JP4072620B2 - Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles - Google Patents

Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles Download PDF

Info

Publication number
JP4072620B2
JP4072620B2 JP2003290248A JP2003290248A JP4072620B2 JP 4072620 B2 JP4072620 B2 JP 4072620B2 JP 2003290248 A JP2003290248 A JP 2003290248A JP 2003290248 A JP2003290248 A JP 2003290248A JP 4072620 B2 JP4072620 B2 JP 4072620B2
Authority
JP
Japan
Prior art keywords
zinc oxide
ultrafine particles
oxide ultrafine
zinc
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003290248A
Other languages
Japanese (ja)
Other versions
JP2005060145A (en
Inventor
恭久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University NUC
Original Assignee
Shimane University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University NUC filed Critical Shimane University NUC
Priority to JP2003290248A priority Critical patent/JP4072620B2/en
Publication of JP2005060145A publication Critical patent/JP2005060145A/en
Application granted granted Critical
Publication of JP4072620B2 publication Critical patent/JP4072620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、欠陥が少なく高純度な酸化亜鉛超微粒子および酸化亜鉛超微粒子の製造方法に関し、特に、低純度な原料を用いた高品質な酸化亜鉛超微粒子および窒素アクセプタを含んだ酸化亜鉛超微粒子、並びに、その製造方法に関する。 The present invention relates to a high-purity zinc oxide ultrafine particle with few defects and a method for producing the zinc oxide ultrafine particle, and in particular, a high-quality zinc oxide ultrafine particle using a low-purity raw material and a zinc oxide ultrafine particle containing a nitrogen acceptor. And a manufacturing method thereof.

従来、酸化亜鉛の微粒子は酸素欠損に起因する欠陥による緑色の発光を利用した蛍光材料などに利用されていた。また、理論的には励起子による紫外線発光特性も備えるため、これを実現すべく、所定の基板上に結晶性の良い単結晶薄膜を成長させる研究もなされている。その結果、MBE法(分子線エピタキシャル成長法)により、高純度な原料を用いて酸化亜鉛の単結晶薄膜の成長過程で窒素をドーピングすることにより、キャリア濃度は十分ではないがp型薄膜を製造することが可能となっている。 Conventionally, zinc oxide fine particles have been used for fluorescent materials utilizing green light emission due to defects caused by oxygen deficiency. Also, theoretically, since it has ultraviolet light emission characteristics by excitons, research to grow a single crystal thin film with good crystallinity on a predetermined substrate has been made to realize this. As a result, by doping with nitrogen in the growth process of a single crystal thin film of zinc oxide using a high-purity raw material by MBE (molecular beam epitaxial growth method), a p-type thin film is produced although the carrier concentration is not sufficient. It is possible.

D.C.Look,D.C.Reynilds,C.W.Litton,R.L.Jones,D.B.Easonand G.Cantwell: APPLIED PHYSICS LETTERS Vol.81,No.10 02/09/2002D.C.Look, D.C.Reynilds, C.W.Litton, R.L.Jones, D.B.Easonand G.Cantwell: APPLIED PHYSICS LETTERS Vol.81, No.10 02/09/2002 Y,Sun,J.B.Ketterson,G.K.L.WongAPPLIED PHYSICS LETTERS Vol.77,No.15,09/10/2000Y, Sun, J.B.Ketterson, G.K.L.WongAPPLIED PHYSICS LETTERS Vol.77, No.15,09 / 10/2000

しかしながら、従来の技術では以下の問題点があった。
すなわち、MBE法は実験ないし研究段階に適した製造方法であり、量産には適さないという問題点があった。具体的には、電気的に活性な不純物を低減させるために原料全てに高純度が要求され、例えば、6N〜7N(純度99.9999%〜99.99999%)の純度が必要であるという問題点があった。また、装置も大がかりであり、原料単価とも相まって、製造コストが極めて高いという問題点もあった。
However, the conventional technique has the following problems.
That is, the MBE method is a manufacturing method suitable for the experiment or research stage, and has a problem that it is not suitable for mass production. Specifically, in order to reduce electrically active impurities, all the raw materials are required to have high purity, for example, a purity of 6N to 7N (purity 99.9999% to 99.99999%) is required. There was a point. In addition, the apparatus is large-scale and there is a problem that the manufacturing cost is extremely high in combination with the raw material unit price.

この他、CVD法により超微粒子を製造する方法も知られているが、やはり装置が大がかりであって、原料の純度管理が難しいことや製造コストが高いという問題点もある。 In addition, a method for producing ultrafine particles by the CVD method is also known, but there are also problems that the apparatus is large and the purity control of the raw materials is difficult and the production cost is high.

一方、素材の観点からは、酸化亜鉛は大気中で安定、安価、短波長の光と相互作用することが可能であるといった従来の半導体にない利点を持っている。したがって、半導体としての物性を発揮できる結晶性の良い酸化亜鉛が望まれている。 On the other hand, from the viewpoint of materials, zinc oxide has advantages not found in conventional semiconductors, such as being stable in the atmosphere, inexpensive, and capable of interacting with light of short wavelengths. Therefore, zinc oxide with good crystallinity that can exhibit physical properties as a semiconductor is desired.

本発明は上記に鑑みてなされたものであって、p型伝導や紫外線発光など半導体としての物性を発揮できる結晶性の良い高品質な酸化亜鉛超微粒子を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide high-quality zinc oxide ultrafine particles with good crystallinity that can exhibit physical properties as a semiconductor such as p-type conduction and ultraviolet light emission.

また、上述の高品質な酸化亜鉛超微粒子を、低純度な素材から安価に製造する製造方法を提供することを目的とする。 Moreover, it aims at providing the manufacturing method which manufactures the above-mentioned high quality zinc oxide ultrafine particle from a low purity raw material at low cost.

上記の目的を達成するために、請求項1に記載の酸化亜鉛超微粒子は、結晶中の窒素濃度が1016cm−3〜1020cm−3であって、粒子径が50nm〜200nmの酸化亜鉛超微粒子である。 In order to achieve the above object, the zinc oxide ultrafine particles according to claim 1, the nitrogen concentration in the crystal is 10 16 cm −3 to 10 20 cm −3 and the particle diameter is 50 nm to 200 nm. Zinc ultrafine particles.

また、請求項2に記載の酸化亜鉛超微粒子は、請求項1に記載の酸化亜鉛超微粒子において、室温で375nm付近の蛍光を示し、可視光域の蛍光強度の積分値が紫外光域の発光強度の積分値の100分の一以下である酸化亜鉛超微粒子である。ここにいう酸化亜鉛超微粒子は、酸素欠損のない微粒子ということもできる。 Moreover, the zinc oxide ultrafine particles according to claim 2 are the zinc oxide ultrafine particles according to claim 1, exhibiting fluorescence around 375 nm at room temperature, and the integrated value of the fluorescence intensity in the visible light region is emission in the ultraviolet light region. It is a zinc oxide ultrafine particle which is 1/100 or less of the integral value of intensity. The zinc oxide ultrafine particles mentioned here can also be referred to as fine particles having no oxygen deficiency.

また、請求項3に記載の酸化亜鉛超微粒子は、請求項1または2に記載の酸化亜鉛超微粒子において、極低温にて波長368nm付近で観測されるドナーに基づく発光強度に比して、波長375nm付近で観測されるアクセプタに基づく発光強度が3倍以上大きな酸化亜鉛超微粒子である。 Further, the zinc oxide ultrafine particles according to claim 3 have a wavelength that is higher than that of the zinc oxide ultrafine particles according to claim 1 or 2 compared to the emission intensity based on a donor observed at a wavelength of about 368 nm at a very low temperature. It is zinc oxide ultrafine particles whose emission intensity based on the acceptor observed at around 375 nm is three times or more.

また、請求項4に記載の酸化亜鉛超微粒子製造方法は、酸素ガスと窒素ガスとを含む混合ガスを雰囲気ガスとし、その中でアーク放電を用いて亜鉛を加熱して蒸発させ、亜鉛蒸発量が過多となり酸素欠損の存在する超微粒子とならないように亜鉛蒸発量を抑制することにより請求項1〜3のいずれか一つに記載の酸化亜鉛超微粒子を製造する方法である。 The method for producing ultrafine zinc oxide particles according to claim 4 is characterized in that a mixed gas containing oxygen gas and nitrogen gas is used as an atmospheric gas, in which zinc is heated and evaporated using arc discharge, The method of producing ultrafine zinc oxide particles according to any one of claims 1 to 3, wherein the amount of zinc evaporation is suppressed so as not to cause excessive ultrafine particles having oxygen deficiency.

また、請求項5に記載の酸化亜鉛超微粒子製造方法は、請求項4に記載の酸化亜鉛超微粒子製造方法において、純度99.99%以下の亜鉛を用いる製造方法である。 The zinc oxide ultrafine particle production method according to claim 5 is the production method using zinc having a purity of 99.99% or less in the zinc oxide ultrafine particle production method according to claim 4.

また、請求項6に記載の酸化亜鉛超微粒子製造方法は、請求項4または5に記載の酸化亜鉛超微粒子製造方法において、雰囲気ガスとして精製しない空気を用いる製造方法である。 Further, the zinc oxide ultrafine particle production method according to claim 6 is the production method using the unpurified air as the atmospheric gas in the zinc oxide ultrafine particle production method according to claim 4 or 5.

なお、本願では、超微粒子とは、その平均的な大きさがμm(1×10−6m)オーダー未満であることを意味する。また、超微粒子の形状は必ずしも球形を意味せず、直方体形や長径短径の比が大きな楕円体形であってもよく、更には針状結晶が含まれていても良いものとする。また、酸化亜鉛超微粒子とは、微粒子自体が一個の単結晶から構成されていることを必ずしも意味せず、複数のブロックに別れた単結晶の集合体であっても良いものとする。 In the present application, the ultrafine particles mean that the average size is less than μm (1 × 10 −6 m) order. Further, the shape of the ultrafine particles does not necessarily mean a spherical shape, but may be a rectangular parallelepiped shape or an ellipsoidal shape having a large major axis / minor axis ratio, and may further include a needle crystal. The zinc oxide ultrafine particles do not necessarily mean that the fine particles themselves are composed of one single crystal, and may be an aggregate of single crystals divided into a plurality of blocks.

また、可視光域とは、人間が関知できる光の波長範囲をいい、具体的には400nm程度〜700nm程度をいう。また、紫外光域とは、可視光域より短波長側の波長範囲をいい、具体的には400nm未満をいう。 Further, the visible light region refers to a wavelength range of light that can be recognized by humans, and specifically refers to about 400 nm to about 700 nm. Further, the ultraviolet light region refers to a wavelength range on the shorter wavelength side than the visible light region, specifically, less than 400 nm.

また、極低温とは、10K程度以下の温度をいい、熱エネルギーが無視できる温度レベルであることを意味する。 The cryogenic temperature refers to a temperature of about 10K or lower, and means a temperature level at which thermal energy can be ignored.

酸素ガスと窒素ガスを含む混合ガスは、例えば空気と同様の4:1のモル比のガスを用意しても良いし、製造室中の空気を直接使用しても良いものとする。なお、混合ガスのうち、酸素は3vol%〜50vol%とすることができる。これは、3%vol%未満だと酸素欠損が生じ易く、50%以上だとアーク放電が不安定になるからである。また、混合ガスのうち、窒素は5vol%〜97vol%とすることができる。これは、5%未満だと超微粒子中の窒素の混入が少なくなるからである。なお、酸素ガスと窒素ガスだけを用いる場合はこれらの合計が100vol%となるように調整すればよいが、この他、合計が100vol%となるのであれば、アルゴンやヘリウムなどの不活性ガスを含んでも良いものとする。 As the mixed gas containing oxygen gas and nitrogen gas, for example, a gas having a molar ratio of 4: 1 similar to air may be prepared, or the air in the manufacturing chamber may be used directly. In addition, oxygen can be 3 vol%-50 vol% among mixed gas. This is because if it is less than 3% vol%, oxygen deficiency tends to occur, and if it is 50% or more, arc discharge becomes unstable. Moreover, nitrogen can be 5 vol%-97 vol% among mixed gas. This is because if it is less than 5%, the amount of nitrogen in the ultrafine particles is reduced. Note that when only oxygen gas and nitrogen gas are used, the total of these may be adjusted to 100 vol%, but in addition, if the total is 100 vol%, an inert gas such as argon or helium is used. It may be included.

なお、混合ガスの総圧は、ガス中蒸発法による場合にはアーク放電を生じ易くするため、例えば、20×10[Pa]とすることができる。ただし、混合ガスの構成比とその圧力、印加電圧、電極間の距離などの関係は、酸素欠損により亜鉛そのものが微粒子中に残存してしまわない組合せであればよいものとする。 Note that the total pressure of the mixed gas can be set to, for example, 20 × 10 3 [Pa] in order to easily generate arc discharge in the case of the gas evaporation method. However, the composition ratio of the mixed gas and the relationship between the pressure, the applied voltage, the distance between the electrodes, and the like may be any combination in which zinc itself does not remain in the fine particles due to oxygen deficiency.

また、加熱して蒸発させる方法としては、例えばアーク放電を用いる方法(以下の実施例でもアーク放電を利用したガス中蒸発法を用いた製造例を説明する)を挙げることができる。 Moreover, as a method of evaporating by heating, for example, a method using arc discharge (a manufacturing example using an in-gas evaporation method using arc discharge is also described in the following examples) can be mentioned.

また、純度99.99%以下とは、特にその下限を設定しないが、不純物が超微粒子の生成に影響を与えず、また、半導体としての性質の観点から見て影響を与えないレベルをいう。 The purity of 99.99% or less means a level at which the lower limit is not particularly set, but the impurity does not affect the generation of ultrafine particles and does not affect from the viewpoint of the properties as a semiconductor.

また、酸素欠損のないとは、フォトルミネッセンス法による評価で酸素欠損に起因する500nm前後の可視光の蛍光強度がバンド端発光による紫外光の100分の一以下であるような結晶を意味する。 Further, the absence of oxygen deficiency means a crystal in which the fluorescence intensity of visible light around 500 nm due to oxygen deficiency is 1/100 or less of ultraviolet light due to band edge emission, as evaluated by a photoluminescence method.

本発明により、p型伝導や紫外線発光など半導体としての物性を発揮できる結晶性の良い高品質な酸化亜鉛超微粒子を提供可能となる。 According to the present invention, it is possible to provide high-quality zinc oxide ultrafine particles with good crystallinity that can exhibit physical properties as a semiconductor such as p-type conduction and ultraviolet light emission.

また、この高品質な酸化亜鉛超微粒子を、低純度な素材から安価に製造する製造方法を提供可能となる。 In addition, it is possible to provide a manufacturing method for manufacturing the high-quality zinc oxide ultrafine particles at low cost from a low-purity material.

本実施例では酸化亜鉛超微粒子の作製にあたってガス中蒸発法を用いた例を説明する。超微粒子の生成には、真空冶金製GE−970を使用した。図1は、本実施例で使用した装置の概略構成を示した図である。 In this embodiment, an example in which an in-gas evaporation method is used for producing zinc oxide ultrafine particles will be described. GE-970 made by vacuum metallurgy was used for the production of ultrafine particles. FIG. 1 is a diagram showing a schematic configuration of an apparatus used in this embodiment.

超微粒子の作製手順としては、まずチャンバー内を真空に引き、ここに原料ガスである空気(特に精製しない空気)を20×10[Pa]の圧力となるまで流入した。続いて、カーボン電極と導電性のハースの上にセットした原料であるZnインゴット(純度4N:99.99%)との間でアーク放電を発生させ、Znを連続的に蒸発させた。 As a procedure for producing the ultrafine particles, first, the inside of the chamber was evacuated, and air as a raw material gas (in particular, air that was not purified) was introduced until the pressure reached 20 × 10 3 [Pa]. Subsequently, arc discharge was generated between the carbon electrode and a Zn ingot (purity 4N: 99.99%) which is a raw material set on the conductive hearth, and Zn was continuously evaporated.

このとき、Znがチャンバー内の酸素と反応してZnO超微粒子が生成される。生成された超微粒子はチャンバーの壁面に付着した。なお、以降の評価測定については、この壁面に付着した酸化亜鉛の超微粒子を用いた。 At this time, Zn reacts with oxygen in the chamber to produce ZnO ultrafine particles. The produced ultrafine particles adhered to the wall surface of the chamber. In the subsequent evaluation measurement, ultrafine particles of zinc oxide adhered to the wall surface were used.

電流値を変化させ、アーク放電が生じた際の電圧と、放電時間の関係を表1に示す。
Table 1 shows the relationship between the voltage when the electric current value is changed and arc discharge occurs and the discharge time.

評価はSEM(走査型電子顕微鏡)による観察と、フォトルミネッセンスによる発光特性測定をおこなった。 The evaluation was performed by observation with an SEM (scanning electron microscope) and measurement of light emission characteristics by photoluminescence.

まず、SEM写真を示す。図2は、条件2により作製した酸化亜鉛超微粒子を写したSEM写真である。図から明らかなように、作製された超微粒子は100nm径×200nm程度の柱状の粒子であることが確認できた。 First, an SEM photograph is shown. FIG. 2 is an SEM photograph showing the zinc oxide ultrafine particles produced under condition 2. As is apparent from the figure, it was confirmed that the produced ultrafine particles were columnar particles having a diameter of about 100 nm × 200 nm.

次に、発光特性の測定結果を図3、図4、および、図5に示す。図3は、条件2で作製した試料の室温(290[K])における発光特性を示した図である。図示したように、室温において自由励起子の吸収と同じ波長375[nm]付近で発光が確認された。これは自由励起子が存在することを示しており、高品質な結晶が製造されたことを意味する。 Next, the measurement results of the light emission characteristics are shown in FIG. 3, FIG. 4, and FIG. FIG. 3 is a graph showing light emission characteristics of a sample manufactured under Condition 2 at room temperature (290 [K]). As shown in the figure, light emission was confirmed at around 375 [nm], which is the same as the free exciton absorption at room temperature. This indicates the presence of free excitons, which means that high quality crystals have been produced.

図4は、条件2および条件3により作製した試料の5[K]における発光特性を示した図である。条件3により作製された超微粒子は図示したレンジでは発光は確認できず、500nm程度のブロードなレンジで発光が確認できた(500nmにおける図示は省略)。このような可視光域での発光は、酸素欠損によるものと考えられる。 FIG. 4 is a graph showing the light emission characteristics at 5 [K] of the samples manufactured under conditions 2 and 3. The ultrafine particles produced under the condition 3 could not confirm light emission in the illustrated range, but could confirm light emission in a broad range of about 500 nm (illustration at 500 nm was omitted). Such light emission in the visible light region is considered to be due to oxygen deficiency.

反対に、条件2により作製された超微粒子は375[nm]という短波長側で鋭い発光ピークが観測され、500[nm]程度のレンジでは発光が確認されなかった(500nmにおける図示は省略)。このように、鋭いピークが観測されたことより、条件2の超微粒子の結晶は高品質であるといえる。 On the other hand, the ultrafine particles produced under Condition 2 showed a sharp emission peak on the short wavelength side of 375 [nm], and no emission was confirmed in the range of about 500 [nm] (illustration at 500 nm omitted). Thus, since a sharp peak was observed, it can be said that the ultrafine crystal of Condition 2 is of high quality.

図5は、MBEにより窒素をドープした酸化亜鉛単結晶薄膜の発光特性についての論文値と条件2により作製した試料の測定値とを比較した図である。この論文値は非特許文献1に掲載された、現時点で世界最高レベルの高品位のp型ZnO単結晶薄膜の生成の成功を紹介したものである。 FIG. 5 is a diagram comparing the paper value of the light emission characteristics of the zinc oxide single crystal thin film doped with nitrogen by MBE and the measured value of the sample manufactured under condition 2. This paper value is the introduction of the success in producing the world's highest level high-quality p-type ZnO single crystal thin film published in Non-Patent Document 1.

上記の論文によれば、図中でAXは窒素アクセプタによる発光ピークであり、DXはドナーによる発光ピークである。図から明らかなように、高純度(6N〜7N)原材料を用いてMBEにより製造された酸化亜鉛薄膜のスペクトルと、低純度の原料で製造された酸化亜鉛超微粒子のスペクトルは、ほぼ同形であり、加えて、アクセプタとドナーとの発光ピーク比が本実施例の方が論文値に比して大きく、極めて品質の高いp型の超微粒子が作製されたことが伺える。 According to the above paper, in the figure, A 0 X is an emission peak due to a nitrogen acceptor, and D 0 X is an emission peak due to a donor. As is apparent from the figure, the spectrum of the zinc oxide thin film manufactured by MBE using high purity (6N-7N) raw material and the spectrum of the zinc oxide ultrafine particles manufactured from the low purity raw material are almost the same shape. In addition, the emission peak ratio between the acceptor and the donor is larger in this example than in the paper value, indicating that extremely high quality p-type ultrafine particles were produced.

また、論文値は、結晶中の窒素濃度が1019cm−3であるので、条件2により作成した試料は、同程度の窒素濃度であるといえる。 Moreover, since the nitrogen concentration in a crystal | crystallization is 10 < 19 > cm <-3 >, it can be said that the sample created by the conditions 2 has comparable nitrogen concentration.

以上説明したように、本実施例によれば、低純度な材料を用いて極めて高品質かつp型の酸化亜鉛単超微粒子を得ることができた。なお、実勢価格上、原料純度が1桁上昇すると原料価格が一桁上昇するので、本方法によれば極めて低廉に高純度な酸化亜鉛超微粒子を得ることができるといえる。 As described above, according to the present example, extremely high quality and p-type zinc oxide single ultrafine particles could be obtained using a low-purity material. In addition, since the raw material price increases by an order of magnitude when the raw material purity increases by an actual price, it can be said that according to this method, high-purity zinc oxide ultrafine particles can be obtained very inexpensively.

本発明を利用して、例えば、紫外域から緑色域で発光する酸化亜鉛系発光素子や、太陽電池などを、安価に製造することができる。 By utilizing the present invention, for example, a zinc oxide light emitting element that emits light in the ultraviolet region to the green region, a solar cell, and the like can be manufactured at low cost.

実施例において使用した装置の概略構成を示した図である。It is the figure which showed schematic structure of the apparatus used in the Example. 実施例において、条件2により作製した酸化亜鉛超微粒子を写したSEM写真である。In an Example, it is a SEM photograph which copied the zinc oxide ultrafine particle produced on condition 2. 実施例において、条件2で作製した試料の室温(290[K])における発光特性を示した図である。In an Example, it is the figure which showed the light emission characteristic in room temperature (290 [K]) of the sample produced on the conditions 2. FIG. 実施例において、条件2および条件3により作製した試料の5[K]における発光特性を示した図である。In an Example, it is the figure which showed the light emission characteristic in 5 [K] of the sample produced on condition 2 and condition 3. FIG. 実施例において、MBEにより窒素をドープした酸化亜鉛単結晶薄膜の発光特性についての論文値と条件2により作製した試料の測定値とを比較した図である。In an Example, it is the figure which compared the paper value about the light emission characteristic of the zinc oxide single crystal thin film which doped nitrogen by MBE, and the measured value of the sample produced by the conditions 2. FIG.

Claims (6)

結晶中の窒素濃度が1016cm−3〜1020cm−3であって、粒子径が50nm〜200nmである酸化亜鉛超微粒子。 Zinc oxide ultrafine particles having a nitrogen concentration in the crystal of 10 16 cm −3 to 10 20 cm −3 and a particle diameter of 50 nm to 200 nm. 室温で375nm付近の蛍光を示し、可視光域の蛍光強度の積分値が紫外光域の発光強度の積分値の100分の一以下である請求項1に記載の酸化亜鉛超微粒子。   2. The zinc oxide ultrafine particles according to claim 1, which exhibit fluorescence at around 375 nm at room temperature, and whose integrated value of fluorescence intensity in the visible light region is 1/100 or less of the integrated value of emission intensity in the ultraviolet light region. 極低温にて波長368nm付近で観測されるドナーに基づく発光強度に比して、波長375nm付近で観測されるアクセプタに基づく発光強度が3倍以上大きな請求項1または2に記載の酸化亜鉛超微粒子。   3. The zinc oxide ultrafine particles according to claim 1, wherein the emission intensity based on the acceptor observed at a wavelength of about 375 nm is three times or more larger than the emission intensity based on a donor observed at a wavelength of about 368 nm at an extremely low temperature. . 酸素ガスと窒素ガスとを含む混合ガスを雰囲気ガスとし、その中でアーク放電を用いて亜鉛を加熱して蒸発させ、亜鉛蒸発量が過多となり酸素欠損の存在する超微粒子とならないように亜鉛蒸発量を抑制することにより請求項1〜3のいずれか一つに記載の酸化亜鉛超微粒子を製造する酸化亜鉛超微粒子製造方法。   A gas mixture containing oxygen gas and nitrogen gas is used as an atmospheric gas, in which zinc is heated and evaporated using arc discharge to evaporate zinc so that the amount of zinc evaporation is excessive and ultrafine particles with oxygen vacancies are not formed. The method for producing zinc oxide ultrafine particles, wherein the zinc oxide ultrafine particles according to any one of claims 1 to 3 are produced by suppressing the amount. 純度99.99%以下の亜鉛を用いる請求項4に記載の酸化亜鉛超微粒子製造方法。   The method for producing ultrafine zinc oxide particles according to claim 4, wherein zinc having a purity of 99.99% or less is used. 雰囲気ガスとして精製しない空気を用いる請求項4または5に記載の酸化亜鉛超微粒子製造方法。   The method for producing ultrafine zinc oxide particles according to claim 4 or 5, wherein unpurified air is used as the atmospheric gas.
JP2003290248A 2003-08-08 2003-08-08 Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles Expired - Lifetime JP4072620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290248A JP4072620B2 (en) 2003-08-08 2003-08-08 Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290248A JP4072620B2 (en) 2003-08-08 2003-08-08 Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles

Publications (2)

Publication Number Publication Date
JP2005060145A JP2005060145A (en) 2005-03-10
JP4072620B2 true JP4072620B2 (en) 2008-04-09

Family

ID=34368334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290248A Expired - Lifetime JP4072620B2 (en) 2003-08-08 2003-08-08 Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles

Country Status (1)

Country Link
JP (1) JP4072620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934968B2 (en) 2014-05-16 2018-04-03 Nagoya Institute Of Technology Method for manufacturing p-type zinc oxide film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873576B2 (en) * 2006-12-01 2012-02-08 国立大学法人島根大学 Fluorescent labeling agent and fluorescent labeling method
JP5277430B2 (en) * 2007-03-29 2013-08-28 国立大学法人島根大学 Zinc oxide based light emitting device
JP5392697B2 (en) 2008-02-07 2014-01-22 独立行政法人産業技術総合研究所 Core-shell type zinc oxide fine particles or dispersion containing the same, their production method and use
JP5920818B2 (en) * 2012-02-23 2016-05-18 国立大学法人島根大学 Photoelectric conversion element and manufacturing method thereof
JP6048920B2 (en) * 2012-02-23 2016-12-21 国立大学法人島根大学 Light scattering film, method for producing the same, and solar cell
JP6446977B2 (en) * 2014-10-09 2019-01-09 コニカミノルタ株式会社 Electrophotographic photosensitive member, electrophotographic image forming apparatus and process cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934968B2 (en) 2014-05-16 2018-04-03 Nagoya Institute Of Technology Method for manufacturing p-type zinc oxide film

Also Published As

Publication number Publication date
JP2005060145A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
Xu et al. Nanostructural zinc oxide and its electrical and optical properties
Dai et al. Growth and luminescence characterization of large-scale zinc oxide nanowires
Tseng et al. Characterization and field‐emission properties of needle‐like zinc oxide nanowires grown vertically on conductive zinc oxide films
Zhai et al. Characterization, cathodoluminescence, and field‐emission properties of morphology‐tunable CdS micro/nanostructures
Liao et al. Field emission property improvement of ZnO nanowires coated with amorphous carbon and carbon nitride films
Wang et al. High-temperature stable field emission of B-doped SiC nanoneedle arrays
Park et al. Structural and optical properties of ZnO nanowires synthesized from ball-milled ZnO powders
JP2007254174A (en) Gallium oxide single crystal and its manufacturing method, and nitride semiconductor substrate and its manufacturing method
Nogales et al. Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices
Zhuang et al. Structural and optical properties of ZnO nanowires doped with magnesium
JP2020189781A (en) Process for manufacturing p type gallium oxide thin film by doping defect, and use thereof
Li et al. Photoluminescence and field emission properties of Sn-doped ZnO microrods
JP4072620B2 (en) Zinc oxide ultrafine particles and method for producing zinc oxide ultrafine particles
Lee Relationship between crystal structure and photoluminescence properties of ZnO films formed by oxidation of metallic Zn
Khan et al. Synthesis, growth mechanism, photoluminescence and field emission properties of metal–semiconductor Zn–ZnO core–shell microcactuses
JP2009013028A (en) Aluminum oxide-gallium oxide solid solution and method for producing the same
JP2006089356A (en) Method for manufacturing siox formed body in which crystalline silicon is present, and use thereof
JP5019326B2 (en) Method for producing MgaZn1-aO single crystal thin film
Hsu et al. Indium-diffused ZnO nanowires synthesized on ITO-buffered Si substrate
Li et al. Intense green cathodoluminescence from low-temperature-deposited ZnO film with fluted hexagonal cone nanostructures
Zhang et al. Shape-controllable synthesis of indium oxide structures: Nanopyramids and nanorods
JP2010006670A (en) Nanowire structure and method for producing the same
Ortega et al. Self-assembled tin-doped ZnO nanowire and nanoplate structures grown by thermal treatment of ZnS powder
Chen et al. Fabrication and characterization of hexagonal wire-like ZnO
JP4581381B2 (en) Method for producing gallium oxide nanostructure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050119

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4072620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term