saturated, so 7.0% was made the upper limit.
[0017]
Al: Al is in the range of 0.005 to 0.080% which is usually used as a deoxidizing element.
[0018]
When Cr: Cr is contained in excess of 0.5%, the weather resistance of the beach is inhibited, and the pH reduction at the interface of the railway is accelerated to inhibit the delayed fracture resistance. Preferably it is 0.10% or less. The lower the lower limit, the better, and it may be 0%.
[0019]
Mo: Addition of 0.05% or more of Mo has the effect of suppressing the growth of pitting corrosion by improving the hardenability and at the same time suppressing the decrease in pH during pitting corrosion that occurs during use. Further, the tempering temperature can be increased by temper softening resistance and tempering secondary curing, and the delayed fracture resistance can be improved. However, the effect of adding excessively saturates the effect, so 0.05 to 0.39 % It was made the range.
[0020]
Ti: Ti has the effect of improving the strength of the steel material by refining crystal grains and precipitating as carbides during tempering, so 0.005% or more is added, but addition exceeding 0.100% causes the steel material to be added. Because of embrittlement, the upper limit was made 0.1%.
[0021]
V: V, like Ti, can refine crystal grains, raise the tempering temperature by tempering softening resistance and tempering secondary hardening, and improve delayed fracture resistance. Further, V carbonitrides precipitated during tempering function as hydrogen trap sites in the crystal grains, and the delayed fracture resistance can be remarkably improved, so 0.01% or more is added, but excessive addition is effective. Not only saturation but also cold forgeability deteriorates, so 0.40% was made the upper limit.
[0022]
Nb: Nb, like Ti and V, refines crystal grains and significantly improves delayed fracture resistance. In order to ensure the effect, 0.005% or more is added, but if added over 0.1%, the effect is saturated, so the range was made 0.005 to 0.100%.
[0023]
B: When 0.0003% or more of B is added, the hardenability is further improved, and further, the protective function of the protective coating on the steel surface is improved by the mechanism of suppressing the cathode reduction dissolution rate of the protective coating on the steel surface. Since these effects are sufficient up to 0.0050%, the range is set to 0.0003 to 0.0050%.
[0024]
When Ca: Ca is added in an amount of 0.0005 % or more, the corrosion resistance is improved and the MnS morphology is controlled by a mechanism that suppresses the pH drop accompanying the dissolution of the steel material on the steel surface and suppresses the dissolution rate of iron. Although the low temperature toughness is improved, the effect is sufficient up to 0.010 %, so the range was made 0.0005 to 0.010%.
[0025]
Mg: Similar to Ca, when added in an amount of 0.0005 % or more, the corrosion resistance is improved by a mechanism that suppresses the pH drop accompanying the dissolution of the steel material on the steel surface and suppresses the dissolution rate of iron, Although the form of MnS is controlled and the low temperature toughness is improved, the effect is sufficient up to 0.010%, so the range was made 0.0005 to 0.010%.
[0026]
REM: When REM is added in an amount of 0.0010% or more, the form of MnS is controlled and the low temperature toughness is improved, but the effect is sufficient up to 0.0050%, so the range is 0.0010 to 0.0050%. did.
[0027]
P: P segregates at the grain boundaries, lowers the grain boundary strength, and deteriorates the delayed fracture resistance. Therefore, the upper limit is made 0.015%, but the lower the better, the lower limit may be 0%.
[0028]
S: S binds to Mn to become a starting point of cracking, and further segregates at the grain boundary and promotes embrittlement alone. Therefore, it is limited to 0.015% or less, but it is preferably as low as possible, and the lower limit is 0%. There may be.
[0029]
O: O is inevitably mixed in molten steel and deteriorates low-temperature toughness. When the amount is large, the amount of Ca effective for controlling the morphology of MnS is reduced by combining with Ca, and coarse oxide inclusions are generated, which is not preferable from low temperature toughness. Therefore, the upper limit is set to 0.005%, and the lower limit is preferably as low as possible.
[0030]
N: N, like O, is inevitably mixed in molten steel and deteriorates low-temperature toughness. Although it limited to 0.0100% or less from securing low temperature toughness, it is preferably as low as possible and may be 0%.
[0031]
The present invention does not stipulate heat treatment conditions, but in the case where a cold forging process is inserted in the middle such as bolts, the material after hot rolling is annealed or spheroidized in order to improve cold forgeability. An annealing treatment may be performed.
[0032]
In order to impart strength to the steel, a quenching treatment is performed. Usually, the steel is heated to a temperature of Ac 3 or higher, and then quenched by water cooling or oil cooling. On the other hand, if the heating temperature is too high, the crystal grains are coarsened and the toughness and delayed fracture characteristics are deteriorated. In the component range of the present invention, the quenching heating temperature is preferably 800 to 950 ° C.
[0033]
The as-quenched steel has a low yield point, and when used as a machine structural steel, there is a problem that stress relaxation increases during use, and the toughness, ductility, delayed fracture characteristics, etc. are not good when quenched. Therefore, in order to give predetermined strength and toughness to steel, it is necessary to perform tempering after quenching. In general, tempering of steel is performed at a temperature of Ac 1 point or less, but is generally performed in a temperature range of 150 to 600 ° C. However, in the range of 300 to 400 ° C., low temperature tempering tends to cause embrittlement and tends to deteriorate the delayed fracture resistance. Therefore, it is preferable to avoid tempering in this range. Further, it is preferable to consider that the tempering temperature for obtaining the required strength in terms of components does not fall within this range.
[0034]
【Example】
The following examples further illustrate the present invention.
Converter molten steel having the composition shown in Table 1 was continuously cast, and a 162 mm square rolled material was obtained through a soaking diffusion process and a block rolling process as necessary. Subsequently, the rolled material was hot rolled into a wire shape.
[0035]
Next, bolts were actually manufactured to investigate the delayed fracture characteristics of these materials. The rolled material was annealed or spheroidized as necessary, and formed into a M22 bolt shape by cold forging. Thereafter, the mixture was heated at 880 ° C. for 30 minutes, quenched in an oil bath, and tempered under the conditions shown in Table 2.
[0036]
Ten bolts manufactured in the above process were fastened to a jig with an axial force equivalent to the yield point, exposed to a JIS Z 2371 5% salt spray test environment for 1000 hours, and examined for breakage. One that broke even within 1000 hours was judged to be inferior in delayed fracture characteristics in a high sea salt particle environment.
[0037]
In order to reproduce the corrosive environment with a lot of chloride ions, such as coastal areas, the corrosion resistance test is conducted for 1 year with an accelerated corrosion resistance test (salt water spray exposure test) in which 5% salt water is sprayed once a day. The beach weather resistance was evaluated by determining the presence or absence of delamination rust generated by the above.
[0038]
These various test results are shown in Table 2.
As is apparent from these tables, those satisfying all of the conditions defined in the present invention exhibit superior corrosion resistance and delayed fracture resistance in a high sea salt particle environment as compared with the comparative example.
[0039]
[Table 1]
Figure 0004074385
[0040]
[Table 2]
Figure 0004074385
[0041]
【The invention's effect】
If the steel for machine structure of the present invention is used, in the corrosive environment with a lot of chloride ions, such as the coastal area where the steel structure could not be used or the area where snowmelt salt is spread, due to the problems of corrosion and delayed fracture. In addition, it is possible to provide members such as high strength bolts and PC steel bars that have high corrosion resistance and are excellent in delayed fracture resistance, and can be applied to bridges, buildings, etc. Become.

Claims (4)

質量%で、
C :0.15〜0.45%、
Si:0.01〜0.50%、
Mn:0.10〜1.50%、
Cu:0.05〜2.00%、
Ni:1.5〜7.0%、
Mo:0.05〜0.39%、
Al:0.005〜0.080%
を含有し、
Cr:0.50%以下
に制限し、さらに
P :0.015%以下、
S :0.015%以下、
O :0.0050%以下、
N :0.0100%以下
に各々制限し、残部Fe及び不可避的不純物よりなることを特徴とする、800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼。
% By mass
C: 0.15-0.45%,
Si: 0.01 to 0.50%,
Mn: 0.10 to 1.50%,
Cu: 0.05-2.00%,
Ni: 1.5-7.0%,
Mo: 0.05-0.39%
Al: 0.005-0.080%
Containing
Cr: limited to 0.50% or less, P: 0.015% or less,
S: 0.015% or less,
O: 0.0050% or less,
N: 0.0100% or less, each consisting of the balance Fe and inevitable impurities, characterized by having a tensile strength of 800 MPa or more and excellent corrosion resistance and delayed fracture resistance in a high sea salt particle environment Mechanical structural steel that exhibits properties.
さらに、質量%で、
Ti:0.005〜0.100%、
V :0.01〜0.40%、
Nb:0.005〜0.100%
のうちの1種または2種を含有することを特徴とする、請求項1に記載の800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼。
Furthermore, in mass %,
Ti: 0.005 to 0.100%,
V: 0.01-0.40%,
Nb: 0.005 to 0.100%
Characterized in that it contains one or two of, has a tensile strength of more than 800MPa according to claim 1, and shows excellent corrosion resistance and delayed fracture resistance in Koumishio particle environment Steel for machine structure.
さらに、質量%で、
B :0.0003〜0.0050%
含有することを特徴とする、請求項1または2に記載の800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼。
Furthermore, in mass %,
B: 0.0003 to 0.0050%
The characterized in that it contains, according to claim 1 or 2 has a 800MPa tensile strength of not less than described, and corrosion resistance Koumishio excellent particle environment and delayed mechanical structural steel showing the breakdown characteristics.
さらに、質量%で、
Ca :0.0005〜0.0100%、
Mg :0.0005〜0.0100%、
REM:0.0010〜0.0050%
のうちの1種または2種を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の800MPa以上の引張強さを有し、かつ高海塩粒子環境で優れた耐食性及び耐遅れ破壊特性を示す機械構造用鋼。
Furthermore, in mass %,
Ca: 0.0005 to 0.0100%,
Mg: 0.0005 to 0.0100%,
REM: 0.0010 to 0.0050%
One or characterized by containing two, has a 800MPa tensile strength of not less than according to any one of claims 1 to 3, and excellent in Koumishio particles environment corrosion resistance of And steel for machine structure showing delayed fracture resistance.
JP23201398A 1998-08-18 1998-08-18 Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment Expired - Fee Related JP4074385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23201398A JP4074385B2 (en) 1998-08-18 1998-08-18 Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23201398A JP4074385B2 (en) 1998-08-18 1998-08-18 Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment

Publications (2)

Publication Number Publication Date
JP2000063978A JP2000063978A (en) 2000-02-29
JP4074385B2 true JP4074385B2 (en) 2008-04-09

Family

ID=16932597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23201398A Expired - Fee Related JP4074385B2 (en) 1998-08-18 1998-08-18 Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment

Country Status (1)

Country Link
JP (1) JP4074385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817152B2 (en) * 2000-10-06 2006-08-30 新日本製鐵株式会社 High-strength, high-toughness weather-resistant steel with excellent shade and weather resistance
JP3468239B2 (en) * 2001-10-01 2003-11-17 住友金属工業株式会社 Steel for machine structural use and its manufacturing method
JP4586489B2 (en) * 2004-10-22 2010-11-24 住友金属工業株式会社 Steel and structures with excellent beach weather resistance
JP6891830B2 (en) * 2018-01-26 2021-06-18 日本製鉄株式会社 Steel for mooring chains and mooring chains

Also Published As

Publication number Publication date
JP2000063978A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JPWO2020090303A1 (en) High-strength steel sheet and its manufacturing method
KR20090089791A (en) High strength steel sheet having superior ductility and method for manufacturing the same
JP2001348618A (en) Method for producing high strength bolt excellent in delayed fracture resistance and relaxation resistant characteristic
JP2001240936A (en) Steel having coarse-grained ferritic layer on surface layer and its production method
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
JP4074385B2 (en) Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment
JP4124590B2 (en) High-strength steel wire with excellent delayed fracture resistance and corrosion resistance
JP2004143470A (en) Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4132178B2 (en) PC steel wire or bar with good delayed fracture resistance and manufacturing method thereof
JP2004307932A (en) Steel for bolt having excellent delayed fracture resistance, and method of producing bolt
JPS61177326A (en) Manufacture of wire rod for wire having high strength as well as weatherability
JP2006219718A (en) Steel for high strength bolt with excellent delayed fracture resistance, and high strength bolt
JP4147701B2 (en) Manufacturing method of bolt parts with excellent delayed fracture resistance and beach weather resistance
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP2001073071A (en) THICK STEEL PLATE HAVING 570 TO 720 N/mm2 TENSILE STRENGTH AND SMALL IN DIFFERENCE IN HARDNESS BETWEEN WELDING HEAT-AFFECTED ZONE AND BASE MATERIAL AND ITS PRODUCTION
JP3223543B2 (en) High corrosion resistance and high strength steel for bolts
JP3687400B2 (en) Manufacturing method of high strength thin steel sheet with excellent workability and plating properties
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP3463600B2 (en) High-strength steel with excellent shore weather resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees