JP4072651B2 - Process for producing 4-aminoresorcinol or a salt thereof - Google Patents

Process for producing 4-aminoresorcinol or a salt thereof Download PDF

Info

Publication number
JP4072651B2
JP4072651B2 JP32431997A JP32431997A JP4072651B2 JP 4072651 B2 JP4072651 B2 JP 4072651B2 JP 32431997 A JP32431997 A JP 32431997A JP 32431997 A JP32431997 A JP 32431997A JP 4072651 B2 JP4072651 B2 JP 4072651B2
Authority
JP
Japan
Prior art keywords
formula
group
salt
substituted phenyl
aminoresorcinol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32431997A
Other languages
Japanese (ja)
Other versions
JPH11158124A (en
Inventor
秀雄 鈴木
和彦 穐本
健一 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP32431997A priority Critical patent/JP4072651B2/en
Publication of JPH11158124A publication Critical patent/JPH11158124A/en
Application granted granted Critical
Publication of JP4072651B2 publication Critical patent/JP4072651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、4−アミノレゾルシノール及びその塩並びにその中間体である4−(置換フェニル)アゾレゾルシノールの製造法に関する。更に詳しくは、一般式(2)
【0002】
【化8】

Figure 0004072651
【0003】
(式中、Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、ハロゲン原子、スルホ基、シアノ基、カルボキシル基、炭素数2〜11のカルボアルコキシ基を表し、nは0〜5の整数である。)で表される置換アニリンと亜硝酸アルカリを酸水溶液中で反応させて一般式(3)
【0004】
【化9】
Figure 0004072651
【0005】
(式中、R及びnは式(2)と同じ意味を表し、XはCl、Br、OSO3H又はOPO32を表す。)で表される置換フェニルジアゾニウムを生成させた後、pH7〜12を維持しながらレゾルシノール反応させることを特徴とする一般式(1)
【0006】
【化10】
Figure 0004072651
【0007】
(式中、R及びnは式(2)と同じ意味を表す。)で表される4−(置換フェニル)アゾレゾルシノールの製造法及びこの4−(置換フェニル)アゾレゾルシノールを金属触媒を用いて接触還元法によって水素化分解することを特徴とする4−アミノレゾルシノール又はその塩の製造法に関する。
【0008】
【従来の技術】
これまで前記一般式(1)で表される4−(置換フェニル)アゾレゾルシノールの還元による4−アミノレゾルシノールの製造法としては、錫と塩酸による方法が知られている(Chem.Ber.,16(1883)1330)。この方法は、高価な塩化第一錫を試薬量必要であり、また有機物を含む塩化第二錫の塩酸水溶液の処理が課題であった。
【0009】
更に、置換アニリン誘導体と亜硝酸アルカリ及びレゾルシノールから4−(置換フェニル)アゾレゾルシノールを得る行程では、異性体やビス(置換フェニル)アゾレゾルシノール等の副生物が見られ、目的物の選択率が低かった。
【0010】
【発明が解決しようとする課題】
本発明の目的は、4−(置換フェニル)アゾレゾルシノールの実用的還元法による4−アミノレゾルシノールの製造法の提供及び原料の4−(置換フェニル)アゾレゾルシノールを高選択率で得るカップリング方法の提供にある。
【0011】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明は、一般式(2)
【0012】
【化11】
Figure 0004072651
【0013】
(式中、R及びnは式(1)と同じ意味を表す。)で表される置換アニリンと亜硝酸アルカリを酸水溶液中で反応させて一般式(3)
【0014】
【化12】
Figure 0004072651
【0015】
(式中、R及びnは式(1)と同じ意味を表し、XはCl、Br、OSO3H又はOPO32を表す。)で表される置換フェニルジアゾニウムを生成させた後、pH7〜12を維持しながらレゾルシノール反応させ前記一般式(1)で表される4−(置換フェニル)アゾレゾルシノールを得、この4−(置換フェニル)アゾレゾルシノール金属触媒を用いて水素化分解することを特徴とする4−アミノレゾルシノール又はその塩の製造法に関する。
【0016】
【発明の実施の形態】
まず、還元反応の原料である一般式(1)で表される4−(置換フェニル)アゾレゾルシノールの製造法について述べる。4−(置換フェニル)アゾレゾルシノールの製造法は下記の反応式で表される。
【0017】
【化13】
Figure 0004072651
【0018】
(式中、R、n及びXは前記と同じ意味を表す。Aはアルカリ金属を表す。)
本発明で用いる一般式(2)で表されるアニリン誘導体のRは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、ハロゲン原子、スルホン酸基、シアノ基、カルボキシル基、炭素数2〜11のカルボアルコキシ基を表し、nは0〜5の整数である。具体的には、アニリン、トルイジン、アニシジン、ジメチルアニリン、エチルアニリン、トリメチルアニリン、プロピルアニリン、ブチルアニリン、フルオロアニリン、クロルアニリン、ブロモアニリン、アニリン安息香酸及びそのエステル類、シアノアニリン、トリフロロメチルアニリン等が挙げられる。特に好ましいのはアニリンである。
【0019】
ANO2で表される亜硝酸アルカリとしては、亜硝酸リチウム、亜硝酸ナトリウム及び亜硝酸カリウムなどが挙げられる。特には安価な亜硝酸ナトリウムが好ましい。その使用量、置換アニリンに対し1〜2当量、より好ましくは1〜1.3当量である。酸量は、置換アニリンに対し1〜10当量、より好ましくは、2〜3当量である。酸としては塩酸の他に、臭化水素酸、硫酸及び燐酸などの他の酸も使用可能であるが塩酸が好ましい。
【0020】
反応温度は0〜20℃、好ましくは0〜10℃で置換フェニルジアゾニウムを製造するのが良い。置換フェニルジアゾニウムとレゾルシノールのカップリング反応は、通常、置換フェニルジアゾニウムの溶液を、レゾルシノールの溶液中に滴下混合する。この際に本反応は酸性でも可能であるが、反応が遅くなり副生物も見られることから中性から塩基性下で行うことが好ましい。従って、アルカリ水溶液を添加し、実用的には、連続同時添加方式が望ましい。好ましいpH領域としてはpH5〜12であるが、特には、pH6〜10付近でカップリング反応を行うのが良い。また、レゾルシノールに対する置換フェニルジアゾニウムの仕込み量は置換フェニルジアゾニウムの一部分解を考慮して通常1.0〜1.20モル倍使用するのが好ましい。
【0021】
反応温度も低温が好ましく、アルカリ性では0〜10℃、酸性では、反応が遅くなるので0〜60℃が好ましい。生成物は、反応終了後に酸性化し、濾過水洗することにより目的とする4−(置換フェニル)アゾレゾルシノールを得ることが出来る。更に、純度を上げる場合は、炭酸ナトリウム水溶液で抽出した後、酸沈するか、メタノール/水、トルエンやジオキサン等の溶媒から、再結晶させることにより精製することができる。
【0022】
次に、4−(置換フェニル)アゾレゾルシノールの還元行程について述べる。
【0023】
【化14】
Figure 0004072651
【0024】
触媒としては、周期律表第8族のパラジウム、ルテニウム、ロジウム、白金、ニッケル、コバルト及び鉄、又第1族の銅等が使用できる。これらの金属は単独で、又は他の元素と複合された多元系で使用される。それらの使用形態は、各金属単身、ラネー型触媒、ケイソウ土、アルミナ、ゼオライト、炭素及びその他の担体に担持させた触媒及び錯体触媒などが挙げられる。
【0025】
具体的には、パラジウム−炭素、ルテニウム−炭素、ロジウム−炭素、白金−炭素、パラジウム−アルミナ、ルテニウム−アルミナ、ロジウム−アルミナ、白金−アルミナ、還元ニッケル、還元コバルト、ラネーニッケル、ラネーコバルト、ラネー銅、酸化銅、銅クロマイト、クロロトリス(トリフェニルホスフィン)ロジウム、クロロヒドリドトリス(トリフェニルホスフィン)ルテニウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム及びヒドリドカルボニルトリス(トリフェニルホスフィン)イリジウムなどが挙げられる。これらの中で特に好ましいものはパラジウム−炭素及びルテニウム−炭素である。
【0026】
触媒の使用量は、5%金属担持触媒として基質に対し0.1〜30重量%が、特には、0.5〜20重量%が好ましい。溶媒は、メタノール、エタノール及びプロパノールなどに代表されるアルコール類、ジオキサン、テトラヒドロフラン及びジメトキシエタンなどに代表されるエーテル類、酢酸エチル及び酢酸プロピルに代表されるエステル類、アセトニトリル、プロピオニトリルなどに代表される脂肪族ニトリル類、更にベンゼン、トルエン及びキシレンなどに代表される芳香族炭化水素類及び水と前記溶媒との混合溶媒が使用できる。
【0027】
その使用量は、原料に対し1〜50重量倍の範囲が、特には、3〜10重量倍の範囲が好ましい。水素圧は常圧から104kPaの範囲が、特には、常圧から3000kPaの範囲が好ましい。反応温度は、0〜150℃の範囲が、特には、10〜100℃の範囲が好ましい。
【0028】
反応は、水素の吸収量によって追跡することができ、理論水素量の吸収後サンプリングし液体クロマトクラフィーで分析し確認することができる。本発明は、回分式でも連続反応でも可能である。反応後は、濾過により触媒を除いた後、酸での沈澱及び再結晶を繰り返すことによって精製することができる。
【0029】
尚、通常は、4−アミノレゾルシノールは、無機酸又は有機酸溶液で、その無機酸塩又は有機酸塩として単離する方が、4−アミノレゾルシノールの安定性上好ましいが、これを塩基によって中和すれば4−アミノレゾルシノールも容易に単離できる。以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0030】
【実施例】
実施例1
水50.0g、35%塩酸塩酸水溶液26.1gを反応器に加え、撹拌しながら、アニリン9.3gを滴下しアニリン塩酸塩を含む塩酸水溶液を調整した。5℃にし氷冷したアニリン塩酸塩を含む塩酸水溶液に、別途調整した、亜硝酸ソーダ6.9gの水50gに溶かした亜硝酸ソーダ水溶液を10℃を越えないように滴下し塩化ベンゼンジアゾニウム水溶液を調整した。
【0031】
この調整した塩化ベンゼンジアゾニウム水溶液64gを、別途調整した、メタノール330g、レゾルシノール11.0g、33.3%苛性ソーダ水溶液7mlを混合した溶液に滴下し、更に33.3%苛性ソーダ水溶液2.5mlを加えた。そして、塩化ベンゼンジアゾニウム水溶液26gを滴下し、33.3%苛性ソーダ水溶液2.5mlを加えた。更に塩化ベンゼンジアゾニウム水溶液26gを滴下し、33.3%苛性ソーダ水溶液2.5mlを加えpH7付近に調整した。この滴下終了後、室温で撹拌しながら、1時間反応させた。
【0032】
反応混合物からのメタノールを減圧留去し、17.4重量%の炭酸ソーダ水溶液121gを加え、更にクロロホルム150gを加え室温で10分間撹拌し分液した。下層のクロロホルム層を抜き出し、再びクロロホルム50gを加え、同様に分液操作をした。上層の水層を撹拌しながら、この水層に35%塩酸水溶液56.0gを滴下し、pH2付近にし、結晶を析出させた。この結晶をろ過し、ろ過ケーキを温水300gで洗浄した後、ろ過ケーキを反応器に取りだし、メタノール200g加え、撹拌しながら55℃に加熱し、溶解させた。そして、水200gを加え、撹拌しながら室温に戻した。析出した結晶をろ過し、ろ過ケーキを取りだし、減圧乾燥して、純度99.5%の4−フェニルアゾレゾルシノール19.2gが得られた。収率90%
【0033】
実施例2
実施例1の方法を繰り返して得た4−フェニルアゾレゾルシノール21.4g、トルエン160.5g、イソプロパノール21.4g、水53.5g、50%ウエット−5%パラジウムカーボン2.14g及び35%塩酸12.5gを撹拌装置、温度計を備えた反応器中に仕込んだ。容器内を窒素置換した後、続いて水素置換した後、水素を常圧で供給し、撹拌下、室温で反応させた。4.5時間後、水素の吸収が停止し、反応が終了した。反応雰囲気を窒素置換し、触媒ろ過を行い、続いて分液ロートで水層とトルエン層を分離した。得られた水層中にトルエン80gを加え、分液を行った。この操作をさらにもう一度繰り返した。この分液した水層に、35%塩酸及び塩化第一スズ水和物0.13gを加え、この塩酸酸性水溶液を5℃に冷却し、析出した結晶をろ過した。得られた結晶を減圧乾燥し、純度98.5%の4−アミノレゾルシノール一塩酸塩の結晶13.0gを得た。
【0034】
実施例3
実施例2の仕込み量の1/10にて、ハステロイ製オートクレーブ中で、水素圧300kPaで反応を行った。1時間で水素吸収がなくなった。反応終了後、実施例2と同様な後処理操作を行い、純度99.0%の4−アミノレゾルシノール一塩酸塩の結晶を1.2gを得た。
【0035】
【発明の効果】
本発明によれば、4−(置換フェニル)アゾレゾルシノールから、あるいは置換アニリンとレゾルシノールとから、4アミノレゾルシノールまたはその塩を高収率にまた、高純度の4−アミノレゾルシノールの塩を製造することができる。更に中間体の4−(置換フェニル)アゾレゾルシノールを高選択率で得るカップリング反応させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 4-aminoresorcinol and a salt thereof and an intermediate thereof, 4- (substituted phenyl) azoresorcinol. More specifically, the general formula (2)
[0002]
[Chemical 8]
Figure 0004072651
[0003]
(In the formula, R represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen atom, a sulfo group, a cyano group, a carboxyl group, or a carboalkoxy group having 2 to 11 carbon atoms. , N is an integer of 0 to 5.) The substituted aniline represented by formula (3) is reacted with an alkali nitrite in an aqueous acid solution.
[0004]
[Chemical 9]
Figure 0004072651
[0005]
(Wherein, R and n are as defined formula (2), X Cl, Br, represents. A OSO 3 H or OPO 3 H 2) After generating the substituted phenyl diazonium salt represented by, formula which comprises reacting resorcinol while maintaining pH7~12 (1)
[0006]
[Chemical Formula 10]
Figure 0004072651
[0007]
(In the formula, R and n represent the same meaning as in formula (2).) A process for producing 4- (substituted phenyl) azoresorcinol represented by formula (4) and the 4- (substituted phenyl) azoresorcinol using a metal catalyst The present invention relates to a process for producing 4-aminoresorcinol or a salt thereof, which is hydrocracked by a catalytic reduction method.
[0008]
[Prior art]
So far, as a method for producing 4-aminoresorcinol by reduction of 4- (substituted phenyl) azoresorcinol represented by the general formula (1), a method using tin and hydrochloric acid is known (Chem. Ber., 16 (1883) 1330). This method requires a reagent amount of expensive stannous chloride, and treatment of a stannic chloride-containing aqueous hydrochloric acid solution containing organic substances has been a problem.
[0009]
Furthermore, in the process of obtaining 4- (substituted phenyl) azoresorcinol from a substituted aniline derivative, alkali nitrite and resorcinol, by-products such as isomers and bis (substituted phenyl) azoresorcinol are seen, and the selectivity of the target product is low. It was.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing 4-aminoresorcinol by a practical reduction method of 4- (substituted phenyl) azoresorcinol and a coupling method for obtaining 4- (substituted phenyl) azoresorcinol as a raw material with high selectivity. On offer.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention relates to the general formula (2)
[0012]
Embedded image
Figure 0004072651
[0013]
(In the formula, R and n have the same meaning as in formula (1).) A substituted aniline represented by formula (3) is reacted with an alkali nitrite in an acid aqueous solution to form a general formula (3)
[0014]
Embedded image
Figure 0004072651
[0015]
(Wherein R and n represent the same meaning as in formula (1), X represents Cl, Br, OSO 3 H or OPO 3 H 2 ), and then a substituted phenyldiazonium salt represented by pH7~12 reacted with resorcinol while maintaining represented by the general formula (1) 4- give (substituted phenyl) azo resorcinol, decomposed hydrogenated using the 4- (substituted phenyl) azo resorcinol metal catalyst The present invention relates to a process for producing 4-aminoresorcinol or a salt thereof.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, a method for producing 4- (substituted phenyl) azoresorcinol represented by the general formula (1) as a raw material for the reduction reaction will be described. A method for producing 4- (substituted phenyl) azoresorcinol is represented by the following reaction formula.
[0017]
Embedded image
Figure 0004072651
[0018]
(In the formula, R, n and X represent the same meaning as described above. A represents an alkali metal.)
R of the aniline derivative represented by the general formula (2) used in the present invention is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen atom, a sulfonic acid group, a cyano group, or a carboxyl group. Represents a carboalkoxy group having 2 to 11 carbon atoms, and n is an integer of 0 to 5. Specifically, aniline, toluidine, anisidine, dimethylaniline, ethylaniline, trimethylaniline, propylaniline, butylaniline, fluoroaniline, chloraniline, bromoaniline, aniline benzoic acid and its esters, cyanoaniline, trifluoromethylaniline Etc. Particularly preferred is aniline.
[0019]
Examples of the alkali nitrite represented by ANO 2 include lithium nitrite, sodium nitrite, and potassium nitrite. In particular, inexpensive sodium nitrite is preferable. The amount used is 1 to 2 equivalents, more preferably 1 to 1.3 equivalents, relative to the substituted aniline. The acid amount is 1 to 10 equivalents, more preferably 2 to 3 equivalents, with respect to the substituted aniline. In addition to hydrochloric acid, other acids such as hydrobromic acid, sulfuric acid and phosphoric acid can be used as the acid, but hydrochloric acid is preferred.
[0020]
The substituted phenyldiazonium salt may be produced at a reaction temperature of 0 to 20 ° C, preferably 0 to 10 ° C. In the coupling reaction between the substituted phenyldiazonium salt and resorcinol, a solution of the substituted phenyldiazonium salt is usually added dropwise to the resorcinol solution. In this case, this reaction can be carried out in an acidic manner, but it is preferably carried out from neutral to basic, since the reaction is slow and by-products are also observed. Therefore, an alkaline aqueous solution is added, and a continuous simultaneous addition method is desirable for practical use. A preferable pH range is pH 5 to 12, but it is particularly preferable to perform the coupling reaction at around pH 6 to 10. In addition, the amount of the substituted phenyldiazonium salt charged relative to resorcinol is preferably 1.0 to 1.20 mole times considering the partial decomposition of the substituted phenyldiazonium salt .
[0021]
The reaction temperature is also preferably low, and is 0 to 10 ° C. for alkali, and 0 to 60 ° C. for acid because the reaction slows down. The product is acidified after completion of the reaction, and the desired 4- (substituted phenyl) azoresorcinol can be obtained by washing with filtered water. Furthermore, when raising purity, it can refine | purify by recrystallizing from solvent, such as methanol / water, toluene, a dioxane, after acid extraction after extracting with sodium carbonate aqueous solution.
[0022]
Next, the reduction process of 4- (substituted phenyl) azoresorcinol will be described.
[0023]
Embedded image
Figure 0004072651
[0024]
As the catalyst, Group 8 palladium, ruthenium, rhodium, platinum, nickel, cobalt and iron, Group 1 copper, etc. can be used. These metals are used alone or in multicomponent systems complexed with other elements. Examples of their use include single metals, Raney-type catalysts, diatomaceous earth, alumina, zeolite, carbon and other catalysts supported on carriers and complex catalysts.
[0025]
Specifically, palladium-carbon, ruthenium-carbon, rhodium-carbon, platinum-carbon, palladium-alumina, ruthenium-alumina, rhodium-alumina, platinum-alumina, reduced nickel, reduced cobalt, Raney nickel, Raney cobalt, Raney copper , Copper oxide, copper chromite, chlorotris (triphenylphosphine) rhodium, chlorohydridotris (triphenylphosphine) ruthenium, dichlorotris (triphenylphosphine) ruthenium, and hydridocarbonyltris (triphenylphosphine) iridium. Of these, palladium-carbon and ruthenium-carbon are particularly preferred.
[0026]
The amount of the catalyst used is preferably 0.1 to 30% by weight, particularly 0.5 to 20% by weight based on the substrate as a 5% metal-supported catalyst. Solvents include alcohols typified by methanol, ethanol and propanol, ethers typified by dioxane, tetrahydrofuran and dimethoxyethane, esters typified by ethyl acetate and propyl acetate, acetonitrile, propionitrile and the like. Aliphatic nitriles, aromatic hydrocarbons represented by benzene, toluene, xylene and the like, and mixed solvents of water and the above solvents can be used.
[0027]
The amount used is preferably in the range of 1 to 50 times by weight, particularly in the range of 3 to 10 times by weight with respect to the raw material. The hydrogen pressure is preferably in the range of normal pressure to 10 4 kPa, and particularly preferably in the range of normal pressure to 3000 kPa. The reaction temperature is preferably in the range of 0 to 150 ° C, particularly preferably in the range of 10 to 100 ° C.
[0028]
The reaction can be traced by the amount of hydrogen absorbed, and can be confirmed by sampling after absorption of the theoretical amount of hydrogen, and analyzing by liquid chromatography. The present invention can be used batchwise or continuously. After the reaction, the catalyst can be removed by filtration, followed by purification by repeated precipitation with acid and recrystallization.
[0029]
Normally, 4-aminoresorcinol is preferably isolated as an inorganic acid salt or organic acid salt with an inorganic acid or organic acid solution in terms of the stability of 4-aminoresorcinol. 4-aminoresorcinol can be easily isolated by adding. EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0030]
【Example】
Example 1
50.0 g of water and 26.1 g of 35% hydrochloric acid aqueous hydrochloric acid solution were added to the reactor, and 9.3 g of aniline was added dropwise with stirring to prepare an aqueous hydrochloric acid solution containing aniline hydrochloride. A sodium nitrite aqueous solution dissolved in 50 g of sodium nitrite 6.9 g of water was added dropwise to a hydrochloric acid aqueous solution containing aniline hydrochloride cooled to 5 ° C. with ice cooling so as not to exceed 10 ° C., and a benzenediazonium chloride aqueous solution was added. It was adjusted.
[0031]
64 g of this adjusted aqueous solution of benzenediazonium chloride was added dropwise to a solution prepared by mixing 330 g of methanol, 11.0 g of resorcinol and 7 ml of 33.3% aqueous sodium hydroxide solution, and 2.5 ml of 33.3% aqueous sodium hydroxide solution was further added. . Then, 26 g of a benzenediazonium chloride aqueous solution was dropped, and 2.5 ml of a 33.3% caustic soda aqueous solution was added. Further, 26 g of a benzenediazonium chloride aqueous solution was added dropwise, and 2.5 ml of 33.3% aqueous sodium hydroxide solution was added to adjust the pH to around 7. After completion of the dropping, the reaction was allowed to proceed for 1 hour with stirring at room temperature.
[0032]
Methanol from the reaction mixture was distilled off under reduced pressure, 121 g of a 17.4% by weight aqueous sodium carbonate solution was added, 150 g of chloroform was further added, and the mixture was stirred at room temperature for 10 minutes and separated. The lower chloroform layer was extracted, 50 g of chloroform was added again, and a liquid separation operation was performed in the same manner. While stirring the upper aqueous layer, 56.0 g of 35% aqueous hydrochloric acid solution was added dropwise to this aqueous layer to adjust the pH to around 2 to precipitate crystals. The crystals were filtered, and the filter cake was washed with 300 g of hot water. The filter cake was taken out into a reactor, 200 g of methanol was added, and the mixture was heated to 55 ° C. with stirring to be dissolved. And 200g of water was added and it returned to room temperature, stirring. The precipitated crystals were filtered, and the filter cake was taken out and dried under reduced pressure to obtain 19.2 g of 4-phenylazoresorcinol having a purity of 99.5%. Yield 90%
[0033]
Example 2
4-phenylazoresorcinol 21.4 g obtained by repeating the method of Example 1, toluene 160.5 g, isopropanol 21.4 g, water 53.5 g, 50% wet-5% palladium carbon 2.14 g and 35% hydrochloric acid 12 .5 g was charged into a reactor equipped with a stirrer and a thermometer. After substituting the inside of the container with nitrogen and subsequently substituting with hydrogen, hydrogen was supplied at normal pressure and reacted at room temperature with stirring. After 4.5 hours, hydrogen absorption stopped and the reaction was completed. The reaction atmosphere was replaced with nitrogen, catalyst filtration was performed, and then the aqueous layer and the toluene layer were separated with a separatory funnel. To the obtained aqueous layer, 80 g of toluene was added for liquid separation. This operation was repeated once more. To this separated aqueous layer, 35% hydrochloric acid and stannous chloride hydrate (0.13 g) were added, the hydrochloric acid aqueous solution was cooled to 5 ° C., and the precipitated crystals were filtered. The obtained crystals were dried under reduced pressure to obtain 13.0 g of 4-aminoresorcinol monohydrochloride crystals having a purity of 98.5%.
[0034]
Example 3
The reaction was carried out at 1/10 the charge of Example 2 in a Hastelloy autoclave at a hydrogen pressure of 300 kPa. Hydrogen absorption disappeared in 1 hour. After completion of the reaction, the same post-treatment operation as in Example 2 was performed to obtain 1.2 g of 4-aminoresorcinol monohydrochloride crystals having a purity of 99.0%.
[0035]
【The invention's effect】
According to the present invention, 4-aminoresorcinol or a salt thereof is produced in high yield from 4- (substituted phenyl) azoresorcinol or from substituted aniline and resorcinol, and also to produce a highly pure salt of 4-aminoresorcinol. Can do. Furthermore, it is possible to carry out a coupling reaction to obtain an intermediate 4- (substituted phenyl) azoresorcinol with high selectivity.

Claims (2)

一般式(2)
Figure 0004072651
(式中、Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、ハロゲン原子、スルホ基、シアノ基、カルボキシル基、炭素数2〜11のカルボアルコキシ基を表し、nは0〜5の整数である。)で表される置換アニリンと亜硝酸アルカリを酸水溶液中で反応させて一般式(3)
Figure 0004072651
(式中、R及びnは式(2)と同じ意味を表し、XはCl、Br、OSO3H又はOPO32を表す。)で表される置換フェニルジアゾニウムを生成させた後、pH7〜12を維持しながらレゾルシノールと反応させ一般式(1)
Figure 0004072651
(式中、R及びnは式(2)と同じ意味を表す。)で表される4−(置換フェニル)アゾレゾルシノールを得、この4−(置換フェニル)アゾレゾルシノール金属触媒を用いて水素化分解することを特徴とする4−アミノレゾルシノール又はその塩の製造法。
General formula (2)
Figure 0004072651
(In the formula, R represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen atom, a sulfo group, a cyano group, a carboxyl group, or a carboalkoxy group having 2 to 11 carbon atoms. , N is an integer of 0 to 5.) The substituted aniline represented by formula (3) is reacted with an alkali nitrite in an aqueous acid solution.
Figure 0004072651
(Wherein, R and n are as defined formula (2), X Cl, Br, represents. A OSO 3 H or OPO 3 H 2) After generating the substituted phenyl diazonium salt represented by, Reaction with resorcinol while maintaining pH 7-12, general formula (1)
Figure 0004072651
(Wherein R and n represent the same meaning as in formula (2)) to obtain 4- (substituted phenyl) azoresorcinol, which is hydrogenated using this 4- (substituted phenyl) azoresorcinol metal catalyst A process for producing 4-aminoresorcinol or a salt thereof, which is decomposed.
金属触媒が周期律表第8族元素である請求項1記載の4−アミノレゾルシノール又はその塩の製造法。 The method for producing 4-aminoresorcinol or a salt thereof according to claim 1, wherein the metal catalyst is a Group 8 element of the Periodic Table.
JP32431997A 1997-11-26 1997-11-26 Process for producing 4-aminoresorcinol or a salt thereof Expired - Lifetime JP4072651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32431997A JP4072651B2 (en) 1997-11-26 1997-11-26 Process for producing 4-aminoresorcinol or a salt thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32431997A JP4072651B2 (en) 1997-11-26 1997-11-26 Process for producing 4-aminoresorcinol or a salt thereof

Publications (2)

Publication Number Publication Date
JPH11158124A JPH11158124A (en) 1999-06-15
JP4072651B2 true JP4072651B2 (en) 2008-04-09

Family

ID=18164472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32431997A Expired - Lifetime JP4072651B2 (en) 1997-11-26 1997-11-26 Process for producing 4-aminoresorcinol or a salt thereof

Country Status (1)

Country Link
JP (1) JP4072651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581927B2 (en) * 2010-09-14 2014-09-03 オリヱント化学工業株式会社 Process for producing 4-amino-m-cresol

Also Published As

Publication number Publication date
JPH11158124A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US7705184B2 (en) Method of making amphetamine
US4256671A (en) Production of 2,4- and 2,6-diaminotoluenes
KR19990013522A (en) Process for preparing substituted perhydroisoindole
JP4412449B2 (en) Method for producing diaminoresorcinol compound
US5811586A (en) Process for manufacturing 1-(3-trifluoromethyl)-phenyl-propan-2-one intermediate in the synthesis of the fenfluramine
JP4072651B2 (en) Process for producing 4-aminoresorcinol or a salt thereof
US6124504A (en) Process for preparing 4-hydroxyanilines
JPH0456824B2 (en)
JPH05286889A (en) Production of arylacetic acid and its alkali metal salt
NO328678B1 (en) Preparation of 5-aminoisophthalamides
JPS6115048B2 (en)
US6340773B1 (en) Preparation of halogenated primary amines
JP4187828B2 (en) Method for producing halogeno-2 (1H) -pyridone
US4417056A (en) Process for preparing 2-(4-aminophenyl)-5-amino-benzimidazole and substituted derivatives
US4024127A (en) Process for the preparation of 5-alkyl-10-amino-dihydrodibenzoazepines
CN110590641B (en) Green preparation method of 3-hydroxyisoindole-1-ketone series compounds
JP4036404B2 (en) Method for producing diphenylamines
JP4022953B2 (en) Process for producing 2,2-bis (3-amino-4-hydroxyphenyl) propane
JP4238944B2 (en) Method for producing 4,6-diaminoresorcinol or a salt thereof
JP3544694B2 (en) Method for producing N-tert-butyl-2-piperazinecarboxamides
JP4263427B2 (en) Halogeno-4-dihydroxymethylpyridine, process for producing the same and process for producing halogeno-4-pyridinecarbaldehyde using the same
JP2006508156A (en) Method for producing terbinafine using platinum as catalyst
JP2533565B2 (en) Process for producing 3- (4-hydroxyphenyl) -cyclohexanecarboxylic acid and 4'-hydroxybiphenyl-3-carboxylic acid
MXPA97005092A (en) Process for preparing 4-hydroxanylin
JPH083108A (en) Production of 2-alkoxy-6-aminobenzoic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

EXPY Cancellation because of completion of term