JP4069843B2 - Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method - Google Patents

Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method Download PDF

Info

Publication number
JP4069843B2
JP4069843B2 JP2003368610A JP2003368610A JP4069843B2 JP 4069843 B2 JP4069843 B2 JP 4069843B2 JP 2003368610 A JP2003368610 A JP 2003368610A JP 2003368610 A JP2003368610 A JP 2003368610A JP 4069843 B2 JP4069843 B2 JP 4069843B2
Authority
JP
Japan
Prior art keywords
general formula
group
compound
photosensitive member
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003368610A
Other languages
Japanese (ja)
Other versions
JP2005134516A (en
Inventor
友子 ▲崎▼村
豊子 芝田
弘 山崎
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2003368610A priority Critical patent/JP4069843B2/en
Publication of JP2005134516A publication Critical patent/JP2005134516A/en
Application granted granted Critical
Publication of JP4069843B2 publication Critical patent/JP4069843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関するものである。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method used for electrophotographic image formation, and more specifically, to electrophotographic image formation used in the field of copying machines and printers. The present invention relates to an electrophotographic photosensitive member, a process cartridge, an image forming apparatus, and an image forming method.

電子写真感光体はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年無機感光体に代わって有機感光体の主流となっている。   Electrophotographic photoconductors have great advantages such as wider selection of materials, better environmental suitability, and lower production costs than inorganic photoconductors such as selenium photoconductors and amorphous silicon photoconductors. In recent years, organic photoreceptors have become the mainstream in place of inorganic photoreceptors.

一方、近年の電子写真方式の画像形成方法は、パソコンのハードコピー用のプリンターとして、また通常の複写機においても画像処理の容易さや複合機への展開の容易さから、LEDやレーザを像露光光源とするデジタル方式の画像形成方式が急激に浸透してきた。更に、デジタル画像の精細化を進めて、高画質の電子写真画像を作製する技術が開発されている。例えば、スポット面積の小さいレーザ光で像露光を行い、ドット潜像の密度を上げて、高精細の潜像を形成し、該潜像を小粒径トナーで現像し、高画質の電子写真画像を作製する技術が公開されている。(特許文献1)
このような高画質のデジタル画像の形成に際しては、高感度で且つ温室度環境の変化に対して安定な特性を有する有機感光体が要求される。
On the other hand, in recent electrophotographic image forming methods, as a hard copy printer of a personal computer, and in an ordinary copying machine, image processing of LEDs and lasers is easy due to the ease of image processing and deployment to a multifunction machine. A digital image forming system that uses a light source has rapidly spread. Furthermore, a technique for producing a high-quality electrophotographic image by developing a finer digital image has been developed. For example, image exposure is performed with a laser beam with a small spot area, the density of the dot latent image is increased to form a high-definition latent image, the latent image is developed with a small particle size toner, and a high-quality electrophotographic image The technology for producing is disclosed. (Patent Document 1)
In forming such a high-quality digital image, an organic photoreceptor having high sensitivity and stable characteristics against changes in the greenhouse environment is required.

従来、前記のような有機感光体の要求を満たすために、有機感光体は、感光層を電荷発生層と電荷輸送層に機能分離した層構成にし、該電荷輸送層に、分子量500前後の低分子量の電荷輸送物質を多量に含有させた構成にしていた。しかしながら、このような構成の電荷輸送層では、膜質が低下し、表面層の電荷輸送層が異物で汚染されやすい。即ち、感光体周辺に配置された現像手段、転写手段、クリーニング手段等により、感光体表面が紙粉やトナー組成物で汚染されやすく、その結果、ブラックスポット(苺状の斑点画像)や、転写ヌケ等の周期性の画像欠陥が発生しやすい。又、露光工程から現像工程間の時間が短い高速の複写機や低温低湿環境等で、十分な感度が得られず、その結果、ドット画像が忠実に再現されず、細線が切断された画像が発生したりしやすい。   Conventionally, in order to satisfy the requirements of the organic photoreceptor as described above, the organic photoreceptor has a layer structure in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer, and the charge transport layer has a low molecular weight of about 500. The structure contained a large amount of a molecular weight charge transporting substance. However, in the charge transport layer having such a configuration, the film quality is deteriorated, and the charge transport layer on the surface layer is easily contaminated with foreign substances. That is, the surface of the photosensitive member is easily contaminated with paper dust or a toner composition by a developing unit, a transferring unit, a cleaning unit, and the like arranged around the photosensitive member. As a result, a black spot (a wrinkled spot image) or a transfer Periodic image defects such as missing are likely to occur. In addition, in a high-speed copying machine or a low-temperature and low-humidity environment where the time between the exposure process and the development process is short, sufficient sensitivity cannot be obtained. It is easy to occur.

このような課題を解決する方法として、大分子量の電荷輸送物質を用いることが報告されている。例えば、ビススチリルの化学構造を有する分子量1000以上の電荷輸送物質を含有する有機感光体が報告されている(特許文献2)。しかしながら、これらの電荷輸送物質を電荷輸送層に含有させると、電荷輸送層のバインダー樹脂との相溶性が不十分となりやすく、電荷輸送物質が均一に分散されず、感度が十分にでないと同時に電荷輸送層にクラック等の破断傷が発生しやすい。又、分子量3000〜5000の化合物の電荷輸送物質を用いた感光体も報告されているが(特許文献3、4)、この化合物は末端基が封鎖されていないため、残電上昇が起こりやすく、又、バインダー樹脂との相溶性も十分に解決されていない。   As a method for solving such a problem, it has been reported to use a charge transport material having a large molecular weight. For example, an organic photoreceptor containing a charge transport material having a chemical structure of bisstyryl and a molecular weight of 1000 or more has been reported (Patent Document 2). However, when these charge transport materials are contained in the charge transport layer, the charge transport layer tends to have insufficient compatibility with the binder resin, the charge transport material is not uniformly dispersed, and the sensitivity is not sufficient. Breaking scratches such as cracks are likely to occur in the transport layer. In addition, a photoconductor using a charge transport material having a molecular weight of 3000 to 5000 is also reported (Patent Documents 3 and 4), but since the terminal group is not blocked, the residual power is likely to increase. Further, compatibility with the binder resin has not been sufficiently solved.

又、感光体表面の汚染を防止するために、表面層にフッ素系樹脂粒子を含有させた有機感光体が提案されている(特許文献5)。しかしながら、フッ素系樹脂粒子を含有させた有機感光体は、画像ボケが発生しやすい。又表面層の機械的強度も低下させやすく、前記クリーニング手段等との接触摩擦により、感光体表面が減耗しやすく、必ずしも良好な電子写真画像を提供し得ていない。
特開2001−255685号公報 特開平3−149560号公報 特開平10−310635号公報 特開平5−25102号公報 特開昭63−65449号公報
In order to prevent contamination on the surface of the photoreceptor, an organic photoreceptor having a surface layer containing fluorine-based resin particles has been proposed (Patent Document 5). However, an organic photoreceptor containing fluorine resin particles tends to cause image blur. Also, the mechanical strength of the surface layer is likely to be lowered, and the surface of the photoreceptor is easily worn by contact friction with the cleaning means or the like, and a good electrophotographic image cannot always be provided.
Japanese Patent Laid-Open No. 2001-255585 JP-A-3-149560 Japanese Patent Laid-Open No. 10-310635 JP-A-5-25102 JP-A-63-65449

本発明は前記のような課題を解決するために提案されたものであり、その目的とするところは、電子写真画像を形成する際に、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因する画像不良、即ち、反転現像で、べた黒画像部の電位変動による画像濃度の低下や文字細り等の発生による鮮鋭性の低下を防止することであり、又、電子写真感光体の表面汚染により発生しやすいブラックスポットや、転写ヌケ等の周期性の画像欠陥を防止し、又、クラック等の破断傷等の発生を起こさず、高濃度、高解像性の鮮明な電子写真画像が安定して得られる電子写真感光体、及び該電子写真感光体を用いたプロセスカートリッジ、画像形成方法、画像形成装置を提供することにある。   The present invention has been proposed in order to solve the above-described problems. The object of the present invention is to provide a high-sensitivity, easy-to-occurrence in high-speed copying and low-temperature and low-humidity environments when forming an electrophotographic image. This is to prevent image defects caused by the reduction, that is, reversal development, image density reduction due to potential fluctuation of solid black image portion and sharpness reduction due to occurrence of character thinning, etc. Prevents periodic image defects such as black spots and transfer defects that are likely to occur due to surface contamination, and does not cause cracks and other flaws, resulting in high-density, high-resolution clear electrophotographic images Is to provide an electrophotographic photosensitive member stably obtained, and a process cartridge, an image forming method, and an image forming apparatus using the electrophotographic photosensitive member.

本発明者等は鋭意検討の結果、本発明の前記課題を解決するためには、電子写真感光体の電荷輸送層を構成するバインダー樹脂と電荷輸送物質について、詳細な検討を加えた結果、同一の化学構造単位を有し、分子量が異なる化合物の混合物を電荷輸送物質として用いることにより、大分子量の電荷輸送物質を用いても、バインダー樹脂との相溶性が良好であり、且つ高速プロセスでしかも低温低湿環境下での感度の高速応答性が改善され、且つ無機粒子を含有する表面層と組み合わせることにより、感度の高速応答性を維持したまま、感光体表面が汚染されにくく、ブラックスポット、転写ヌケ等の周期性画像欠陥等の発生が防止され、クラック等の破断傷等の発生を起こさず、高濃度、高解像力の鮮明な画像が安定して得られることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have conducted detailed studies on the binder resin and the charge transport material constituting the charge transport layer of the electrophotographic photosensitive member in order to solve the problems of the present invention. By using a mixture of compounds having the following chemical structural units and different molecular weights as a charge transport material, even if a large molecular weight charge transport material is used, the compatibility with the binder resin is good and the process is fast. By combining with a surface layer containing inorganic particles, the high-speed response of sensitivity in a low-temperature, low-humidity environment is improved, and the surface of the photoconductor is not easily contaminated while maintaining high-speed response of sensitivity. It is observed that periodic image defects such as missing are prevented, and clear images with high density and high resolution can be stably obtained without causing breakage such as cracks. And, to complete the present invention.

本発明の目的は、下記構成のいずれかを採ることにより達成される。
(請求項1)
下記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有することを特徴とする電子写真感光体。
The object of the present invention is achieved by adopting one of the following configurations.
(Claim 1)
When the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the following general formula (1) and having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y, x + y is 99. % Of a mixed compound, and the surface layer contains inorganic particles.

一般式(1)
X−(CTM基)n−Y
上記一般式(1)中、CTM基は、電荷輸送性基であり、X、Yは水素原子、ハロゲン原子、又は1価の有機基を表す。又、nは0〜10の整数(但し、X及びYが共に水素原子又はハロゲン原子の場合はnは1〜10の整数)を示す。
(請求項2)
導電性支持体上に電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層を積層した電子写真感光体において、前記電荷輸送層が、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ無機粒子を含有する表面層を有することを特徴とする電子写真感光体。
(請求項3)
一般式(1)のx+yが下記の範囲にあることを特徴とする請求項1又は2に記載の電子写真感光体。
General formula (1)
X- (CTM group) n -Y
In the general formula (1), the CTM group is a charge transporting group, and X and Y represent a hydrogen atom, a halogen atom, or a monovalent organic group. N represents an integer of 0 to 10 (provided that both X and Y are hydrogen atoms or halogen atoms, n is an integer of 1 to 10).
(Claim 2)
In the electrophotographic photosensitive member in which a charge generation layer having a charge generation material and a charge transport layer having a charge transport layer are laminated on a conductive support, the charge transport layer has a chemical structure of the general formula (1). In addition, the composition ratio of the compound of the maximum component of the mixed compound having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y. An electrophotographic photosensitive member having a surface layer containing
(Claim 3)
3. The electrophotographic photosensitive member according to claim 1, wherein x + y in the general formula (1) is in the following range.

30%≦x+y≦99%     30% ≦ x + y ≦ 99%

(請求項
一般式(1)のCTM基、X、Yが下記一般式Aの化学構造を有することを特徴とする請求項1〜のいずれか1項に記載の電子写真感光体。
(Claim 4 )
The electrophotographic photoreceptor according to any one of claims 1 to 3 , wherein the CTM group of formula (1), X, and Y have a chemical structure represented by the following formula A.

Figure 0004069843
Figure 0004069843

前記一般式A中、Ar1は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基を示し、R1〜R3は水素原子、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基を示す。又、複数のAr1、R1、R2、R3は互いに異なっていてもよい。p、qは各々0又は1の整数を表す。 In formula A, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted or unsubstituted aromatic group, R 1 to R 3 is a hydrogen atom, 1 A valent substituted or unsubstituted aromatic group is shown, and A represents a divalent group containing a triarylamine group . A plurality of Ar 1 , R 1 , R 2 , and R 3 may be different from each other. p and q each represents an integer of 0 or 1.

(請求項
一般式(1)のCTM基、X、Yが下記一般式Bの化学構造を有することを特徴とする請求項1〜のいずれか1項に記載の電子写真感光体。
(Claim 5 )
The electrophotographic photosensitive member according to any one of claims 1 to 3 , wherein the CTM group of formula (1), X and Y have a chemical structure represented by formula B below.

Figure 0004069843
Figure 0004069843

前記一般式B中、Ar1は2価の置換、無置換の芳香族基、2価のフラン基、又記一般式(2)を示し、R1〜R3は水素原子を示し、Aはトリアリールアミン基を含有する2価の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R1、R2、R3は互いに異なっていてもよい。mは各々0又は1の整数を表す。

Figure 0004069843
一般式(2)中、Yは単結合である。
(請求項
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(4)の基であることを特徴とする請求項4又は5に記載の電子写真感光体。 In the general formula B, Ar 1 is a divalent substituted or unsubstituted aromatic group, a divalent furan group, or represents a lower following general formula (2), R 1 ~R 3 is a hydrogen atom , A represents a divalent group containing a triarylamine group, and B represents a monovalent substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. m represents an integer of 0 or 1, respectively.
Figure 0004069843
In general formula (2), Y is a single bond.
(Claim 6 )
6. The electrophotographic photosensitive member according to claim 4, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (4).

Figure 0004069843
Figure 0004069843

一般式(4)中、Ar3は置換又は無置換の1価の芳香族基を表す。
(請求項
前記Ar3が、下記一般式(5)の基であることを特徴とする請求項に記載の電子写真感光体。
In the general formula (4), Ar 3 represents a substituted or unsubstituted monovalent aromatic group.
(Claim 7 )
The electrophotographic photosensitive member according to claim 6 , wherein Ar 3 is a group of the following general formula (5).

Figure 0004069843
Figure 0004069843

一般式(5)中、R31、R32、R33、R34、R35は水素原子又は炭素数1〜4のアルキル基を示す。但し、R31及びR35の内、少なくとも1つは炭素数1〜4のアルキル基である。
(請求項11)
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(6)の基であることを特徴とする請求項7又は8に記載の電子写真感光体。
In General Formula (5), R 31 , R 32 , R 33 , R 34 , and R 35 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. However, at least one of R 31 and R 35 is an alkyl group having 1 to 4 carbon atoms.
(Claim 11)
The electrophotographic photoreceptor according to claim 7 or 8, wherein the divalent group containing the triarylamine group of A is a group of the following general formula (6).

Figure 0004069843
Figure 0004069843

一般式(6)中、X2は単結合、A4、Ar5は置換又は無置換の1価の芳香族基を示す。
(請求項
前記Bが下記一般式(7)で表される基であることを特徴とする請求項に記載の電子写真感光体。
In General Formula (6), X 2 represents a single bond , and Ar 4 and Ar 5 represent a substituted or unsubstituted monovalent aromatic group.
(Claim 9 )
6. The electrophotographic photosensitive member according to claim 5 , wherein B is a group represented by the following general formula (7).

Figure 0004069843
Figure 0004069843

一般式(7)中、R41、R42、R43、R44、R45、R51、R52、R53、R54、R55は水素原子または炭素数1〜4のアルキル基を示す。ただし、R41、R45、R51、R55のうち少なくともひとつは炭素数1〜4のアルキル基である。
(請求項1
一般式(1)のCTM基、X、Yが下記一般式Cの化学構造を有することを特徴とする請求項1〜のいずれか1項に記載の電子写真感光体。
In the general formula (7), R 41 , R 42 , R 43 , R 44 , R 45 , R 51 , R 52 , R 53 , R 54 , and R 55 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. . However, at least one of R 41 , R 45 , R 51 and R 55 is an alkyl group having 1 to 4 carbon atoms.
(0 claim 1)
The electrophotographic photosensitive member according to any one of claims 1 to 3 , wherein the CTM group, X and Y in the general formula (1) has a chemical structure represented by the following general formula C.

Figure 0004069843
Figure 0004069843

前記一般式C中、Ar1は1価の置換、無置換の芳香族基、Ar2は2価の置換、無置換の芳香族基、2価の複素環基、又は下記一般式(8)を示し、Rは1価の置換、無置換の芳香族基を示す。但し、複数のAr1、Ar2、Rは互いに異なっていてもよい。 In the general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, Ar 2 is a divalent substituted, unsubstituted aromatic group, divalent heterocyclic group, or the following general formula (8) R represents a monovalent substituted or unsubstituted aromatic group. However, the plurality of Ar 1 , Ar 2 , and R may be different from each other.

Figure 0004069843
Figure 0004069843

一般式(8)中、Yは酸素原子である。但しR1、R2は水素原子である。
(請求項1
前記無機粒子の数平均一次粒径dnが5nm〜200nmであることを特徴とする請求項1〜1のいずれか1項に記載の電子写真感光体。
(請求項1
前記無機粒子が下記式(a)を満足することを特徴とする請求項1〜1のいずれか1項に記載の電子写真感光体。
In the general formula (8), Y is oxygen atom. However R 1, R 2 is hydrogen atom.
(Claim 1 1 )
The electrophotographic photosensitive member according to any one of claims 1 to 1 0 the number average primary particle diameter dn of the inorganic particles is characterized by a 5 nm to 200 nm.
(Claim 1 2 )
The electrophotographic photosensitive member according to any one of claims 1 to 11, wherein the inorganic particles satisfy the following formula (a).

式(a) 0.5<数平均一次粒径dn/90%スパン値Δd<0.7
(請求項1
前記無機粒子が疎水化表面処理を施こされていることを特徴とする請求項1〜1のいずれか1項に記載の電子写真感光体。
(請求項1
前記無機粒子が疎水性シリカであることを特徴とする請求項1〜1のいずれか1項に記載の電子写真感光体。
(請求項1
前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。
(請求項1
電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段を有する画像形成装置において、該電子写真感光体が前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有することを特徴とする画像形成装置。
(請求項17
請求項1に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。
Formula (a) 0.5 <number average primary particle size dn / 90% span value Δd <0.7
(Claim 1 3 )
The electrophotographic photosensitive member according to any one of claims 1 to 1 2, wherein the inorganic particles are strained facilities to hydrophobic surface treatment.
(Claims 1-4)
The electrophotographic photoreceptor according to any one of claims 1 to 12 , wherein the inorganic particles are hydrophobic silica.
(Claim 1 5 )
Assuming that the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y, x + y is 99. % Of a mixed compound and a surface layer containing inorganic particles, a charging means for uniformly charging the electrophotographic photosensitive member, and an electrostatic latent image on the charged electrophotographic photosensitive member A latent image forming means for forming a toner image, a developing means for visualizing an electrostatic latent image on the electrophotographic photosensitive member, and a transfer means for transferring a toner image visualized on the electrophotographic photosensitive member onto a transfer material And at least one of a charge removing means for removing the charge on the electrophotographic photosensitive member after transfer and a cleaning means for removing the residual toner on the electrophotographic photosensitive member after transfer. It is characterized by being detachably attachable to the forming device body Process cartridge that.
(Claim 1 6 )
Charging means for uniformly charging the electrophotographic photosensitive member, latent image forming means for forming an electrostatic latent image on the charged electrophotographic photosensitive member, and developing the electrostatic latent image on the electrophotographic photosensitive member In an image forming apparatus having a developing unit and a transfer unit that transfers a toner image visualized on the electrophotographic photosensitive member onto a transfer material, the electrophotographic photosensitive member has a chemical structure represented by the general formula (1). X + y is 99% or less, and the composition ratio of the compound of the maximum component of the mixed compound having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y, and the surface An image forming apparatus, wherein the layer contains inorganic particles.
(Claim 17 )
An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 16 .

本発明の電子写真感光体、プロセスカートリッジ、画像形成方法及び画像形成装置を用いることにより、高速且つ低温低湿環境で発生しやすい感度の高速応答性が不十分なために発生する画像不良と高温高湿で発生しやすい各種画像欠陥を防止し、画像濃度、鮮鋭性が良好な電子写真画像を提供することができる。   By using the electrophotographic photosensitive member, the process cartridge, the image forming method, and the image forming apparatus of the present invention, the high-speed responsiveness of the sensitivity that is likely to occur in a high-speed and low-temperature and low-humidity environment is insufficient, and the image defect and high-temperature high Various image defects that are likely to occur due to moisture can be prevented, and an electrophotographic image having good image density and sharpness can be provided.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の電子写真感光体は下記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有することを特徴とする。   The electrophotographic photosensitive member of the present invention has the chemical structure of the following general formula (1), and the composition ratio of the compound of the maximum component of the mixed compound having a distribution based on n is x. If y is y, x + y contains 99% or less of a mixed compound, and the surface layer contains inorganic particles.

一般式(1)
X−(CTM基)n−Y
上記一般式(1)中、CTM基は、電荷輸送性基であり、X、Yは水素原子、ハロゲン原子、又は1価の有機基を表す。又、nは0〜10の整数(但し、X及びYが共に水素原子又はハロゲン原子の場合はnは1〜10の整数)を示す。
General formula (1)
X- (CTM group) n -Y
In the general formula (1), the CTM group is a charge transporting group, and X and Y represent a hydrogen atom, a halogen atom, or a monovalent organic group. N represents an integer of 0 to 10 (provided that both X and Y are hydrogen atoms or halogen atoms, n is an integer of 1 to 10).

又、本発明に用いられる電子写真感光体は、導電性支持体上に電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層を積層した電子写真感光体において、前記電荷輸送層が、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ無機粒子を含有する表面層を有することを特徴とする。   The electrophotographic photosensitive member used in the present invention is an electrophotographic photosensitive member in which a charge generating layer having a charge generating substance and a charge transporting layer having a charge transporting layer are laminated on a conductive support. , Where x is the composition ratio of the compound of the largest component of the mixed compound having the chemical structure of the general formula (1) and has a distribution based on n, and y is the composition ratio of the compound of the 2-position component. It has a surface layer containing 99% or less of a mixed compound and containing inorganic particles.

本発明の電子写真感光体は、前記構成を有することにより、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因する文字細り等の鮮鋭性低下を防止でき、前記したブラックスポットや、転写ヌケ等の周期性の画像欠陥の発生もなく、クラック等の破断傷等の発生も起こさず、高濃度、高解像力の鮮明な電子写真画像を作製することができる。   The electrophotographic photosensitive member of the present invention has the above-described configuration, and can prevent sharpness reduction such as thinning of characters due to sensitivity reduction, which is likely to occur in high-speed copying and low-temperature and low-humidity environments. In addition, no periodic image defects such as transfer defects are generated, and no flaws such as cracks are generated, so that a clear electrophotographic image having a high density and a high resolving power can be produced.

本発明で、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有するとは、前記一般式(1)の化合物で且つCTM基、即ち電荷輸送性基の連鎖構造の数が異なる化合物が混在し(=nを基準とした分布を持つ化合物が混在すること)、該混在化合物(混合化合物)の中で、存在比が最大成分の化合物の組成比(存在比)をx、2位の成分の化合物の組成比(存在比)をyとすると、x+yが99%以下であり、該混合化合物はnが異なる前記一般式(1)の化合物を少なくとも3種以上含有していることを意味する。このような混合化合物を電荷輸送物質として用いることにより、電荷輸送性が顕著に改善され、高速対応性、低温低湿下等での感度不良を克服でき、溶媒や、バインダー樹脂との相溶性が著しく改善され、且つ無機粒子を含有する表面層と組み合わせることにより、感度の高速応答性を維持したまま、前記したブラックスポット、転写ヌケ等の周期性画像欠陥等の発生が防止され、クラック等の破断傷等の発生を起こさず、高濃度、高解像力の鮮明な画像を作製できる電子写真感光体が得られる。   In the present invention, when the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y. , X + y containing 99% or less of a mixed compound is a mixture of compounds of general formula (1) and having different numbers of chain structures of CTM groups, that is, charge transporting groups (= n as a reference) Compound having a distribution), among the mixed compounds (mixed compounds), x is the composition ratio (existence ratio) of the compound having the largest abundance ratio, and x is the composition ratio (abundance ratio) of the compound at the 2-position component. ) Is y, it means that x + y is 99% or less, and the mixed compound contains at least three compounds of the general formula (1) having different n. By using such a mixed compound as a charge transporting material, the charge transporting property is remarkably improved, the high speed compatibility, the sensitivity failure under low temperature and low humidity, etc. can be overcome, and the compatibility with the solvent and the binder resin is remarkably improved. By combining with a surface layer that is improved and contains inorganic particles, the occurrence of periodic image defects such as black spots and transfer defects are prevented while maintaining high-speed response of sensitivity, and breakage such as cracks An electrophotographic photoreceptor capable of producing a clear image with high density and high resolution without causing scratches or the like can be obtained.

前記一般式(1)のCTM基、即ち電荷輸送性基とは、その化学構造基が電子或いは正孔のドリフト移動度を有する性質を示す基であり、又別の定義としてはTime−Of−Flight法などの電荷輸送性能を検知できる公知の方法により電荷輸送に起因する検出電流が得られる基として定義できる。   The CTM group of the general formula (1), that is, the charge transporting group is a group whose chemical structural group has a property of having drift mobility of electrons or holes. Another definition is Time-Of- It can be defined as a group capable of obtaining a detection current resulting from charge transport by a known method capable of detecting charge transport performance such as the Flight method.

前記CTM基がそれ自身単独で存在しえない場合は、該CTM基の両端に水素原子を付加した一般式(H(CTM基)H)の化合物が電荷輸送性化合物であればよい。   When the CTM group cannot exist by itself, the compound of the general formula (H (CTM group) H) in which hydrogen atoms are added to both ends of the CTM group may be a charge transporting compound.

前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物の具体例としては種々の化学構造が考えられるが、本発明では、これら混合化合物が一連の合成法で製造でき、且つ前記本発明の目的を達成できる混合化合物(電荷輸送物質)として、以下に記す一般式A、一般式B、一般式Cの混合化合物を例示する。   Assuming that the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y, x + y is 99. As specific examples of the mixed compound of not more than%, various chemical structures can be considered. In the present invention, these mixed compounds can be produced by a series of synthesis methods and can achieve the object of the present invention (charge transport materials). ), Mixed compounds of general formula A, general formula B, and general formula C described below are exemplified.

一般式Aの混合化合物は下記の化学構造を有する。   The mixed compound of general formula A has the following chemical structure.

Figure 0004069843
Figure 0004069843

前記一般式A中、Ar1は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基を示し、R1〜R3は水素原子、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基を示す。又、複数のAr1、R1、R2、R3は互いに異なっていてもよい。p、qは各々0又は1の整数を表す。 In formula A, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted or unsubstituted aromatic group, R 1 to R 3 is a hydrogen atom, 1 A valent substituted or unsubstituted aromatic group is shown, and A represents a divalent group containing a triarylamine group . A plurality of Ar 1 , R 1 , R 2 , and R 3 may be different from each other. p and q each represents an integer of 0 or 1.

一般式Bの混合化合物は下記の化学構造を有する。   The mixed compound of the general formula B has the following chemical structure.

Figure 0004069843
Figure 0004069843

前記一般式B中、Ar1は2価の置換、無置換の芳香族基、2価のフラン基、又は前記一般式(2)を示し、R1〜R3は水素原子を示し、Aはトリアリールアミン基を含有する2価の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R1、R2、R3は互いに異なっていてもよい。mは各々0又は1の整数を表す。 In the general formula B, Ar 1 is a divalent substituted or unsubstituted aromatic group, a divalent furan group, or represents the general formula (2), R 1 ~R 3 is a hydrogen atom, A represents a divalent group containing a triarylamine group, and B represents a monovalent substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. m represents an integer of 0 or 1, respectively.

前記一般式A及び一般式Bにおいて、トリアリールアミン基を含有する2価の基とは、窒素原子の3価の結合基がそれぞれ、芳香族環と結合した構造を有し、且つ基全体として2価の連結基を有する基を意味する。   In General Formula A and General Formula B, the divalent group containing a triarylamine group has a structure in which a trivalent linking group of a nitrogen atom is bonded to an aromatic ring, and the entire group A group having a divalent linking group is meant.

前記一般式A及び一般式BのAr1の1価の置換又は無置換の芳香族基としては、置換又は無置換のフェニル基、ナフチル基等が好ましく、置換基としては、炭素数1〜4のアルキル基、アルコキシ基、フェニル基、ハロゲン原子等が好ましい。
Ar2の2価の置換、無置換の芳香族基としては、フェニレン基、ナフチレン基、ビフェニレン基等が好ましく、置換基としては、アルキル基が好ましい。又、2価のフラン基、2価のチオフェン基も好ましい。
As the monovalent substituted or unsubstituted aromatic group of Ar 1 in the general formulas A and B, a substituted or unsubstituted phenyl group, a naphthyl group, and the like are preferable, and the substituent has 1 to 4 carbon atoms. Of these, an alkyl group, an alkoxy group, a phenyl group, a halogen atom and the like are preferable.
As the divalent substituted or unsubstituted aromatic group of Ar 2 , a phenylene group, a naphthylene group, a biphenylene group or the like is preferable, and as the substituent, an alkyl group is preferable. A divalent furan group and a divalent thiophene group are also preferred.

1〜R3は水素原子、ハロゲン原子、置換、無置換のアルキル基、アルコキシ基、1価の置換、無置換の芳香族基を示すが、水素原子、炭素数1〜4のアルキル基、アルコキシ基、無置換のフェニル基、ハロゲン又は炭素数1〜4のアルキル基を有するフェニル基等が好ましい。 R 1 to R 3 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, a monovalent substituted or an unsubstituted aromatic group, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, An alkoxy group, an unsubstituted phenyl group, a halogen, or a phenyl group having an alkyl group having 1 to 4 carbon atoms is preferred.

Aの2価の基としては、前記一般式(3)の基の他に、トリアリールアミン基を含有する2価の基として前記一般式(4)又は一般式(6)の基が好ましい。   As the divalent group of A, in addition to the group of the general formula (3), the group of the general formula (4) or the general formula (6) is preferable as the divalent group containing a triarylamine group.

一般式(3)中のR6は置換、無置換のアルキル基、置換、無置換の芳香族基を示すが、好ましくは炭素数1〜4のアルキル基、フェニル基等が挙げられる。 R 6 in the general formula (3) represents a substituted, unsubstituted alkyl group, substituted, or unsubstituted aromatic group, preferably an alkyl group having 1 to 4 carbon atoms, a phenyl group, or the like.

一般式(4)中のAr3は置換又は無置換の1価の芳香族基であるが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。 Ar 3 in the general formula (4) is a substituted or unsubstituted monovalent aromatic group, preferably a phenyl group substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Is mentioned.

一般式(6)中のAr4、Ar5は置換又は無置換の1価の芳香族基を示すが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。 Ar 4 and Ar 5 in the general formula (6) represent a substituted or unsubstituted monovalent aromatic group, preferably substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. And phenyl group.

以下に、前記一般式A及び一般式Bの代表的な化学構造を下記に挙げるが、本発明は下記のそれぞれの化学構造で、nが異なる化合物の混合物(混合化合物)を電荷輸送物質として用いることである。又、下記化学構造が同じでも、一般式Aのp又はq、或いは一般式Bのmが異なれば、別の混合化合物である。例えば、下記化学構造No.1Aでもp又はqが0と1では別の混合化合物である。又、p又はqが同じでも分布が違えば別の混合化合物である。   Hereinafter, typical chemical structures of the general formula A and the general formula B are listed below, but the present invention uses a mixture (mixed compound) of compounds having different n in the following chemical structures as a charge transport material. That is. Moreover, even if the following chemical structure is the same, if p or q of General Formula A or m of General Formula B is different, it is another mixed compound. For example, the following chemical structure No. 1A is another mixed compound in which p or q is 0 and 1. Further, even if p or q is the same, another mixed compound is obtained if the distribution is different.

一般式Aの具体例   Specific examples of general formula A

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

以上の化合物例は、前記一般式A中の複数のAr1、R1、R2、R3が同一の化学構造例であるが、本発明では、これら複数のAr1、R1、R2、R3が同一でないものも含まれる。例えば、下記のような一般式A′の化学構造例も本発明の一般式(1)の化学構造例として挙げられる。 The above compound examples are examples of chemical structures in which a plurality of Ar 1 , R 1 , R 2 and R 3 in the general formula A are the same, but in the present invention, the plurality of Ar 1 , R 1 and R 2 are the same. , R 3 are not the same. For example, the following chemical structure examples of the general formula A ′ are also exemplified as the chemical structure examples of the general formula (1) of the present invention.

Figure 0004069843
Figure 0004069843

一般式A′中、Ar1、Ar1′は1価の置換又は無置換の芳香族基を示し、Ar2は2価の置換、無置換の芳香族基、フラン基又はチオフェン基又は前記一般式(2)を示し、R1〜R3、R1′〜R3′は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示す。但し、Ar1とR1、Ar1′とR1′は互いに結合して環を形成してもよい。p、qは各々0又は1の整数を表す。 In general formula A ′, Ar 1 and Ar 1 ′ represent a monovalent substituted or unsubstituted aromatic group, and Ar 2 represents a divalent substituted, unsubstituted aromatic group, furan group or thiophene group, Wherein R 1 to R 3 , R 1 ′ to R 3 ′ represent a hydrogen atom, a substituted or unsubstituted alkyl group, a monovalent substituted or unsubstituted aromatic group, and A represents triaryl A divalent group containing an amine group or the group of the general formula (3) is shown. However, Ar 1 and R 1 , Ar 1 ′ and R 1 ′ may be bonded to each other to form a ring. p and q each represents an integer of 0 or 1.

前記一般式A′の代表的な化合物の化学構造を下記に挙げる。本発明は各々の化学構造で、nを基準とした分布を持ち且つ最大成分の化合物の組成比をx、2位の成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用いることである。   The chemical structures of typical compounds of the general formula A ′ are listed below. In the present invention, a mixed compound having a distribution based on n in each chemical structure, x = y is 99% or less, where x is the composition ratio of the compound of the largest component, and y is the composition ratio of the compound of the 2-position component. Is used as a charge transport material.

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

以下に、本発明の前記混合化合物(一般式A)の合成例を記載する。   Below, the synthesis example of the said mixed compound (general formula A) of this invention is described.

以下の合成例では、原材料等を化合物合成の機構(スキーム)中に付した番号を用いて説明する。   In the following synthesis examples, raw materials and the like will be described using the numbers given in the compound synthesis mechanism (scheme).

合成例(1);化合物(例示化学構造21A(p=q=0))の合成   Synthesis Example (1); Synthesis of Compound (Exemplary Chemical Structure 21A (p = q = 0))

Figure 0004069843
Figure 0004069843

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.68g(0.015mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌した。
1の化合物:2.06g(0.006mol)、2の化合物:1.13g(0.003mol)及び3の化合物:1.92g(0.0063mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
A 100 ml four-head flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer. Was stirred while being introduced.
1 compound: 2.06 g (0.006 mol), 2 compound: 1.13 g (0.003 mol) and 3 compound: 1.92 g (0.0063 mol) dissolved in 20 ml of THF, 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別の200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   A separate 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. The reaction solution reacted for 5 hours was poured into this, and then 20 ml of water was further poured into it, followed by stirring for about 30 minutes and filtration. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造21A(p=q=0)の化合物を2.54g得た。高速液体クロマトグラフィー及び質量分析結果、得られた化合物は、nが0〜4の混合物であり、その組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=25.4/48.8/18.1/6.3/1.4であった。   The crude crystals were dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added and dissolved, dropped into 60 ml of methanol and purified by reprecipitation, filtered and dried to obtain 2.54 g of the compound having the exemplified chemical structure 21A (p = q = 0). As a result of high performance liquid chromatography and mass spectrometry, the obtained compound is a mixture of n of 0 to 4, and the composition ratio (area ratio of high performance liquid chromatography) is n = 0/1/2/3/4 = It was 25.4 / 48.8 / 18.1 / 6.3 / 1.4.

尚、高速液体クロマトグラフィーの測定条件は下記で行なった。   The measurement conditions for high performance liquid chromatography were as follows.

測定器:島津LC6A(島津製作所製)
カラム:CLC−ODS(島津製作所製)
検出波長:290nm
移動相:メタノール/テトラヒドロフラン=3/1の混合溶媒
移動相の流速:約1ml/min
尚、本発明の混合化合物の組成比は上記液体クロマトグラフィーによる組成分離後の各成分の面積比(%表示の面積比、合計組成比100%)で定義する。前記測定条件の内、測定器、カラム、移動相等は混合化合物の分離が明確にでき、且つ本発明と同様の結果が得られるものであれば、他に変更してもよい。
Measuring instrument: Shimadzu LC6A (manufactured by Shimadzu Corporation)
Column: CLC-ODS (manufactured by Shimadzu Corporation)
Detection wavelength: 290 nm
Mobile phase: mixed solvent of methanol / tetrahydrofuran = 3/1 Mobile phase flow rate: about 1 ml / min
The composition ratio of the mixed compound of the present invention is defined by the area ratio of each component after composition separation by liquid chromatography (area ratio in% display, total composition ratio 100%). Among the measurement conditions, the measuring device, column, mobile phase, and the like may be changed to others as long as the separation of the mixed compound can be clearly performed and the same result as in the present invention can be obtained.

合成例(2);化合物(例示化学構造21A(p=1、q=0))の合成   Synthesis Example (2); Synthesis of Compound (Exemplary Chemical Structure 21A (p = 1, q = 0))

Figure 0004069843
Figure 0004069843

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.68g(0.015mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。
1の化合物:2.06g(0.006mol)、2の化合物:1.13g(0.003mol)及び3の化合物:2.08g(0.0063mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.68 g (0.015 mol) and 20 ml of THF are added and stirred while introducing nitrogen did.
1 compound: 2.06 g (0.006 mol), 2 compound: 1.13 g (0.003 mol) and 3 compound: 2.08 g (0.0063 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. The reaction solution reacted for 5 hours was poured into this, and then 20 ml of water was further poured into it, followed by stirring for about 30 minutes and filtration. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造21A(p=1、q=0)の化合物を2.75g得た。前記と同様の高速液体クロマトグラフィー及び質量分析結果、得られた化合物は、nが0〜4の混合物であり、その組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=33.4/46.8/15.0/4.0/0.8であった。   The crude crystals were dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved in 10 ml of ethyl acetate, added dropwise to 60 ml of methanol, purified by reprecipitation, filtered and dried to obtain 2.75 g of the compound having the exemplified chemical structure 21A (p = 1, q = 0). As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound is a mixture of n = 0-4, and the composition ratio (area ratio of high performance liquid chromatography) is n = 0/1/2 / 3/4 = 33.4 / 46.8 / 15.0 / 4.0 / 0.8.

合成例(3);化合物(例示化学構造14A(p=1、q=0))の合成   Synthesis Example (3); Synthesis of Compound (Exemplary Chemical Structure 14A (p = 1, q = 0))

Figure 0004069843
Figure 0004069843

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.68g(0.015mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。
1の化合物:1.89g(0.006mol)、2の化合物:1.13g(0.003mol)及び3の化合物:1.60g(0.0063mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。
A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.68 g (0.015 mol) and 20 ml of THF are added and stirred while introducing nitrogen did.
1 compound: 1.89 g (0.006 mol), 2 compound: 1.13 g (0.003 mol) and 3 compound: 1.60 g (0.0063 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. The reaction solution reacted for 5 hours was poured into this, and then 20 ml of water was further poured into it, followed by stirring for about 30 minutes and filtration. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造14A(p=1、q=0)の化合物を2.32g得た。前記と同様の高速液体クロマトグラフィー及び質量分析結果、得られた化合物は、nが0〜4の混合物であり、その組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=30.1/45.4/16.7/6.0/1.8であった。   The crude crystals were dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added and dissolved, dropped into 60 ml of methanol and purified by reprecipitation, filtered and dried to obtain 2.32 g of a compound having the exemplified chemical structure 14A (p = 1, q = 0). As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound is a mixture of n = 0-4, and the composition ratio (area ratio of high performance liquid chromatography) is n = 0/1/2 / 3/4 = 30.1 / 45.4 / 16.7 / 6.0 / 1.8.

一般式Bの具体例   Specific examples of general formula B

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

以上の化合物例は、前記一般式B中の複数のB、R1、R2、R3が同一の化合物例であるが、本発明では、これら複数のB、R1、R2、R3が同一でないものも含まれる。例えば、下記のような一般式B′の化合物も本発明の一般式Bの化合物として挙げられる。 More compounds embodiment, a plurality of B in the general formula B, R 1, R 2, but R 3 are the same of compound examples, in the present invention, the plurality of B, R 1, R 2, R 3 Are also included. For example, the following compound of the general formula B ′ is also exemplified as the compound of the general formula B of the present invention.

Figure 0004069843
Figure 0004069843

一般式B′中、Ar1は2価の置換、無置換の芳香族基、フラン基又はチオフェン基を示し、R1〜R3、R1′〜R3′は水素原子、置換、無置換のアルキル基、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基又は前記一般式(3)の基を示し、B、B′は1価の置換又は無置換の芳香族基を示す。mは各々0又は1の整数を表す。 In general formula B ′, Ar 1 represents a divalent substituted or unsubstituted aromatic group, furan group or thiophene group, and R 1 to R 3 and R 1 ′ to R 3 ′ represent a hydrogen atom, substituted and unsubstituted. An alkyl group, a monovalent substituted or unsubstituted aromatic group, A represents a divalent group containing a triarylamine group or a group of the general formula (3), and B and B ′ represent a monovalent group. A substituted or unsubstituted aromatic group. m represents an integer of 0 or 1, respectively.

前記一般式B′の代表的な化合物の化学構造を下記に挙げる。本発明は各々の化学構造で、nを基準とした分布を持ち且つ最大成分の化合物の組成比をx、2位の成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用いることである。   The chemical structures of representative compounds of the general formula B ′ are listed below. In the present invention, a mixed compound having a distribution based on n in each chemical structure, x = y is 99% or less, where x is the composition ratio of the compound of the largest component, and y is the composition ratio of the compound of the 2-position component. Is used as a charge transport material.

Figure 0004069843
Figure 0004069843

以下に、本発明の前記混合化合物(一般式B)の合成例を記載する。   Below, the synthesis example of the said mixed compound (general formula B) of this invention is described.

合成例(4);化合物(例示化学構造12B(m=0))の合成   Synthesis Example (4); Synthesis of Compound (Exemplary Chemical Structure 12B (m = 0))

Figure 0004069843
Figure 0004069843

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.96g(0.075mol)及びテトラヒドロフラン(以下THF)20mlを入れ、窒素を導入しながら撹拌した。   A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer. Was stirred while being introduced.

1の化合物:1.0g(0.003mol)、2の化合物:2.65g(0.007mol)及び3の化合物:2.52g(0.008mol)をTHF20mlに溶解して前記4(カリウム−tert−ブトキシ)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。   1 compound: 1.0 g (0.003 mol), 2 compound: 2.65 g (0.007 mol) and 3 compound: 2.52 g (0.008 mol) were dissolved in 20 ml of THF, and the above 4 (potassium-tert. -Butoxy) / THF was slowly added dropwise while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に、200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに前記5時間反応した反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥し、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. The reaction solution reacted for 5 hours was poured into this, and then 20 ml of water was further poured into it, followed by stirring for about 30 minutes and filtration. Methanol / water = 1/1 Washed with about 40 ml and dried at 50-60 ° C. overnight to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造12B(m=0)の化合物を3.20g得た。   This crude crystal was dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. 10 ml of ethyl acetate was added and dissolved therein, and the resulting solution was added dropwise to 60 ml of methanol for reprecipitation purification, followed by filtration and drying to obtain 3.20 g of a compound having an exemplary chemical structure 12B (m = 0).

合成例1Aと同様の高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0〜5の混合物であり、組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=24.3/44.4/21.5/7.2/2.3/0.3であった。   As a result of the same high performance liquid chromatography and mass spectrometry as in Synthesis Example 1A, the obtained compound was a mixture of n = 0 to 5, and the composition ratio (area ratio of high performance liquid chromatography) was n = 0/1/2. /3/4=24.3/44.4/21.5/7.2/2.3/0.3.

尚、高速液体クロマトグラフィーの測定条件は下記で行なった。   The measurement conditions for high performance liquid chromatography were as follows.

合成例(5);化合物(例示化学構造11B(m=0))の合成   Synthesis Example (5); Synthesis of Compound (Exemplary Chemical Structure 11B (m = 0))

Figure 0004069843
Figure 0004069843

100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、4(カリウム−tert−ブトキシド):1.96g(0.075mol)及びTHF20mlを入れ、窒素を導入しながら撹拌した。   A 100 ml four-headed flask is equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 4 (potassium-tert-butoxide): 1.96 g (0.075 mol) and 20 ml of THF are added and stirred while introducing nitrogen. did.

1の化合物:1.0g(0.003mol)、2の化合物:2.46g(0.007mol)及び3の化合物:2.41g(0.008mol)をTHF20mlに溶解して4(カリウム−tert−ブトキシド)/THF混合液に内温45℃以下に保ちながらゆっくり滴下した。滴下終了後、内温45〜50℃を保ちながら5時間反応した。   1 compound: 1.0 g (0.003 mol), 2 compound: 2.46 g (0.007 mol) and 3 compound: 2.41 g (0.008 mol) were dissolved in 20 ml of THF to dissolve 4 (potassium-tert- The solution was slowly added dropwise to a mixed solution of butoxide / THF while maintaining the internal temperature at 45 ° C. or lower. After completion of dropping, the reaction was carried out for 5 hours while maintaining the internal temperature of 45 to 50 ° C.

別に、200mlビーカーに撹拌機を装着し、メタノール20mlを入れ撹拌した。これに反応液を注いだ後、水20mlを更に注いで、約30分撹拌しろ過を行った。メタノール/水=1/1約40mlにて洗浄し、50〜60℃にて一晩乾燥しし、粗結晶を得た。   Separately, a 200 ml beaker was equipped with a stirrer, and 20 ml of methanol was added and stirred. After pouring a reaction liquid into this, 20 ml of water was further poured, and it stirred for about 30 minutes and filtered. Methanol / water = 1/1 Washed with about 40 ml and dried overnight at 50-60 ° C. to obtain crude crystals.

この粗結晶をトルエン30mlに溶解し、ワコーゲルB−0(和光純薬)3gを加えて、約30分撹拌しろ過した。トルエン30mlにてワコーゲルB−0を洗浄し、ロ液及び洗液を濃縮乾固した。これに酢酸エチル10mlを加え溶解し、メタノール60mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造11B(m=0)の化合物を3.35g得た。   The crude crystals were dissolved in 30 ml of toluene, 3 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved in 10 ml of ethyl acetate, dropped into 60 ml of methanol, purified by reprecipitation, filtered and dried to obtain 3.35 g of a compound having the exemplified chemical structure 11B (m = 0).

前記と同様の高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0〜4の混合物であり、組成比(高速液体クロマトグラフィーの面積比)はn=0/1/2/3/4=32.5/45.0/16.5/6.2/1.6であった。   As a result of the same high performance liquid chromatography and mass spectrometry as described above, the obtained compound was a mixture of n = 0 to 4, and the composition ratio (area ratio of high performance liquid chromatography) was n = 0/1/2/3. /4=32.5/45.0/16.5/6.2/1.6.

一般式Cの混合化合物は下記の化学構造を有する。   The mixed compound of general formula C has the following chemical structure.

Figure 0004069843
Figure 0004069843

前記一般式C中、Ar1は1価の置換、無置換の芳香族基、Ar2は2価の置換、無置換の芳香族基、2価の複素環基、又は前記一般式(8)を示し、Rは1価の置換、無置換の芳香族基を示す。但し、複数のAr1、Ar2、Rは互いに異なっていてもよい。 In the general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, Ar 2 is a divalent substituted, unsubstituted aromatic group, divalent heterocyclic group, or the general formula (8) R represents a monovalent substituted or unsubstituted aromatic group. However, the plurality of Ar 1 , Ar 2 , and R may be different from each other.

一般式(8)中、Yは酸素原子である。但しR1、R2は水素原子である。 In the general formula (8), Y is oxygen atom. However R 1, R 2 is hydrogen atom.

一般式C中、Ar1は1価の置換、無置換の芳香族基であるが、好ましくは無置換のフェニル基、炭素数1〜4のアルキル基又はアルコキシ基で置換されたフェニル基が挙げられる。 In general formula C, Ar 1 is a monovalent substituted or unsubstituted aromatic group, preferably a phenyl group substituted with an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. It is done.

又、Ar2の2価の置換、無置換の芳香族基としては、フェニレン基、ナフチレン基、ビフェニレン基等が好ましく、置換基としては、アルキル基が好ましい。Ar2の2価の複素環基としては、2価のフラン基、2価のチオフェン基等が好ましい。 Further, the divalent substituted or unsubstituted aromatic group of Ar 2 is preferably a phenylene group, a naphthylene group, a biphenylene group or the like, and the substituent is preferably an alkyl group. As the divalent heterocyclic group for Ar 2, a divalent furan group, a divalent thiophene group, and the like are preferable.

一般式Cの具体例   Specific examples of general formula C

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

以下に、本発明の前記混合化合物(一般式C)の合成例を記載する。   Below, the synthesis example of the said mixed compound (general formula C) of this invention is described.

合成例(6);化合物(例示化学構造17C)の合成
100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、2,4−ジメチルアニリン:4.08g(0.04mol)、ヨードベンゼン:4.08g(0.02mol)、m−ジヨードベンゼン:9.9g(0.03mol)、銅粉1.27g(0.02mol)、炭酸カリウム11.04g(0.08mol)を入れ、窒素を導入しながら190℃にて30時間反応させた。
反応液を約60℃まで冷却した後THF200mlを加えて撹拌し、濾過した。濾液を濃縮してトルエン100mlに溶解し、ワコーゲルB−0(和光純薬)10gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、濾液及び洗液を濃縮乾固した。これにTHF20mlを加え溶解し、メタノール120mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造17Cの化合物を5.15g得た。
Synthesis Example (6): Synthesis of Compound (Exemplary Chemical Structure 17C) A 100 ml four-headed flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 2,4-dimethylaniline: 4.08 g (0. 04 mol), iodobenzene: 4.08 g (0.02 mol), m-diiodobenzene: 9.9 g (0.03 mol), copper powder 1.27 g (0.02 mol), potassium carbonate 11.04 g (0.08 mol) ) And allowed to react at 190 ° C. for 30 hours while introducing nitrogen.
The reaction solution was cooled to about 60 ° C., 200 ml of THF was added, and the mixture was stirred and filtered. The filtrate was concentrated and dissolved in 100 ml of toluene, 10 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved by adding 20 ml of THF, dropped into 120 ml of methanol, purified by reprecipitation, filtered and dried to obtain 5.15 g of a compound having an exemplary chemical structure 17C.

高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0/1/2/3/4/5/6/7=2.7/9.0/24.3/34.2/20.1/7.8/1.7/0.2であった。また、ゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)Mwは910であった。   As a result of high performance liquid chromatography and mass spectrometry, the obtained compound was n = 0/1/2/3/4/5/6/7 = 2.7 / 9.0 / 24.3 / 34.2 / 20. 1 / 7.8 / 1.7 / 0.2. Moreover, the weight average molecular weight (polystyrene conversion) Mw calculated | required from the gel permeation chromatography (GPC) was 910.

合成例(7);化合物(例示化学構造53C)の合成
100mlの4頭フラスコに窒素導入管、冷却管、温度計、撹拌機を装着し、3,4−ジメチルアニリン:6.05g(0.05mol)、ヨードビフェニル:5.60g(0.02mol)、ビス(4−ブロモフェニル)エーテル:13.11g(0.04mol)、銅粉1.59g(0.025mol)、炭酸カリウム13.8g(0.1mol)を入れ、窒素を導入しながら190℃にて30時間反応させた。反応液を約60℃まで冷却した後THF200mlを加えて撹拌し、濾過した。濾液を濃縮してトルエン100mlに溶解し、ワコーゲルB−0(和光純薬)10gを加えて、約30分撹拌しろ過を行った。トルエン30mlにてワコーゲルB−0を洗浄し、濾液及び洗液を濃縮乾固した。これにTHF20mlを加え溶解し、メタノール120mlに滴下して再沈精製を行い、濾別乾燥して例示化学構造53Cの化合物を10.56g得た。
Synthesis Example (7); Synthesis of Compound (Exemplary Chemical Structure 53 C) A 100 ml four-head flask was equipped with a nitrogen inlet tube, a condenser tube, a thermometer, and a stirrer, and 3,4-dimethylaniline: 6.05 g (0 0.05 mol), iodobiphenyl: 5.60 g (0.02 mol), bis (4-bromophenyl) ether: 13.11 g (0.04 mol), copper powder 1.59 g (0.025 mol), potassium carbonate 13.8 g (0.1 mol) was added and reacted at 190 ° C. for 30 hours while introducing nitrogen. The reaction solution was cooled to about 60 ° C., 200 ml of THF was added, and the mixture was stirred and filtered. The filtrate was concentrated and dissolved in 100 ml of toluene, 10 g of Wakogel B-0 (Wako Pure Chemical Industries) was added, and the mixture was stirred for about 30 minutes and filtered. Wakogel B-0 was washed with 30 ml of toluene, and the filtrate and washings were concentrated to dryness. This was dissolved in 20 ml of THF, added dropwise to 120 ml of methanol, purified by reprecipitation, filtered and dried to obtain 10.56 g of a compound having an exemplary chemical structure 53 C.

高速液体クロマトグラフィー及び質量分析の結果、得られた化合物はn=0/1/2/3/4/5/6/7/8=0.9/3.4/12.0/22.8/31.3/19.9/6.9/2.5/0.3であった。また、ゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)Mwは1684であった。   As a result of high performance liquid chromatography and mass spectrometry, the obtained compound was n = 0/1/2/3/4/5/6/7/8 = 0.9 / 3.4 / 12.0 / 22.8. /31.3/19.9/6.9/2.5/0.3. Moreover, the weight average molecular weight (polystyrene conversion) Mw calculated | required from the gel permeation chromatography (GPC) was 1684.

本発明の前記一般式(1)の構造において、nを基準とした分布を持つ化合物を有し、該化合物の最大成分の化合物の組成比をx、2位の成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有するが、該x+yは、30%〜99%が好ましく、45%〜90%がより好ましい。x+yが30%未満では、nの分布が広がりすぎ、分子量が大きくなりやすく、溶媒やバインダー樹脂との溶解性、相溶性が劣化しやすい。一方、99%より大きい場合も、低分子量の比率が低下した場合は同様に溶媒やバインダー樹脂との溶解性、相溶性が劣化しやすい。   In the structure of the general formula (1) of the present invention, it has a compound having a distribution based on n, the composition ratio of the compound of the maximum component of the compound is x, and the composition ratio of the compound of the 2-position component is y Then, although x + y contains a mixed compound of 99% or less, the x + y is preferably 30% to 99%, and more preferably 45% to 90%. When x + y is less than 30%, the distribution of n is too wide, the molecular weight tends to increase, and the solubility and compatibility with the solvent and binder resin tend to deteriorate. On the other hand, when the ratio is larger than 99%, the solubility and compatibility with the solvent and the binder resin are likely to be similarly deteriorated when the low molecular weight ratio is decreased.

又、前記一般式において、nは0〜10であるが、nが11以上の成分を含有していてもよい。即ち、nが0〜10の間に、最大成分と2位の成分が存在し、x+yが99%以下であればよい。   Moreover, in the said general formula, although n is 0-10, n may contain the component 11 or more. That is, the maximum component and the second-position component exist between n = 0 and 10, and x + y may be 99% or less.

本発明の前記混合化合物の分子量は平均分子量が650〜2500が好ましく、800〜2300がより好ましい。該平均分子量はポリスチレン換算の重量平均分子量で表し、平均分子量が2500を超えると溶媒溶解性が低下し、電荷輸送層のバインダー樹脂との相溶性が劣化し、その結果電荷輸送物質の分散性が低下し、感度や均一帯電性等の電子写真特性が著しく低下する。一方、650未満でも、無機粒子を含有する表面層と組み合わせると、感度低下が発生しやすく、特に高速応答性が低下しやすい。   The average molecular weight of the mixed compound of the present invention is preferably 650 to 2500, and more preferably 800 to 2300. The average molecular weight is expressed in terms of polystyrene equivalent weight average molecular weight. When the average molecular weight exceeds 2500, the solvent solubility decreases, and the compatibility of the charge transport layer with the binder resin deteriorates. As a result, the dispersibility of the charge transport material is reduced. The electrophotographic characteristics such as sensitivity and uniform chargeability are significantly reduced. On the other hand, even if it is less than 650, when combined with a surface layer containing inorganic particles, sensitivity is likely to decrease, and particularly high-speed response tends to decrease.

本発明の電子写真感光体は、表面層が無機粒子を含有することを特徴とする。該表面層としては、その片方が感光体の自由表面を形成する層であれば、電荷輸送層でもよいが、感光層の電荷発生層や電荷輸送層上に無機粒子を含有する保護層を表面層として設けることがより好ましい。   The electrophotographic photoreceptor of the present invention is characterized in that the surface layer contains inorganic particles. The surface layer may be a charge transport layer as long as one of the layers forms the free surface of the photoreceptor, but the charge generation layer of the photosensitive layer or a protective layer containing inorganic particles on the surface of the charge transport layer. More preferably, it is provided as a layer.

又、本発明の有機感光体が導電性支持体上に少なくとも、電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層及び保護層を有し、該保護層が無機粒子を含有することが好ましい。   Further, the organic photoreceptor of the present invention has at least a charge generation layer having a charge generation material, a charge transport layer having a charge transport layer and a protective layer on a conductive support, and the protective layer contains inorganic particles. It is preferable.

このような保護層を有し、且つ前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として含有する電子写真感光体は、高速複写や低温低湿環境下で発生しやすい、感度の低下に原因する文字細り等の鮮鋭性低下を防止でき、前記したブラックスポットや、転写ヌケ等の周期性の画像欠陥の発生もなく、クラック等の破断傷等の発生も起こさず、高濃度、高解像力の鮮明な電子写真画像を作製することができる。   The composition ratio of the maximum component compound of the mixed compound having such a protective layer, having the chemical structure of the general formula (1), and having a distribution based on n is x. When the composition ratio is y, an electrophotographic photosensitive member containing a mixed compound with x + y of 99% or less as a charge transport material is likely to occur in high-speed copying and low-temperature and low-humidity environments. Sharpness degradation can be prevented, periodic image defects such as black spots and transfer defects are not generated, and cracks and other fractures are not generated, and high-density, high-resolution clear electrophotographic images Can be produced.

本発明に用いられる無機粒子は数平均一次粒径dnが5nm〜200nmであることが好ましい。数平均一次粒径dnが5nm〜200nmの無機粒子としては、シリカ、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ、酸化ジルコニウム等の微粒子を好ましく用いることができる。これらの中でもコスト、粒径の調整や表面処理の容易さ等からシリカ、特に表面を疎水化した疎水性シリカが好ましい。   The inorganic particles used in the present invention preferably have a number average primary particle size dn of 5 nm to 200 nm. Inorganic particles having a number average primary particle size dn of 5 nm to 200 nm include silica, zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony and tantalum-doped oxide. Fine particles such as tin and zirconium oxide can be preferably used. Among these, silica, particularly hydrophobic silica whose surface is hydrophobized is preferable from the viewpoints of cost, particle size adjustment and ease of surface treatment.

本発明の表面層に含有される無機粒子は、下記式(a)を満足することが好ましい。   The inorganic particles contained in the surface layer of the present invention preferably satisfy the following formula (a).

式(a) 0.5<数平均一次粒径dn/90%スパン値Δd<0.7
このようなスパン値を有する無機粒子を用いることにより、表面層の表面性を均一に整えることができ、本発明の効果を増大させることができる。
Formula (a) 0.5 <number average primary particle size dn / 90% span value Δd <0.7
By using inorganic particles having such a span value, the surface properties of the surface layer can be uniformly adjusted, and the effects of the present invention can be increased.

本発明の無機粒子の数平均一次粒径は、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに500個の粒子を一次粒子として観察し、画像解析によりフェレ径の粒度分布を作製し、数平均一次粒径dn、及び90%スパン値Δdを算出する。ここで、図2を用いて、90%スパン値Δdを説明する。90%スパン値Δdとは、図2に示すように、縦軸:粒子数、横軸:粒径(nm)の無機粒子の粒度分布曲線Sで、粒子数の最頻階級から順次積算して、90%の粒子を含有する領域Dの両端粒径の差(B−A)を示す。   The number average primary particle size of the inorganic particles of the present invention is increased 10,000 times by observation with a transmission electron microscope, 500 particles are randomly observed as primary particles, and a particle size distribution of ferret diameter is created by image analysis. The number average primary particle size dn and the 90% span value Δd are calculated. Here, the 90% span value Δd will be described with reference to FIG. As shown in FIG. 2, the 90% span value Δd is a particle size distribution curve S of inorganic particles whose vertical axis is the number of particles and horizontal axis is the particle size (nm). The difference (B−A) in the particle diameters at both ends of the region D containing 90% of the particles is shown.

上記疎水性シリカの疎水化度は、メタノールに対する濡れ性の尺度(メタノールウェッタビリティ)で示される疎水化度で50%以上のものが好ましい。疎水化度が50%未満であると前記吸熱エネルギー変化量ΔHが、10J/gより大きくなりやすく、その結果、環境メモリを発生しやすい。より好ましい疎水化度は65%以上、最も好ましい疎水化度は70%以上である。   The hydrophobicity of the hydrophobic silica is preferably 50% or more in terms of the degree of hydrophobicity indicated by a measure of wettability to methanol (methanol wettability). When the degree of hydrophobicity is less than 50%, the endothermic energy change amount ΔH tends to be larger than 10 J / g, and as a result, environmental memory is likely to be generated. A more preferred degree of hydrophobicity is 65% or more, and a most preferred degree of hydrophobicity is 70% or more.

疎水化度を表すメタノールウェッタビリティとは、メタノールに対するシリカ微粉末の濡れ性を評価するものである。濡れ性の測定は以下の方法で行う。内容量250mlのビーカーに入れた蒸留水50mlに、測定対象のシリカ微粉末を0.2g添加して撹拌する。次にメタノールを先端が液体中に浸漬されているビュレットからゆっくり撹拌した状態でシリカ微粉末の全体が濡れるまでゆっくり滴下する。このシリカ微粉末を完全に濡らすために必要なメタノールの量をa(ml)とした時、下記により疎水化度を算出する。   Methanol wettability representing the degree of hydrophobicity is an evaluation of wettability of silica fine powder to methanol. The wettability is measured by the following method. 0.2 g of silica fine powder to be measured is added to 50 ml of distilled water in a beaker having an inner volume of 250 ml and stirred. Next, methanol is slowly added dropwise from a burette whose tip is immersed in the liquid until the entire silica fine powder is wetted while being slowly stirred. When the amount of methanol necessary to completely wet the silica fine powder is a (ml), the degree of hydrophobicity is calculated as follows.

疎水化度=(a/(a+50))×100
上記疎水性シリカは、公知の湿式法もしくは乾式法で生成されたシリカ粉末をを疎水化することにより得られる。特に乾式法(ケイ素化ハロゲン化合物の蒸気相酸化)により生成されたいわゆるヒュームドシリカと称されるものを疎水化剤で処理したものが、水分吸着サイトが少なく好ましい。これは従来公知の技術によって製造されるものである。例えば四塩化ケイ素ガスの酸水素焔中における熱分解酸化反応を利用するもので、基礎となる反応式は次のようなものである。
Hydrophobicity = (a / (a + 50)) × 100
The hydrophobic silica can be obtained by hydrophobizing silica powder produced by a known wet method or dry method. In particular, a so-called fumed silica produced by a dry method (vapor phase oxidation of a silicon halide compound) and treated with a hydrophobizing agent is preferable because it has few moisture adsorption sites. This is manufactured by a conventionally known technique. For example, a thermal decomposition oxidation reaction of silicon tetrachloride gas in an oxyhydrogen flame is used, and the basic reaction formula is as follows.

SiCl4+2H2+O2→SiO2+4HCl
又、この製造工程において例えば、塩化アルミニウム又は、塩化チタンなど他の金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによってシリカと他の金属酸化物の複合微粉体を得ることも可能である。
SiCl 4 + 2H 2 + O 2 → SiO 2 + 4HCl
In this production process, for example, it is also possible to obtain a composite fine powder of silica and another metal oxide by using another metal halogen compound such as aluminum chloride or titanium chloride together with a silicon halogen compound.

シリカ粉末の疎水化処理は、シリカ微粉末を撹拌等によりクラウド状に分散させたものに、アルコール等で溶解した疎水化処理剤溶液を噴霧するか或いは気化した疎水化処理剤を接触させて付着させる乾式処理、又は、シリカ粉末を溶液中に分散させ、その中に疎水化処理剤を滴下して付着させる湿式処理等の従来公知の方法で行うことが出来る。   Hydrophobic treatment of silica powder is carried out by spraying a hydrophobizing agent solution dissolved in alcohol, etc., or contacting a vaporized hydrophobizing agent to a cloud of silica fine powder dispersed by stirring or the like. It can be performed by a conventionally known method such as a dry treatment to be performed or a wet treatment in which silica powder is dispersed in a solution and a hydrophobizing agent is dropped and adhered therein.

疎水化処理剤としては、公知の化合物を用いることが出来、具体例を下記に挙げる。又、これらの化合物は組み合わせて使用しても良い。   As the hydrophobizing agent, known compounds can be used, and specific examples are given below. These compounds may be used in combination.

チタンカップリング剤としてはテトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート及びビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等が挙げられる。   Examples of the titanium coupling agent include tetrabutyl titanate, tetraoctyl titanate, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctylpyrophosphate) oxyacetate titanate.

シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−ビニルベンジルアミノエチル−N−γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン及びp−メチルフェニルトリメトキシシラン等が挙げられる。   Examples of silane coupling agents include γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β-vinylbenzylamino. Ethyl-N-γ-aminopropyltrimethoxysilane hydrochloride, hexamethyldisilazane, methyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyl Examples include trimethoxysilane, phenyltrimethoxysilane, o-methylphenyltrimethoxysilane, and p-methylphenyltrimethoxysilane.

シリコーンオイルとしてはジメチルシリコーンオイル、メチルフェニルシリコーンオイル及びアミノ変性シリコーンオイル等が挙げられる。   Examples of the silicone oil include dimethyl silicone oil, methylphenyl silicone oil, and amino-modified silicone oil.

これらの疎水化処理剤は、シリカ粉末に対して1〜40質量%添加して被覆することが好ましく、3〜30質量%がより好ましい。   These hydrophobizing agents are preferably added in an amount of 1 to 40% by mass with respect to the silica powder, and more preferably 3 to 30% by mass.

又、上記表面疎水化剤としてハイドロジェンポリシロキサン化合物を用いてもよい。該ハイドロジェンポリシロキサン化合物の分子量は1000〜20000のものが一般に入手しやすく、又、黒ポチ発生防止機能も良好である。特にメチルハイドロジェンポリシロキサンを最後の表面処理に用いると良好な効果が得られる。   A hydrogen polysiloxane compound may be used as the surface hydrophobizing agent. The hydrogen polysiloxane compound having a molecular weight of 1000 to 20000 is generally easily available, and has a good function to prevent the occurrence of black spots. In particular, when methylhydrogenpolysiloxane is used for the final surface treatment, a good effect can be obtained.

本発明では上記疎水化処理された疎水性シリカを有機感光体の表面層にバインダーと共に含有させるが表面層の疎水性シリカの割合はバインダーに対して1〜20質量%、好ましくは2〜15質量%、最も好ましくは2〜10質量%で使用されるのがよい。20質量%を超えると、環境メモリが発生したり、トナーの転写性を低下させ、クリーニング不良も起こしやすい。一方、1質量%未満だと感光体の耐摩耗性の低下を起こしやすい。   In the present invention, the hydrophobic silica subjected to the hydrophobic treatment is included in the surface layer of the organophotoreceptor together with the binder, but the proportion of the hydrophobic silica in the surface layer is 1 to 20% by mass, preferably 2 to 15% by mass with respect to the binder. %, Most preferably 2 to 10% by weight. If it exceeds 20% by mass, environmental memory is generated, toner transferability is deteriorated, and cleaning failure is liable to occur. On the other hand, if it is less than 1% by mass, the wear resistance of the photoreceptor tends to be lowered.

本発明は表面層の無機微粒子を疎水化すると同時に、これら無機微粒子を分散するバインダー樹脂の吸水率を小さくすることが好ましい。即ち、表面層に用いられるバインダー樹脂を吸水率を0.5%以下、好ましくは0.3%以下の実質的に吸湿性を持たないバインダー樹脂から選択することが好ましい。このようなバインダー樹脂としてはポリカーボネート、ポリエステル、ポリアリレート等の樹脂が好ましく、特に良好な電子写真特性を有するポリカーボネートが好ましい。   In the present invention, the inorganic fine particles in the surface layer are preferably hydrophobized, and at the same time, the water absorption of the binder resin in which these inorganic fine particles are dispersed is preferably reduced. That is, the binder resin used for the surface layer is preferably selected from binder resins having a water absorption of 0.5% or less, preferably 0.3% or less, and having substantially no hygroscopicity. As such a binder resin, resins such as polycarbonate, polyester and polyarylate are preferable, and polycarbonate having particularly good electrophotographic properties is preferable.

また本発明の表面層には、ヒンダードフェノール、ヒンダードアミン、チオエーテル又はホスファイト部分構造を持つ酸化防止剤を添加することができ、環境変動時の電位安定性・画質の向上に効果的である。   Further, an antioxidant having a hindered phenol, hindered amine, thioether or phosphite partial structure can be added to the surface layer of the present invention, which is effective in improving the potential stability and image quality when the environment changes.

ヒンダードフェノール構造を持つ酸化防止剤としては、例えば特開平1−118137号(P7〜P14)記載の化合物が挙げられるが本発明はこれに限定されるものではない。   Examples of the antioxidant having a hindered phenol structure include compounds described in JP-A-1-118137 (P7 to P14), but the present invention is not limited thereto.

ヒンダードアミン構造を持つ酸化防止剤としては、例えば特開平1−118138号(P7〜P9)記載の化合物も挙げられるが本発明はこれに限定されるものではない。   Examples of the antioxidant having a hindered amine structure include compounds described in JP-A-1-118138 (P7 to P9), but the present invention is not limited thereto.

以下に代表的な酸化防止剤の化合物例を挙げる。   The following are examples of typical antioxidant compounds.

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

Figure 0004069843
Figure 0004069843

又、製品化されている酸化防止剤としては以下のような化合物、例えば「イルガノックス1076」、「イルガノックス1010」、「イルガノックス1098」、「イルガノックス245」、「イルガノックス1330」、「イルガノックス3114」、「イルガノックス1076」、「3,5−ジ−t−ブチル−4−ヒドロキシビフェニル」以上ヒンダードフェノール系、「サノールLS2626」、「サノールLS765」、「サノールLS2626」、「サノールLS770」、「サノールLS744」、「チヌビン144」、「チヌビン622LD」、「マークLA57」、「マークLA67」、「マークLA62」、「マークLA68」、「マークLA63」以上ヒンダードアミン系、「スミライザーTPS」、「スミライザーTP−D」以上チオエーテル系、「マーク2112」、「マークPEP−8」、「マークPEP−24G」、「マークPEP−36」、「マーク329K」、「マークHP−10」以上ホスファイト系が挙げられる。これらの中で特にヒンダードフェノール、ヒンダードアミン系酸化防止剤が好ましい。酸化防止剤の添加量としては表面層固形分の総質量100部に対し、0.1〜10質量部を用いることが好ましい。   Examples of the antioxidants that have been commercialized include the following compounds such as “Irganox 1076”, “Irganox 1010”, “Irganox 1098”, “Irganox 245”, “Irganox 1330”, “ "Irganox 3114", "Irganox 1076", "3,5-di-t-butyl-4-hydroxybiphenyl" or more hindered phenols, "Sanol LS2626", "Sanol LS765", "Sanol LS2626", "Sanol LS770 "," Sanol LS744 "," Tinuvin 144 "," Tinuvin 622LD "," Mark LA57 "," Mark LA67 "," Mark LA62 "," Mark LA68 "," Mark LA63 "or more hindered amine system," Smilizer TPS " , ”Smilizer P-D or higher thioether type, “Mark 2112”, “Mark PEP-8”, “Mark PEP-24G”, “Mark PEP-36”, “Mark 329K”, “Mark HP-10” or higher phosphite type Can be mentioned. Of these, hindered phenols and hindered amine antioxidants are particularly preferred. As the addition amount of the antioxidant, it is preferable to use 0.1 to 10 parts by mass with respect to 100 parts by mass of the total mass of the surface layer solids.

以上、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有した電荷輸送層、及び無機粒子を含有する表面層について説明したが、これら以外の電子写真感光体の層構成特に有機感光体の層構成について下記に記載する。   As described above, if the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y, x + y The surface layer containing the charge transport layer containing 99% or less of the mixed compound and the inorganic particles has been described. The layer structure of the electrophotographic photoreceptor other than these, particularly the layer structure of the organic photoreceptor, will be described below.

本発明で、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。   In the present invention, the organic photoconductor means an electrophotographic photoconductor formed by providing an organic compound with at least one of a charge generation function and a charge transport function essential to the configuration of the electrophotographic photoconductor. All known organic electrophotographic photoreceptors such as a photoreceptor composed of the above organic charge generating substance or organic charge transporting substance, a photoreceptor composed of a polymer complex with a charge generating function and a charge transporting function are contained.

以下に本発明に好ましく用いられる有機感光体の構成について記載する。   The constitution of the organic photoreceptor preferably used in the present invention is described below.

導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
Conductive Support The conductive support used for the photoreceptor may be either a sheet or a cylinder, but a cylindrical conductive support is preferred for designing an image forming apparatus compactly. .

円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。   Cylindrical conductive support means a cylindrical support necessary for forming an endless image by rotating. Conductivity is within a range of 0.1 mm or less in straightness and 0.1 mm or less in deflection. A support is preferred. Exceeding the range of straightness and shake makes it difficult to form a good image.

導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。 As the conductive material, a metal drum such as aluminum or nickel, a plastic drum deposited with aluminum, tin oxide, indium oxide or the like, or a paper / plastic drum coated with a conductive substance can be used. The conductive support preferably has a specific resistance of 10 3 Ωcm or less at room temperature.

本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。   As the conductive support used in the present invention, one having an alumite film that has been sealed on the surface thereof may be used. The alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the most preferable result. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is preferably 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is preferably about 20 V. It is not limited. The average film thickness of the anodized film is usually 20 μm or less, particularly preferably 10 μm or less.

中間層
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた中間層を設けることもできる。
Intermediate layer In the present invention, an intermediate layer having a barrier function may be provided between the conductive support and the photosensitive layer.

本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。   In the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer, or to prevent charge injection from the support, an intermediate layer (including an undercoat layer) is provided between the support and the photosensitive layer. Including) can also be provided. Examples of the material for the intermediate layer include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of these resin repeating units. Of these subbing resins, a polyamide resin is preferable as a resin capable of reducing the increase in residual potential due to repeated use. The film thickness of the intermediate layer using these resins is preferably 0.01 to 0.5 μm.

又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。   Examples of the intermediate layer preferably used in the present invention include an intermediate layer using a curable metal resin obtained by thermosetting an organic metal compound such as a silane coupling agent or a titanium coupling agent. As for the film thickness of the intermediate | middle layer using curable metal resin, 0.1-2 micrometers is preferable.

又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。   An intermediate layer preferably used in the present invention includes an intermediate layer in which inorganic particles are dispersed in a binder resin. The average particle diameter of the inorganic particles is preferably 0.01 to 1 μm. In particular, an intermediate layer in which N-type semiconductive fine particles subjected to surface treatment are dispersed in a binder is preferable. For example, an intermediate layer in which titanium oxide having an average particle size of 0.01 to 1 μm, which has been surface-treated with silica / alumina treatment and a silane compound, is dispersed in a polyamide resin. The film thickness of such an intermediate layer is preferably 1 to 20 μm.

N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。   The N-type semiconducting fine particles are fine particles having the property of using conductive carriers as electrons. That is, the property that the conductive carrier is an electron is that the N-type semiconducting fine particles are contained in an insulating binder to effectively block hole injection from the substrate, and to convert electrons from the photosensitive layer into electrons. On the other hand, it has the property which does not show blocking property.

ここで、N型半導性粒子の判別方法について説明する。   Here, a method for discriminating N-type semiconductor particles will be described.

導電性支持体上に膜厚5μmの中間層(中間層を構成するバインダー樹脂中に粒子を50質量%分散させた分散液を用いて中間層を形成する)を形成する。該中間層に負極性に帯電させて、光減衰特性を評価する。又、正極性に帯電させて同様に光減衰特性を評価する。   An intermediate layer having a thickness of 5 μm is formed on the conductive support (the intermediate layer is formed using a dispersion in which 50% by mass of particles are dispersed in the binder resin constituting the intermediate layer). The intermediate layer is negatively charged and the light attenuation characteristics are evaluated. In addition, the light attenuation characteristics are similarly evaluated by charging to positive polarity.

N型半導性粒子とは、上記評価で、負極性に帯電させた時の光減衰が正極性に帯電させた時の光減衰よりも大きい場合に、中間層に分散された粒子をN型半導性粒子という。   N-type semiconductive particles are particles that are dispersed in the intermediate layer in the above evaluation when the light attenuation when charged negatively is greater than the light attenuation when charged positively. It is called semiconductive particle.

前記N型半導性微粒子は、具体的には酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。 Specific examples of the N-type semiconducting fine particles include fine particles of titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), etc. In the present invention, titanium oxide is particularly preferably used. It is done.

本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。   The average particle diameter of the N-type semiconducting fine particles used in the present invention is preferably in the range of 10 nm to 500 nm in the number average primary particle diameter, more preferably 10 nm to 200 nm, and particularly preferably 15 nm to 50 nm. .

数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。   The intermediate layer using N-type semiconducting fine particles whose number average primary particle size is within the above range can be finely dispersed in the layer, has sufficient potential stability, and generates black spots. Has a prevention function.

前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。   For example, in the case of titanium oxide, the number-average primary particle size of the N-type semiconducting fine particles is magnified 10,000 times by observation with a transmission electron microscope, and 100 particles are randomly observed as primary particles. It is measured as the number average diameter.

本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。   The shape of the N-type semiconducting fine particles used in the present invention includes dendritic, needle-like, and granular shapes. For example, in the case of titanium oxide particles, the N-type semiconductive fine particles have a crystalline form. There are anatase type, rutile type and amorphous type, but any crystal type may be used, or two or more crystal types may be mixed and used. Of these, the rutile type is the best.

N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。   One of the hydrophobizing surface treatments performed on the N-type semiconducting fine particles is a plurality of surface treatments, and the last surface treatment is a surface treatment with a reactive organosilicon compound. Is to do. In addition, at least one of the surface treatments is at least one surface treatment selected from alumina, silica, and zirconia, and finally the surface treatment of the reactive organosilicon compound is performed. It is preferable.

尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。   Alumina treatment, silica treatment, and zirconia treatment are treatments for depositing alumina, silica, or zirconia on the surface of the N-type semiconducting fine particles. Alumina, silica, and zirconia deposited on these surfaces include alumina, silica, Zirconia hydrates are also included. The surface treatment of the reactive organosilicon compound means using a reactive organosilicon compound in the treatment liquid.

この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。   In this way, the surface treatment of the N-type semiconductive fine particles such as titanium oxide particles was performed at least twice, so that the surface of the N-type semiconductive fine particles was uniformly coated (treated), and the surface treatment was performed. When N-type semiconducting fine particles are used in the intermediate layer, a good photoconductor having good dispersibility of N-type semiconductive fine particles such as titanium oxide particles in the intermediate layer and causing no image defects such as black spots. You can get it.

感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
Photosensitive layer The photosensitive layer configuration of the photoreceptor of the present invention may be a single-layer photosensitive layer configuration in which a charge generation function and a charge transport function are provided on one layer on the intermediate layer, but more preferably the function of the photosensitive layer. The charge generation layer (CGL) and the charge transport layer (CTL) may be separated from each other. By adopting a configuration in which the functions are separated, an increase in the residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negatively charged photoconductor, it is preferable that a charge generation layer (CGL) is formed on the intermediate layer and a charge transport layer (CTL) is formed thereon. In the positively charged photoconductor, the order of the layer configuration is the reverse of that in the negatively charged photoconductor. The most preferred photosensitive layer structure of the present invention is a negatively charged photoreceptor structure having the function separation structure.

以下に機能分離負帯電感光体の感光層構成について説明する。   The structure of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below.

電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
Charge generation layer The charge generation layer contains a charge generation material (CGM). Other substances may contain a binder resin and other additives as necessary.

電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。   A known charge generation material (CGM) can be used as the charge generation material (CGM). For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azulenium pigment, or the like can be used. Among these, CGM which can minimize the increase in residual potential due to repeated use has a crystal structure capable of taking a stable aggregate structure among a plurality of molecules, specifically, a phthalocyanine pigment having a specific crystal structure, CGM of a perylene pigment is mentioned. For example, CGMs such as titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to Cu—Kα rays and benzimidazole perylene having a maximum peak at 2θ of 12.4 have little deterioration due to repeated use. Potential increase can be reduced.

電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。   When a binder is used as the CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferred resins include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, phenoxy resin, and the like. Can be mentioned. The ratio of the binder resin to the charge generating material is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential associated with repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.

電荷輸送層
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
Charge Transport Layer The charge transport layer contains a charge transport material (CTM) and a binder resin that forms a film by dispersing CTM. Other substances may contain additives such as antioxidants as necessary.

電荷輸送物質(CTM)としては、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を用いる。又、該混合化合物と共に、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。   As the charge transport material (CTM), the composition ratio of the compound of the largest component of the mixed compound having the chemical structure of the general formula (1) and having the distribution based on n is x, and the composition of the compound of the 2-position component When the ratio is y, a mixed compound having x + y of 99% or less is used. Further, together with the mixed compound, for example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound and the like can be used in combination. These charge transport materials are usually dissolved in a suitable binder resin to form a layer.

電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。   Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resin, silicone resin, melamine resin, and copolymer resin containing two or more of repeating unit structures of these resins. In addition to these insulating resins, high molecular organic semiconductors such as poly-N-vinylcarbazole can be used.

これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10〜200質量部が好ましい。   Most preferred as a binder for these CTLs is a polycarbonate resin. The polycarbonate resin is most preferable in improving the dispersibility and electrophotographic characteristics of CTM. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin.

又、電荷輸送層には前記した酸化防止剤を含有させることが好ましい。該酸化防止剤とは、その代表的なものは電子写真感光体中ないしは電子写真感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。   The charge transport layer preferably contains the above-described antioxidant. Typical examples of the antioxidants prevent the action of oxygen on auto-oxidizing substances existing in the electrophotographic photosensitive member or on the surface of the electrophotographic photosensitive member under conditions of light, heat, and discharge. It is also a substance having a suppressing property.

電荷輸送層は2層以上の層構成にして、表面の電荷輸送層に本発明の表面層の構成を持たせてもよい。又、電荷輸送層の膜厚は10〜40μmが好ましい。   The charge transport layer may be composed of two or more layers, and the charge transport layer on the surface may have the structure of the surface layer of the present invention. The thickness of the charge transport layer is preferably 10 to 40 μm.

保護層
前記した如く、無機粒子を含有する保護層を表面層とした電子写真感光体が最も好ましい。
Protective layer As described above, an electrophotographic photosensitive member having a protective layer containing inorganic particles as a surface layer is most preferable.

上記では本発明の最も好ましい感光体の層構成を例示したが、本発明では上記以外の感光体層構成でも良い。   In the above, the most preferable layer structure of the photoreceptor of the present invention is exemplified, but in the present invention, a photoreceptor layer structure other than the above may be used.

感光層、中間層、保護層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。   As a solvent or dispersion medium used for forming a layer such as a photosensitive layer, an intermediate layer, and a protective layer, n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone, methyl ethyl ketone , Methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethane , Tetrahydrofuran, dioxolane, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosolve, etc. And the like. Although this invention is not limited to these, Dichloromethane, 1, 2- dichloroethane, methyl ethyl ketone, etc. are used preferably. These solvents may be used alone or as a mixed solvent of two or more.

又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。   Further, the coating solution for each layer is preferably filtered with a metal filter, a membrane filter or the like in order to remove foreign matters and aggregates in the coating solution before entering the coating step. For example, it is preferable to select a pleat type (HDC), a depth type (profile), a semi-depth type (profile star), etc., manufactured by Nippon Pole Co., Ltd. according to the characteristics of the coating solution and perform filtration.

次に有機電子写真感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。   Next, as a coating processing method for producing the organic electrophotographic photosensitive member, a coating processing method such as dip coating, spray coating, circular amount regulation type coating, etc. is used. In order to prevent the film from being dissolved as much as possible, and in order to achieve uniform coating processing, it is preferable to use a coating processing method such as spray coating or circular amount regulation type (circular slide hopper type is a typical example). It is most preferable to use the circular amount regulation type coating method for the protective layer. The circular amount regulation type coating is described in detail in, for example, Japanese Patent Application Laid-Open No. 58-189061.

次に、本発明の電子写真感光体を用いた画像形成方法及び画像形成装置の説明をする。   Next, an image forming method and an image forming apparatus using the electrophotographic photosensitive member of the present invention will be described.

図1は本発明の画像形成方法の1例としての画像形成装置の断面構成図である。   FIG. 1 is a cross-sectional configuration diagram of an image forming apparatus as an example of the image forming method of the present invention.

図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器(帯電手段)で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電前露光部51による露光を行って感光体周面の除電をしてもよい。   In FIG. 1, reference numeral 50 denotes a photosensitive drum (photosensitive member) which is an image bearing member, which is a photosensitive member coated with an organic photosensitive layer on the drum, and is grounded and rotated clockwise. Reference numeral 52 denotes a scorotron charger (charging means) for uniformly charging the circumferential surface of the photosensitive drum 50 by corona discharge. Prior to the charging by the charger 52, the peripheral surface of the photosensitive member may be discharged by performing exposure by the pre-charging exposure unit 51 using a light emitting diode or the like in order to eliminate the history of the photosensitive member in the previous image formation.

感光体への一様帯電の後、像露光手段としての像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。   After uniform charging of the photoreceptor, image exposure based on the image signal is performed by an image exposure unit 53 as an image exposure unit. The image exposure unit 53 in this figure uses a laser diode (not shown) as an exposure light source. Scanning on the photosensitive drum is performed by the light whose optical path is bent by the reflection mirror 532 through the rotating polygon mirror 531 and the fθ lens, and an electrostatic latent image is formed.

ここで反転現像プロセスとは帯電器52により、感光体表面を一様に帯電し、像露光が行われた領域、即ち感光体の露光部電位(露光部領域)を現像工程(手段)により、顕像化する画像形成方法である。一方未露光部電位は現像スリーブ541に印加される現像バイアス電位により現像されない。   Here, the reversal development process means that the surface of the photoreceptor is uniformly charged by the charger 52, and the exposed area of the photoreceptor, that is, the exposed area potential (exposed area) of the photoreceptor is developed by the developing process (means). This is an image forming method for visualizing. On the other hand, the unexposed portion potential is not developed by the developing bias potential applied to the developing sleeve 541.

その静電潜像は次いで現像手段としての現像器54で現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像器54内部は現像剤攪拌搬送部材544、543、搬送量規制部材542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材542により制御される。該現像剤の搬送量は適用される電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には20〜200mg/cm2の範囲である。 The electrostatic latent image is then developed by a developing device 54 as developing means. A developing device 54 containing a developer composed of toner and carrier is provided on the periphery of the photosensitive drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer. The inside of the developing device 54 is composed of developer agitating / conveying members 544 and 543, a conveying amount regulating member 542, and the like, and the developer is agitated and conveyed and supplied to the developing sleeve. Controlled by member 542. The developer transport amount varies depending on the linear velocity and developer specific gravity of the applied electrophotographic photosensitive member, but is generally in the range of 20 to 200 mg / cm 2 .

現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は感光体ドラム50と現像スリーブ541の間に直流バイアス、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。感光体の電位測定は電位センサー547を図1のように現像位置上部に設けて行う。   The developer is, for example, a carrier composed of the above-mentioned ferrite as a core and coated with an insulating resin around it, and a coloring material such as carbon black, a charge control agent, and a low molecular weight polyolefin mainly composed of the above-mentioned styrene acrylic resin. The toner is composed of a toner in which silica, titanium oxide, or the like is externally added to the particles. The developer is transported to the development area with the layer thickness regulated by a transport amount regulating member, and development is performed. At this time, usually, development is performed by applying a DC bias between the photosensitive drum 50 and the developing sleeve 541 and, if necessary, an AC bias voltage. Further, the developer is developed in contact with or not in contact with the photoreceptor. The potential of the photosensitive member is measured by providing a potential sensor 547 above the development position as shown in FIG.

記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。   The recording paper P is fed to the transfer area by the rotation operation of the paper feed roller 57 when the transfer timing is ready after the image formation.

転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写手段:転写器)58が作動し、給紙された記録紙Pにトナーと反対極性の帯電を与えてトナーを転写する。   In the transfer area, a transfer electrode (transfer means: transfer device) 58 is operated on the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and the charged recording paper P is charged with a polarity opposite to that of the toner. Transfer the toner.

次いで記録紙Pは分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写電極58及び分離電極59は記録紙Pの通過後、一次作動を中止し、次なるトナー像の形成に備える。図1では転写電極58にコロトロンの転写帯電極を用いている。転写電極の設定条件としては、感光体のプロセススピード(周速)等により異なり一概に規定することはできないが、例えば、転写電流としては+100〜+400μA、転写電圧としては+500〜+2000Vを設定値とすることができる。   Next, the recording paper P is neutralized by a separation electrode (separator) 59, separated by the peripheral surface of the photosensitive drum 50 and conveyed to the fixing device 60, and the toner is removed by heating and pressurization of the heat roller 601 and the pressure roller 602. After the welding, the sheet is discharged to the outside of the apparatus via the sheet discharge roller 61. The transfer electrode 58 and the separation electrode 59 stop the primary operation after passing through the recording paper P, and prepare for the next toner image formation. In FIG. 1, a transfer band electrode of corotron is used as the transfer electrode 58. The transfer electrode setting conditions vary depending on the process speed (peripheral speed) of the photosensitive member and cannot be specified. For example, the transfer current is set to +100 to +400 μA, and the transfer voltage is set to +500 to +2000 V. can do.

一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器(クリーニング手段)62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。   On the other hand, after the recording paper P is separated, the photosensitive drum 50 removes and cleans residual toner by pressure contact of the blade 621 of the cleaning device (cleaning means) 62, and again performs charge removal by the pre-charge exposure unit 51 and charging by the charger 52. Then, the next image forming process is started.

尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。   Reference numeral 70 denotes a detachable process cartridge in which a photoconductor, a charger, a transfer device, a separator, and a cleaning device are integrated.

本発明の電子写真感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。   The electrophotographic photosensitive member of the present invention is generally applicable to electrophotographic apparatuses such as an electrophotographic copying machine, a laser printer, an LED printer, and a liquid crystal shutter printer, and further displays, recordings, light printing, plate making and the like using electrophotographic technology. It can be widely applied to apparatuses such as facsimiles.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. However, “part” in the following text indicates “part by mass”.

実施例1
下記のごとくして、一般式Aの混合化合物を含有した感光体を作製した。
感光体1Aの作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタン(シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理の表面処理を施した数平均一次粒径35nmの酸化チタン) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(1)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚19μmの電荷輸送層を形成した。
Example 1
A photoreceptor containing the mixed compound of the general formula A was produced as follows.
Preparation of photoreceptor 1A <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide (titanium oxide having a number average primary particle size of 35 nm subjected to silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 Part Methanol 1600 parts 1-Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum, maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (compound of synthesis example (1)) 150 parts Binder resin: Bisphenol Z-type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Co., Ltd.) 300 parts Antioxidant (Sanol LS2626: Sankyo Co., Ltd.) 1.7 parts Tetrahydrofuran ( Boiling point: 64.5 ° C.) 2200 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 19 μm.

〈保護層A〉
電荷輸送層物質(T−1) 200部
ポリカーボネート「ユーピロンZ300」(三菱瓦斯化学社製) 300部
2,6−ジ−t−ブチル−4−フェニルフェノール 5部
無機粒子(オクチルシラン処理シリカ、疎水化度:72%、数平均一次粒径(dn):9nm、数平均一次粒径/90%スパン値(dn/Δd):0.72) 10部
テトラヒドロフラン(沸点:64.5℃) 2000部
を混合し、よく攪拌し塗布液を調製した。この塗布液を前記電荷輸送層の上に円形量規制型塗布装置により保護層を形成し、110℃;60分加熱硬化し、乾燥膜厚5.0μmの保護層Aを形成し感光体1Aを作製した。
<Protective layer A>
Charge transport layer material (T-1) 200 parts Polycarbonate “Iupilon Z300” (Mitsubishi Gas Chemical Co., Ltd.) 300 parts 2,6-di-tert-butyl-4-phenylphenol 5 parts Inorganic particles (octylsilane-treated silica, hydrophobic Degree of conversion: 72%, number average primary particle size (dn): 9 nm, number average primary particle size / 90% span value (dn / Δd): 0.72) 10 parts Tetrahydrofuran (boiling point: 64.5 ° C.) 2000 parts Were mixed and stirred well to prepare a coating solution. A protective layer is formed on the charge transport layer by a circular amount-regulating coating device on this coating solution, and heated and cured at 110 ° C. for 60 minutes to form a protective layer A having a dry film thickness of 5.0 μm. Produced.

感光体2A〜14Aの作製
感光体1Aにおいて、電荷発生物質、電荷輸送層の電荷輸送物質の化合物、化合物の量、膜厚、及び保護層を表1のように変更した以外は同様にして感光体2A〜14Aを作製した。但し、保護層B〜Nは、保護層Aの処方の無機粒子及び電荷輸送物質を表2に記載のように変更して作製した。
Preparation of photoconductors 2A to 14A Photosensitive body 1A was photosensitized in the same manner as in photoconductor 1A, except that the charge generation material, the compound of the charge transport material in the charge transport layer, the amount of compound, the film thickness, and the protective layer were changed as shown in Table 1. Body 2A-14A was produced. However, the protective layers B to N were prepared by changing the inorganic particles and the charge transport material of the protective layer A as shown in Table 2.

感光体15Aの作製
感光体1Aの作製において、電荷輸送層の電荷輸送物質(合成例(1)の化合物)を、公知の方法で別途合成した化合物21A(p=0、q=0)のn=0のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体15Aを作製した。
Production of Photoreceptor 15A In the production of Photoreceptor 1A, n of Compound 21A (p = 0, q = 0) separately synthesized by a known method was used as the charge transport material of the charge transport layer (the compound of Synthesis Example (1)). Photoreceptor 15A was prepared in the same manner except that the charge transport material was a component having only = 0 (component purity greater than 99%).

感光体16Aの作製
感光体1の作製において、電荷輸送層の電荷輸送物質(合成例(1)の化合物)を、合成例(1)の化合物を液体クロマトグラフィーで各成分を分離し、化合物21A(p=0、q=0)のn=3のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体16Aを作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
Production of Photoreceptor 16A In production of Photoreceptor 1, the charge transport material (compound of Synthesis Example (1)) in the charge transport layer was separated from the compound of Synthesis Example (1) by liquid chromatography, and the compound 21A A photoconductor 16A was prepared in the same manner except that the charge transport material was replaced by a charge transport material having only n = 3 (component purity greater than 99%) (p = 0, q = 0). A photoconductor that could be evaluated and deposited without being compatible with the resin was not obtained.

感光体17Aの作製
感光体1において、電荷輸送層の電荷輸送物質(1)の化合物を、合成例(1)の化合物を液体クロマトグラフィーで各成分を分離し、化合物21A(p=0、q=0)のn=1とn=2の組成比がそれぞれ50%の混合化合物の電荷輸送物質に代えた以外は同様にして感光体17Aを作製した。
Preparation of Photoconductor 17A In Photoconductor 1, the components of the charge transport material (1) in the charge transport layer and the compound of Synthesis Example (1) were separated by liquid chromatography to obtain compound 21A (p = 0, q = 0), a photoconductor 17A was prepared in the same manner except that the mixed compound charge transport material was mixed in which the composition ratio of n = 1 and n = 2 was 50%.

感光体18Aの作製
感光体1Aにおいて、保護層Aから疎水性シリカを除いた他は同様にして保護層R(無機粒子を含有しない)を有する感光体18Aを作製した。
Production of Photoreceptor 18A Photoreceptor 18A having protective layer R (containing no inorganic particles) was produced in the same manner as Photoreceptor 1A except that hydrophobic silica was removed from protective layer A.

Figure 0004069843
Figure 0004069843

表1中、Yはチタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料)
Zはベンズイミダゾールペリレン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが12.4°の顔料)を示す。
In Table 1, Y is a titanyl phthalocyanine pigment (a pigment having a maximum peak of 27.3 ° with a Bragg angle 2θ in a Cu-Kα characteristic X-ray diffraction spectrum).
Z represents a benzimidazole perylene pigment (a pigment having a maximum peak at a Bragg angle 2θ of 12.4 ° in a Cu-Kα characteristic X-ray diffraction spectrum).

(x+y)は、本発明の混合化合物の最大成分の化合物の組成比xと2位成分の化合物の組成比yの和(%表示)を示す。   (X + y) represents the sum (in%) of the composition ratio x of the compound of the maximum component of the mixed compound of the present invention and the composition ratio y of the compound of the 2-position component.

又、電荷輸送物質の連鎖構造nの分布(組成比)は高速液体クロマトグラフィーの面積比より求めた。平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。   The distribution (composition ratio) of the chain structure n of the charge transport material was determined from the area ratio of high performance liquid chromatography. Average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).

Figure 0004069843
Figure 0004069843

表2中、電荷輸送物質の(T−1)〜(T−4)の化学構造を下記に示す。   In Table 2, the chemical structures of charge transport materials (T-1) to (T-4) are shown below.

Figure 0004069843
Figure 0004069843

評価
以上のようにして得た感光体1A〜18Aを各々コニカ(株)製の反転現像方式デジタル複写機「Konica7085」(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4紙85枚/分機)に搭載し、下記評価項目について評価した。評価は、評価項目毎に、環境条件(温湿度条件)を変えて行なった。評価は、基本的に画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、評価した。評価結果を表3に示す。
Evaluation Each of the photoreceptors 1A to 18A obtained as described above has a reversal development type digital copying machine "Konica 7085" (Scorotron charger, semiconductor laser image exposure device (wavelength 680 nm), and reversal development means, manufactured by Konica Corporation. The following evaluation items were evaluated. Evaluation was performed by changing environmental conditions (temperature and humidity conditions) for each evaluation item. The evaluation basically consists of an original image in which the character ratio, halftone image, solid white image, and solid black image with a pixel rate of 7% are divided into ¼ equal parts in A4 and 10,000 sheets in intermittent mode. A copy was made and evaluated. The evaluation results are shown in Table 3.

評価条件
ラインスピード;420mm/秒
像露光から現像位置までの到達時間;0.108秒
帯電条件
帯電器;スコロトロン帯電器(負帯電)
帯電電位;−700V〜−750V
露光条件
べた黒画像電位を−100Vにする露光量に設定。
Evaluation condition Line speed: 420 mm / second Time to reach from the image exposure to the development position; 0.108 seconds Charging condition Charger; Scorotron charger (negative charge)
Charging potential: -700V to -750V
Exposure condition Set the exposure amount to make the solid black image potential -100V.

露光ビーム;レーザは680nmの半導体レーザを使用
現像条件
現像剤は、フェライトをコアとして絶縁性樹脂をコーティングしたキャリアとスチレンアクリル系樹脂を主材料としてカーボンブラックの着色剤と荷電制御剤と低分子量ポリオレフィンからなる重合法で作製した体積平均粒径5.3μmの着色粒子に、シリカ、酸化チタンを外添したトナーの現像剤を使用した。
Exposure beam; Laser uses a 680 nm semiconductor laser. Development conditions The developer is a carrier coated with an insulating resin with ferrite as the core, and a styrene acrylic resin as the main materials. Colorant of carbon black, charge control agent, and low molecular weight polyolefin. A toner developer in which silica and titanium oxide were externally added to colored particles having a volume average particle size of 5.3 μm produced by a polymerization method comprising:

転写条件
転写極;コロナ帯電方式(正帯電)
分離条件
分離爪ユニットの分離手段を用いた
クリーニング条件
クリーニング部に硬度70°、反発弾性65%、厚さ2(mm)、自由長9mmのクリーニングブレードをカウンター方向に線圧18(g/cm)となるように重り荷重方式で当接した。
Transfer conditions Transfer pole; corona charging method (positive charging)
Separation conditions Cleaning conditions using the separation means of the separation claw unit A cleaning blade having a hardness of 70 °, a rebound resilience of 65%, a thickness of 2 (mm), and a free length of 9 mm is applied to the cleaning portion at a linear pressure of 18 (g / cm) It contact | abutted by the weight load system so that it might become.

評価項目及び評価方法
低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化)
低温低湿(10℃20%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて1万枚の複写を行い、初期と1万枚後の現像位置でのべた黒画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が低温低湿(10℃20%RH)環境下での高速応答性が優れている。
Evaluation item and evaluation method High-speed response under low-temperature and low-humidity (10 ° C, 20% RH) environment (potential change in solid black image area)
In a low-temperature, low-humidity (10 ° C, 20% RH) environment, one A4 original image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image each divided into 1/4 equal intervals In this mode, 10,000 sheets were copied, and the potential change (| ΔV |) of the solid black image portion at the development position after the initial and 10,000 sheets was evaluated. The smaller | ΔV |, the better the high-speed response in a low-temperature, low-humidity (10 ° C, 20% RH) environment.

◎;べた黒画像部の電位変化|ΔV|が50V未満(良好)
○;べた黒画像部の電位変化|ΔV|が50V〜150V(実用上問題なし)
×;べた黒画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
文字細り(低温低湿(10℃20%RH)の環境下)
0.1mm、0.2mm幅の線画像が印刷されたオリジナル画像を複写し、評価した。
A: Potential change in solid black image portion | ΔV | is less than 50 V (good)
○: Potential change of solid black image portion | ΔV | is 50 V to 150 V (no problem in practical use)
×: The potential change | ΔV | of the solid black image portion is larger than 150 V (practically problematic)
Character thinning (under low temperature and low humidity (10 ° C, 20% RH))
An original image on which a line image having a width of 0.1 mm and 0.2 mm was printed was copied and evaluated.

◎;複写画像の線幅がオリジナル画像の線幅の75%以上で再現されている(良好)
○;複写画像の線幅がオリジナル画像の線幅の40%〜74%で再現されている(実用上問題ないレベル)
×;複写画像の線幅がオリジナル画像の線幅の39%以下、又は線幅が切断されている(実用上問題となるレベル)
ブラックスポット(高温高湿(30℃80%RH))
ハーフトーン画像上のブラックスポット(苺状のスポット画像)の発生状況を下記の基準で判定した。
◎; The reproduced image is reproduced with a line width of 75% or more of the line width of the original image (good)
○: The line width of the copied image is reproduced at 40% to 74% of the line width of the original image (a level that causes no problem in practice).
×: The line width of the copied image is 39% or less of the line width of the original image, or the line width is cut (a level causing a problem in practice).
Black spot (high temperature and high humidity (30 ℃ 80% RH))
The occurrence of black spots (spot-like spot images) on the halftone image was determined according to the following criteria.

◎;感光体上にブラックスポットの発生核がみられず、ハーフトーン画像にもブラックスポットの発生なし(良好)
○;感光体上にブラックスポットの発生核がみられるが、ハーフトーン画像にはブラックスポットの発生なし(実用上問題なし)
×;感光体上にブラックスポットの発生核がみられ、ハーフトーン画像にもブラックスポットが発生している(実用上問題有り)
周期性の画像欠陥(高温高湿(30℃80%RH)
周期性が感光体の周期と一致し、目視できる白ヌケ、黒ポチ、筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
A: No black spot nuclei were observed on the photoreceptor, and no black spots were generated even in halftone images (good).
○: Black spot nuclei are seen on the photoreceptor, but no black spots are generated in the halftone image (no problem in practical use)
X: Nuclei of black spots are observed on the photosensitive member, and black spots are also generated in the halftone image (there is a practical problem)
Periodic image defects (high temperature and high humidity (30 ° C, 80% RH)
The periodicity coincided with the period of the photoconductor, and the number of visible white defects, black spots, and streak image defects per A4 size was determined.

◎;0.4mm以上の画像欠陥の頻度:全ての複写画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
クラック
上記デジタル複写機Konica7085を30℃、80%RHの環境下で、感光体を搭載したまま、電源をoffにし、2日間放置した。感光体周辺の部材はこの間動作を停止しているだけの状態、即ち、クリーニングブレード、現像剤搬送体等の部材は、感光体に当接したままにした。その後、感光体の表面を観察し、クラックの発生の有無を観察した。又、画像評価も行い、クラック発生に伴う筋状の画像欠陥の発生の有無も評価した。
A: Frequency of image defects of 0.4 mm or more: All copy images are 5 / A4 or less (good)
○: Frequency of image defects of 0.4 mm or more: 1 or more of 6 / A4 or more and 10 / A4 or less (no problem in practical use)
X: Frequency of image defects of 0.4 mm or more: 11 or more A4 or more occurred (practical problem)
Crack In the environment of 30 ° C. and 80% RH, the digital copying machine Konica 7085 was turned off with the power supply turned off and left for 2 days. The members around the photoconductor are in a state where the operation is only stopped during this time, that is, the members such as the cleaning blade and the developer conveying member are kept in contact with the photoconductor. Thereafter, the surface of the photoreceptor was observed to observe the presence or absence of cracks. Moreover, image evaluation was also performed, and the presence or absence of generation of streak-like image defects due to the occurrence of cracks was also evaluated.

◎;100本の感光体を評価し、クラックの発生も、筋状の画像欠陥の発生もなし(良好))
○;100本の感光体を評価し、微細なクラックの発生はあるが、筋状の画像欠陥の発生はない(実用上問題ないレベル)
×;100本の感光体を評価し、クラックの発生と筋状の画像欠陥の発生が見られる(実用上問題となるレベル)
画像濃度(低温低湿(10℃20%RH))
べた黒部の画像濃度はマクベス社製RD−918を使用し反射濃度で測定した。相対濃度(複写していないA4紙の濃度を0.00とする)で評価した
◎;1.2以上(良好)
○;1.2未満〜0.8(実用上問題ないレベル)
×;0.8未満(実用上問題となるレベル)
鮮鋭性
画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し、文字潰れで評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。
A: Evaluation of 100 photoconductors, no occurrence of cracks and no occurrence of streak image defects (good)
◯: 100 photoconductors were evaluated, fine cracks were generated, but no streak-like image defects were generated (a level of no problem in practical use).
X: 100 photoconductors were evaluated, and cracks and streak-like image defects were observed (practically problematic level)
Image density (low temperature and low humidity (10 ° C, 20% RH))
The image density of the solid black part was measured by reflection density using RD-918 manufactured by Macbeth. Evaluated by relative density (the density of A4 paper that has not been copied is 0.00) A: 1.2 or higher (good)
○: Less than 1.2 to 0.8 (a level with no practical problem)
×: Less than 0.8 (a level that causes practical problems)
Sharpness The sharpness of the image was evaluated by squashing characters by displaying images in both low temperature and low humidity (10 ° C., 20% RH) and high temperature, high humidity (30 ° C., 80% RH) environments. 3-point and 5-point character images were formed and evaluated according to the following criteria.

◎;3ポイント、5ポイントとも明瞭であり、容易に判読可能
○;3ポイントは一部判読不能、5ポイントは明瞭であり、容易に判読可能
×;3ポイントは殆ど判読不能、5ポイントも一部あるいは全部が判読不能
◎; 3 points and 5 points are clear and easy to read ○; 3 points are partially illegible, 5 points are clear and easily readable ×: 3 points are almost unreadable and 5 points are one Part or whole is illegible

Figure 0004069843
Figure 0004069843

表3より、本発明の一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用い、保護層が無機粒子を含有する感光体1A〜14Aは、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化が小さい)が優れ、このため低温低湿下の文字細りもなく、しかも、ブッラクスポット、周期性画像欠陥、クラック等の発生もなく、画像濃度、鮮鋭性に優れた特性を示している。一方、n=0の低分子量の化合物のみを用いた感光体15Aは低温低湿(10℃20%RH)環境下での高速応答性が劣り、文字細りを発生しており、画像濃度、鮮鋭性が低下している。又、n=3の高分子量の化合物のみを用いた感光体16Aの場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。又、化合物21A(p=0、q=0)のn=1とn=2の組成比をそれぞれ50%の混合化合物を電荷輸送物質として用いた感光体17Aも電荷輸送物質のバインダー樹脂との溶解性が不十分なため、べた黒画像部の電位変化が大きく、クラックも発生し、画像濃度、鮮鋭性が低下している。又、保護層が本発明外の感光体18Aもべた黒画像部の電位変化が大きく、ブッラクスポット、周期性画像欠陥も発生し、画像濃度、鮮鋭性も低下している。   From Table 3, the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) of the present invention and the distribution based on n is represented by x, and the composition ratio of the compound of the 2-position component is represented by y. Then, the photoconductors 1A to 14A in which a mixed compound having x + y of 99% or less is used as a charge transport material and the protective layer contains inorganic particles have high-speed response under a low temperature and low humidity (10 ° C., 20% RH) environment ( (Characteristic change in solid black image area is small), so there is no character thinning under low temperature and low humidity, and there are no black spots, periodic image defects, cracks, etc., and excellent image density and sharpness Is shown. On the other hand, the photoconductor 15A using only a low molecular weight compound of n = 0 is inferior in high-speed response under a low temperature and low humidity (10 ° C., 20% RH) environment, generates thin characters, and has image density and sharpness. Has fallen. Further, in the case of the photoconductor 16A using only a high molecular weight compound of n = 3, it was poorly dissolved in the binder resin, had almost no sensitivity, and was not worthy of evaluation. In addition, the photoconductor 17A using a compound 21A (p = 0, q = 0) having a composition ratio of n = 1 and n = 2 of 50% as a charge transport material is also used as a charge transport material binder resin. Since the solubility is insufficient, the potential change in the solid black image portion is large, cracks are generated, and the image density and sharpness are lowered. In addition, the potential change in the black image portion of the photosensitive layer 18A outside the present invention is large, black spots and periodic image defects are generated, and the image density and sharpness are also lowered.

実施例2
下記のごとくして、一般式Bの混合化合物を含有した感光体を作製した。
感光体1Bの作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタン(シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理の表面処理を施した数平均一次粒径35nmの酸化チタン) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(4)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚19μmの電荷輸送層を形成した。
Example 2
A photoreceptor containing the mixed compound of the general formula B was produced as follows.
Preparation of photoreceptor 1B <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide (titanium oxide having a number average primary particle size of 35 nm subjected to silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 Part Methanol 1600 parts 1-Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum, maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (Compound of Synthesis Example (4)) 150 parts Binder resin: Bisphenol Z-type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Co., Ltd.) 300 parts Antioxidant (Sanol LS2626: Sankyo Co., Ltd.) 1.7 parts Tetrahydrofuran ( Boiling point: 64.5 ° C.) 2200 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 19 μm.

〈保護層A〉
電荷輸送層物質(T−1) 200部
ポリカーボネート「ユーピロンZ300」(三菱瓦斯化学社製) 300部
2,6−ジ−t−ブチル−4−フェニルフェノール 5部
無機粒子(オクチルシラン処理シリカ、疎水化度:72%、数平均一次粒径(dn):9nm、数平均一次粒径/90%スパン値(dn/Δd):0.72) 10部
テトラヒドロフラン(沸点:64.5℃) 2000部
を混合し、よく攪拌し塗布液を調製した。この塗布液を前記電荷輸送層の上に円形量規制型塗布装置により保護層を形成し、110℃;60分加熱硬化し、乾燥膜厚5.0μmの保護層Aを形成し感光体1Bを作製した。
<Protective layer A>
Charge transport layer material (T-1) 200 parts Polycarbonate “Iupilon Z300” (Mitsubishi Gas Chemical Co., Ltd.) 300 parts 2,6-di-tert-butyl-4-phenylphenol 5 parts Inorganic particles (octylsilane-treated silica, hydrophobic Degree of conversion: 72%, number average primary particle size (dn): 9 nm, number average primary particle size / 90% span value (dn / Δd): 0.72) 10 parts Tetrahydrofuran (boiling point: 64.5 ° C.) 2000 parts Were mixed and stirred well to prepare a coating solution. A protective layer is formed on the charge transport layer by a circular amount-regulating coating device on the charge transport layer, and cured by heating at 110 ° C. for 60 minutes to form a protective layer A having a dry film thickness of 5.0 μm. Produced.

感光体2B〜14Bの作製
感光体1Bにおいて、電荷発生物質、電荷輸送層の電荷輸送物質の化合物、化合物の量、膜厚、及び保護層を表4のように変更した以外は同様にして感光体2B〜14Bを作製した。但し、保護層B〜Nは前記表2同じ。
Preparation of photoconductors 2B to 14B Photosensitive body 1B was photosensitized in the same manner except that the charge generation material, the compound of the charge transport material in the charge transport layer, the amount of the compound, the film thickness, and the protective layer were changed as shown in Table 4. Body 2B-14B was produced. However, the protective layers B to N are the same as those in Table 2.

感光体15Bの作製
感光体1Bの作製において、電荷輸送層の電荷輸送物質(合成例(5)の化合物)を、公知の方法で別途合成した化合物11B(m=0)のn=0のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体15Bを作製した。
Production of Photoreceptor 15B In the production of Photoreceptor 1B, the charge transport material of the charge transport layer (the compound of Synthesis Example (5)) was prepared by separately preparing n = 1 of Compound 11B (m = 0) separately synthesized by a known method. Photoreceptor 15B was produced in the same manner except that the charge transport material (component purity greater than 99%) was used.

感光体16Bの作製
感光体1Bの作製において、電荷輸送層の電荷輸送物質(合成例(5)の化合物)を、合成例(5)の化合物を液体クロマトグラフィーで各成分を分離し、化合物11B(m=0)のn=3のみの成分(成分純度は99%より大)の電荷輸送物質に代えた以外は同様にして感光体16Bを作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
Production of Photoreceptor 16B In production of Photoreceptor 1B, the charge transport material (compound of Synthesis Example (5)) in the charge transport layer was separated from the compound of Synthesis Example (5) by liquid chromatography, and Compound 11B Photoreceptor 16B was prepared in the same manner except that the charge transport material of n = 3 only (m = 0) (component purity greater than 99%) was prepared, but the charge transport material was compatible with the binder resin. No photoconductor was obtained that could be evaluated.

感光体17Bの作製
感光体1Bの作製において、電荷輸送層の電荷輸送物質(合成例(5)の化合物)を、合成例(5)の化合物を液体クロマトグラフィーで各成分を分離し、化合物11B(m=0)のn=2とn=3の組成比がそれぞれ50%の混合化合物の電荷輸送物質に代えて用いた以外は同様にして感光体17Bを作製した。
Production of Photoreceptor 17B In production of Photoreceptor 1B, the charge transport material (the compound of Synthesis Example (5)) in the charge transport layer was separated from the compound of Synthesis Example (5) by liquid chromatography, and the compound 11B was separated. A photoconductor 17B was prepared in the same manner except that it was used instead of a mixed compound charge transport material in which the composition ratio of n = 2 and n = 3 of (m = 0) was 50%.

感光体18Bの作製
感光体1Bにおいて、保護層Aから疎水性シリカを除いた他は同様にして保護層R(無機粒子を含有しない)を有する感光体18Bを作製した。
Preparation of Photoconductor 18B Photoconductor 18B having protective layer R (containing no inorganic particles) was prepared in the same manner as in Photoconductor 1B, except that hydrophobic silica was removed from protective layer A.

Figure 0004069843
Figure 0004069843

表中、Y及びZは表1と同じ。   In the table, Y and Z are the same as in Table 1.

(x+y)も表1に同じ。   (X + y) is the same as in Table 1.

又、電荷輸送物質の連鎖構造nの分布(組成比)は高速液体クロマトグラフィーの面積比より求めた。平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。   The distribution (composition ratio) of the chain structure n of the charge transport material was determined from the area ratio of high performance liquid chromatography. Average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).

評価
以上のようにして得た感光体1B〜18Bを各々コニカ(株)製の反転現像方式デジタル複写機「Konica7085」(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4紙85枚/分機)に搭載し、実施例1と同様に評価した。評価結果を表5に示す。
Evaluation Each of the photoreceptors 1B to 18B obtained as described above has a reversal development type digital copying machine "Konica 7085" (Scorotron charger, semiconductor laser image exposure device (wavelength 680 nm), and reversal development means, manufactured by Konica Corporation. A4 paper 85 sheets / min.) And evaluated in the same manner as in Example 1. The evaluation results are shown in Table 5.

Figure 0004069843
Figure 0004069843

表5より、本発明の一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用い、保護層が無機粒子を含有する感光体1B〜14Bは、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化が小さい)が優れ、このため低温低湿下の文字細りもなく、しかも、ブッラクスポット、周期性画像欠陥、クラック等の発生もなく、画像濃度、鮮鋭性に優れた特性を示している。一方、n=0の低分子量の化合物のみを用いた感光体15Bは低温低湿(10℃20%RH)環境下での高速応答性が劣り、文字細りを発生しており、画像濃度、鮮鋭性が低下している。又、n=3の高分子量の化合物のみを用いた感光体16Bの場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。又、化合物11B(m=0)のn=2とn=3の組成比をそれぞれ50%の混合化合物を電荷輸送物質として用いた感光体17Bも電荷輸送物質のバインダー樹脂との溶解性が不十分なため、べた黒画像部の電位変化が大きく、クラックも発生し、画像濃度、鮮鋭性が低下している。又、保護層が本発明外の感光体18Bもべた黒画像部の電位変化が大きく、ブッラクスポット、周期性画像欠陥も発生し、画像濃度、鮮鋭性も低下している。   From Table 5, the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) of the present invention and the distribution based on n is represented by x, and the composition ratio of the compound of the 2-position component is represented by y. Then, the photoconductors 1B to 14B in which a mixed compound having x + y of 99% or less is used as a charge transport material and the protective layer contains inorganic particles have high-speed response in a low temperature and low humidity (10 ° C., 20% RH) environment ( (Characteristic change in solid black image area is small), so there is no character thinning under low temperature and low humidity, and there are no black spots, periodic image defects, cracks, etc., and excellent image density and sharpness Is shown. On the other hand, the photoconductor 15B using only a low molecular weight compound of n = 0 is inferior in high-speed response in a low-temperature and low-humidity (10 ° C., 20% RH) environment, generates thin characters, and has image density and sharpness. Has fallen. In addition, in the case of the photoreceptor 16B using only a high molecular weight compound of n = 3, the solubility with the binder resin was poor, and there was almost no sensitivity and the like, which was not worthy of evaluation. Further, the photoconductor 17B using a mixed compound of compound 11B (m = 0) in which the composition ratio of n = 2 and n = 3 is 50% as the charge transport material is also insoluble in the binder resin of the charge transport material. Therefore, the potential change in the solid black image portion is large, cracks are generated, and the image density and sharpness are lowered. Further, the change in potential of the black image portion where the protective layer is not the photoreceptor 18B of the present invention is large, black spots and periodic image defects are generated, and the image density and sharpness are also lowered.

実施例3
下記のごとくして、一般式Cの混合化合物を含有した感光体を作製した。
感光体1Cの作製
〈中間層〉
ポリアミド樹脂(アミランCM−8000:東レ社製) 60部
無機微粒子:酸化チタン(シリカ処理、アルミナ処理、及びメチルハイドロジェンポリシロキサン処理の表面処理を施した数平均一次粒径35nmの酸化チタン) 180部
メタノール 1600部
1−ブタノール 400部
上記成分を混合溶解して中間層塗布液を調製した。この塗布液をの円筒状アルミニウム基体上に浸漬塗布法で塗布し、乾燥後、膜厚1.0μmの中間層を形成した。
〈電荷発生層〉
チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトルで、ブラッグ角2θの最大ピークが27.3°の顔料) 60部
シリコーン樹脂溶液
(KR5240、15%キシレン−ブタノール溶液:信越化学社製) 700部
2−ブタノン 2000部
上記成分を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥後、膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質(合成例(6)の化合物) 150部
バインダー樹脂:ビスフェノールZ型ポリカーボネート
(ユーピロンZ300:三菱ガス化学社製) 300部
酸化防止剤(サノールLS2626:三共社製) 1.7部
テトラヒドロフラン(沸点:64.5℃) 2200部
上記成分を混合溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、100℃40分間乾燥して、膜厚19μmの電荷輸送層を形成した。
Example 3
A photoreceptor containing the mixed compound of the general formula C was produced as follows.
Preparation of photoreceptor 1C <intermediate layer>
Polyamide resin (Amilan CM-8000: manufactured by Toray Industries, Inc.) 60 parts Inorganic fine particles: Titanium oxide (titanium oxide having a number average primary particle size of 35 nm subjected to silica treatment, alumina treatment, and methylhydrogenpolysiloxane treatment) 180 Part Methanol 1600 parts 1-Butanol 400 parts The above components were mixed and dissolved to prepare an intermediate layer coating solution. This coating solution was applied onto a cylindrical aluminum substrate by a dip coating method, and after drying, an intermediate layer having a thickness of 1.0 μm was formed.
<Charge generation layer>
Titanyl phthalocyanine pigment (pigment with Cu-Kα characteristic X-ray diffraction spectrum, maximum peak of Bragg angle 2θ of 27.3 °) 60 parts Silicone resin solution (KR5240, 15% xylene-butanol solution: Shin-Etsu Chemical Co., Ltd.) 700 parts 2-butanone 2000 parts The above components were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating solution. This coating solution was applied onto the intermediate layer by a dip coating method, and after drying, a charge generation layer having a thickness of 0.3 μm was formed.
<Charge transport layer>
Charge transport material (Compound of Synthesis Example (6)) 150 parts Binder resin: Bisphenol Z-type polycarbonate (Iupilon Z300: manufactured by Mitsubishi Gas Chemical Co., Ltd.) 300 parts Antioxidant (Sanol LS2626: Sankyo Co., Ltd.) 1.7 parts Tetrahydrofuran ( Boiling point: 64.5 ° C.) 2200 parts The above components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 100 ° C. for 40 minutes to form a charge transport layer having a thickness of 19 μm.

〈保護層A〉
電荷輸送層物質(T−1) 200部
ポリカーボネート「ユーピロンZ300」(三菱瓦斯化学社製) 300部
2,6−ジ−t−ブチル−4−フェニルフェノール 5部
無機粒子(オクチルシラン処理シリカ、疎水化度:72%、数平均一次粒径(dn):9nm、数平均一次粒径/90%スパン値(dn/Δd):0.72) 10部
テトラヒドロフラン(沸点:64.5℃) 2000部
を混合し、よく攪拌し塗布液を調製した。この塗布液を前記電荷輸送層の上に円形量規制型塗布装置により保護層を形成し、110℃;60分加熱硬化し、乾燥膜厚5.0μmの保護層Aを形成し感光体1Cを作製した。
<Protective layer A>
Charge transport layer material (T-1) 200 parts Polycarbonate “Iupilon Z300” (Mitsubishi Gas Chemical Co., Ltd.) 300 parts 2,6-di-tert-butyl-4-phenylphenol 5 parts Inorganic particles (octylsilane-treated silica, hydrophobic Degree of conversion: 72%, number average primary particle size (dn): 9 nm, number average primary particle size / 90% span value (dn / Δd): 0.72) 10 parts Tetrahydrofuran (boiling point: 64.5 ° C.) 2000 parts Were mixed and stirred well to prepare a coating solution. A protective layer is formed on the charge transport layer by a circular amount-regulating coating device, and the coating solution is heated and cured at 110 ° C. for 60 minutes to form a protective layer A having a dry film thickness of 5.0 μm. Produced.

感光体2Cの作製
感光体1Cにおいて、電荷輸送層の電荷輸送物質の化合物を合成例(6)の化合物から合成例(7)の化合物に変更した以外は同様にして感光体2Cを作製した。
Production of Photoreceptor 2C Photoreceptor 2C was produced in the same manner as in Photoreceptor 1C, except that the compound of the charge transport material in the charge transport layer was changed from the compound of Synthesis Example (6) to the compound of Synthesis Example (7).

感光体3C〜10Cの作製
感光体1Cの作製において、電荷発生物質、電荷輸送層の電荷輸送物質の化合物、化合物の量、膜厚及び保護層を表6のように変更した以外は同様にして感光体3C〜10Cを作製した。但し、保護層B〜Nは前記表2同じ。
Production of photoconductors 3C to 10C In production of photoconductor 1C, the same procedure was performed except that the charge generation material, the compound of the charge transport material of the charge transport layer, the amount of the compound, the film thickness, and the protective layer were changed as shown in Table 6. Photoconductors 3C to 10C were prepared. However, the protective layers B to N are the same as those in Table 2.

感光体11Cの作製
感光体1Cの作製において、電荷輸送層の電荷輸送物質(合成例(6)の化合物)を、公知の方法で別途合成した化合物、化学構造17Cのn=0のみの成分(成分純度は99%より大)の電荷輸送物質に代えて用いた以外は同様にして感光体11Cを作製した。
Production of Photoreceptor 11C In the production of Photoreceptor 1C, a compound in which the charge transport material of the charge transport layer (the compound of Synthesis Example (6)) was separately synthesized by a known method, a component having only n = 0 in the chemical structure 17C ( Photoreceptor 11C was prepared in the same manner except that it was used instead of a charge transport material having a component purity of greater than 99%.

感光体12Cの作製
感光体1Cの作製において、電荷輸送層の電荷輸送物質(合成例(6)の化合物)を、合成例(6)の化合物をカラムクロマトグラフィーで各成分を分離し、化学構造17Cのn=5のみの成分(成分純度は99%より大)の電荷輸送物質に代えて用いた以外は同様にして感光体12Cを作製したが、電荷輸送物質がバインダー樹脂と相溶せず析出して、評価できる感光体が得られなかった。
Production of Photoreceptor 12C In production of Photoreceptor 1C, the charge transport material (compound of Synthesis Example (6)) in the charge transport layer was separated from the compound of Synthesis Example (6) by column chromatography, and the chemical structure Photoreceptor 12C was prepared in the same manner except that 17C was used instead of the charge transport material having only n = 5 (component purity greater than 99%), but the charge transport material was not compatible with the binder resin. As a result, the photoconductor which can be evaluated was not obtained.

感光体13Cの作製
感光体1Cの作製において、電荷輸送層の電荷輸送物質(合成例(6)の化合物)を、合成例(6)の化合物を液体クロマトグラフィーで各成分を分離し、化学構造17Cのn=4とn=5の組成比がそれぞれ50%の混合化合物の電荷輸送物質に代えて用いた以外は同様にして感光体13Cを作製した。
Production of Photoreceptor 13C In production of Photoreceptor 1C, the charge transport material (compound of Synthesis Example (6)) in the charge transport layer was separated from the component of Synthesis Example (6) by liquid chromatography, and the chemical structure Photoreceptor 13C was prepared in the same manner except that 17C was used instead of the charge transport material of the mixed compound in which the composition ratio of n = 4 and n = 5 was 50%.

感光体14Cの作製
感光体1Cにおいて、保護層Aから疎水性シリカを除いた他は同様にして保護層R(無機粒子を含有しない)を有する感光体14Cを作製した。
Production of Photoreceptor 14C Photoreceptor 14C having protective layer R (containing no inorganic particles) was produced in the same manner as in Photoreceptor 1C, except that hydrophobic silica was removed from protective layer A.

Figure 0004069843
Figure 0004069843

表中、Y及びZは表1と同じ。   In the table, Y and Z are the same as in Table 1.

(x+y)も表1に同じ。   (X + y) is the same as in Table 1.

又、電荷輸送物質の連鎖構造nの分布(組成比)は高速液体クロマトグラフィーの面積比より求めた。平均分子量Mwはゲル浸透クロマトグラフィー(GPC)より求めた重量平均分子量(ポリスチレン換算)を示す。   The distribution (composition ratio) of the chain structure n of the charge transport material was determined from the area ratio of high performance liquid chromatography. Average molecular weight Mw shows the weight average molecular weight (polystyrene conversion) calculated | required from the gel permeation chromatography (GPC).

評価
以上のようにして得た感光体1C〜14Cを各々コニカ(株)製の反転現像方式デジタル複写機「Konica7085」(スコロトロン帯電器、半導体レーザ像露光器(波長680nm)、反転現像手段を有するA4紙85枚/分機)に搭載し、実施例1と同様に評価した。評価結果を表7に示す。
Evaluation Each of the photoreceptors 1C to 14C obtained as described above has a reversal development type digital copying machine “Konica 7085” (Scorotron charger, semiconductor laser image exposure device (wavelength 680 nm), and reversal development means, manufactured by Konica Corporation. A4 paper 85 sheets / min.) And evaluated in the same manner as in Example 1. Table 7 shows the evaluation results.

Figure 0004069843
Figure 0004069843

表7より、本発明の一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を電荷輸送物質として用い、保護層が無機粒子を含有する感光体1C〜10Cは、低温低湿(10℃20%RH)環境下での高速応答性(べた黒画像部の電位変化が小さい)が優れ、このため低温低湿下の文字細りもなく、しかも、ブッラクスポット、周期性画像欠陥、クラック等の発生もなく、画像濃度、鮮鋭性に優れた特性を示している。一方、n=1の低分子量の化合物のみを用いた感光体11Cは低温低湿(10℃20%RH)環境下での高速応答性が劣り、文字細りを発生しており、画像濃度、鮮鋭性も低下している。又、n=5高分子量の化合物のみを用いた感光体12Cの場合は、バインダー樹脂との溶解不良で、感度等もほとんどなく、評価に値しなかった。又、化学構造17Cのn=4とn=5の組成比をそれぞれ50%の混合化合物を電荷輸送物質として用いた感光体13Cも電荷輸送物質のバインダー樹脂との溶解性が不十分なため、べた黒画像部の電位変化が大きく、クラックも発生し、画像濃度、鮮鋭性も低下している。又、保護層が本発明外の感光体14Cもべた黒画像部の電位変化が大きく、ブッラクスポット、周期性画像欠陥も発生し、画像濃度、鮮鋭性が低下している。   From Table 7, the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) of the present invention and the distribution based on n is represented by x, and the composition ratio of the compound of the 2-position component is represented by y. Then, the photoconductors 1C to 10C in which x + y is a mixed compound of 99% or less as a charge transport material and the protective layer contains inorganic particles have high-speed response in a low temperature and low humidity (10 ° C., 20% RH) environment ( (Characteristic change in solid black image area is small), so there is no character thinning under low temperature and low humidity, and there are no black spots, periodic image defects, cracks, etc., and excellent image density and sharpness Is shown. On the other hand, the photoconductor 11C using only a low molecular weight compound of n = 1 is inferior in high-speed response in a low-temperature and low-humidity (10 ° C., 20% RH) environment, produces thin characters, and has image density and sharpness. Has also declined. Further, in the case of the photoreceptor 12C using only the compound having a high molecular weight of n = 5, the solubility with the binder resin was poor and there was almost no sensitivity, so that it was not worthy of evaluation. Further, the photosensitive member 13C using a mixed compound having a composition ratio of n = 4 and n = 5 of the chemical structure 17C of 50% as the charge transport material is also insufficiently soluble in the binder resin of the charge transport material. The solid black image portion has a large potential change, cracks are generated, and the image density and sharpness are also lowered. Further, the potential change in the black image portion of the photosensitive layer 14C outside the present invention is large, black spots and periodic image defects are generated, and the image density and sharpness are lowered.

本発明の画像形成方法の1例としての画像形成装置の断面構成図である。1 is a cross-sectional configuration diagram of an image forming apparatus as an example of an image forming method of the present invention. 90%スパン値Δdを説明する図である。It is a figure explaining 90% span value (DELTA) d.

符号の説明Explanation of symbols

50 感光体ドラム(感光体)
51 帯電前露光部
52 帯電器
53 像露光器
54 現像器
541 現像スリーブ
543、544 現像剤攪拌搬送部材
547 電位センサー
57 給紙ローラー
58 転写電極
59 分離電極(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ
50 Photosensitive drum (photosensitive member)
DESCRIPTION OF SYMBOLS 51 Pre-charge exposure part 52 Charging device 53 Image exposure device 54 Development device 541 Development sleeve 543, 544 Developer stirring conveyance member 547 Potential sensor 57 Paper feed roller 58 Transfer electrode 59 Separation electrode (separator)
60 Fixing device 61 Paper discharge roller 62 Cleaning device 70 Process cartridge

Claims (17)

下記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有することを特徴とする電子写真感光体。
一般式(1)
X−(CTM基)n−Y
上記一般式(1)中、CTM基は、電荷輸送性基であり、X、Yは水素原子、ハロゲン原子、又は1価の有機基を表す。又、nは0〜10の整数(但し、X及びYが共に水素原子又はハロゲン原子の場合はnは1〜10の整数)を示す。
When the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the following general formula (1) and having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y, x + y is 99. % Of a mixed compound, and the surface layer contains inorganic particles.
General formula (1)
X- (CTM group) n -Y
In the general formula (1), the CTM group is a charge transporting group, and X and Y represent a hydrogen atom, a halogen atom, or a monovalent organic group. N represents an integer of 0 to 10 (provided that both X and Y are hydrogen atoms or halogen atoms, n is an integer of 1 to 10).
導電性支持体上に電荷発生物質を有する電荷発生層、電荷輸送層を有する電荷輸送層を積層した電子写真感光体において、前記電荷輸送層が、前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ無機粒子を含有する表面層を有することを特徴とする電子写真感光体。 In the electrophotographic photosensitive member in which a charge generation layer having a charge generation material and a charge transport layer having a charge transport layer are laminated on a conductive support, the charge transport layer has a chemical structure of the general formula (1). In addition, the composition ratio of the compound of the maximum component of the mixed compound having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y. An electrophotographic photosensitive member having a surface layer containing 一般式(1)のx+yが下記の範囲にあることを特徴とする請求項1又は2に記載の電子写真感光体。
30%≦x+y≦99%
3. The electrophotographic photosensitive member according to claim 1, wherein x + y in the general formula (1) is in the following range.
30% ≦ x + y ≦ 99%
一般式(1)のCTM基、X、Yが下記一般式Aの化学構造を有することを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。
Figure 0004069843
前記一般式A中、Ar 1 は1価の置換又は無置換の芳香族基を示し、Ar 2 は2価の置換、無置換の芳香族基を示し、R 1 〜R 3 は水素原子、1価の置換、無置換の芳香族基を示し、Aはトリアリールアミン基を含有する2価の基を示す。又、複数のAr 1 、R 1 、R 2 、R 3 は互いに異なっていてもよい。p、qは各々0又は1の整数を表す。
The electrophotographic photoreceptor according to any one of claims 1 to 3, wherein the CTM group of formula (1), X, and Y have a chemical structure represented by the following formula A.
Figure 0004069843
In the general formula A, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 represents a divalent substituted or unsubstituted aromatic group , R 1 to R 3 represent a hydrogen atom, 1 A valent substituted or unsubstituted aromatic group is shown, and A represents a divalent group containing a triarylamine group. Further, a plurality of Ar 1, R 1, R 2 , R 3 may be different from each other. p and q each represents an integer of 0 or 1.
一般式(1)のCTM基、X、Yが下記一般式Bの化学構造を有することを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。
Figure 0004069843
前記一般式B中、Ar 1 は2価の置換、無置換の芳香族基、2価のフラン基、又は下記一般式(2)を示し、R 1 〜R 3 は水素原子を示し、Aはトリアリールアミン基を含有する2価の基を示し、Bは1価の置換又は無置換の芳香族基を示す。但し、複数のB、R 1 、R 2 、R 3 は互いに異なっていてもよい。mは各々0又は1の整数を表す。
Figure 0004069843
一般式(2)中、Yは単結合である。
The electrophotographic photosensitive member according to any one of claims 1 to 3, wherein the CTM group of the general formula (1), X, and Y have a chemical structure represented by the following general formula B.
Figure 0004069843
In the general formula B, Ar 1 represents a divalent substituted, unsubstituted aromatic group, divalent furan group, or the following general formula (2), R 1 to R 3 represent a hydrogen atom, and A represents B represents a divalent group containing a triarylamine group, and B represents a monovalent substituted or unsubstituted aromatic group. However, a plurality of B, R 1 , R 2 and R 3 may be different from each other. Each m represents an integer of 0 or 1.
Figure 0004069843
In general formula (2), Y is a single bond.
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(4)の基であることを特徴とする請求項4又は5に記載の電子写真感光体。
Figure 0004069843
一般式(4)中、Ar 3 は置換又は無置換の1価の芳香族基を表す。
The divalent group containing triarylamine groups of A, electrophotographic photosensitive member according to claim 4 or 5, characterized in that a group of the following general formula (4).
Figure 0004069843
In the general formula (4), Ar 3 represents a substituted or unsubstituted monovalent aromatic group.
前記Ar 3 が、下記一般式(5)の基であることを特徴とする請求項6に記載の電子写真感光体。
Figure 0004069843
一般式(5)中、R 31 、R 32 、R 33 、R 34 、R 35 は水素原子又は炭素数1〜4のアルキル基を示す。但し、R 31 及びR 35 の内、少なくとも1つは炭素数1〜4のアルキル基である。
The electrophotographic photosensitive member according to claim 6 , wherein Ar 3 is a group of the following general formula (5) .
Figure 0004069843
In General Formula (5), R 31 , R 32 , R 33 , R 34 , and R 35 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. However, at least one of R 31 and R 35 is an alkyl group having 1 to 4 carbon atoms.
前記Aのトリアリールアミン基を含有する2価の基が、下記一般式(6)の基であることを特徴とする請求項4又は5に記載の電子写真感光体。
Figure 0004069843
一般式(6)中、X 2 は単結合、Ar 4 、Ar 5 は置換又は無置換の1価の芳香族基を示す。
6. The electrophotographic photosensitive member according to claim 4, wherein the divalent group containing a triarylamine group of A is a group of the following general formula (6) .
Figure 0004069843
In General Formula (6), X 2 represents a single bond, and Ar 4 and Ar 5 represent a substituted or unsubstituted monovalent aromatic group.
前記Bが下記一般式(7)で表される基であることを特徴とする請求項5に記載の電子写真感光体。
Figure 0004069843
一般式(7)中、R 41 、R 42 、R 43 、R 44 、R 45 、R 51 、R 52 、R 53 、R 54 、R 55 は水素原子または炭素数1〜4のアルキル基を示す。ただし、R 41 、R 45 、R 51 、R 55 のうち少なくともひとつは炭素数1〜4のアルキル基である。
6. The electrophotographic photosensitive member according to claim 5 , wherein B is a group represented by the following general formula (7) .
Figure 0004069843
In General Formula (7), R 41 , R 42 , R 43 , R 44 , R 45 , R 51 , R 52 , R 53 , R 54 , and R 55 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. . However, at least one of R 41 , R 45 , R 51 and R 55 is an alkyl group having 1 to 4 carbon atoms.
一般式(1)のCTM基、X、Yが下記一般式Cの化学構造を有することを特徴とする請求項1〜3のいずれか1項に記載の電子写真感光体。
Figure 0004069843
前記一般式C中、Ar 1 は1価の置換、無置換の芳香族基、Ar 2 は2価の置換、無置換の芳香族基、2価の複素環基、又は下記一般式(8)を示し、Rは1価の置換、無置換の芳香族基を示す。但し、複数のAr 1 、Ar 2 、Rは互いに異なっていてもよい。
Figure 0004069843
一般式(8)中、Yは酸素原子である。但しR 1 、R 2 は水素原子である。
The electrophotographic photosensitive member according to any one of claims 1 to 3, wherein the CTM group of the general formula (1), X, and Y have a chemical structure represented by the following general formula C.
Figure 0004069843
In the general formula C, Ar 1 represents a monovalent substituted or unsubstituted aromatic group, Ar 2 is a divalent substituted or unsubstituted aromatic group, a divalent heterocyclic group, or the following general formula (8) R represents a monovalent substituted or unsubstituted aromatic group. However, the plurality of Ar 1 , Ar 2 , and R may be different from each other.
Figure 0004069843
In general formula (8), Y is an oxygen atom. However, R 1 and R 2 are hydrogen atoms.
前記無機粒子の数平均一次粒径dnが5nm〜200nmであることを特徴とする請求項1〜10のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to claim 1, wherein the inorganic particles have a number average primary particle size dn of 5 nm to 200 nm . 前記無機粒子が下記式(a)を満足することを特徴とする請求項1〜11のいずれか1項に記載の電子写真感光体。
式(a) 0.5<数平均一次粒径dn/90%スパン値Δd<0.7
The electrophotographic photosensitive member according to claim 1, wherein the inorganic particles satisfy the following formula (a) .
Formula (a) 0.5 <number average primary particle size dn / 90% span value Δd <0.7
前記無機粒子が疎水化表面処理を施こされていることを特徴とする請求項1〜12のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to any one of claims 1 to 12, wherein the inorganic particles are characterized by being strained facilities to hydrophobic surface treatment. 前記無機粒子が疎水性シリカであることを特徴とする請求項1〜1のいずれか1項に記載の電子写真感光体。 The electrophotographic photosensitive member according to any one of claims 1 to 12 , wherein the inorganic particles are hydrophobic silica . 前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有する電子写真感光体と該電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段、転写後の該電子写真感光体上の電荷を除去する除電手段及び転写後の該電子写真感光体上の残留するトナーを除去するクリーニング手段の少なくとも1つの手段とが一体的に支持され、画像形成装置本体に着脱自在に装着可能であることを特徴とするプロセスカートリッジ。Assuming that the composition ratio of the compound of the maximum component of the mixed compound having the chemical structure of the general formula (1) and having a distribution based on n is x, the composition ratio of the compound of the 2-position component is y, x + y is 99. % Of a mixed compound and a surface layer containing inorganic particles, a charging means for uniformly charging the electrophotographic photosensitive member, and an electrostatic latent image on the charged electrophotographic photosensitive member A latent image forming means for forming a toner image, a developing means for visualizing an electrostatic latent image on the electrophotographic photosensitive member, and a transfer means for transferring a toner image visualized on the electrophotographic photosensitive member onto a transfer material And at least one of a charge removing means for removing the charge on the electrophotographic photosensitive member after transfer and a cleaning means for removing the residual toner on the electrophotographic photosensitive member after transfer. It is characterized by being detachably attachable to the forming device body Process cartridge that. 電子写真感光体上を一様に帯電する帯電手段、帯電された電子写真感光体に静電潜像を形成する潜像形成手段、該電子写真感光体上の静電潜像を顕像化する現像手段、該電子写真感光体上に顕像化されたトナー像を転写材上に転写する転写手段を有する画像形成装置において、該電子写真感光体が前記一般式(1)の化学構造を有し、nを基準とした分布を持つ混合化合物の最大成分の化合物の組成比をx、2位成分の化合物の組成比をyとすると、x+yが99%以下の混合化合物を含有し、且つ表面層が無機粒子を含有することを特徴とする画像形成装置。Charging means for uniformly charging the electrophotographic photosensitive member, latent image forming means for forming an electrostatic latent image on the charged electrophotographic photosensitive member, and developing the electrostatic latent image on the electrophotographic photosensitive member In an image forming apparatus having a developing unit and a transfer unit that transfers a toner image visualized on the electrophotographic photosensitive member onto a transfer material, the electrophotographic photosensitive member has a chemical structure represented by the general formula (1). X + y is 99% or less, and the composition ratio of the compound of the maximum component of the mixed compound having a distribution based on n is x, and the composition ratio of the compound of the 2-position component is y, and the surface An image forming apparatus, wherein the layer contains inorganic particles. 請求項16に記載の画像形成装置を用いて電子写真画像を形成することを特徴とする画像形成方法。An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 16.
JP2003368610A 2003-10-29 2003-10-29 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method Expired - Fee Related JP4069843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368610A JP4069843B2 (en) 2003-10-29 2003-10-29 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368610A JP4069843B2 (en) 2003-10-29 2003-10-29 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Publications (2)

Publication Number Publication Date
JP2005134516A JP2005134516A (en) 2005-05-26
JP4069843B2 true JP4069843B2 (en) 2008-04-02

Family

ID=34646220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368610A Expired - Fee Related JP4069843B2 (en) 2003-10-29 2003-10-29 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Country Status (1)

Country Link
JP (1) JP4069843B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069781B2 (en) * 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069782B2 (en) * 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4075874B2 (en) * 2003-08-28 2008-04-16 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069845B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069846B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4066938B2 (en) * 2003-11-25 2008-03-26 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069862B2 (en) * 2003-12-19 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4103810B2 (en) * 2004-01-27 2008-06-18 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4601349B2 (en) * 2004-07-20 2010-12-22 京セラミタ株式会社 Electrophotographic photoreceptor
US8173342B2 (en) * 2009-06-29 2012-05-08 Xerox Corporation Core shell photoconductors
CN116659589B (en) * 2023-07-25 2023-10-27 澳润(山东)药业有限公司 Donkey-hide gelatin cake preservation environment monitoring method based on data analysis

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375659A (en) * 1989-08-17 1991-03-29 Fuji Photo Film Co Ltd Electrophotographic sensitive body
JP3147535B2 (en) * 1991-10-23 2001-03-19 ミノルタ株式会社 Photoreceptor and electroluminescent device using distyryl compound
JP3640090B2 (en) * 1995-05-19 2005-04-20 東洋インキ製造株式会社 Hole transport material and use thereof
JP3352326B2 (en) * 1995-06-30 2002-12-03 株式会社リコー Aromatic polycarbonate resin
JPH0973183A (en) * 1995-09-04 1997-03-18 Canon Inc Electrophotographic photoreceptor, process cartridge provided with the same and electrophotographic device
JPH10148951A (en) * 1996-11-21 1998-06-02 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH10260540A (en) * 1997-03-18 1998-09-29 Mitsubishi Chem Corp Electrophotographic photoreceptor
JPH11228851A (en) * 1998-02-10 1999-08-24 Dainippon Ink & Chem Inc Distyryl compound and electrophotographic photoreceptor using the same
JP3879294B2 (en) * 1999-01-13 2007-02-07 コニカミノルタホールディングス株式会社 Electrophotographic photoreceptor, image forming method, image forming apparatus and apparatus unit
JP2000258930A (en) * 1999-03-10 2000-09-22 Dainippon Ink & Chem Inc Electrophotographic photoreceptor
JP4890706B2 (en) * 1999-06-18 2012-03-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Separation method of polymer fraction
JP3748348B2 (en) * 1999-11-05 2006-02-22 三菱化学株式会社 Electrophotographic photoreceptor
JP2001194813A (en) * 2000-01-11 2001-07-19 Konica Corp Coating liquid for electrophotographic sensitive body, electrophotographic sensitive body, image forming device and process cartridge
JP2002116568A (en) * 2000-10-05 2002-04-19 Kyocera Mita Corp Electrophotographic photoreceptor
JP2003122067A (en) * 2001-10-17 2003-04-25 Konica Corp Reversal development method, image forming method and image forming device
JP4288949B2 (en) * 2002-01-28 2009-07-01 コニカミノルタホールディングス株式会社 Electrophotographic photoreceptor, image forming apparatus, image forming method, and process cartridge
JP2003270808A (en) * 2002-03-19 2003-09-25 Ricoh Co Ltd Undercoat layer coating liquid for electrophotographic photoreceptor, method for preparing the same, electrophotographic photoreceptor and image forming apparatus with the photoreceptor
JP2003295487A (en) * 2002-03-29 2003-10-15 Kyocera Mita Corp Method for forming image by using positive charge type organic photoreceptor
JP2003307861A (en) * 2002-04-15 2003-10-31 Konica Minolta Holdings Inc Organic photoreceptor, method for forming image, image forming device and process cartridge
JP2004021194A (en) * 2002-06-20 2004-01-22 Konica Minolta Holdings Inc Method and apparatus for image formation
JP3952990B2 (en) * 2003-05-22 2007-08-01 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069782B2 (en) * 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069781B2 (en) * 2003-03-31 2008-04-02 コニカミノルタホールディングス株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4075874B2 (en) * 2003-08-28 2008-04-16 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134514A (en) * 2003-10-29 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP2005134515A (en) * 2003-10-29 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4069845B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069846B2 (en) * 2003-10-30 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134709A (en) * 2003-10-31 2005-05-26 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005156798A (en) * 2003-11-25 2005-06-16 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4066938B2 (en) * 2003-11-25 2008-03-26 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005156799A (en) * 2003-11-25 2005-06-16 Konica Minolta Business Technologies Inc Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4069862B2 (en) * 2003-12-19 2008-04-02 コニカミノルタビジネステクノロジーズ株式会社 Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method

Also Published As

Publication number Publication date
JP2005134516A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4069862B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069843B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005134709A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4069845B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069781B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069846B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4066938B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4075874B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005221539A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2005156799A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP3952990B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4069782B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005156798A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and method for forming image
JP4461921B2 (en) Organic photoreceptor, process cartridge, and image forming apparatus
JP2003307861A (en) Organic photoreceptor, method for forming image, image forming device and process cartridge
JP4103810B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4307197B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4089628B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4349218B2 (en) Organic photoreceptor, process cartridge, and image forming apparatus
JP2003280223A (en) Organophotoreceptor, image forming method, image forming apparatus and process cartridge
JP3952833B2 (en) Organic photoconductor, image forming method, image forming apparatus, and process cartridge
JP2006047457A (en) Cleanerless image forming method, cleanerless image forming apparatus, process cartridge and organic electrophotographic photoreceptor
JP2005017471A (en) Electrophotographic photoreceptor, image forming apparatus, image forming method and process cartridge
JP2011191486A (en) Image forming method and image forming apparatus
JP2004347771A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees