JP4073126B2 - Conductive adhesive - Google Patents

Conductive adhesive Download PDF

Info

Publication number
JP4073126B2
JP4073126B2 JP29099999A JP29099999A JP4073126B2 JP 4073126 B2 JP4073126 B2 JP 4073126B2 JP 29099999 A JP29099999 A JP 29099999A JP 29099999 A JP29099999 A JP 29099999A JP 4073126 B2 JP4073126 B2 JP 4073126B2
Authority
JP
Japan
Prior art keywords
conductive adhesive
silver
ultrafine particles
conductive
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29099999A
Other languages
Japanese (ja)
Other versions
JP2001110234A (en
Inventor
直明 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29099999A priority Critical patent/JP4073126B2/en
Publication of JP2001110234A publication Critical patent/JP2001110234A/en
Application granted granted Critical
Publication of JP4073126B2 publication Critical patent/JP4073126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電子部品や半導体装置等を構成するチップを基板等に搭載する際に、前記チップの表面に設けられた電気接合用バンプ(接点)と基板上の電極(接点)とを電気的に接合するのに使用される導電接着剤に関する。
【0002】
【従来の技術】
例えば、電子部品や半導体装置等を構成するチップの表面に配列した電気接合用バンプと、基板上のこれらの各バンプに対応する位置に設けた電極との電気的接合には、鉛を含むはんだを用いたソルダリング(はんだ接合法)が広く用いられている。これは、この種のソルダリングによれば、一般的に〜39.2MPa程度の接合強度を確保するとともに、バルクの電気抵抗率が〜17μΩcm程度、溶融温度が〜180℃程度となって、各特性のバランスがとれているからである。
【0003】
【発明が解決しようとする課題】
しかしながら、鉛は毒性が強く、人間の生活環境に与える影響が極めて深刻な状況になるとの認識が強まっており、使用を制限することが強く望まれている。なお、鉛を含むソルダを回収して再利用することも考えられるが、費用がかなり高く、経済原則から現状ではその実現が困難である。一方、鉛以外の元素から構成するはんだ材料もあるが、融点が高くなり、リペアが厄介で接続強度も劣る等の欠点があるので、実用上、鉛はんだに対抗できる材料は見あたらないのが現状である。
【0004】
このため、鉛を使用しない電気的接合を行う接合法の一つとして、導電接着剤を使用したものが開発されている。導電接着剤は、導電性を有する充填材(導電フィラー)としての銀や炭素等の粒子を、接着性を有する有機高分子中に混入分散することによって、接着性と導電性を同時に実現したものである。この導電接着剤の主成分である高分子材料としては、接着性や耐久性が優れているエポキシ樹脂が一般に使用されている。
【0005】
しかしながら、導電接着剤を使用した接合法とソルダを用いた接合法(ソルダリング)とを比較すると、導電接着剤を使用した接合法では、接続部の電気抵抗率がソルダリングに比べて遙かに高くなるという難点がある。
【0006】
表1は、導電フィラーとして銀を使用した導電接着剤とニッケルを使用した導電接着剤の電気抵抗率と接着強度を示すものである。
【表1】

Figure 0004073126
【0007】
この表1から、銀を導電フィラーとした導電接着剤であっても、ソルダに比較して、電気抵抗率が1桁大きなレベルになっていることが判る。一方、接着強度は、3MPaの値を示しており、これは現状の鉛入りのソルダのそれ(10−15MPa)の20〜30%の値を示しているので、接続部分の継手形状や寸法に留意すれば、十分実用に値するレベルに達している。
【0008】
それ以外の電気・熱特性等(誘電損失、静電容量、破損率)では、導電接着剤の方がソルダを上回る実績を示している。即ち、図4は、はんだペースト、銀フィラー接着剤、ニッケルフィラー接着剤の各周波数における静電容量の比較を、図5は、同じく誘電損失の比較を示すそれぞれグラフである。これらのグラフから、導電接着剤の性能は、はんだペーストと同等かそれを上回るものとなっていることが判る。また、図6は、はんだペースト、レゾールフェノール樹脂、ノボラックフェノール樹脂の熱サイクル試験による破損率の比較を示すグラフである。このグラフから、導電接着剤にははんだペーストを上回るレベルに達したものもあることが判る。
【0009】
以上から、電気抵抗率の面で満足できれば、導電接着剤を鉛入りソルダを使用したソルダリングに代替えできることが判る。
本発明は上記事情に鑑みて為されたもので、電気抵抗率を小さくして従来のソルダリングに代替え可能な導電接着剤を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、接着性を有する液状の高分子材料の内部に、周囲をアルキル鎖殻で被覆した、大きさが5nm程度のクラクタ状の銀超微粒子を有機溶剤に溶解させて混入分散させ、塗布または充填後、焼成するようにしたことを特徴とする導電接着剤である。
【0011】
これにより、液状の高分子材料の内部に超微粒子を凝集を起こすことなく均一に混入分散させ、焼成の際の高分子材料の収縮・硬化に伴って超微粒子同士を強固に接触させることによって、ソルダとほぼ同等な電気抵抗率を得ることができる。
【0012】
請求項2に記載の発明は、前記超微粒子は、銀を含む有機錯体を熱分解して製造したものであることを特徴とする請求項1記載の導電接着剤である。この銀超微粒子は、例えばステアリン酸銀を250℃程度の窒素雰囲気で4時間加熱し、精製することによって製造される。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の実施の形態の導電接着剤を示し、図1(a)は、例えばプリント配線板10の表面に導電接着剤20を塗布した直後の状態を、図1(b)は、図1(a)に示す導電接着剤20を焼成した後の状態をそれぞれ概念的に示すものである。
【0015】
図1(a)に示すように、導電接着剤20は、その導電要素として、導電性の良い、例えば単体の銀で構成された銀超微粒子22を利用し、その周囲をアルキル鎖殻24で被覆したものを、接着剤と有機溶媒の混合液である液状の高分子材料26内に混入分散させたものである。この銀超微粒子(金属超微粒子)22は、その寸法が約5nm程度と極小クラスタ状をなしている。
【0016】
ここで、周囲をアルキル鎖殻24で被覆した、約5nm程度の極小クラクタ状の銀超微粒子22は、例えばミリスチン酸、ステアリン酸またはオレイン酸を水酸化ナトリウムによって鹸化し、しかる後、硝酸銀と反応させることによって作製した直鎖型脂肪酸銀塩(アルキル鎖の炭素数=14,18,18ω)を、250℃程度の窒素雰囲気で4時間加熱し、精製することによって製造される。そして、このような、5nmとクラスターレベルの極小な粒径をなした銀超微粒子22を、例えばシクロヘキサン等の有機溶媒に溶解した状態で、液状の高分子材料26内に供給し分散させると、極めて分散性が良好で、互いに凝集することなく、銀超微粒子22が安定した状態で媒質中に均一に混じり合う。すなわち、高分子材料26が液状の場合は、図1(a)に示すように、銀超微粒子22同士は、互いに非接触状態で、高分子材料26中に均一に分散する。
【0017】
前記高分子材料26の接着剤の主成分としては、例えば、エポキシ系、フェノール系またはポリイミド系のような熱硬化性樹脂を用いている。この種の熱硬化性樹脂は、例えば、170℃以上の昇温・保持の操作で乾燥・硬化し、その際に一定の体積収縮を起こす。一方、銀超微粒子22を被覆しているアルキル鎖殻24は、200℃程度の加熱で消滅することが知られている。
【0018】
つまり、導電接着剤20を約200℃で焼成すると、図1(b)に示すように、銀超微粒子22の周囲を覆っていたアルキル鎖殻24は消失し、更に、高分子材料26の収縮・硬化に伴って銀超微粒子22同士が直接接触を起こし、導電性を帯びると同時に高分子材料26は硬化して接着が完了する。
この過程は、接着剤以外の導電性樹脂、導電性ゴム(エラストマ)、導電性塗布料等に導電性を付与する場合のそれと基本的に同じである。
【0019】
次に、導電接着剤20内に銀超微粒子22の占める割合について説明する。
今、単純化のために、図2に示すように、面心立方格子状に同一サイズの銀超微粒子22を配置したと仮定する。単位胞たる立方体内部に球(銀超微粒子22)の体積が占める割合Rは、球の半径をaとすれば、単位格子について、幾何学的に下記の式(1)で表すことができる。
【数1】
Figure 0004073126
【0020】
従って、大きさの等しい球体ならば、最大74%の体積率まで球体を充填することができる。これにより、銀超微粒子22の占める割合を74%、残りを高分子材料26とすることで、銀超微粒子22を最も多く含んだ、電気抵抗率を改善する上で最適の導電接着剤20を構成することができる。
【0021】
次に、電気抵抗率が改善する原理について説明する。
金属は、その融点を単位Kで表し、Tと置いたとき、0.3T以上の昇温によって、一般に表面拡散現象を開始することが判っている。更に、同種の金属同士が互いに接触しているとき、表面拡散による接着(凝着と同じ意味)は、銀の場合、Tの40%の温度に保持することによって開始するという現象がある。これによると、銀の融点が1233K(960℃)なので、接着(凝着)開始温度は、480K(207℃)となる。
【0022】
したがって、導電接着剤20を部材表面に塗布、または部材間に充填した後、207℃以上に昇温保持することによって、銀超微粒子22同士の相互接着(凝着)が起こり、その結果、導電断面積が実質的に増加する。
【0023】
今、簡単のために、半径aの2つの球体(銀超微粒子22)が図3(a)に示す接触状態から、焼成によって図3(b)に示す焼結状態に移行したと仮定する。図3(a)に示す接触の状態の場合は、その接触面が円となっている。この接触円の半径aは、弾性論によって計算することができ、式(2)となる。
【数2】
Figure 0004073126
ここで、Pは押付け力、Eは縦弾性係数である。
【0024】
今、押付け力を半径aの球の投影面積×大気圧の100倍相当、a=2.5nm=2.5×10−6mmとして、銀の縦弾性係数E=79.0GPaを式(2)に代入すると、a=0.2nmを得る。そして、図3(b)に示す焼成後は、2つの球体が焼結したことによって互いの接着(凝着)断面(円状)の半径が0.6nm(≡a)に増加しているとすると、導電路断面積は(a/a=9と9倍に拡大する。以上のように、従来と異なって、塗布後の焼結過程を経る結果、この導電接着剤の電気抵抗率は、表1に示す導電フィラーとして銀を使用した従来の導電接着剤の1/9程度に低減でき、現状の60%Sn−40%Pbソルダとほとんど同じレベルの値に改善できることが判る。
【0025】
【発明の効果】
以上説明したように、本発明によれば、液状の高分子材料の内部に金属超微粒子を凝集を起こすことなく均一に混入分散させ、焼成の際の高分子材料の収縮・硬化に伴って金属超微粒子同士を強固に接触させると共に、焼成時の焼結反応による粒子相互間の凝着を起こす結果、ソルダとほぼ同等な電気抵抗率を得ることができ、これによって、従来のソルダリングに代替え可能な導電接着剤を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態の導電接着剤を塗布した直後の状態を、(b)は導電接着剤の焼成後の状態を概念的に示す図である。
【図2】立方体内部に球体(金属超微粒子)の体積が占める割合の説明に付する図である。
【図3】(a)は2つの球体(金属超微粒子)が接触した状態を、(b)は同じく焼結後の状態を示す図である。
【図4】はんだペーストと導電接着剤の静電容量の比較を示すグラフである。
【図5】はんだペーストと導電接着剤の誘電損失の比較を示すグラフである。
【図6】はんだペーストと導電接着剤の熱サイクル試験による破損率比較を示すグラフである。
【符号の説明】
10 プリント配線板
20 導電接着剤
22 銀超微粒子
24 アルキル鎖殻
26 高分子材料[0001]
BACKGROUND OF THE INVENTION
In the present invention, for example, when a chip constituting an electronic component or a semiconductor device is mounted on a substrate or the like, an electrical bonding bump (contact) provided on the surface of the chip and an electrode (contact) on the substrate are electrically connected. The present invention relates to a conductive adhesive used for jointing.
[0002]
[Prior art]
For example, a lead-containing solder is used for the electrical connection between the bumps for electrical bonding arranged on the surface of a chip constituting an electronic component or a semiconductor device and the electrodes provided at positions corresponding to the bumps on the substrate. Soldering using solder (soldering method) is widely used. According to this kind of soldering, generally, a bonding strength of about ˜39.2 MPa is ensured, a bulk electrical resistivity is about ˜17 μΩcm, a melting temperature is about ˜180 ° C., This is because the characteristics are balanced.
[0003]
[Problems to be solved by the invention]
However, lead is highly toxic and there is an increasing awareness that it will have a very serious impact on the human living environment, and there is a strong desire to limit its use. Although it is conceivable to collect and reuse the solder containing lead, the cost is quite high, and it is difficult to realize it at present due to economic principles. On the other hand, some solder materials are composed of elements other than lead. However, there are practically no materials that can compete with lead solder because of their disadvantages such as high melting point, troublesome repair and poor connection strength. It is.
[0004]
For this reason, as a joining method for performing electrical joining without using lead, a method using a conductive adhesive has been developed. Conductive adhesive is a material that achieves adhesiveness and conductivity simultaneously by mixing and dispersing particles such as silver and carbon as conductive filler (conductive filler) in an organic polymer with adhesiveness. It is. As the polymer material that is the main component of the conductive adhesive, an epoxy resin having excellent adhesion and durability is generally used.
[0005]
However, comparing the bonding method using conductive adhesive and the bonding method using solder (soldering), the bonding method using conductive adhesive has a much lower electrical resistivity than soldering. There is a difficulty that it becomes high.
[0006]
Table 1 shows the electrical resistivity and adhesive strength of a conductive adhesive using silver as a conductive filler and a conductive adhesive using nickel.
[Table 1]
Figure 0004073126
[0007]
From Table 1, it can be seen that even in the case of a conductive adhesive using silver as a conductive filler, the electrical resistivity is an order of magnitude greater than that of solder. On the other hand, the adhesive strength shows a value of 3 MPa, which is 20-30% of that of the current lead-containing solder (10-15 MPa). If you keep in mind, you have reached a level that is sufficiently practical.
[0008]
In other electrical / thermal characteristics (dielectric loss, capacitance, breakage rate), the conductive adhesive shows a better performance than the solder. That is, FIG. 4 is a graph showing a comparison of capacitance at each frequency of solder paste, silver filler adhesive, and nickel filler adhesive, and FIG. 5 is a graph showing a comparison of dielectric loss. From these graphs, it can be seen that the performance of the conductive adhesive is equivalent to or better than that of the solder paste. FIG. 6 is a graph showing a comparison of the damage rates of the solder paste, the resol phenol resin, and the novolak phenol resin by the thermal cycle test. From this graph, it can be seen that some conductive adhesives have reached a level exceeding the solder paste.
[0009]
From the above, it can be seen that, if satisfactory in terms of electrical resistivity, the conductive adhesive can be replaced with soldering using lead-containing solder.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a conductive adhesive that can be replaced with conventional soldering by reducing the electrical resistivity.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, ultrafine particles of crater shape having a size of about 5 nm and coated with an alkyl chain shell are dissolved in an organic solvent inside a liquid polymer material having adhesiveness. A conductive adhesive characterized in that it is mixed and dispersed, fired after coating or filling.
[0011]
This makes it possible to uniformly mix and disperse the silver ultrafine particles inside the liquid polymer material without causing aggregation, and to bring the silver ultrafine particles into firm contact with each other as the polymer material shrinks and cures during firing. Thus, an electrical resistivity substantially equal to that of the solder can be obtained.
[0012]
The invention according to claim 2, wherein the ultra-fine silver particles are conductive adhesive according to claim 1, wherein the organic complex containing silver are those produced by thermal decomposition. The ultrafine silver particles are produced, for example, by heating and purifying silver stearate in a nitrogen atmosphere at about 250 ° C. for 4 hours.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a conductive adhesive according to an embodiment of the present invention. FIG. 1A shows, for example, a state immediately after the conductive adhesive 20 is applied to the surface of a printed wiring board 10, and FIG. FIG. 1 conceptually shows the state after firing the conductive adhesive 20 shown in FIG.
[0015]
As shown in FIG. 1 (a), the conductive adhesive 20 uses, as its conductive element, silver ultrafine particles 22 made of, for example, single silver having good conductivity, and the surroundings are surrounded by an alkyl chain shell 24. The coated material is mixed and dispersed in a liquid polymer material 26 which is a mixed solution of an adhesive and an organic solvent. The silver ultrafine particles (metal ultrafine particles) 22 have a very small cluster shape with a dimension of about 5 nm.
[0016]
Here, the ultra-small clacter-like silver ultrafine particles 22 of about 5 nm, the periphery of which is coated with an alkyl chain shell 24, saponify, for example, myristic acid, stearic acid or oleic acid with sodium hydroxide, and then react with silver nitrate. It is produced by heating and purifying a linear fatty acid silver salt (alkyl chain carbon number = 14, 18, 18ω) prepared by heating in a nitrogen atmosphere at about 250 ° C. for 4 hours. Then, when such silver ultrafine particles 22 having a minimum particle size of 5 nm and a cluster level are dissolved and dissolved in an organic solvent such as cyclohexane, the liquid polymer material 26 is supplied and dispersed. It has extremely good dispersibility, and the silver ultrafine particles 22 are uniformly mixed in the medium in a stable state without aggregating with each other. That is, when the polymer material 26 is in a liquid state, as shown in FIG. 1A, the silver ultrafine particles 22 are uniformly dispersed in the polymer material 26 without being in contact with each other.
[0017]
As a main component of the adhesive of the polymer material 26, for example, a thermosetting resin such as epoxy, phenol or polyimide is used. This type of thermosetting resin, for example, is dried and cured by a temperature raising and holding operation at 170 ° C. or higher, and causes a certain volume shrinkage. On the other hand, it is known that the alkyl chain shell 24 covering the silver ultrafine particles 22 disappears by heating at about 200 ° C.
[0018]
That is, when the conductive adhesive 20 is baked at about 200 ° C., as shown in FIG. 1B, the alkyl chain shell 24 covering the periphery of the silver ultrafine particles 22 disappears, and further the shrinkage of the polymer material 26 occurs. The silver ultrafine particles 22 are brought into direct contact with each other as they are cured, and at the same time, the polymer material 26 is cured and the adhesion is completed.
This process is basically the same as that for imparting conductivity to conductive resins other than adhesives, conductive rubber (elastomer), conductive coating materials, and the like.
[0019]
Next, the proportion of the silver ultrafine particles 22 in the conductive adhesive 20 will be described.
For simplification, it is assumed that silver ultrafine particles 22 of the same size are arranged in a face-centered cubic lattice as shown in FIG. The ratio R of the volume of the sphere (silver ultrafine particle 22) occupying the inside of the unit cell cube can be geometrically expressed by the following formula (1) with respect to the unit cell when the radius of the sphere is a.
[Expression 1]
Figure 0004073126
[0020]
Therefore, if the spheres have the same size, the spheres can be filled up to a maximum volume ratio of 74%. As a result, the ratio of the silver ultrafine particles 22 is 74%, and the remainder is the polymer material 26, so that the most suitable conductive adhesive 20 containing the most silver ultrafine particles 22 and improving the electrical resistivity is obtained. Can be configured.
[0021]
Next, the principle of improving the electrical resistivity will be described.
It has been found that a metal generally starts its surface diffusion phenomenon when its melting point is expressed by the unit K and is set as T M and a temperature rise of 0.3 T M or more. Further, when the metals are of the same kind are in contact with each other, (the same meaning as adhesion) bonding by surface diffusion in the case of silver, there is a phenomenon that begins by holding 40% of the temperature of T M. According to this, since the melting point of silver is 1233 K (960 ° C.), the adhesion (adhesion) start temperature is 480 K (207 ° C.).
[0022]
Accordingly, after the conductive adhesive 20 is applied to the surface of the member or filled between the members, the temperature is maintained at 207 ° C. or higher, thereby causing mutual adhesion (adhesion) between the silver ultrafine particles 22. The cross-sectional area increases substantially.
[0023]
For the sake of simplicity, it is assumed that the two spheres (silver ultrafine particles 22) having a radius a have shifted from the contact state shown in FIG. 3 (a) to the sintered state shown in FIG. 3 (b) by firing. In the case of the contact state shown in FIG. 3A, the contact surface is a circle. The radius a 1 of the contact circle can be calculated by elasticity theory, and is expressed by Equation (2).
[Expression 2]
Figure 0004073126
Here, P is the pressing force and E is the longitudinal elastic modulus.
[0024]
Now, assuming that the pressing force is equivalent to 100 times the projected area of a sphere of radius a × atmospheric pressure, a = 2.5 nm = 2.5 × 10 −6 mm, the longitudinal modulus of elasticity E = 79.0 GPa of the formula (2 ) To obtain a 1 = 0.2 nm. Then, after firing as shown in FIG. 3 (b), the radius of the adhesion of each other by two spheres sintered (adhesion) cross section (circular) is increased to 0.6 nm (≡A 2) Then, the cross-sectional area of the conductive path is increased to 9 times as (a 2 / a 1 ) 2 = 9. As described above, unlike the conventional case, as a result of passing through the sintering process after coating, the electrical resistivity of this conductive adhesive is 1/9 that of the conventional conductive adhesive using silver as the conductive filler shown in Table 1. It can be seen that it can be reduced to the same level as the current 60% Sn-40% Pb solder.
[0025]
【The invention's effect】
As described above, according to the present invention, the ultrafine metal particles are uniformly mixed and dispersed within the liquid polymer material without causing aggregation, and the metal is shrunk and cured as the polymer material shrinks and cures during firing. As a result of bringing ultrafine particles into firm contact with each other and causing adhesion between particles due to the sintering reaction during firing, it is possible to obtain an electrical resistivity almost equivalent to that of solder, which replaces conventional soldering. Possible conductive adhesives can be provided.
[Brief description of the drawings]
FIG. 1A is a diagram conceptually showing a state immediately after application of a conductive adhesive according to an embodiment of the present invention, and FIG. 1B is a diagram conceptually showing a state after baking of the conductive adhesive.
FIG. 2 is a diagram for explaining the proportion of the volume of spheres (metal ultrafine particles) in a cube.
3A is a view showing a state where two spheres (metal ultrafine particles) are in contact with each other, and FIG. 3B is a view showing a state after sintering.
FIG. 4 is a graph showing a comparison of capacitance between a solder paste and a conductive adhesive.
FIG. 5 is a graph showing a comparison of dielectric loss between a solder paste and a conductive adhesive.
FIG. 6 is a graph showing a comparison of breakage rates in a thermal cycle test between a solder paste and a conductive adhesive.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Printed wiring board 20 Conductive adhesive 22 Silver ultrafine particle 24 Alkyl chain shell 26 Polymer material

Claims (2)

接着性を有する液状の高分子材料の内部に、周囲をアルキル鎖殻で被覆した、大きさが5nm程度のクラクタ状の銀超微粒子を有機溶剤に溶解させて混入分散させ、塗布または充填後、焼成するようにしたことを特徴とする導電接着剤。Inside the polymeric liquid material having adhesion, was coated around with an alkyl chain shell magnitude is mixed dispersed by dissolving Kurakuta shaped ultra-fine silver particles of about 5nm in an organic solvent, after application or filling, A conductive adhesive characterized by firing. 前記超微粒子は、銀を含む有機錯体を熱分解して製造したものであることを特徴とする請求項1記載の導電接着剤。The ultra-fine silver particles, the conductive adhesive according to claim 1, characterized in that the organic complex containing silver are those produced by thermal decomposition.
JP29099999A 1999-10-13 1999-10-13 Conductive adhesive Expired - Fee Related JP4073126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29099999A JP4073126B2 (en) 1999-10-13 1999-10-13 Conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29099999A JP4073126B2 (en) 1999-10-13 1999-10-13 Conductive adhesive

Publications (2)

Publication Number Publication Date
JP2001110234A JP2001110234A (en) 2001-04-20
JP4073126B2 true JP4073126B2 (en) 2008-04-09

Family

ID=17763157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29099999A Expired - Fee Related JP4073126B2 (en) 1999-10-13 1999-10-13 Conductive adhesive

Country Status (1)

Country Link
JP (1) JP4073126B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60108476T2 (en) 2001-04-09 2006-03-23 Nichiro Kogyo Co. Ltd., Yokohama Strapping machine with strap channel
JP4134878B2 (en) 2003-10-22 2008-08-20 株式会社デンソー Conductor composition, mounting substrate using the conductor composition, and mounting structure
JP4906301B2 (en) * 2005-09-29 2012-03-28 東海ゴム工業株式会社 Conductive paste
KR101083042B1 (en) 2009-06-03 2011-11-16 중앙대학교 산학협력단 Method for filling via hall and method of fabricating semiconductor package
KR101083041B1 (en) 2009-06-03 2011-11-16 중앙대학교 산학협력단 Method for forming bump and method of packaging semiconductor

Also Published As

Publication number Publication date
JP2001110234A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP4848674B2 (en) Resin metal composite conductive material and method for producing the same
JP5041454B2 (en) Conductive connection member
JP2004051755A (en) Elastic electrical conductive resin and elastic electrical conductive joint structure
JP3837858B2 (en) Conductive adhesive and method of using the same
JPH0623350B2 (en) Anisotropic conductive adhesive
JPH11150135A (en) Conductive paste of superior thermal conductivity and electronic device
CN1706040A (en) Non-contact ID card and the like and method for manufacturing same
JP4073126B2 (en) Conductive adhesive
JP4191567B2 (en) Connection structure using conductive adhesive and method for manufacturing the same
CN1339049A (en) Conductive resin, electronic module using conductive resin, and method of manufacturing electronic module
Lu et al. Electrically conductive adhesives (ECAs)
WO2020222301A1 (en) Connection structure, manufacturing method for connection structure, connection material, and coated conductive particle
US6749774B2 (en) Conductive adhesive and connection structure using the same
JPH1112552A (en) Electroconductive particle
KR20210034578A (en) Nanocopper pastes and films for sintered die attachment and similar applications
JP2020184530A (en) Connection structure, manufacturing method thereof, connection material, and coated conductive particles
JP4010717B2 (en) Electrical contact joining method
EP2397524A1 (en) Conductive resin composition, process for producing electronic part using same, connecting method, connection structure, and electronic part
WO2002061766A1 (en) Conductive powder and conductive composition
KR20100136894A (en) Conductive adhesive and connection method between terminal employing the same
JP2010176894A (en) Module connecting conductive paste and ic card
JP2007027173A (en) Electronic component packaging structure
JP2851800B2 (en) Method for connecting circuit member and substrate using conductive adhesive
JP2003257244A (en) Conductive resin paste and conductive resin membrane
JP2008179834A (en) Electrically-conductive elastic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Effective date: 20071107

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130201

LAPS Cancellation because of no payment of annual fees