JP4074230B2 - Manufacturing method of plated substrate for hard disk medium - Google Patents

Manufacturing method of plated substrate for hard disk medium Download PDF

Info

Publication number
JP4074230B2
JP4074230B2 JP2003208914A JP2003208914A JP4074230B2 JP 4074230 B2 JP4074230 B2 JP 4074230B2 JP 2003208914 A JP2003208914 A JP 2003208914A JP 2003208914 A JP2003208914 A JP 2003208914A JP 4074230 B2 JP4074230 B2 JP 4074230B2
Authority
JP
Japan
Prior art keywords
substrate
plating
film
hard disk
disk medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003208914A
Other languages
Japanese (ja)
Other versions
JP2004143586A (en
Inventor
俊宏 津森
政利 石井
尚史 新谷
優 濱口
幸美 常光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003208914A priority Critical patent/JP4074230B2/en
Publication of JP2004143586A publication Critical patent/JP2004143586A/en
Application granted granted Critical
Publication of JP4074230B2 publication Critical patent/JP4074230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク媒体用メッキ基板及びその製造方法に関するものである。
【0002】
【従来の技術】
Si単結晶基板は、純度パタ−ニングの容易さ等から半導体ウエーハとして広く使用されている。さらに、最近は、剛性、表面の平滑性、表面状態の安定性等の特性が良好であることを用いて、高記録密度の磁気記録用基板としての利用も検討されている。例えば、特許文献1〜8等である。
【0003】
Si単結晶を電子材料、或いは磁気記録材料として用いる場合、電極設置或いは磁性材料の塗布のため、その表面に金属膜を被覆する必要がある。このようなSi基板への金属膜の被覆は、従来スパッタリングを初めとする真空蒸着法により行われていた。
しかしながら、近年LSI製造においては、ダマシンプロセス等の普及、また磁気記録材料においても垂直磁気記録媒体の製造のため、研磨が可能な厚膜の金属膜を被覆する必要が生じている。
そこで、真空蒸着に比べ厚膜化が容易なメッキ法により、Si基板に金属膜を被覆する試みが種々検討されている。
【0004】
湿式めっきにより良好な密着性を有するメッキを行うためには、メッキ液中の金属イオンが還元を受けるのに触媒となりうる物質が母材−メッキ膜の接合部位に多量に存在することが重要である。さらに、形成されたメッキ膜と被メッキ母材との密着力の大小は、被メッキ物表面の凹凸による機械的なアンカーリング効果、もしくは被メッキ物とメッキ膜との化学的な相互作用に依存している。
【0005】
例えば、プラスチック、セラミック、ガラス材料といった化学反応性に乏しい材料の表面にメッキを施すためには、研磨等により母材面を粗面化した後に、Pd−Snコロイド溶液中に浸漬させることで表面の凹部にコロイド粒子を固着させ、この付着コロイドを触媒起点としたメッキを行うことで機械的アンカーリング効果に起因した密着性を確保する方法が広く行われている。
一方、Fe等の金属上へのメッキにおいては、開始直後にメッキ膜と被メッキ金属との間に金属結合が形成され、原子層レベルでの合金化が生ずることで強固な密着性が確保されると言われている。
【0006】
メッキ母材として用いられるSiについては、酸素との反応性が極めて高く、製造後数時間で既にその表面に化学活性の低いSiO2の自然酸化膜に被覆され不働体化してしまう。このためメッキ膜と化学的な結合を形成させることは困難である。
このようなSi表面の自然酸化膜は、HF等浸漬等により溶解除去できることは広く知られているが、自然酸化膜を除去したSi表面は極めて酸化され易くメッキ液中に浸漬した場合には、液中のOH基と反応することでメッキ膜形成前に酸化膜が再形成されてしまい良好なメッキ膜を得ることはできない。
【0007】
このため、Si基板上にメッキを行う場合には先に述べたプラスチック等へのメッキと同様に基板表面を粗らした後にPd−Snコロイドに浸漬してメッキを行う。或いはスパッタリング法等の気相蒸着により金属層を導入した後に、この金属層の上にメッキを施す方法の何れかによって行われることになる。
【0008】
しかしながら、基板を粗らしてメッキを行う方法では、メッキ膜の密着性を向上させようとすればするほど基板表面の粗さを大きくする必要があり、電子材料等に用いられる半導体ウェーハ等へのメッキとしては好適とは言えない。また、機械加工により基板表面を粗らした場合、加工により加工痕が発生し、加工痕の寸法,形状によっては基板の強度が大きく損なわれてしまうという問題が発生してしまう。
【0009】
一方、気相蒸着によりSi基板表面に金属層を導入した後にメッキを行う場合には、原子レベルでのSi基板と金属層の相互拡散を行うために、蒸着時、或いは蒸着後に熱アニーリングを行う必要がある。この場合、蒸着直後の金属活性が熱アニーリングにより失するため、メッキを行うには前処理として再度Pd−Sn触媒等により蒸着金属膜を活性化してやる必要がある。加えて乾式成膜である気相蒸着と湿式メッキを併用するために設備が複雑大型化してしまうという問題を有する。
【0010】
【特許文献1】
特公平1−42048号公報
【特許文献2】
特公平2−41089号公報
【特許文献3】
特公平2−59523号公報
【特許文献4】
特公平1−45140号公報
【特許文献5】
特開昭57−105826号公報
【特許文献6】
特開平6−68463号公報
【特許文献7】
特開平6−28655号公報
【特許文献8】
特開平4−259908号公報
【0011】
【発明が解決しようとする課題】
以上のように、Si基板へのメッキにおいては、研磨等の後加工に耐えうる良好な密着性を有しかつメッキが容易となるような処理を施すことが強く求められている。
【0012】
【課題を解決するための手段】
本発明は、鏡面研磨を施したSi単結晶基板上に湿式プロセスのみを用いてメッキ下地となりうる良好な密着性を有する金属薄膜を被覆せんとするものである。
具体的には、本発明は、Si単結晶基板の表面に設けられ、厚み2〜200nmであって、Siとともに、NiとCuとAgとからなる一群から選ばれる少なくとも1種以上の元素を含有する非晶質層と、該非晶質層の上に設けられ、厚み5〜1000nmであって、Siとともに、NiとCuとAgとからなる一群から選ばれる1種以上の元素を含有する多結晶層を順次形成してなる多層膜付きハードディスク媒体用メッキ基板、及びその製造方法に関するものである。
【0013】
【実施の形態】
本発明の下地膜の模式図を図1に、また、膜断面の透過電子顕微鏡写真を図2に示す。また、アモルファス相と金属結晶相の電子線回折パタ−ンを図3と図4に示す。
ここに示される如く本発明の高密着性メッキ材料は、母材であるSi基板1と同様のSi元素を直上の非晶質層2が多量にすることで基板表面と化学的に結合している。この層は、厚み2nm〜200nm、好ましくは5〜20nmの厚みであり、電子線回折により非晶質に特有なハローパターンを示す。ただし、本発明における非晶質とは電子線回折でハローパターンを示すものを指し、微結晶の集合体のためハローパターンになる場合も含む。厚みを2〜200nmとするのは、2nm未満では均一な非晶質層の膜化が極めて難しく、200nmを超えると上層の多結晶層との密着性が低下するためである。組成的には、NiとCuとAgとからなる一群から選ばれる少なくとも1種以上の金属元素を、母材成分であるSiとの原子比でSi:(NiとCuとAgの合計)=(200:1)〜(2:1)、好ましくは(80:1)〜(2:1)となるように含有している。さらに、その他の成分としては、酸素及び水素等若干の軽元素を含有してもよい。
【0014】
この非晶質層2の上部には、NiとCuとAgとなる一群から選ばれる少なくとも1種以上の元素をSiとの原子比でSi:(NiとCuとAgの合計)=(100:1)〜(1:1)、好ましくは(50:1)〜(2:1)の割合で含有する結晶性の低い部分3a及び、NiとCuとAgとなる一群から選ばれる少なくとも1種以上の元素をSiとの原子比でSi:(NiとCuとAgの合計)=(1:1)〜(1:200)、好ましくは(1:5)〜(1:100)の割合で含有する結晶相部分3bが混在した厚み5〜1000nmの多結晶層3を形成する。多結晶層の厚みをこの範囲とするのは、5nm未満であると多結晶の粒個々の均一な層内での分布が得られず、1000nmを超えると個々の結晶粒が肥大化してしまい下地膜として好ましくないためである。
【0015】
混合結晶層を構成する結晶性の低い部分と基板直上の非晶質層は透過電子顕微鏡像により明瞭に区別できる場合もあるが、本発明に用いる金属の種類或いは製造方法によっては、組成、結晶性が連続的に変化し、その境界が不明瞭となる場合もある。
混合結晶層内の組織については結晶性の低い部分3aが電子線回折において非晶質結晶固有のハローパターンと併せ若干のディフラクションパタ−ンを示す場合もあるのに対し、金属結晶相3bは電子線回折によりほぼ完全な結晶回折パタ−ンを示すため明瞭に区別できる。
【0016】
このように、本発明の高密着性メッキを有するハードディスク基板は、構成要素である混合結晶層において、結晶性の低い相にメッキの成長核となる微小な金属結晶相が分散した構造を有しており、これらSi基板−非晶質層−混合結晶層の各々が界面をまたぎ、同様の元素を含有することで基板への強固な密着性を確保しつつ、密着強化層表層にはメッキの成長起点として必要な金属結晶相を形成した構成となっている。
【0017】
Si基板上へのメッキを行うに先立ち、本発明の各層を形成し高密着性メッキ材料とすることで、基板表面の不要な粗面化や種々の活性化処理を施すことと無く良好な密着性を有するメッキ膜を得ることが可能となる。
加えて、本発明は、湿式の無電解置換メッキにより履行されるため、蒸着法等による下地膜の導入に比べてプロセスが簡便であり、さらに成膜後の下地膜の表面活性が高いため、特段の活性化を行わなくともプロセスとして連続的にメッキ成膜が可能というメッキ下地膜として極めて優れた特性を有する。
【0018】
次に、本発明の製造方法について述べる。
本発明の実施に当っては、CZ(チョコラルスキー)法或いはFZ(フローティングゾーン)法により製造されたSi単結晶材を基板として用いる。基板の面方位は、(100)、(110)、(111)を初めとして任意のものを用いることができる。また、基板中の不純物としては、0〜1022atoms/cm2の合計量の範囲のB、P、N、As、Sn等の元素を含有しても良い。
但し、基板の同一平面において面方位の異なる多結晶Si、及び極度に不純物の偏析のあるSiを基板として用いた場合には、その化学反応性の違いにより形成される下地膜が不均一となってしまう場合がある。さらに、極端な偏析のある基板を使用した場合には、下地膜成膜中に基板表面の偏析部位に局部電池が形成されてしまうことで、本発明に記載した下地膜構造の達成が不能となることもある。
【0019】
本発明においては、このようなSi基板の表面酸化膜及び基板表面を僅かにエッチングすることで、下地膜形成に必要無な活性化を行うことができる。
酸化膜除去方法としては2〜10重量%のHF水溶液への浸漬処理が半導体工業等で広く行われているが、この方法では、自然酸化膜即ちSiO2の除去は可能であるものの、母材であるSi自体のエッチング性が低く下地膜形成の際に必要となる基板表面の活性化が行われないため好ましくない場合がある。
【0020】
本発明実施のためには、濃度2〜50重量%の苛性ソ−ダ水溶液中でエッチングし、表面の酸化膜除去を行うと共に基板表面を僅かに腐食させる。この際活性化を与えるのに好ましい母材のエッチング速度は20nm/分〜5μm/分であり、エッチング量としては40nm以上の母材Siを除去するのが好ましい。
エッチング時の液温は濃度、処理時間により異なるが作業性の点で30〜100℃の範囲が好ましい。
【0021】
このようなエッチング処理を行った後に、NiとCuとAgとからなる一群から選ばれる一以上の金属イオン或いはこれらを主な金属イオンとして元素成分で0.01N以上、好ましくは0.05〜0.3N含有するメッキ液に浸漬し表面層を形成することで高密着性メッキ材料を得る。
【0022】
膜形成は、一般に無電解置換メッキとして知られる方法にて製膜を行う。液中に還元剤となりうるジア燐酸、ジア塩素酸等の成分を含有しないのは従来の置換めっき同様であるが、本発明では、特に好ましくは光沢材となるサッカリン等の成分を含有しない硫酸塩浴を用いることができる。硫酸塩としては、硫酸ニッケル、硫酸銅等が挙げられ、好ましい濃度は、0.01〜0.5Nである。
塩酸塩浴或いは0.05N以上の塩素イオンを含有する浴では、本発明の下地膜を得ることが困難であるのみならず、Si基板へのメッキ自体が不能となる場合もあり好ましくない。また、液中にK、Ca、Na等の各元素が 0.003N以上存在する場合も本発明を履行する上で好ましくない。したがって、塩素イオンを0.05N未満、液中にK、Ca、Na等がそれぞれ0.003N未満含有しているものとする。
【0023】
本発明を実施する上でのメッキ時の運転条件として浴のpHを液温70〜100℃おいて7.2〜12.8の範囲にさらに好ましくは7.6〜8.4に維持することが必要である。メッキ液温が70℃未満の場合はメッキが不能であり、また、メッキ液温が100℃を超えるかメッキ時の製膜時の温度におけるpHが規定の範囲以外にある場合にはメッキ自体は可能であるものの本発明に記載の下地膜を得ることはできない。製造においてはpH調整が要件となり、その調整方法はアンモニア又は希硫酸水溶液の添加に限定できる。初期pHにより添加料は加減の必要があるものの概ねメッキ浴中に0.02N〜0.5N好ましくは0.05N〜0.2Nの範囲で添加するとよい。
上記条件下において置換メッキを好ましくは2〜30分間行うことでSi基板面上に所定の非晶質層及び多結晶層が順次積層される。(仔細な性状及び膜厚は好ましいメッキ条件により随時調整すればよい。)
【0024】
苛性ソ−ダを初めとする水酸化物によりpH調整を行った場合、pHを規定の範囲に設定しても本発明の履行は困難である。
pH調整がアンモニア添加に限定される理由については、必ずしも明瞭では無いが、本発明の履行のためには液中の金属イオンがアンモニア等の錯体形成剤により錯イオン化することが極めて重要であることが実験結果より類推される。
以上のエッチング処理及び下地メッキ処理を併用することで本発明の下地膜の製膜が可能となる。
【0025】
本発明の実施の具体的態様を以下に説明するが、本発明はこれらの態様に限定するものではなく、前記の積層条件であれば、本発明のメッキ基板を製造することができるものである。
実施の態様例1
CZ法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(Pド−プのN型基板)を平均粒径15nmのコロイダルシリカにより両面研磨し、表面粗さ(Rms)4nmまで平滑にする。Rmsは平方平均粗さであり、AFM(アトミック・フォース・マイクロスコープ:原子間力顕微鏡)を用いて測定できる。この基板を45℃、10重量%の苛性ソ−ダ水溶液に3分間浸漬して基板表面の薄い表面酸化膜を除去すると共に表面のSiエッチング処理を行う。
次に、0.01〜0.3Nの硫酸ニッケル水溶液に硫酸アンモニウムを0.5N添加した下地メッキ浴を製作し、さらにアンモニア水を添加することで液のpHを7.9〜12.8まであげる。この液を80℃まで加温し再度pHを測定するとpHの値が7.2〜11となる。80℃でのpHが7.6〜8.4、より好ましくは8.0となるようにアンモニア水又は希硫酸水溶液を連続的に供給しつつ(アンモニアは、通常、全体量で0.02〜0.5Nである。)、先にエッチングを行ったSi基板を下地メッキ浴に2〜15分間浸漬し本発明の高密着性メッキ材料を得る。
この材料の表面部を透過電子顕微鏡により観察すると、基板であるSiの上部に厚み2〜195nmの非晶質層、並びその上部に厚み5〜930nm混合の混合結晶層が確認できる。さらに、EPMAによりSiと金属成分の組成比率(原子比)を調べた非晶質部分ではSi:Ni=(80:1)〜(2:1)である。また、混合結晶層のうち低結晶部分の組成比率(原子比)はSi:Ni=(30:1)〜(3:2)、結晶性の部分はSi:Ni=(1:2)〜(1:70)であり、いずれも低結晶性部分よりも結晶性の部分の方がNiの割合が多い。
この下地メッキ膜に5mm間隔で格子状の切込みを入れセロテープ(登録商標)を用いた引き剥がしテストを行っても、各々メッキ膜の剥離は全く認められない。
【0026】
実施の態様例2
CZ法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(Bド−プのP型基板)を平均粒径15nmのコロイダルシリカにより両面研磨し、表面粗さ(Rms)4nm(AFMによる測定)まで平滑にする。この基板を50℃、45重量%の苛性ソ−ダ水溶液に2分間浸漬して基板表面の薄い表面酸化膜を除去すると共に表面のSiのエッチング処理を行う。
次に、0.2Nの硫酸銅水溶液に硫酸アンモニウム水溶液0.2Nを添加した下地メッキ浴を製作しアンモニア水を添加することで液のpHを8.1〜10.5まであげる。この液を80℃まで加温し再度pHを測定するとpHの値が6.8〜9.8となる。80℃でのpHが8.0となるようにアンモニア水又は希硫酸水溶液を連続的に供給しつつ(アンモニアは、通常、全体量で0.02〜0.45Nである。)、先にエッチングを行ったSi基板を下地メッキ浴に2〜15分間浸漬し本発明の高密着性メッキ下地膜を得る。
この材料の表面部を透過電子顕微鏡により観察すると、基板であるSiの上部に厚み7〜180nmの非晶質層、並びにその上部に厚み9〜970nm混合の混合結晶層が確認できる。さらに、EPMAによりSiと金属成分の非晶質層の金属成分の組成比率(原子比)を調べた非晶質部分ではSi:Cu=(70:1)〜(3:1)である。また、混合結晶層のうち低結晶部分の組成比率(原子比)はSi:Cu=(20:1)〜(3:1)、結晶性の部分はSi:Cu=(1:2)〜(1:80)であり、いずれも低結晶性部分より結晶性の部分の方がNiの割合が多い。
この下地メッキ膜に5mm間隔で格子状の切込みを入れセロテープ(登録商標)を用いた引き剥がしテストを行っても、メッキ膜の剥離は各々全く認められない。
【0027】
【実施例】
以下、本発明を実施例に基づき説明するが、本発明はこれらに限定されるものではない。
実施例1
CZ法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(Pド−プのN型基板)を平均粒径15nmのコロイダルシリカにより両面研磨し、表面粗さ(Rms)4nmまで平滑にした。Rmsは平方平均粗さであり、AFM(アトミック・フォース・マイクロスコープ:原子間力顕微鏡)を用いて測定した。この基板を45℃、10重量%の苛性ソ−ダ水溶液に3分間浸漬して基板表面の薄い表面酸化膜を除去すると共に表面のSiエッチング処理を行った。
次に、0.1Nの硫酸ニッケル水溶液に硫酸アンモニウムを0.5N添加した下地メッキ浴を製作し、さらにアンモニア水を添加することで液のpHを10.1まであげた。この液を80℃まで加温し再度pHを測定した所pHの値が7.8となった。80℃でのpHが8.0となる様にアンモニア水を連続的に供給しつつ(アンモニアは全体量で0.1Nであった。)、先にエッチングを行ったSi基板を下地メッキ浴に5分間浸漬し本発明の高密着性メッキ材料を得た。
この材料の表面部を透過電子顕微鏡により観察したところ基板であるSiの上部に厚み6nmの非晶質層、並びその上部に厚み150nm混合の混合結晶層が確認された。さらに、EPMAによりSiと金属成分の組成比率(原子比)を調べた非晶質部分ではSi:Ni=19:1あった。また、混合結晶層のうち低結晶部分の組成比率(原子比)はSi:Ni=3:2、結晶性の部分はSi:Ni=1:10であり、低結晶性部分より結晶性の部分の方がNiの割合が多かった。
この下地メッキ膜に5mm間隔で格子状の切込みを入れセロテープ(登録商標)を用いた引き剥がしテストを行ったもののメッキ膜の剥離は全く認められなかった。
【0028】
実施例2
CZ法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(Bド−プのP型基板)を平均粒径15nmのコロイダルシリカにより両面研磨し、表面粗さ(Rms)4nm(AFMによる測定)まで平滑にした。この基板を50℃、45重量%の苛性ソ−ダ水溶液に2分間浸漬して基板表面の薄い表面酸化膜を除去すると共に表面のSiのエッチング処理を行った。
次に、0.2Nの硫酸銅水溶液に硫酸アンモニウム水溶液0.2Nを添加した下地メッキ浴を製作しアンモニア水を添加することで液のpHを8.1まであげた。この液を80℃まで加温し再度pHを測定した所pHの値が6.8となった。80℃でのpHが8.0となる様にアンモニア水を連続的に供給しつつ(アンモニアは全体量で0.2Nであった。)、先にエッチングを行ったSi基板を下地メッキ浴に7分間浸漬し本発明の高密着性メッキ下地膜を得た。
この材料の表面部を透過電子顕微鏡により観察したところ基板であるSiの上部に厚み12nmの非晶質層、並びにその上部に厚み180nm混合の混合結晶層が確認された。さらに、EPMAによりSiと金属成分の非晶質層の金属成分の組成比率(原子比)を調べた非晶質部分ではSi:Cu=20:1であった。また、混合結晶層のうち低結晶部分の組成比率(原子比)はSi:Cu=5:1、結晶性の部分はSi:Cu=1:15であり、低結晶性部分より結晶性の部分の方がCuの割合が多かった。
この下地メッキ膜に5mm間隔で格子状の切込みを入れセロテープ(登録商標)を用いた引き剥がしテストを行ったもののメッキ膜の剥離は全く認められなかった。
【図面の簡単な説明】
【図1】本発明の下地膜の模式図を示す。
【図2】膜断面の透過電子顕微鏡写真(約21万倍)を示す。
【図3】アモルファス相の電子線回折パタ−ンを示す。
【図4】金属結晶相の電子線回折パターンを示す。
【符号の説明】
1 Si基板
2 非晶質層
3 混合結晶層
3a 結晶性の低い部分
3b 金属相部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plated substrate for a hard disk medium and a method for manufacturing the same.
[0002]
[Prior art]
Si single crystal substrates are widely used as semiconductor wafers because of their ease of purity patterning. Furthermore, recently, the use as a magnetic recording substrate having a high recording density has been studied by utilizing the characteristics such as rigidity, surface smoothness, and surface state stability. For example, it is patent documents 1-8.
[0003]
When Si single crystal is used as an electronic material or a magnetic recording material, it is necessary to coat the surface with a metal film in order to install an electrode or apply a magnetic material. Such coating of the metal film on the Si substrate has been conventionally performed by a vacuum evaporation method including sputtering.
However, in recent years in LSI manufacturing, it is necessary to coat a thick metal film that can be polished in order to spread the damascene process and the like and to manufacture perpendicular magnetic recording media in magnetic recording materials.
Therefore, various attempts have been made to cover a Si substrate with a metal film by a plating method that is easy to make thicker than vacuum deposition.
[0004]
In order to perform plating with good adhesion by wet plating, it is important that a large amount of a substance that can be a catalyst for the reduction of metal ions in the plating solution exists at the base material-plating film junction. is there. Furthermore, the level of adhesion between the formed plating film and the base material to be plated depends on the mechanical anchoring effect caused by the unevenness of the surface of the object to be plated or the chemical interaction between the object to be plated and the plating film. is doing.
[0005]
For example, in order to plate the surface of a material having poor chemical reactivity, such as plastic, ceramic, and glass material, the surface of the base material is roughened by polishing and then immersed in a Pd—Sn colloid solution. A method is widely used in which the colloidal particles are fixed to the recesses of the metal, and plating is performed using the adhering colloid as a catalyst starting point to ensure adhesion due to the mechanical anchoring effect.
On the other hand, in plating on a metal such as Fe, a metal bond is formed between the plating film and the metal to be plated immediately after the start, and strong adhesion is ensured by alloying at the atomic layer level. It is said that.
[0006]
Si used as a plating base material has extremely high reactivity with oxygen, and the surface thereof is already covered with a natural oxide film of SiO2 having a low chemical activity within a few hours after production, and becomes passive. For this reason, it is difficult to form a chemical bond with the plating film.
Although it is well known that such a natural oxide film on the Si surface can be dissolved and removed by immersion such as HF, the Si surface from which the natural oxide film has been removed is very easily oxidized, and when immersed in a plating solution, By reacting with the OH groups in the liquid, the oxide film is re-formed before the plating film is formed, and a good plating film cannot be obtained.
[0007]
For this reason, when plating on the Si substrate, the surface of the substrate is roughened in the same manner as the plating on the plastic or the like described above, and then immersed in Pd—Sn colloid for plating. Or after introducing a metal layer by vapor phase vapor deposition such as sputtering, plating is performed on the metal layer.
[0008]
However, in the method of plating by roughening the substrate, it is necessary to increase the roughness of the surface of the substrate as the adhesion of the plating film is improved, and to the semiconductor wafer used for electronic materials, etc. It cannot be said that it is suitable as plating. Further, when the substrate surface is roughened by machining, a processing mark is generated by the processing, and the strength of the substrate is greatly impaired depending on the size and shape of the processing mark.
[0009]
On the other hand, when plating is performed after introducing a metal layer on the Si substrate surface by vapor deposition, thermal annealing is performed during or after vapor deposition in order to perform mutual diffusion between the Si substrate and the metal layer at the atomic level. There is a need. In this case, since the metal activity immediately after the vapor deposition is lost due to the thermal annealing, it is necessary to activate the vapor deposition metal film again with a Pd—Sn catalyst or the like as a pretreatment in order to perform plating. In addition, there is a problem that the equipment becomes complicated and large in size because the vapor deposition and the wet plating which are dry film formation are used in combination.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 1-42048 [Patent Document 2]
Japanese Patent Publication No. 2-41089 [Patent Document 3]
Japanese Patent Publication No. 2-59523 [Patent Document 4]
Japanese Patent Publication No. 1-445140 [Patent Document 5]
Japanese Patent Laid-Open No. 57-105826 [Patent Document 6]
JP-A-6-68463 [Patent Document 7]
JP-A-6-28655 [Patent Document 8]
JP-A-4-259908
[Problems to be solved by the invention]
As described above, in plating on a Si substrate, there is a strong demand to perform a process that has good adhesion that can withstand post-processing such as polishing and that facilitates plating.
[0012]
[Means for Solving the Problems]
In the present invention, a metal thin film having good adhesion that can serve as a plating base is coated only on a Si single crystal substrate subjected to mirror polishing using only a wet process.
Specifically, the present invention is provided on the surface of a Si single crystal substrate, has a thickness of 2 to 200 nm, and contains at least one element selected from the group consisting of Ni, Cu, and Ag together with Si. And an amorphous layer that is provided on the amorphous layer, has a thickness of 5 to 1000 nm, and contains at least one element selected from the group consisting of Ni, Cu, and Ag together with Si The present invention relates to a plated substrate for a hard disk medium with a multilayer film in which layers are sequentially formed, and a method for manufacturing the same.
[0013]
Embodiment
FIG. 1 shows a schematic diagram of the base film of the present invention, and FIG. 2 shows a transmission electron micrograph of the cross section of the film. Also, the electron diffraction patterns of the amorphous phase and the metal crystal phase are shown in FIGS.
As shown here, the high adhesion plating material of the present invention is chemically bonded to the substrate surface by increasing the amount of the Si element similar to that of the Si substrate 1 which is the base material in the amorphous layer 2 immediately above. Yes. This layer has a thickness of 2 nm to 200 nm, preferably 5 to 20 nm, and exhibits a halo pattern peculiar to amorphous by electron beam diffraction. However, the term “amorphous” in the present invention refers to an amorphous material that exhibits a halo pattern by electron beam diffraction, and includes a case of forming a halo pattern due to an aggregate of microcrystals. The reason why the thickness is set to 2 to 200 nm is that formation of a uniform amorphous layer is extremely difficult when the thickness is less than 2 nm, and when the thickness exceeds 200 nm, the adhesiveness with the upper polycrystalline layer is lowered. In terms of composition, at least one metal element selected from the group consisting of Ni, Cu, and Ag is represented by Si: (total of Ni, Cu, and Ag) = (atomic ratio of Si as a base material component) = ( 200: 1) to (2: 1), preferably (80: 1) to (2: 1). Further, as other components, some light elements such as oxygen and hydrogen may be contained.
[0014]
On top of this amorphous layer 2, at least one element selected from the group consisting of Ni, Cu and Ag is Si: (total of Ni, Cu and Ag) = (100: 1) to (1: 1), preferably (50: 1) to (2: 1) in a proportion of low crystallinity 3a and at least one selected from the group consisting of Ni, Cu and Ag In the atomic ratio of Si: (total of Ni, Cu and Ag) = (1: 1) to (1: 200), preferably (1: 5) to (1: 100) The polycrystalline layer 3 having a thickness of 5 to 1000 nm in which the crystal phase portions 3b to be mixed are mixed is formed. If the thickness of the polycrystalline layer is within this range, the distribution of the polycrystalline grains in a uniform layer cannot be obtained if the thickness is less than 5 nm, and if the thickness exceeds 1000 nm, the individual grains are enlarged. This is because it is not preferable as a base film.
[0015]
The low crystallinity portion constituting the mixed crystal layer and the amorphous layer directly above the substrate may be clearly distinguished by a transmission electron microscope image, but depending on the type of metal used in the present invention or the manufacturing method, the composition, crystal Sometimes the gender changes continuously and the boundaries are unclear.
Regarding the structure in the mixed crystal layer, the low crystallinity portion 3a may show a slight diffraction pattern together with the halo pattern inherent to the amorphous crystal in electron beam diffraction, whereas the metal crystal phase 3b Since it shows an almost perfect crystal diffraction pattern by electron diffraction, it can be clearly distinguished.
[0016]
As described above, the hard disk substrate having high adhesion plating according to the present invention has a structure in which fine metal crystal phases serving as growth nuclei for plating are dispersed in a low crystallinity phase in a mixed crystal layer as a constituent element. Each of these Si substrate-amorphous layer-mixed crystal layer straddles the interface and contains the same element to ensure strong adhesion to the substrate, while the adhesion reinforcing layer surface layer is plated. The metal crystal phase required as a growth starting point is formed.
[0017]
Prior to plating on the Si substrate, each layer of the present invention is formed to form a highly adhesive plating material, so that the substrate surface can be satisfactorily roughened or subjected to various activation treatments without being roughened. It is possible to obtain a plating film having the properties.
In addition, since the present invention is implemented by wet electroless displacement plating, the process is simpler than the introduction of a base film by vapor deposition or the like, and the surface activity of the base film after film formation is high. It has extremely excellent characteristics as a plating base film that enables continuous plating film formation as a process without special activation.
[0018]
Next, the manufacturing method of the present invention will be described.
In the practice of the present invention, a Si single crystal material manufactured by the CZ (chocolate ski) method or the FZ (floating zone) method is used as the substrate. Any plane orientation of the substrate can be used, including (100), (110), and (111). Further, the impurities in the substrate may contain elements such as B, P, N, As, Sn, etc. in the range of the total amount of 0 to 10 @ 22 atoms / cm @ 2.
However, when polycrystalline Si having different plane orientations on the same plane of the substrate and Si having extremely segregated impurities are used as the substrate, the underlying film formed due to the difference in chemical reactivity becomes non-uniform. May end up. Furthermore, when a substrate with extreme segregation is used, a local battery is formed at the segregation site on the surface of the substrate during the formation of the base film, which makes it impossible to achieve the base film structure described in the present invention. Sometimes.
[0019]
In the present invention, the surface oxide film of the Si substrate and the substrate surface are slightly etched, so that activation necessary for forming the base film can be performed.
As a method for removing the oxide film, a soaking treatment in a 2 to 10% by weight HF aqueous solution is widely performed in the semiconductor industry and the like. In this method, although a natural oxide film, that is, SiO2 can be removed, Since the etching property of certain Si itself is low and activation of the substrate surface required when forming the base film is not performed, it may be undesirable.
[0020]
In order to carry out the present invention, etching is performed in an aqueous caustic soda solution having a concentration of 2 to 50% by weight to remove the surface oxide film and slightly corrode the substrate surface. At this time, a preferable etching rate of the base material for giving activation is 20 nm / min to 5 μm / min, and it is preferable to remove the base material Si having an etching amount of 40 nm or more.
The liquid temperature during etching varies depending on the concentration and processing time, but is preferably in the range of 30 to 100 ° C. in terms of workability.
[0021]
After performing such an etching treatment, one or more metal ions selected from the group consisting of Ni, Cu and Ag, or 0.01N or more, preferably 0.05 to 0 in terms of elemental components using these as main metal ions. A high adhesion plating material is obtained by immersing in a plating solution containing 3N to form a surface layer.
[0022]
Film formation is performed by a method generally known as electroless displacement plating. It is the same as conventional displacement plating that it does not contain components such as diphosphoric acid and dichloric acid that can be a reducing agent in the solution, but in the present invention, it is particularly preferably a sulfate that does not contain components such as saccharin that becomes a brightener. A bath can be used. Examples of the sulfate include nickel sulfate and copper sulfate, and a preferred concentration is 0.01 to 0.5N.
A hydrochloride bath or a bath containing 0.05 N or more of chlorine ions is not preferable because it is difficult not only to obtain the base film of the present invention, but also the plating on the Si substrate itself may be impossible. Moreover, when each element, such as K, Ca, and Na, exists in a liquid 0.003N or more, it is unpreferable when implementing this invention. Therefore, it is assumed that chlorine ions are contained in less than 0.05N, and K, Ca, Na, etc. are contained in the solution in less than 0.003N.
[0023]
As an operating condition at the time of carrying out the present invention, the pH of the bath should be maintained in the range of 7.2 to 12.8 at a liquid temperature of 70 to 100 ° C., more preferably 7.6 to 8.4. is required. If the plating solution temperature is less than 70 ° C, plating is impossible, and if the plating solution temperature exceeds 100 ° C or the pH at the time of film formation during plating is outside the specified range, the plating itself is not Although it is possible, the base film described in the present invention cannot be obtained. In the production, pH adjustment is a requirement, and the adjustment method can be limited to the addition of ammonia or dilute sulfuric acid aqueous solution. Although the additive needs to be adjusted depending on the initial pH, it is generally added in the range of 0.02N to 0.5N, preferably 0.05N to 0.2N in the plating bath.
A predetermined amorphous layer and a polycrystalline layer are sequentially laminated on the Si substrate surface by performing substitution plating preferably for 2 to 30 minutes under the above conditions. (The detailed properties and film thickness may be adjusted as needed according to preferred plating conditions.)
[0024]
When the pH is adjusted with a hydroxide such as caustic soda, it is difficult to implement the present invention even if the pH is set within a specified range.
The reason why the pH adjustment is limited to the addition of ammonia is not necessarily clear, but it is extremely important for the implementation of the present invention that the metal ions in the liquid be complex ionized by a complex-forming agent such as ammonia. Is inferred from the experimental results.
By using the above etching process and base plating process in combination, the base film of the present invention can be formed.
[0025]
Specific embodiments of the present invention will be described below, but the present invention is not limited to these embodiments, and the plated substrate of the present invention can be manufactured under the above-described lamination conditions. .
Embodiment 1
A (100) Si single crystal (P-doped N-type substrate) with a diameter of 65 mm, which has been cored, centered and wrapped from a 200 mm Si single crystal substrate manufactured by the CZ method, is made of colloidal silica with an average particle size of 15 nm. Both surfaces are polished and smoothed to a surface roughness (Rms) of 4 nm. Rms is the mean square roughness and can be measured using an AFM (Atomic Force Microscope). This substrate is immersed in a 10% by weight aqueous caustic soda solution at 45 ° C. for 3 minutes to remove the thin surface oxide film on the substrate surface and perform Si etching treatment on the surface.
Next, a base plating bath in which 0.5 N of ammonium sulfate is added to a 0.01 to 0.3 N nickel sulfate aqueous solution is manufactured, and the pH of the solution is raised to 7.9 to 12.8 by adding ammonia water. . When this solution is heated to 80 ° C. and the pH is measured again, the pH value becomes 7.2 to 11. While continuously supplying ammonia water or dilute sulfuric acid aqueous solution so that the pH at 80 ° C. is 7.6 to 8.4, more preferably 8.0 (ammonia is generally 0.02 to 0.02 in total amount). 0.5N)), the Si substrate previously etched is immersed in a base plating bath for 2 to 15 minutes to obtain the high adhesion plating material of the present invention.
When the surface portion of this material is observed with a transmission electron microscope, an amorphous layer having a thickness of 2 to 195 nm can be confirmed on top of Si as a substrate, and a mixed crystal layer having a thickness of 5 to 930 nm can be confirmed thereon. Furthermore, Si: Ni = (80: 1) to (2: 1) in the amorphous part in which the composition ratio (atomic ratio) of Si and the metal component was examined by EPMA. The composition ratio (atomic ratio) of the low crystal portion of the mixed crystal layer is Si: Ni = (30: 1) to (3: 2), and the crystalline portion is Si: Ni = (1: 2) to ( 1:70), and the ratio of Ni is higher in the crystalline part than in the low crystalline part.
Even when a grid-like cut is made in the base plating film at intervals of 5 mm and a peeling test is performed using a cello tape (registered trademark), no peeling of the plating film is observed.
[0026]
Embodiment 2
A (100) Si single crystal (B-type P-type substrate) having a diameter of 65 mm is obtained by colloidal silica having an average particle size of 15 nm, which is cored, centered, and lapped from a 200 mm Si single crystal substrate manufactured by the CZ method. Both surfaces are polished and smoothed to a surface roughness (Rms) of 4 nm (measured by AFM). This substrate is immersed in an aqueous solution of caustic soda at 50 ° C. and 45% by weight for 2 minutes to remove the thin surface oxide film on the surface of the substrate and etch the surface Si.
Next, a base plating bath in which 0.2N ammonium sulfate aqueous solution is added to 0.2N copper sulfate aqueous solution is manufactured and ammonia water is added to raise the pH of the solution to 8.1 to 10.5. When this solution is heated to 80 ° C. and the pH is measured again, the pH value becomes 6.8 to 9.8. While continuously supplying ammonia water or dilute sulfuric acid aqueous solution so that the pH at 80 ° C. becomes 8.0 (ammonia is usually 0.02 to 0.45 N in total amount), etching is performed first. The Si substrate subjected to the above is immersed in a base plating bath for 2 to 15 minutes to obtain the highly adhesive plating base film of the present invention.
When the surface portion of this material is observed with a transmission electron microscope, an amorphous layer having a thickness of 7 to 180 nm can be confirmed on top of Si as a substrate, and a mixed crystal layer having a thickness of 9 to 970 nm can be confirmed thereon. Furthermore, Si: Cu = (70: 1) to (3: 1) in the amorphous part in which the composition ratio (atomic ratio) of the metal component of the amorphous layer of Si and the metal component was examined by EPMA. The composition ratio (atomic ratio) of the low crystal portion of the mixed crystal layer is Si: Cu = (20: 1) to (3: 1), and the crystalline portion is Si: Cu = (1: 2) to ( 1:80), and the ratio of Ni is higher in the crystalline part than in the low crystalline part.
Even when a grid-like cut is made in this base plating film at intervals of 5 mm and a peeling test is performed using cello tape (registered trademark), no peeling of the plating film is observed at all.
[0027]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these.
Example 1
A (100) Si single crystal (P-doped N-type substrate) with a diameter of 65 mm, which has been cored, centered and wrapped from a 200 mm Si single crystal substrate manufactured by the CZ method, is made of colloidal silica with an average particle size of 15 nm. Both surfaces were polished and smoothed to a surface roughness (Rms) of 4 nm. Rms is the mean square roughness and was measured using an AFM (Atomic Force Microscope). This substrate was immersed in a 10% by weight aqueous caustic soda solution at 45 ° C. for 3 minutes to remove the thin surface oxide film on the substrate surface and to perform Si etching treatment on the surface.
Next, a base plating bath was prepared by adding 0.5 N of ammonium sulfate to a 0.1 N nickel sulfate aqueous solution, and the pH of the solution was raised to 10.1 by adding ammonia water. When this liquid was heated to 80 ° C. and pH was measured again, the pH value was 7.8. While supplying ammonia water continuously so that the pH at 80 ° C. becomes 8.0 (ammonia was 0.1N in total amount), the previously etched Si substrate was used as a base plating bath. It was immersed for 5 minutes to obtain a highly adhesive plating material of the present invention.
When the surface portion of this material was observed with a transmission electron microscope, an amorphous layer having a thickness of 6 nm was formed on top of Si as a substrate, and a mixed crystal layer having a thickness of 150 nm mixed thereon was confirmed. Furthermore, Si: Ni = 19: 1 was found in the amorphous part in which the composition ratio (atomic ratio) of Si and the metal component was examined by EPMA. In the mixed crystal layer, the composition ratio (atomic ratio) of the low crystal part is Si: Ni = 3: 2, and the crystal part is Si: Ni = 1: 10, which is more crystalline than the low crystal part. The percentage of Ni was higher.
Although a grid-like cut was made at intervals of 5 mm in this base plating film and a peeling test was performed using cello tape (registered trademark), no peeling of the plating film was observed.
[0028]
Example 2
A (100) Si single crystal (B-type P-type substrate) having a diameter of 65 mm is obtained by colloidal silica having an average particle size of 15 nm, which is cored, centered, and lapped from a 200 mm Si single crystal substrate manufactured by the CZ method. Both surfaces were polished and smoothed to a surface roughness (Rms) of 4 nm (measured by AFM). This substrate was immersed in a 45% by weight aqueous caustic soda solution at 50 ° C. for 2 minutes to remove the thin surface oxide film on the surface of the substrate and to etch the surface Si.
Next, a base plating bath in which 0.2N ammonium sulfate aqueous solution 0.2N was added to 0.2N copper sulfate aqueous solution was prepared, and ammonia water was added to raise the pH of the solution to 8.1. When this solution was heated to 80 ° C. and pH was measured again, the pH value was 6.8. While supplying ammonia water continuously so that the pH at 80 ° C. becomes 8.0 (ammonia was 0.2N in total amount), the previously etched Si substrate was used as a base plating bath. It was immersed for 7 minutes to obtain a highly adhesive plating base film of the present invention.
When the surface portion of this material was observed with a transmission electron microscope, an amorphous layer having a thickness of 12 nm was confirmed on top of Si as a substrate, and a mixed crystal layer having a thickness of 180 nm mixed thereon was confirmed. Furthermore, Si: Cu = 20: 1 was found in the amorphous part in which the composition ratio (atomic ratio) of the metal component of the amorphous layer of Si and the metal component was examined by EPMA. In the mixed crystal layer, the composition ratio (atomic ratio) of the low crystal part is Si: Cu = 5: 1, and the crystal part is Si: Cu = 1: 15, which is more crystalline than the low crystal part. The percentage of Cu was higher.
Although a grid-like cut was made at intervals of 5 mm in this base plating film and a peeling test was performed using cello tape (registered trademark), no peeling of the plating film was observed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a base film of the present invention.
FIG. 2 shows a transmission electron micrograph (about 210,000 times) of the cross section of the membrane.
FIG. 3 shows an electron diffraction pattern of an amorphous phase.
FIG. 4 shows an electron diffraction pattern of a metal crystal phase.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Si substrate 2 Amorphous layer 3 Mixed crystal layer 3a Low crystalline part 3b Metal phase part

Claims (3)

Si単結晶基板の表面に自然酸化膜及び表層部Siの化学エッチング処理を施した上で、得られたSi単結晶基板のエッチング表面に、還元剤成分を含まない硫酸塩浴又は塩酸塩浴中で、液温70〜100℃においてpHを7.2〜12.8の範囲に維持しつつ成膜を行うハードディスク媒体用メッキ基板の製造方法であって、上記硫酸塩浴中の重金属成分が、NiとCuとAgとからなる一群から選ばれる一以上であるハードディスク媒体用メッキ基板の製造方法After the surface of the Si single crystal substrate is subjected to chemical etching treatment of the natural oxide film and the surface layer Si, the etching surface of the obtained Si single crystal substrate is in a sulfate bath or hydrochloride bath not containing a reducing agent component. And a method for producing a plated substrate for a hard disk medium that performs film formation while maintaining the pH in the range of 7.2 to 12.8 at a liquid temperature of 70 to 100 ° C., wherein the heavy metal component in the sulfate bath includes: A method of manufacturing a plated substrate for a hard disk medium, which is at least one selected from the group consisting of Ni, Cu, and Ag . 上記pHの調整をアンモニア添加により行うことを特徴とする請求項1に記載のハードディスク媒体用メッキ基板の製造方法。 The method of manufacturing a plated substrate for a hard disk medium according to claim 1, wherein the pH is adjusted by adding ammonia . Si単結晶基板の表面に自然酸化膜及び表層部Siの化学エッチング処理を施した上で、得られたSi単結晶基板のエッチング表面に、還元剤成分を含まない硫酸塩浴又は塩酸塩浴中で、液温70〜100℃においてpHを7.2〜12.8の範囲に維持しつつ成膜を行うハードディスク媒体用メッキ基板の製造方法であって、上記pHの調整をアンモニア添加により行うことを特徴とするハードディスク媒体用メッキ基板の製造方法 After the surface of the Si single crystal substrate is subjected to chemical etching treatment of the natural oxide film and the surface layer Si, the etching surface of the obtained Si single crystal substrate is in a sulfate bath or hydrochloride bath not containing a reducing agent component. The method for producing a plated substrate for a hard disk medium in which film formation is performed while maintaining the pH in the range of 7.2 to 12.8 at a liquid temperature of 70 to 100 ° C., wherein the pH is adjusted by adding ammonia. A method for producing a plated substrate for a hard disk medium .
JP2003208914A 2002-08-26 2003-08-26 Manufacturing method of plated substrate for hard disk medium Expired - Fee Related JP4074230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208914A JP4074230B2 (en) 2002-08-26 2003-08-26 Manufacturing method of plated substrate for hard disk medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002244839 2002-08-26
JP2003208914A JP4074230B2 (en) 2002-08-26 2003-08-26 Manufacturing method of plated substrate for hard disk medium

Publications (2)

Publication Number Publication Date
JP2004143586A JP2004143586A (en) 2004-05-20
JP4074230B2 true JP4074230B2 (en) 2008-04-09

Family

ID=32472635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208914A Expired - Fee Related JP4074230B2 (en) 2002-08-26 2003-08-26 Manufacturing method of plated substrate for hard disk medium

Country Status (1)

Country Link
JP (1) JP4074230B2 (en)

Also Published As

Publication number Publication date
JP2004143586A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
TW451403B (en) Electromigration-resistant copper microstructure and process of making
US6709979B2 (en) Method of manufacturing a semiconductor device
RU2374359C2 (en) Compositions for de-energised deposition of triple materials for semiconsuctor industry
JP2018018965A (en) Etching method, manufacturing method of semiconductor chip and manufacturing method of article
KR20050002599A (en) Substrate for Magnetic Recording Medium
US20050142284A1 (en) Method for manufacturing a plated substrate adapted for hard disk medium
US6727138B2 (en) Process for fabricating an electronic component incorporating an inductive microcomponent
JP4074230B2 (en) Manufacturing method of plated substrate for hard disk medium
Jing et al. Electroless gold deposition on silicon (100) wafer based on a seed layer of silver
JP4436175B2 (en) Single crystal Si substrate with metal plating layer
TW544696B (en) Process for fabricating an electronic component incorporating an inductive microcomponent
JP2011202194A (en) Method of manufacturing metal filling fine structure
TW521325B (en) Seed layer deposition
JP2018022926A (en) Etching method, manufacturing method of semiconductor chip and manufacturing method of article
JP4072100B2 (en) Substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP6246956B1 (en) Etching method, semiconductor chip manufacturing method, and article manufacturing method
JP3898412B2 (en) Method for forming a copper multilayer wiring structure using a copper plating solution
JP5996463B2 (en) Silicon wafer having Ni and Ni alloy film formed thereon, method of forming Ni and Ni alloy film on Si wafer, surface roughening treatment liquid and surface roughness of Si wafer surface when forming Ni and Ni alloy film Processing method
JPH11269693A (en) Deposition method of copper and copper plating liquid
JP4023610B2 (en) Substrate for perpendicular magnetic recording medium and method for producing perpendicular magnetic recording medium
JP4023611B2 (en) Substrate for perpendicular magnetic recording medium and method for producing perpendicular magnetic recording medium
JPH03125458A (en) Method of forming single crystal region, and single crystal article using same
TW512185B (en) Method of electroless plating metal lines on nitride barrier
US20030098767A1 (en) Process for fabricating an electronic component incorporating an inductive microcomponent
TWI250614B (en) Method for preparing copper interconnections of ULSI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees