JP3687400B2 - Manufacturing method of high strength thin steel sheet with excellent workability and plating properties - Google Patents

Manufacturing method of high strength thin steel sheet with excellent workability and plating properties Download PDF

Info

Publication number
JP3687400B2
JP3687400B2 JP07326299A JP7326299A JP3687400B2 JP 3687400 B2 JP3687400 B2 JP 3687400B2 JP 07326299 A JP07326299 A JP 07326299A JP 7326299 A JP7326299 A JP 7326299A JP 3687400 B2 JP3687400 B2 JP 3687400B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
plating
heating
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07326299A
Other languages
Japanese (ja)
Other versions
JP2000169934A (en
Inventor
一典 大澤
坂田  敬
古君  修
善継 鈴木
章翁 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07326299A priority Critical patent/JP3687400B2/en
Publication of JP2000169934A publication Critical patent/JP2000169934A/en
Application granted granted Critical
Publication of JP3687400B2 publication Critical patent/JP3687400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用鋼板などとしての使途に好適な高強度薄鋼板(めっき母板及びめっき鋼板)に関し、とくに、加工性およびめっき性に優れた高強度薄鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の安全性、軽量化および低燃費化、ひいては地球環境の改善の観点から、自動車用の鋼板として、高強度の薄鋼板(めっき母板およびおよび亜鉛めっき鋼板)を採用する傾向が増加している。その中で、とくに高強度の溶融亜鉛めっき鋼板を製造するためには、めっき性がよく、かつ溶融亜鉛めっき浴を通過し、あるいはさらに合金化処理が施された後に、所望の強度と加工性が得られるようなめっき原板を予め製造しておくことが必要である。
【0003】
一般に、鋼板の強度を増加させるためには、P、Mn、Siなどの固溶強化元素、Ti、Nb、Vなどの析出強化元素を添加する。かかる元素を添加した鋼板を連続溶融亜鉛めっきライン(CGL)で処理した場合、鋼板がAc1変態点以上の温度で焼なましを受け、さらに冷却速度が遅いため、高い強度が得られにくくなり、高強度を得るためには、多量の合金元素の添加が必要になり、コスト高となる。その一方で、合金元素の多量添加は亜鉛めっき性を著しく劣化させることが知られており、めっき性の観点からも合金元素は少量添加することが望まれる。
このように合金元素の含有量は、強度とめっき性とで相反する作用を及ぼすので、連続溶融亜鉛めっきラインにて、めっき性がよい高強度亜鉛めっき鋼板を製造することは極めて困難なものであった。また、高強度鋼板の場合には、伸びなどの加工性に関わる特性が劣るため、加工性のよい溶融亜鉛めっき鋼板を製造することは、さらに困難なことであった。
【0004】
ところで、加工性の良好な高強度鋼板として、従来からフェライト素地にマルテンサイトを主相とする低温変態相(残留オーステナイトも含む)を含む複合組織鋼板が提案されている。この複合組織鋼板は常温非時効で降伏比(降伏強さ(YS))/(引張強さ(TS))が低く、加工性および加工後の焼付硬化性が優れている。この鋼板の製造方法としては、(α+γ)域温度で加熱後、水冷やガス冷却などで急冷することが知られており、また冷却速度が速いほど合金元素およびその添加量が少なくてよいことも知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の複合組織鋼板は、500 ℃程度の温度で溶融亜鉛めっき、あるいはさらに合金化処理した場合に、フェライト素地中に分散しているマルテンサイトが焼もどしされて、引張強さは低下し、上降伏点が現れて降伏比の上昇、さらには降伏伸びの発生が起こってしまう。
焼もどし軟化は、Mn、Siなどの合金元素が少ないほど生じやすく、一方、これら合金元素が多い場合には、溶融亜鉛めっき性が低下してしまう。結局、複合組織鋼板においても、めっき工程でマルテンサイトが焼き戻しされるので、その特徴である加工性と高強度を両立させ、かつ良好なめっき性を発揮させることは、従来技術の下では困難であった。
【0006】
そこで、本発明は、従来技術が抱えている上記問題を解決することを目的とし、連続溶融亜鉛めっきラインなどの設備を用いて亜鉛めっきしても、良好な加工性と高強度をともに満たし、しかも良好なめっき性を有する高強度薄鋼板およびその製造方法を提案する。
本発明の具体的目的は、加工性と高強度を表す指標として、降伏比70%以下、TS×Elの値が 16000 MPa・%以上を満たしつつ、良好なめっき性を有する高強度薄鋼板およびその製造方法を提案することにある。
【0007】
【課題を解決するための手段】
発明者らは、上記課題の解決に向けて鋭意研究した結果、とくに第2相(パーライト, ベーナイト)からなるバンド状組織を所定の範囲まで分散させることにより、解決できるとの知見を得て本発明を完成するに至った。
【0012】
すなわち、本発明は、
(1) C:0.068〜0.20wt%、Si:0.5wt%以下、Mn:1.5〜2.5wt%、P:0.10wt%以下、S:0.05wt%以下、Al:0.10wt%以下、N:0.010wt%以下、Cr:0.5wt%以下、Mo:0.01〜0.50wt%を含有し、残部はFeおよび不可避的不純物の組成からなるスラブを、熱間圧延して、750℃以下で巻き取り、次いで、そのまま、もしくはさらに冷間圧延を行い、その後、800℃以上に加熱して冷却し、700〜850℃に加熱し、冷却途中で溶融亜鉛めっき、あるいはさらに合金化処理を行うことにより、フェライト素地中にマルテンサイトが分散した複合組織とすることを特徴とする加工性およびめっき性に優れた高強度薄鋼板の製造方法。
【0014】
(2) 上記 (1)において、鋼組成が、さらに、Nb:1.0wt%以下、Ti:1.0wt%以下、V:1.0wt%以下から選ばれるいずれか1種または2種以上を含有することを特徴とする加工性およびめっき性に優れた高強度薄鋼板の製造方法。
【0015】
【発明の実施の形態】
はじめに、本発明の基になった実験結果について説明する。
0.09wt%C−0.01wt%Si−2.0 wt%Mn−0.009 wt%P−0.003 wt%S−0.041 wt%Al−0.0026wt%N−0.15wt%Mo−0.02wt%Cr、残部が実質的にFeからなる化学組成で厚み30mmのシートバーを、1200℃に加熱し、5パスで厚さ2.5 mmの熱延板とし、640 ℃で巻き取り、酸洗後、750 ℃〜900 ℃に1分間加熱保持(1回目加熱)し、10℃/sec 速度で室温まで冷却した。次いで、750 ℃に1分間加熱保持(2回目加熱)し、10℃/sec の速度で 500℃まで冷却し、30 sec保持後、10℃/sec で 550℃まで加熱し、20 sec保持後ただちに10℃/sec の速度で室温まで冷却した。
得られた鋼板のTS、YR、TS×Elと、1回目加熱後の鋼板板厚方向断面におけるバンド状組織の厚さとの関係を調査し、図1に示す結果を得た。ここに、バンド状組織の厚みは、Tb /T(ただし、Tb :第2相からなるバンド状組織の板厚方向厚み、T:鋼板板厚)で表した。ただし、Tb は、画像解析装置により、倍率1500倍の画像における板厚方向の全てのバンド状組織の厚みを測定し、その平均値を求めたものである。
【0016】
図1から、1回目の加熱後の鋼板におけるTb/Tが0.005以下であれば、降伏比が低く、TS×Elバランスが良好であることが判明した。すなわち、本発明のように、強度確保の目的で、Mnを多量に添加する場合には、C,Mn量に富んだ第2相からなるバンド状組織が発達しやすい。このような場合に、連続溶融亜鉛めっきライン(CGL)の加熱(2回目加熱)に先立って、連続焼鈍ラインなどの設備で所定温度で1回目加熱を行うことによって、バンド状組織の厚みを薄くし、これを細かく分散させれば、連続溶融亜鉛めっきラインのめっき過程あるいはさらに合金化処理過程で保持された場合でも、γ相中にC,Mnの濃化量が増して、冷却後フェライト素地中にマルテンサイトを好適に分散させることが可能になる。これは、連続溶融亜鉛めっきラインで高温加熱を行った場合でも起こりうる現象である。ただし、高温加熱は鋼板表面にMnが濃化しやすいので、めっき性が多少劣る場合もあり、より安定しためっき性を確保するためには、連続焼鈍ラインで1回目の加熱を行い、連続溶融亜鉛めっきラインで2回目の加熱を行う方法の方がよい。
【0017】
このような1回目加熱によるバンド状組織の分散効果は、図2および図3に示す顕微鏡組織の比較例から明らかである。ここで、図2は1回目加熱の前の組織であり、Tb /Tの値が平均で0.0070であるのに対し、図3に示す1回目加熱の後の組織では、バンド状組織の分散がはかられ、Tb /Tが平均で0.0016にまで減少している。
【0018】
次に、本発明において成分組成および製造条件を上記範囲に限定した理由について説明する。
C:0.068〜0.20wt%
Cは鋼の重要な基本成分の一つであり、とくに本発明では、(α+γ)域に加熱したときのγ相の体積率、ひいては変態後のマルテンサイトの量に影響するために重要な元素である。そして、強度などの機械的特性は、このマルテンサイト分率とマルテンサイト相の硬度によって大きく左右される。C量が、0.068wt%未満ではマルテンサイト相が生成しにくく、一方、0.20wt%超ではスポット溶接性が劣化することから、その範囲を0.068〜0.20wt%とする。なお、好ましいC量は0.068〜0.15wt%である。
【0019】
Si:0.5wt%以下
Siはα相中の固溶C量を減少させることにより、伸びなどの加工性を向上させる元素であるが、0.5wt%超のSi量の含有はスポット溶接性およびめっき性を損ねるので上限を0.5wt%とする
【0020】
Mn:1.5 2.5wt%
Mnは本発明においてはγ相に濃化し、マルテンサイト変態を促す効果があり、基本成分として重要な元素である。ただし、1.5wt%未満の添加ではその効果がなく、一方、2.5wt%超えるとスポット溶接性およびめっき性を著しく損なうので、Mn 1.5〜2.5wt%の範囲で添加する。
【0021】
P:0.10wt%以下
Pは高強度化を安価に達成するうえで有効な元素であるが、0.1 wt%を超えて含有するとスポット溶接性を著しく損なうので上限を0.10wt%とする。なお、P量は0.05wt%以下に抑えるのが望ましい。
【0022】
S:0.05wt%以下
Sは熱延時の熱間割れを引き起こすもとになるほか、スポット溶接部のナゲット内破断を誘発するので、極力低減するのが望ましい。よって、本発明では上限を0.05wt%以下とする。なお、0.010 wt%以下に抑制するのがより好ましい。
【0023】
Al:0.10wt%以下
Alは製鋼工程での脱酸剤として、また時効劣化を引き起こすNをAlNとして固定する有効な元素である。しかし、0.10wt%超えて含有すると製造コストの上昇を招くので、Al量は0.10wt%以下に抑える必要がある。なお、好ましい含有量は0.050 wt%以下である。
【0024】
N:0.010 wt%以下
Nは時効劣化をもたらすほか、降伏点(降伏比)の上昇、降伏伸びの発生を招くことから、0.010 wt%以下に抑制する必要がある。なお、好ましいN量は0.0050wt%以下である。
【0025】
Cr:0.5wt%以下
CrはMn、Moと同様に、フェライト+マルテンサイトの複合組織を得るのに有効な元素であるが、0.5wt%超えて添加するとめっき性を損ねるので、0.5wt%以下とする
【0026】
Mo:0.01 0.50wt%
MoはMnと同様に、めっき性を損なうことなく、フェライト+マルテンサイトの複合組織を得るのに重要な元素であり、少なくとも0.01wt%の添加は必要である。しかし、0.50%を超えて添加すると、さらなる効果が少なく、製造コストの上昇を招くので0.50wt%を上限とする
【0027】
Ti:0.001 〜1.0 wt%、Nb:0.001 〜1.0 wt%、V:0.001 〜1.0 wt%
Ti、NbおよびVは炭化物を形成し、鋼を高強度化するのに有効な元素であり、必要に応じて、それぞれ0.001 wt%以上を添加することが好ましい。ところが、いずれの元素とも1.0 wt%を超えて添加するとコスト上の不利を招くほか、降伏点(降伏比)を上昇させて加工性を低下させる。よって、これらの元素はいずれも 0.001〜1.0 wt%の範囲で添加する。なお、これら元素は合計添加量で、好ましくは0.001 〜1.0 wt%とするのがよい。
【0028】
次に、本発明における製造条件について述べる。
以上に述べた成分組成からなる鋼スラブを常法にしたがい熱間圧延し、750 ℃以下で巻き取る。巻取温度を750 ℃以下とする理由は、この温度を超えて巻き取るとスケール厚みが厚くなり酸洗効率が悪くなる他、コイル長手方向の先端部、中央部、後端部、あるいはコイル幅方向のエッジ部、中央部の間で巻取り後の冷却速度が大きく異なるため、材質変動が大きくなるからである。なお、好ましい巻取温度は700 ℃以下である。また、巻取温度が過度に低くなると、冷間圧延性の悪化が起こりやすくなるので、300 ℃を下回らないように配慮するのがよい。
【0029】
この熱延板を酸洗して脱スケールし、そのまま、場合によってはさらに冷間圧延した後、750 ℃以上に加熱し、冷却することにより、亜鉛めっき用の母板とする。めっき前に、一旦、750 ℃以上の温度域に加熱(連続焼鈍ラインが好適)して冷却することによって、バンド状組織に濃化しているC, Mnを分散させ、効率よくフェライト+マルテンサイトの複合組織を形成させ、加工性の向上をはかる。すなわち、本発明のようにMn含有量が多い場合、とくにバンド状組織が形成されやすいので、これによる悪影響を排除しておく必要がある。そして、バンド状組織の平均厚みTb と板厚Tの関係を、(Tb/T)≦0.005 として、バンド状組織の厚みをこの範囲まで薄くし、細かく分散させておけば、連続溶融亜鉛めっきラインのめっき過程、あるいはさらに合金化処理過程で保持された場合でもγ相中にC, Mnの濃化量が増して、フェライト素地中にマルテンサイト相を好適に分散させることが可能になる。このようなめっき前の加熱(1回目の加熱)によるバンド状組織の分散効果は、図2および図3で示したとおりである。なお、熱間圧延後の巻取から1回目加熱までの間に酸洗し脱スケールを行っても行わなくても何ら本発明の効果には影響しない。
【0030】
このようにして製造されためっき用の母板にめっきを施して薄鋼板とする場合には、上述した1回目加熱ののち、亜鉛めっきに先立って酸洗処理を行ってもよい。この酸洗は、前記加熱の際に生成したMn、Crなどの表面濃化層を除去し、より安定しためっき性を向上させるために行う。また、1回目加熱後から酸洗処理までの間に、後工程であるめっきラインの通板性をよくするために調質圧延を行ってもよい。次いで、溶融亜鉛めっきを施す。溶融亜鉛めっきを行う場合には、めっき前に、溶融亜鉛めっきライン(CGL)にて700 850 に再加熱(2回目加熱)を行う。めっき前の加熱温度が700℃以下では鋼板表面が還元されずにめっき不良を起こしやすい他、所望の組織と材質が得られないので、700℃以上で加熱するものとする。なお、好ましくは750〜850 の温度がよい。溶融亜鉛めっきを行った後で、引き続き合金化処理を行ってもよい
【0031】
【実施例】
表1に示す化学組成を有し、厚さ300mmの連続鋳造スラブを、1200℃に加熱し、2パスの粗圧延後、7スタンドの仕上げ圧延機で厚さ2.3mmの熱延板として巻き取った。酸洗後、No. 1, 11 17 27 29については熱延板のまま、No. 3,4,6,8, 14 16 18 21 23 25 26 30 32については板厚1.0mmに冷延後、連続焼鈍ラインにて加熱(1回目加熱)、連続溶融亜鉛めっきラインにて、酸洗、加熱(2回目加熱)、亜鉛めっき、場合によってはさらに合金化処理を行った。以上の各製造条件を表2および表3に示す。得られた鋼板を供試材として、機械的特性、めっき性などについて調査した。また、連続焼鈍ラインあるいは連続溶融亜鉛めっきラインで加熱(1回目加熱)した後の鋼板の組織観察により、バンド組織厚みと板厚との比Tb/Tを測定した。これらの結果を合わせて表2、表3に示す。
【0032】
ここで、めっき性、合金化処理性、スポット溶接性は以下の方法で評価した。めっき性:不めっきの全くないものを「優」、わずかに不めっきのあるものを「良」、不めっきの著しいものを「劣」とし、目視で判定した。
合金化性:合金化ムラの全くないものを「優」、わずかに合金化ムラのあるものを「良」、合金化ムラの著しいものを「劣」とし、目視で判定した。
スポット溶接性:JIS Z 3136の方法に従い、スポット溶接継手の引張剪断試験を行い、引張剪断強度が板厚1.0 mmの場合は6700Nを、板厚2.3 Nの場合は23000 Nをそれぞれ下限とし、下限強度以上のものを「優」、下限強度未満のものを「劣」とした。
【0033】
表1〜表3から、発明例は、降伏比が低く、TS×Elバランスが良好であり、めっき性、合金化処理性、スポット溶接性についてもとくに問題がないことがわかった。
【0034】
【表1】

Figure 0003687400
【0035】
【表2】
Figure 0003687400
【0036】
【表3】
Figure 0003687400
【0037】
【発明の効果】
以上説明したように本発明によれば、めっき性に何ら問題なく、降伏比が低く、TS×Elバランスが良好な高強度薄鋼板を提供することが可能になる。したがって、この発明は、自動車の軽量化、低燃費化を可能とするので、地球環境の改善に大きく貢献する。
【図面の簡単な説明】
【図1】引張強さ(TS)、降伏比(YR)、TS×Elバランスに及ぼすバンド状第2相の平均厚さTb と板厚Tとの比の関係を示すグラフである。
【図2】代表的なバンド状の第2相組織を表す金属組織の例である。
【図3】1回目の加熱により第2相組織が分散した状態を表す金属組織の例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength thin steel sheet (plating base plate and plated steel sheet) suitable for use as a steel sheet for automobiles, and more particularly to a high-strength thin steel sheet excellent in workability and plating properties and a method for producing the same. .
[0002]
[Prior art]
In recent years, the tendency to adopt high strength thin steel sheets (plating mother board and galvanized steel sheets) as automobile steel sheets has been increasing from the viewpoint of automobile safety, weight reduction and fuel efficiency reduction, and consequently improvement of the global environment. doing. Among them, in order to produce particularly high-strength hot-dip galvanized steel sheet, the desired strength and workability are obtained after having good plating properties and passing through a hot-dip galvanizing bath or after being further alloyed. It is necessary to manufacture in advance a plating original plate from which can be obtained.
[0003]
Generally, in order to increase the strength of a steel sheet, a solid solution strengthening element such as P, Mn, or Si, or a precipitation strengthening element such as Ti, Nb, or V is added. When a steel sheet to which such elements are added is processed in a continuous hot dip galvanizing line (CGL), the steel sheet is annealed at a temperature above the Ac 1 transformation point, and the cooling rate is slow, making it difficult to obtain high strength. In order to obtain high strength, it is necessary to add a large amount of alloy elements, which increases the cost. On the other hand, it is known that the addition of a large amount of the alloy element significantly deteriorates the galvanizing property, and it is desired to add a small amount of the alloy element from the viewpoint of the plating property.
As described above, the alloying element content has a contradictory effect on strength and plating properties, so it is extremely difficult to produce a high-strength galvanized steel sheet with good plating properties in a continuous hot dip galvanizing line. there were. Further, in the case of a high-strength steel plate, since the properties relating to workability such as elongation are inferior, it is more difficult to produce a hot-dip galvanized steel plate having good workability.
[0004]
By the way, as a high-strength steel sheet having good workability, a composite structure steel sheet containing a low-temperature transformation phase (including residual austenite) mainly containing martensite in a ferrite base has been proposed. This composite steel sheet is non-aging at room temperature, has a low yield ratio (yield strength (YS)) / (tensile strength (TS)), and is excellent in workability and bake hardenability after processing. As a manufacturing method of this steel sheet, it is known that after heating at (α + γ) range temperature, it is rapidly cooled by water cooling or gas cooling, and the faster the cooling rate, the smaller the alloy elements and their addition amount may be. Are known.
[0005]
[Problems to be solved by the invention]
However, when a conventional composite steel sheet is hot dip galvanized or further alloyed at a temperature of about 500 ° C., the martensite dispersed in the ferrite base is tempered and the tensile strength decreases. The upper yield point appears, the yield ratio increases, and the yield elongation occurs.
Temper softening tends to occur as the number of alloy elements such as Mn and Si decreases. On the other hand, when the number of these alloy elements is large, the hot dip galvanizing property is lowered. Eventually, martensite is also tempered in the plated steel sheet in the composite structure steel plate, so it is difficult to achieve both good workability and high strength, which are the characteristics of the steel plate, and to exhibit good plating properties. Met.
[0006]
Therefore, the present invention aims to solve the above problems of the prior art, satisfying both good workability and high strength even when galvanized using equipment such as a continuous hot dip galvanizing line, In addition, a high-strength thin steel sheet having good plating properties and a method for producing the same are proposed.
A specific object of the present invention is to provide a high-strength thin steel sheet having good plating properties while satisfying a yield ratio of 70% or less and a TS × El value of 16000 MPa ·% or more as an index representing workability and high strength. The manufacturing method is proposed.
[0007]
[Means for Solving the Problems]
As a result of diligent research aimed at solving the above-mentioned problems, the inventors obtained knowledge that the problem can be solved by dispersing a band-like structure composed of the second phase (perlite, bainite) to a predetermined range. The invention has been completed.
[0012]
That is, the present invention
(1) C: 0.068 to 0.20 wt%, Si: 0.5 wt% or less, Mn: 1.5 to 2.5 wt%, P: 0.10 wt% or less, S: 0.05 wt% or less, Al: 0.10 wt% or less, N: 0.010 A slab containing wt% or less, Cr: 0.5 wt% or less, Mo: 0.01 to 0.50 wt%, the balance being composed of Fe and inevitable impurities, hot-rolled and wound up at 750 ° C. or less, directly, or further subjected to cold rolling, then cooled and heated to above 800 ° C., then heated to 700-850 ° C., during cooling in galvanizing, or further by performing alloying treatment, the ferrite matrix A method for producing a high-strength thin steel sheet excellent in workability and plating properties, characterized by having a composite structure in which martensite is dispersed .
[0014]
(2) In the above (1) , the steel composition further contains one or more selected from Nb: 1.0 wt% or less, Ti: 1.0 wt% or less, V: 1.0 wt% or less A method for producing a high-strength thin steel sheet excellent in workability and plating properties characterized by
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, experimental results on which the present invention is based will be described.
0.09wt% C-0.01wt% Si-2.0wt% Mn-0.009wt% P-0.003wt% S-0.041wt% Al-0.0026wt% N-0.15wt% Mo-0.02wt% Cr, the balance being substantially A 30-mm thick sheet bar made of Fe is heated to 1200 ° C, made into a hot-rolled sheet with a thickness of 2.5 mm in 5 passes, wound at 640 ° C, pickled, and then 750 ° C to 900 ° C for 1 minute. The mixture was heated and held (first heating) and cooled to room temperature at a rate of 10 ° C./sec. Next, heat and hold at 750 ° C for 1 minute (second heating), cool to 500 ° C at a rate of 10 ° C / sec, hold for 30 sec, heat to 550 ° C at 10 ° C / sec and immediately hold for 20 sec It was cooled to room temperature at a rate of 10 ° C / sec.
The relationship between TS, YR, TS × El of the obtained steel sheet and the thickness of the band-like structure in the steel sheet thickness direction cross section after the first heating was investigated, and the results shown in FIG. 1 were obtained. Here, the thickness of the band-like structure was expressed by Tb / T (where Tb : thickness in the thickness direction of the band-like structure composed of the second phase, T: steel plate thickness). However, Tb is an average value obtained by measuring the thickness of all band-like tissues in the plate thickness direction in an image with a magnification of 1500 times by an image analysis apparatus.
[0016]
From FIG. 1, it was found that if T b / T in the steel sheet after the first heating is 0.005 or less, the yield ratio is low and the TS × El balance is good. That is, as in the present invention, when a large amount of Mn is added for the purpose of securing the strength, a band-like structure composed of the second phase rich in the amount of C and Mn tends to develop. In such a case, the thickness of the band-shaped structure is reduced by performing the first heating at a predetermined temperature with equipment such as a continuous annealing line prior to the heating (second heating) of the continuous galvanizing line (CGL). However, if this is finely dispersed, the concentration of C and Mn in the γ phase increases even when maintained in the plating process of the continuous hot dip galvanizing line or further in the alloying process, and the ferrite base after cooling It becomes possible to suitably disperse martensite therein. This is a phenomenon that can occur even when high-temperature heating is performed in a continuous hot-dip galvanizing line . However, high temperature heating tends to concentrate Mn on the surface of the steel sheet, so the plating performance may be somewhat inferior. To ensure more stable plating performance, the first heating is performed in the continuous annealing line, and the continuous molten zinc The method of performing the second heating in the plating line is better.
[0017]
The effect of dispersing the band-like structure by the first heating is apparent from the comparative examples of the microscopic structures shown in FIGS. Here, FIG. 2 shows the structure before the first heating, and the average value of T b / T is 0.0070, whereas the structure after the first heating shown in FIG. The T b / T is reduced to 0.0016 on average.
[0018]
Next, the reason why the component composition and production conditions are limited to the above ranges in the present invention will be described.
C: 0.068 ~ 0.20wt%
C is one of the important basic components of steel, and in the present invention, in particular, an element important for influencing the volume fraction of the γ phase when heated to the (α + γ) region, and hence the amount of martensite after transformation. It is. Mechanical properties such as strength are greatly influenced by the martensite fraction and the hardness of the martensite phase. If the amount of C is less than 0.068 wt%, the martensite phase is difficult to form, whereas if it exceeds 0.20 wt%, the spot weldability deteriorates, so the range is set to 0.068 to 0.20 wt%. A preferable amount of C is 0.068 to 0.15 wt%.
[0019]
Si: 0.5 wt% or less
Si is an element that improves the workability such as elongation by reducing the amount of solid solution C in the α phase, but the content of Si exceeding 0.5 wt% impairs spot weldability and plating properties, so the upper limit is set. 0.5 wt% .
[0020]
Mn: 1.5 to 2.5 wt%
In the present invention, Mn is an important element as a basic component because it concentrates in the γ phase and has the effect of promoting martensitic transformation. However, the addition of less than 1.5 wt% without the effect, on the other hand, since the 2.5 exceeds wt% when significant loss of spot weldability and plating resistance, Mn is added in an amount of from 1 .5~2.5wt%.
[0021]
P: 0.10 wt% or less P is an effective element for achieving high strength at a low cost, but if it exceeds 0.1 wt%, spot weldability is significantly impaired, so the upper limit is set to 0.10 wt%. Note that the P content is desirably 0.05 wt% or less.
[0022]
S: 0.05 wt% or less S not only causes hot cracking during hot rolling, but also induces fracture in the nugget of the spot weld, so it is desirable to reduce it as much as possible. Therefore, in the present invention, the upper limit is made 0.05 wt% or less. In addition, it is more preferable to suppress to 0.010 wt% or less.
[0023]
Al: 0.10wt% or less
Al is an effective element for fixing N which causes aging deterioration as AlN as a deoxidizer in the steelmaking process. However, if the content exceeds 0.10 wt%, the production cost increases, so the Al content must be suppressed to 0.10 wt% or less. A preferable content is 0.050 wt% or less.
[0024]
N: 0.010 wt% or less N not only causes aging deterioration, but also causes an increase in yield point (yield ratio) and yield elongation. Therefore, N must be suppressed to 0.010 wt% or less. A preferable N amount is 0.0050 wt% or less.
[0025]
Cr: 0.5 wt% or less
Cr, like Mn and Mo, is an element effective for obtaining a composite structure of ferrite and martensite. However, if added over 0.5 wt%, the plating property is impaired, so 0.5 wt% or less .
[0026]
Mo: 0.01 to 0.50 wt%
Mo, like Mn, is an important element for obtaining a composite structure of ferrite and martensite without impairing the plating properties, and it is necessary to add at least 0.01 wt%. However, if added in excess of 0.50 %, there is little further effect and the production cost is increased, so 0.50 wt% is made the upper limit .
[0027]
Ti: 0.001 to 1.0 wt%, Nb: 0.001 to 1.0 wt%, V: 0.001 to 1.0 wt%
Ti, Nb, and V are elements effective for forming carbides and increasing the strength of steel, and it is preferable to add 0.001 wt% or more as needed. However, addition of any element in excess of 1.0 wt% causes a cost disadvantage and also increases the yield point (yield ratio) and decreases workability. Therefore, all these elements are added in the range of 0.001 to 1.0 wt%. These elements are added in a total amount, preferably 0.001 to 1.0 wt%.
[0028]
Next, manufacturing conditions in the present invention will be described.
The steel slab having the composition described above is hot-rolled according to a conventional method and wound at 750 ° C. or lower. The reason for setting the coiling temperature to 750 ° C or less is that if the coil is wound over this temperature, the thickness of the scale becomes thick and the pickling efficiency deteriorates, and the leading end, center, rear end, or coil width in the coil longitudinal direction This is because the cooling rate after winding is greatly different between the edge portion and the center portion in the direction, and the material variation becomes large. A preferable winding temperature is 700 ° C. or less. In addition, if the coiling temperature becomes excessively low, the cold rolling property is liable to deteriorate, so it is advisable not to drop the temperature below 300 ° C.
[0029]
The hot-rolled sheet is pickled and descaled, and as it is, further cold-rolled in some cases, and then heated to 750 ° C. or higher and cooled to obtain a mother plate for galvanization. Before plating, once heated to a temperature range of 750 ° C or higher (continuous annealing line is preferred) and cooled, C and Mn concentrated in the band-like structure are dispersed, and ferrite + martensite efficiently A composite structure is formed to improve workability. That is, when the Mn content is large as in the present invention, a band-like structure is particularly easily formed, and it is necessary to eliminate the adverse effects caused by this. If the relationship between the average thickness Tb of the band-like structure and the plate thickness T is (Tb / T) ≦ 0.005, the thickness of the band-like structure is reduced to this range and finely dispersed. Even when retained in the plating process or further in the alloying process, the concentration of C and Mn increases in the γ phase, and the martensite phase can be suitably dispersed in the ferrite base. The effect of dispersing the band-like structure by heating before plating (first heating) is as shown in FIGS. It should be noted that the effect of the present invention is not affected at all even if pickling and descaling are performed between the winding after hot rolling and the first heating.
[0030]
In the case where the base plate for plating thus manufactured is plated to form a thin steel plate, after the first heating described above, pickling treatment may be performed prior to galvanization. This pickling is performed in order to remove the surface enriched layer such as Mn and Cr generated during the heating and to improve more stable plating properties. Moreover, you may perform temper rolling in order to improve the plate | board property of the plating line which is a post process between after the 1st heating and pickling process. Then, subjected to a molten zinc-out message. When performing hot dip galvanization, reheating (second heating) is performed at 700 to 850 ° C. in a hot dip galvanizing line (CGL) before plating. When the heating temperature before plating is 700 ° C. or lower, the steel sheet surface is not reduced and plating failure is likely to occur, and a desired structure and material cannot be obtained. Therefore, heating is performed at 700 ° C. or higher. Incidentally, preferably in a temperature of 750 to 850 ° C. is. After the hot dip galvanization, the alloying treatment may be performed subsequently .
[0031]
【Example】
A continuous cast slab having a chemical composition shown in Table 1 and having a thickness of 300 mm is heated to 1200 ° C., roughly rolled for 2 passes, and then wound as a hot-rolled sheet having a thickness of 2.3 mm by a 7-stand finish rolling mill. It was. After pickling, Nos. 1, 11 , 17 , 27 to 29 are still hot-rolled sheets, and Nos. 3, 4 , 6, 8, 14 , 16 , 18 , 21 , 21 , 23 , 25 , 26 , 30 to 32. After cold rolling to a thickness of 1.0mm, heat in the continuous annealing line (first heating), pickling, heating (second heating) in the continuous hot dip galvanizing line, galvanizing, and in some cases further alloying Processed . Each production conditions on the following shown in Table 2 and Table 3. Using the obtained steel plate as a test material, the mechanical properties, plating properties, etc. were investigated. Further, the ratio T b / T of the band structure thickness to the plate thickness was measured by observing the structure of the steel sheet after heating (first heating) in the continuous annealing line or continuous hot dip galvanizing line. These results are shown together in Tables 2 and 3.
[0032]
Here, plating property, alloying property, and spot weldability were evaluated by the following methods. Plating property: The case where there was no unplating was judged as “excellent”, the case where it was slightly unplated as “good”, and the case where there was significant non-plating as “poor”, and judged visually.
Alloying properties: “Excellent” when there was no unevenness in alloying, “Good” when there was slight unevenness in alloying, and “Inferior” when there was significant unevenness in alloying, and judged visually.
Spot weldability: According to the method of JIS Z 3136, spot welded joints are subjected to a tensile shear test. If the tensile shear strength is 1.0 mm, the lower limit is 6700 N, and if the thickness is 2.3 N, the lower limit is 23000 N. Those with strength or higher were rated as “excellent” and those with lower strength than the lower limit were determined as “poor”.
[0033]
From Tables 1 to 3, it was found that the inventive examples had a low yield ratio, a good TS × El balance, and no particular problems with respect to plating properties, alloying properties, and spot weldability.
[0034]
[Table 1]
Figure 0003687400
[0035]
[Table 2]
Figure 0003687400
[0036]
[Table 3]
Figure 0003687400
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high-strength thin steel sheet having no problem in plating properties, a low yield ratio, and a good TS × El balance. Therefore, the present invention makes it possible to reduce the weight and fuel consumption of automobiles, thus greatly contributing to the improvement of the global environment.
[Brief description of the drawings]
[1] Tensile strength (TS), yield ratio (YR), a graph showing the relationship of the ratio of the average thickness T b and the plate thickness T of the band-like second phase on TS × El balance.
FIG. 2 is an example of a metal structure representing a representative band-like second phase structure.
FIG. 3 is an example of a metal structure showing a state in which a second phase structure is dispersed by the first heating.

Claims (2)

C:0.068〜0.20wt%、Si:0.5wt%以下、Mn:1.5〜2.5wt%、P:0.10wt%以下、S:0.05wt%以下、Al:0.10wt%以下、N:0.010wt%以下、Cr:0.5wt%以下、Mo:0.01〜0.50wt%を含有し、残部はFeおよび不可避的不純物の組成からなるスラブを、熱間圧延して、750℃以下で巻き取り、次いで、そのまま、もしくはさらに冷間圧延を行い、その後、800℃以上に加熱して冷却し、700〜850℃に加熱し、冷却途中で溶融亜鉛めっき、あるいはさらに合金化処理を行うことにより、フェライト素地中にマルテンサイトが分散した複合組織とすることを特徴とする加工性およびめっき性に優れた高強度薄鋼板の製造方法。C: 0.068 to 0.20 wt%, Si: 0.5 wt% or less, Mn: 1.5 to 2.5 wt%, P: 0.10 wt% or less, S: 0.05 wt% or less, Al: 0.10 wt% or less, N: 0.010 wt% or less , Cr: 0.5 wt% or less, Mo: 0.01 to 0.50 wt%, the balance is hot-rolled slab composed of Fe and inevitable impurities, wound up at 750 ℃ or less, then as it is, Alternatively, further cold rolling is performed, and then heated to 800 ° C or higher, cooled, heated to 700 to 850 ° C, and hot-dip galvanized or further alloyed in the course of cooling, so that martensite is contained in the ferrite base. A method for producing a high-strength thin steel sheet excellent in workability and plating properties, characterized by having a composite structure in which sites are dispersed . 請求項において、鋼組成が、さらに、Nb:1.0wt%以下、Ti:1.0wt%以下、V:1.0wt%以下から選ばれるいずれか1種または2種以上を含有することを特徴とする加工性およびめっき性に優れた高強度薄鋼板の製造方法。2. The steel composition according to claim 1, wherein the steel composition further contains one or more selected from Nb: 1.0 wt% or less, Ti: 1.0 wt% or less, and V: 1.0 wt% or less. A method for producing a high-strength thin steel sheet having excellent workability and plating properties.
JP07326299A 1998-09-29 1999-03-18 Manufacturing method of high strength thin steel sheet with excellent workability and plating properties Expired - Fee Related JP3687400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07326299A JP3687400B2 (en) 1998-09-29 1999-03-18 Manufacturing method of high strength thin steel sheet with excellent workability and plating properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-276034 1998-09-29
JP27603498 1998-09-29
JP07326299A JP3687400B2 (en) 1998-09-29 1999-03-18 Manufacturing method of high strength thin steel sheet with excellent workability and plating properties

Publications (2)

Publication Number Publication Date
JP2000169934A JP2000169934A (en) 2000-06-20
JP3687400B2 true JP3687400B2 (en) 2005-08-24

Family

ID=26414412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07326299A Expired - Fee Related JP3687400B2 (en) 1998-09-29 1999-03-18 Manufacturing method of high strength thin steel sheet with excellent workability and plating properties

Country Status (1)

Country Link
JP (1) JP3687400B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169991C (en) 2001-10-19 2004-10-06 住友金属工业株式会社 Thin steel plate with good machining performance and formed precision and its mfg. method
JP4714404B2 (en) * 2003-01-28 2011-06-29 新日本製鐵株式会社 High strength thin steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
EP2548986B1 (en) * 2010-03-16 2018-12-19 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburization and production method of a nitrocarburized steel part

Also Published As

Publication number Publication date
JP2000169934A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
US6537394B1 (en) Method for producing hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
JPS6240405B2 (en)
JP3698046B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JPS6256209B2 (en)
JPS595649B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet with excellent workability
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP3687400B2 (en) Manufacturing method of high strength thin steel sheet with excellent workability and plating properties
JP2563021B2 (en) Method for producing high-strength hot-rolled hot-dip galvannealed steel sheet with excellent stretch flangeability
WO2021020439A1 (en) High-strength steel sheet, high-strength member, and methods respectively for producing these products
JP3247909B2 (en) High-strength hot-dip galvanized steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP2004323925A (en) Strain aging hardening type steel sheet having excellent cold elongation deterioration resistance, cold delayed aging property and low temperature bake hardenability, and its production method
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP2002226942A (en) Composite structure type high-tensile hot-dip galvanized steel sheet having excellent deep drawability, and its manufacturing method
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3967868B2 (en) High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JP2007031840A (en) Hot-rolled steel sheet excellent in paint-baking hardenability and resistance to natural aging and its production method
JP4288085B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees