JP2001110234A - Conductive adhesive - Google Patents

Conductive adhesive

Info

Publication number
JP2001110234A
JP2001110234A JP29099999A JP29099999A JP2001110234A JP 2001110234 A JP2001110234 A JP 2001110234A JP 29099999 A JP29099999 A JP 29099999A JP 29099999 A JP29099999 A JP 29099999A JP 2001110234 A JP2001110234 A JP 2001110234A
Authority
JP
Japan
Prior art keywords
conductive adhesive
silver
particles
ultrafine
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29099999A
Other languages
Japanese (ja)
Other versions
JP4073126B2 (en
Inventor
Naoaki Kogure
直明 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29099999A priority Critical patent/JP4073126B2/en
Publication of JP2001110234A publication Critical patent/JP2001110234A/en
Application granted granted Critical
Publication of JP4073126B2 publication Critical patent/JP4073126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide conductive adhesive substitutive for conventional soldering because of its small electric resistivity. SOLUTION: Liquid adhesive polymeric material 26 in which well conductive metallic micro-particles 22 are mixed and dispersed are fired after application or filling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電子部品や
半導体装置等を構成するチップを基板等に搭載する際
に、前記チップの表面に設けられた電気接合用バンプ
(接点)と基板上の電極(接点)とを電気的に接合する
のに使用される導電接着剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a chip constituting an electronic component or a semiconductor device on a substrate or the like. The present invention relates to a conductive adhesive used for electrically joining an electrode (contact).

【0002】[0002]

【従来の技術】例えば、電子部品や半導体装置等を構成
するチップの表面に配列した電気接合用バンプと、基板
上のこれらの各バンプに対応する位置に設けた電極との
電気的接合には、鉛を含むはんだを用いたソルダリング
(はんだ接合法)が広く用いられている。これは、この
種のソルダリングによれば、一般的に〜39.2MPa
程度の接合強度を確保するとともに、バルクの電気抵抗
率が〜17μΩcm程度、溶融温度が〜180℃程度とな
って、各特性のバランスがとれているからである。
2. Description of the Related Art For example, electrical bonding between electrical bonding bumps arranged on the surface of a chip constituting an electronic component or a semiconductor device and electrodes provided at positions corresponding to these bumps on a substrate is required. In addition, soldering (solder joining method) using a solder containing lead is widely used. This is typically ~ 39.2 MPa according to this type of soldering.
This is because the bonding strength of the order is ensured, the electrical resistivity of the bulk is about 17 μΩcm, the melting temperature is about 180 ° C., and the respective properties are balanced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鉛は毒
性が強く、人間の生活環境に与える影響が極めて深刻な
状況になるとの認識が強まっており、使用を制限するこ
とが強く望まれている。なお、鉛を含むソルダを回収し
て再利用することも考えられるが、費用がかなり高く、
経済原則から現状ではその実現が困難である。一方、鉛
以外の元素から構成するはんだ材料もあるが、融点が高
くなり、リペアが厄介で接続強度も劣る等の欠点がある
ので、実用上、鉛はんだに対抗できる材料は見あたらな
いのが現状である。
However, there is growing recognition that lead is highly toxic and has a very serious effect on human living environments, and there is a strong desire to restrict its use. Although it is conceivable to collect and reuse lead-containing solder, it is quite expensive,
At present, it is difficult to achieve this due to economic principles. On the other hand, there are solder materials composed of elements other than lead, but they have disadvantages such as high melting point, troublesome repair, and poor connection strength.Therefore, there is no material that can compete with lead solder in practice. It is.

【0004】このため、鉛を使用しない電気的接合を行
う接合法の一つとして、導電接着剤を使用したものが開
発されている。導電接着剤は、導電性を有する充填材
(導電フィラー)としての銀や炭素等の粒子を、接着性
を有する有機高分子中に混入分散することによって、接
着性と導電性を同時に実現したものである。この導電接
着剤の主成分である高分子材料としては、接着性や耐久
性が優れているエポキシ樹脂が一般に使用されている。
For this reason, a method using a conductive adhesive has been developed as one of the joining methods for performing electrical joining without using lead. The conductive adhesive is a material that achieves both adhesiveness and conductivity by mixing and dispersing particles such as silver and carbon as a conductive filler (conductive filler) in an organic polymer having adhesiveness. It is. As a polymer material which is a main component of the conductive adhesive, an epoxy resin having excellent adhesiveness and durability is generally used.

【0005】しかしながら、導電接着剤を使用した接合
法とソルダを用いた接合法(ソルダリング)とを比較す
ると、導電接着剤を使用した接合法では、接続部の電気
抵抗率がソルダリングに比べて遙かに高くなるという難
点がある。
However, a comparison between the joining method using a conductive adhesive and the joining method (soldering) using a solder shows that the electrical resistivity of the connecting portion is smaller in the joining method using the conductive adhesive than in the soldering. There is a drawback that it becomes much higher.

【0006】表1は、導電フィラーとして銀を使用した
導電接着剤とニッケルを使用した導電接着剤の電気抵抗
率と接着強度を示すものである。
Table 1 shows the electrical resistivity and the adhesive strength of the conductive adhesive using silver as the conductive filler and the conductive adhesive using nickel as the conductive filler.

【表1】 [Table 1]

【0007】この表1から、銀を導電フィラーとした導
電接着剤であっても、ソルダに比較して、電気抵抗率が
1桁大きなレベルになっていることが判る。一方、接着
強度は、3MPaの値を示しており、これは現状の鉛入
りのソルダのそれ(10−15MPa)の20〜30%
の値を示しているので、接続部分の継手形状や寸法に留
意すれば、十分実用に値するレベルに達している。
[0007] From Table 1, it can be seen that even with a conductive adhesive using silver as a conductive filler, the electrical resistivity is one order of magnitude higher than that of solder. On the other hand, the adhesive strength shows a value of 3 MPa, which is 20 to 30% of that of the current lead-containing solder (10 to 15 MPa).
Therefore, if the joint shape and dimensions of the connection portion are taken into account, the level has reached a level sufficiently practical.

【0008】それ以外の電気・熱特性等(誘電損失、静
電容量、破損率)では、導電接着剤の方がソルダを上回
る実績を示している。即ち、図4は、はんだペースト、
銀フィラー接着剤、ニッケルフィラー接着剤の各周波数
における静電容量の比較を、図5は、同じく誘電損失の
比較を示すそれぞれグラフである。これらのグラフか
ら、導電接着剤の性能は、はんだペーストと同等かそれ
を上回るものとなっていることが判る。また、図6は、
はんだペースト、レゾールフェノール樹脂、ノボラック
フェノール樹脂の熱サイクル試験による破損率の比較を
示すグラフである。このグラフから、導電接着剤にはは
んだペーストを上回るレベルに達したものもあることが
判る。
[0008] With respect to other electric and thermal characteristics (dielectric loss, electrostatic capacity, breakage rate), the conductive adhesive shows a performance exceeding the solder. That is, FIG. 4 shows a solder paste,
FIG. 5 is a graph showing the comparison of the capacitance at each frequency of the silver filler adhesive and the nickel filler adhesive, and FIG. 5 is a graph showing the comparison of the dielectric loss. From these graphs, it can be seen that the performance of the conductive adhesive is equal to or better than that of the solder paste. Also, FIG.
It is a graph which shows the comparison of the breakage rate of a solder paste, a resol phenol resin, and a novolak phenol resin by a heat cycle test. From this graph, it can be seen that some conductive adhesives have reached a level that exceeds the solder paste.

【0009】以上から、電気抵抗率の面で満足できれ
ば、導電接着剤を鉛入りソルダを使用したソルダリング
に代替えできることが判る。本発明は上記事情に鑑みて
為されたもので、電気抵抗率を小さくして従来のソルダ
リングに代替え可能な導電接着剤を提供することを目的
とする。
From the above, it can be seen that if the electrical resistivity can be satisfied, the conductive adhesive can be replaced by soldering using lead-containing solder. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a conductive adhesive which can reduce electric resistivity and can be replaced with conventional soldering.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明
は、接着性を有する液状の高分子材料の内部に導電性の
良好な金属超微粒子を混入分散させ、塗布または充填
後、焼成するようにしたことを特徴とする導電接着剤で
ある。
According to the first aspect of the present invention, ultra-fine metal particles having good conductivity are mixed and dispersed in a liquid polymer material having an adhesive property, and then fired after coating or filling. A conductive adhesive characterized by the above.

【0011】これにより、液状の高分子材料の内部に金
属超微粒子を凝集を起こすことなく均一に混入分散さ
せ、焼成の際の高分子材料の収縮・硬化に伴って金属超
微粒子同士を強固に接触させることによって、ソルダと
ほぼ同等な電気抵抗率を得ることができる。
Thus, the metal ultra-fine particles are uniformly mixed and dispersed inside the liquid polymer material without causing aggregation, and the metal ultra-fine particles are firmly connected to each other as the polymer material shrinks and hardens during firing. By making contact, it is possible to obtain an electrical resistivity substantially equal to that of solder.

【0012】請求項2に記載の発明は、前記金属超微粒
子は、銀を含む有機錯体を熱分解して製造した銀超微粒
子からなることを特徴とする請求項1記載の導電接着剤
である。この銀超微粒子は、例えばステアリン酸銀を2
50℃程度の窒素雰囲気で4時間加熱し、精製すること
によって製造される。
According to a second aspect of the present invention, in the conductive adhesive according to the first aspect, the ultrafine metal particles are made of ultrafine silver particles produced by thermally decomposing an organic complex containing silver. . The silver ultrafine particles are formed, for example, by adding silver stearate to 2
It is manufactured by heating and purifying in a nitrogen atmosphere at about 50 ° C. for 4 hours.

【0013】請求項3に記載の発明は、前記銀超微粒子
は、その大きさが5nm程度のクラスタ状をなしている
ことを特徴とする請求項2記載の導電接着剤である。こ
れにより、銀超微粒子を極小な粒径として、この高分子
材料中への均一分散度が極めて良好となる。
According to a third aspect of the present invention, there is provided the conductive adhesive according to the second aspect, wherein the ultrafine silver particles form a cluster having a size of about 5 nm. Thereby, the ultrafine silver particles have an extremely small particle size, and the degree of uniform dispersion in the polymer material becomes extremely good.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明の実施の形態の導
電接着剤を示し、図1(a)は、例えばプリント配線板
10の表面に導電接着剤20を塗布した直後の状態を、
図1(b)は、図1(a)に示す導電接着剤20を焼成
した後の状態をそれぞれ概念的に示すものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a conductive adhesive according to an embodiment of the present invention. FIG. 1A shows a state immediately after a conductive adhesive 20 is applied to the surface of a printed wiring board 10, for example.
FIG. 1B conceptually shows a state after the conductive adhesive 20 shown in FIG. 1A is fired.

【0015】図1(a)に示すように、導電接着剤20
は、その導電要素として、導電性の良い、例えば単体の
銀で構成された銀超微粒子22を利用し、その周囲をア
ルキル鎖殻24で被覆したものを、接着剤と有機溶媒の
混合液である液状の高分子材料26内に混入分散させた
ものである。この銀超微粒子(金属超微粒子)22は、
その寸法が約5nm程度と極小クラスタ状をなしてい
る。
As shown in FIG. 1A, the conductive adhesive 20
Utilizes, as its conductive element, silver ultrafine particles 22 having good conductivity, for example, composed of simple silver, and the periphery thereof is covered with an alkyl chain shell 24, and is then mixed with a mixture of an adhesive and an organic solvent. This is mixed and dispersed in a certain liquid polymer material 26. The silver ultrafine particles (metal ultrafine particles) 22
The size is about 5 nm, which is a very small cluster.

【0016】ここで、周囲をアルキル鎖殻24で被覆し
た、約5nm程度の極小クラクタ状の銀超微粒子22
は、例えばミリスチン酸、ステアリン酸またはオレイン
酸を水酸化ナトリウムによって鹸化し、しかる後、硝酸
銀と反応させることによって作製した直鎖型脂肪酸銀塩
(アルキル鎖の炭素数=14,18,18ω)を、25
0℃程度の窒素雰囲気で4時間加熱し、精製することに
よって製造される。そして、このような、5nmとクラ
スターレベルの極小な粒径をなした銀超微粒子22を、
例えばシクロヘキサン等の有機溶媒に溶解した状態で、
液状の高分子材料26内に供給し分散させると、極めて
分散性が良好で、互いに凝集することなく、銀超微粒子
22が安定した状態で媒質中に均一に混じり合う。すな
わち、高分子材料26が液状の場合は、図1(a)に示
すように、銀超微粒子22同士は、互いに非接触状態
で、高分子材料26中に均一に分散する。
Here, the ultrafine silver nano particles 22 having a size of about 5 nm and covered with an alkyl chain shell 24 are formed.
For example, a linear fatty acid silver salt prepared by saponifying myristic acid, stearic acid or oleic acid with sodium hydroxide and then reacting with silver nitrate (the number of carbon atoms in the alkyl chain = 14, 18, 18 ω) is obtained. , 25
It is manufactured by heating and purifying in a nitrogen atmosphere at about 0 ° C. for 4 hours. Then, such silver ultrafine particles 22 having a very small particle size of 5 nm at the cluster level are
For example, in a state of being dissolved in an organic solvent such as cyclohexane,
When supplied and dispersed in the liquid polymer material 26, the ultrafine silver particles 22 have extremely good dispersibility, do not aggregate with each other, and are uniformly mixed in a medium in a stable state. That is, when the polymer material 26 is in a liquid state, the ultrafine silver particles 22 are uniformly dispersed in the polymer material 26 without being in contact with each other, as shown in FIG.

【0017】前記高分子材料26の接着剤の主成分とし
ては、例えば、エポキシ系、フェノール系またはポリイ
ミド系のような熱硬化性樹脂を用いている。この種の熱
硬化性樹脂は、例えば、170℃以上の昇温・保持の操
作で乾燥・硬化し、その際に一定の体積収縮を起こす。
一方、銀超微粒子22を被覆しているアルキル鎖殻24
は、200℃程度の加熱で消滅することが知られてい
る。
As a main component of the adhesive of the polymer material 26, for example, a thermosetting resin such as epoxy, phenol or polyimide is used. This type of thermosetting resin is dried and hardened by, for example, heating and holding at a temperature of 170 ° C. or more, and causes a certain volume shrinkage at that time.
On the other hand, the alkyl chain shell 24 covering the silver ultrafine particles 22
Is known to disappear by heating at about 200 ° C.

【0018】つまり、導電接着剤20を約200℃で焼
成すると、図1(b)に示すように、銀超微粒子22の
周囲を覆っていたアルキル鎖殻24は消失し、更に、高
分子材料26の収縮・硬化に伴って銀超微粒子22同士
が直接接触を起こし、導電性を帯びると同時に高分子材
料26は硬化して接着が完了する。この過程は、接着剤
以外の導電性樹脂、導電性ゴム(エラストマ)、導電性
塗布料等に導電性を付与する場合のそれと基本的に同じ
である。
That is, when the conductive adhesive 20 is baked at about 200 ° C., as shown in FIG. 1B, the alkyl chain shell 24 covering the periphery of the ultrafine silver particles 22 disappears, and the polymer material is further removed. The silver ultrafine particles 22 are brought into direct contact with each other in accordance with the shrinkage / hardening of 26, and the polymer material 26 is cured at the same time as having conductivity, and the bonding is completed. This process is basically the same as that for imparting conductivity to a conductive resin other than the adhesive, a conductive rubber (elastomer), a conductive coating material, and the like.

【0019】次に、導電接着剤20内に銀超微粒子22
の占める割合について説明する。今、単純化のために、
図2に示すように、面心立方格子状に同一サイズの銀超
微粒子22を配置したと仮定する。単位胞たる立方体内
部に球(銀超微粒子22)の体積が占める割合Rは、球
の半径をaとすれば、単位格子について、幾何学的に下
記の式(1)で表すことができる。
Next, silver ultrafine particles 22 are placed in the conductive adhesive 20.
Will be described. Now, for simplicity,
As shown in FIG. 2, it is assumed that silver ultrafine particles 22 of the same size are arranged in a face-centered cubic lattice. The ratio R of the volume of the sphere (silver ultrafine particles 22) inside the cube as a unit cell can be geometrically represented by the following equation (1) with respect to the unit cell, where a is the radius of the sphere.

【数1】 (Equation 1)

【0020】従って、大きさの等しい球体ならば、最大
74%の体積率まで球体を充填することができる。これ
により、銀超微粒子22の占める割合を74%、残りを
高分子材料26とすることで、銀超微粒子22を最も多
く含んだ、電気抵抗率を改善する上で最適の導電接着剤
20を構成することができる。
Therefore, if the spheres have the same size, the spheres can be filled up to a maximum volume ratio of 74%. Thus, the ratio of the ultrafine silver particles 22 is 74%, and the remainder is made of the polymer material 26, so that the most suitable conductive adhesive 20 containing the ultrafine silver particles 22 and improving the electrical resistivity can be obtained. Can be configured.

【0021】次に、電気抵抗率が改善する原理について
説明する。金属は、その融点を単位Kで表し、Tと置
いたとき、0.3T以上の昇温によって、一般に表面
拡散現象を開始することが判っている。更に、同種の金
属同士が互いに接触しているとき、表面拡散による接着
(凝着と同じ意味)は、銀の場合、Tの40%の温度
に保持することによって開始するという現象がある。こ
れによると、銀の融点が1233K(960℃)なの
で、接着(凝着)開始温度は、480K(207℃)と
なる。
Next, the principle of improving the electrical resistivity will be described. It is known that the melting point of a metal is expressed in units of K, and when it is set as T M , a surface diffusion phenomenon generally starts when the temperature is raised to 0.3 T M or more. Further, when the metals are of the same kind are in contact with each other, (the same meaning as adhesion) bonding by surface diffusion in the case of silver, there is a phenomenon that begins by holding 40% of the temperature of T M. According to this, since the melting point of silver is 1233 K (960 ° C.), the bonding (adhesion) start temperature is 480 K (207 ° C.).

【0022】したがって、導電接着剤20を部材表面に
塗布、または部材間に充填した後、207℃以上に昇温
保持することによって、銀超微粒子22同士の相互接着
(凝着)が起こり、その結果、導電断面積が実質的に増
加する。
Therefore, after the conductive adhesive 20 is applied to the surfaces of the members or filled between the members, the temperature is maintained at 207 ° C. or higher, whereby mutual bonding (cohesion) between the silver ultrafine particles 22 occurs. As a result, the conductive cross-sectional area is substantially increased.

【0023】今、簡単のために、半径aの2つの球体
(銀超微粒子22)が図3(a)に示す接触状態から、
焼成によって図3(b)に示す焼結状態に移行したと仮
定する。図3(a)に示す接触の状態の場合は、その接
触面が円となっている。この接触円の半径aは、弾性
論によって計算することができ、式(2)となる。
For the sake of simplicity, two spheres (silver ultrafine particles 22) having a radius a are changed from the contact state shown in FIG.
It is assumed that the sintering has shifted to the sintered state shown in FIG. In the case of the contact state shown in FIG. 3A, the contact surface is a circle. Radius a 1 of the contact circle, can be calculated by the elastic theory, the equation (2).

【数2】 ここで、Pは押付け力、Eは縦弾性係数である。(Equation 2) Here, P is a pressing force, and E is a longitudinal elastic coefficient.

【0024】今、押付け力を半径aの球の投影面積×大
気圧の100倍相当、a=2.5nm=2.5×10
−6mmとして、銀の縦弾性係数E=79.0GPaを
式(2)に代入すると、a=0.2nmを得る。そし
て、図3(b)に示す焼成後は、2つの球体が焼結した
ことによって互いの接着(凝着)断面(円状)の半径が
0.6nm(≡a)に増加しているとすると、導電路
断面積は(a/a =9と9倍に拡大する。以上
のように、従来と異なって、塗布後の焼結過程を経る結
果、この導電接着剤の電気抵抗率は、表1に示す導電フ
ィラーとして銀を使用した従来の導電接着剤の1/9程
度に低減でき、現状の60%Sn−40%Pbソルダと
ほとんど同じレベルの値に改善できることが判る。
Now, the pressing force is calculated by multiplying the projected area of a sphere having a radius a by the large
100 times the atmospheric pressure, a = 2.5 nm = 2.5 × 10
-6mm, the longitudinal modulus of silver E = 79.0 GPa
Substituting into equation (2) gives a1= 0.2 nm. Soshi
After the firing shown in FIG. 3B, two spheres were sintered.
The radius of the cross-section (circle) of each other's adhesion (adhesion)
0.6 nm (≡a2) And increase the conductive path
The cross-sectional area is (a2/ A1) 2= 9 and magnify 9 times. that's all
Unlike the conventional method, the sintering process after coating
As a result, the electrical resistivity of this conductive adhesive was as follows.
1/9 of conventional conductive adhesive using silver as filler
With the current 60% Sn-40% Pb solder
It can be seen that the values can be improved to almost the same level.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
液状の高分子材料の内部に金属超微粒子を凝集を起こす
ことなく均一に混入分散させ、焼成の際の高分子材料の
収縮・硬化に伴って金属超微粒子同士を強固に接触させ
ると共に、焼成時の焼結反応による粒子相互間の凝着を
起こす結果、ソルダとほぼ同等な電気抵抗率を得ること
ができ、これによって、従来のソルダリングに代替え可
能な導電接着剤を提供することができる。
As described above, according to the present invention,
The metal ultra-fine particles are uniformly mixed and dispersed inside the liquid polymer material without causing aggregation, and the metal ultra-fine particles are brought into firm contact with each other as the polymer material shrinks and hardens during firing, and during firing. As a result of causing adhesion between particles due to the sintering reaction of, the same electrical resistivity as that of solder can be obtained, thereby providing a conductive adhesive which can be substituted for conventional soldering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の実施の形態の導電接着剤を塗
布した直後の状態を、(b)は導電接着剤の焼成後の状
態を概念的に示す図である。
FIG. 1A is a view conceptually showing a state immediately after a conductive adhesive according to an embodiment of the present invention is applied, and FIG. 1B is a view conceptually showing a state after firing of the conductive adhesive.

【図2】立方体内部に球体(金属超微粒子)の体積が占
める割合の説明に付する図である。
FIG. 2 is a diagram for explaining the ratio of the volume of a sphere (metal ultrafine particles) inside a cube.

【図3】(a)は2つの球体(金属超微粒子)が接触し
た状態を、(b)は同じく焼結後の状態を示す図であ
る。
3A is a diagram showing a state where two spheres (metal ultrafine particles) are in contact with each other, and FIG. 3B is a diagram showing a state after sintering.

【図4】はんだペーストと導電接着剤の静電容量の比較
を示すグラフである。
FIG. 4 is a graph showing a comparison of capacitance between a solder paste and a conductive adhesive.

【図5】はんだペーストと導電接着剤の誘電損失の比較
を示すグラフである。
FIG. 5 is a graph showing a comparison of dielectric loss between a solder paste and a conductive adhesive.

【図6】はんだペーストと導電接着剤の熱サイクル試験
による破損率比較を示すグラフである。
FIG. 6 is a graph showing a comparison of a failure rate of a solder paste and a conductive adhesive by a thermal cycle test.

【符号の説明】[Explanation of symbols]

10 プリント配線板 20 導電接着剤 22 銀超微粒子 24 アルキル鎖殻 26 高分子材料 DESCRIPTION OF SYMBOLS 10 Printed wiring board 20 Conductive adhesive 22 Ultrafine silver particles 24 Alkyl chain shell 26 Polymer material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 接着性を有する液状の高分子材料の内部
に導電性の良好な金属超微粒子を混入分散させ、塗布ま
たは充填後、焼成するようにしたことを特徴とする導電
接着剤。
1. A conductive adhesive characterized in that ultra-fine metal particles having good conductivity are mixed and dispersed in a liquid polymer material having an adhesive property, and are baked after coating or filling.
【請求項2】 前記金属超微粒子は、銀を含む有機錯体
を熱分解して製造した銀超微粒子からなることを特徴と
する請求項1記載の導電接着剤。
2. The conductive adhesive according to claim 1, wherein the ultrafine metal particles are made of ultrafine silver particles produced by thermally decomposing an organic complex containing silver.
【請求項3】 前記銀超微粒子は、その大きさが5nm
程度のクラスタ状をなしていることを特徴とする請求項
2記載の導電接着剤。
3. The ultrafine silver particles have a size of 5 nm.
3. The conductive adhesive according to claim 2, wherein the adhesive has a degree of cluster shape.
JP29099999A 1999-10-13 1999-10-13 Conductive adhesive Expired - Fee Related JP4073126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29099999A JP4073126B2 (en) 1999-10-13 1999-10-13 Conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29099999A JP4073126B2 (en) 1999-10-13 1999-10-13 Conductive adhesive

Publications (2)

Publication Number Publication Date
JP2001110234A true JP2001110234A (en) 2001-04-20
JP4073126B2 JP4073126B2 (en) 2008-04-09

Family

ID=17763157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29099999A Expired - Fee Related JP4073126B2 (en) 1999-10-13 1999-10-13 Conductive adhesive

Country Status (1)

Country Link
JP (1) JP4073126B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249397A2 (en) 2001-04-09 2002-10-16 Nichiro Kogyo Co., Ltd. Arch type strapping machine
JP2007095503A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
KR101083041B1 (en) 2009-06-03 2011-11-16 중앙대학교 산학협력단 Method for forming bump and method of packaging semiconductor
KR101083042B1 (en) 2009-06-03 2011-11-16 중앙대학교 산학협력단 Method for filling via hall and method of fabricating semiconductor package

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249397A2 (en) 2001-04-09 2002-10-16 Nichiro Kogyo Co., Ltd. Arch type strapping machine
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
US7807073B2 (en) 2003-10-22 2010-10-05 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
JP2007095503A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste
KR101083041B1 (en) 2009-06-03 2011-11-16 중앙대학교 산학협력단 Method for forming bump and method of packaging semiconductor
KR101083042B1 (en) 2009-06-03 2011-11-16 중앙대학교 산학협력단 Method for filling via hall and method of fabricating semiconductor package

Also Published As

Publication number Publication date
JP4073126B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP5041454B2 (en) Conductive connection member
JP4848674B2 (en) Resin metal composite conductive material and method for producing the same
TWI486976B (en) Conductive particles and an anisotropic conductive connecting material using the same, and a method for producing a conductive particle body
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
JPH0623350B2 (en) Anisotropic conductive adhesive
Lu et al. Isotropic conductive adhesives filled with low-melting-point alloy fillers
KR101530401B1 (en) Anisotropically conductive adhesive
JP2004051755A (en) Elastic electrical conductive resin and elastic electrical conductive joint structure
WO2015056518A1 (en) Anisotropic conductive film
CN1180463C (en) Anisotropic electrically conductive binding material and connecting method
JP3837858B2 (en) Conductive adhesive and method of using the same
JPH11150135A (en) Conductive paste of superior thermal conductivity and electronic device
JP4191567B2 (en) Connection structure using conductive adhesive and method for manufacturing the same
WO2020222301A1 (en) Connection structure, manufacturing method for connection structure, connection material, and coated conductive particle
JP2001110234A (en) Conductive adhesive
US6749774B2 (en) Conductive adhesive and connection structure using the same
JP5561174B2 (en) Conductive resin composition, method of manufacturing electronic component using the same, bonding method, bonding structure, and electronic component
JPH1112552A (en) Electroconductive particle
CN113728402B (en) Connection structure, method for manufacturing connection structure, connection material, and coated conductive particle
CN114752800A (en) Graphene metal-based composite material and preparation method thereof
JP5113390B2 (en) Wiring connection method
JP3449889B2 (en) Anisotropic conductive adhesive
JP4010717B2 (en) Electrical contact joining method
JP2851800B2 (en) Method for connecting circuit member and substrate using conductive adhesive
WO2020203295A1 (en) Adhesive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees