JP4069418B2 - Magnetic field sensor and current sensor - Google Patents

Magnetic field sensor and current sensor Download PDF

Info

Publication number
JP4069418B2
JP4069418B2 JP2003112508A JP2003112508A JP4069418B2 JP 4069418 B2 JP4069418 B2 JP 4069418B2 JP 2003112508 A JP2003112508 A JP 2003112508A JP 2003112508 A JP2003112508 A JP 2003112508A JP 4069418 B2 JP4069418 B2 JP 4069418B2
Authority
JP
Japan
Prior art keywords
current
voltage
magnetic field
impedance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003112508A
Other languages
Japanese (ja)
Other versions
JP2004317333A (en
Inventor
安一 佐野
伸彦 辻
武 岩井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003112508A priority Critical patent/JP4069418B2/en
Publication of JP2004317333A publication Critical patent/JP2004317333A/en
Application granted granted Critical
Publication of JP4069418B2 publication Critical patent/JP4069418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、マグネトインピーダンス(Magneto−Inpedance:磁気インピーダンス(MI))効果を利用し、温度センサとしても使用可能な磁界および電流センサに関する。
【0002】
【従来の技術】
アモルファスワイヤをMI効果素子として用いる電流センサは、例えばKashiwagi外2“300A CURRENT SENSOR USING AMORPHOUS WIRE CORE”「IEEE TRANSACTIONON MAGNETICS」VOL26,NO.5,SEPTEMBER 1990,p1566−1568に発表されているが、この論文に示されるような原理を利用する電流(磁界)センサは、例えば特許文献1により公知である。
【0003】
図2はこのような電流(磁界)センサの例を示す回路図である。
同図において、RFDは高周波駆動回路、MIはマグネトインピーダンス素子、D1,D2は検波回路、EAMPは誤差アンプ、CID2は定電流駆動回路である。素子MIにはバイアスコイルBCとフィードバックコイルFBCが巻かれ、抵抗R1,R2,R3とともにブリッジ回路を構成している。そのバイアスコイルBCは定電流駆動回路CID1により定電流駆動され、これにより素子MIにはバイアス磁界が発生する。
【0004】
高周波駆動回路RFDにて駆動される素子MIに、測定電流Iに比例する磁界が与えられると、素子MIにはこの磁界をキャンセルするようなフィードバック回路が作用する。すなわち、回路RFDにより抵抗R1,R2,R3および素子MIからなるブリッジ回路が高周波駆動されると、ブリッジ回路の出力はコンデンサC1、充電抵抗R4、検波ダイオードD10,D11、抵抗R6およびコンデンサC3からなる検波回路D1と、同じくコンデンサC2、充電抵抗R5、検波ダイオードD20,D21、抵抗R7およびコンデンサC4からなる検波回路D2との差信号として誤差アンプEAMPに入力され増幅される。この誤差アンプEAMPからの出力電圧は定電流駆動回路CID2により電流に変換され、この電流をフィードバックコイルFBCに流すことで、測定電流Iにより素子MIに発生する磁界がキャンセルされる。また、誤差アンプEAMPの出力からは、測定電流Iに比例した電圧が測定出力IMとして得られる。
【0005】
【特許文献1】
特開2002−318250号公報(第5頁、図1)
【0006】
【発明が解決しようとする課題】
ところで、温度センサは、種々のセンサの中でも使用頻度の多いセンサで、例えばトランス,配電盤などの電力機器は大電流による発熱量も多いことから、温度の計測を求められることが多い。その際、温度センサは電流センサとは別に電力機器に設置するのが一般的である。つまり、電流センサと温度センサとは全く別物で、センサのためのコストが高くなると言う問題がある。
したがって、この発明の課題は、センサに要するコストを低減することにある。
【0007】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、測定すべき磁界を受けその電気的インピーダンスが変化する磁気インピーダンス素子と、この素子にバイアス磁界を与えるコイルと、前記素子を高周波電流で駆動する駆動手段と、前記素子のインピーダンスを検出する検出手段と、その検出したインピーダンスを基準値に一致させるような電流をフィードバック用コイルに流す電流印加手段と、このフィードバック電流信号、またはこれを電圧信号に変換した電圧信号を磁界計測信号とする磁界センサにおいて、
前記フィードバック用コイルに対し前記検出したインピーダンスを基準値に一致させるような電圧を印加する電圧印加手段と、この電圧印加手段と前記電流印加手段のいずれか一方を選択する選択手段とを設け、この選択手段により前記電流印加手段を選択したときは、前記フィードバック用コイルに対し電流信号をフィードバックして磁界の計測を行ない、前記選択手段により前記電圧印加手段を選択したときは、前記フィードバック用コイルに対し電圧信号をフィードバックして温度の計測を行なうことを特徴とする。
【0008】
また、請求項2の発明では、測定すべき電流の発生磁界を受けその電気的インピーダンスが変化する磁気インピーダンス素子と、この素子にバイアス磁界を与えるコイルと、前記素子を高周波電流で駆動する駆動手段と、前記素子のインピーダンスを検出する検出手段と、その検出したインピーダンスを基準値に一致させるような電流をフィードバック用コイルに流す電流印加手段と、このフィードバック電流信号、またはこれを電圧信号に変換した電圧信号を電流計測信号とする電流センサにおいて、
前記フィードバック用コイルに対し前記検出したインピーダンスを基準値に一致させるような電圧を印加する電圧印加手段と、この電圧印加手段と前記電流印加手段のいずれか一方を選択する選択手段とを設け、この選択手段により前記電流印加手段を選択したときは、前記フィードバック用コイルに対し電流信号をフィードバックして電流の計測を行ない、前記選択手段により前記電圧印加手段を選択したときは、前記フィードバック用コイルに対し電圧信号をフィードバックして温度の計測を行なうことを特徴とする。
【0009】
図2の回路では、MI素子からの測定出力信号は温度特性を示さないが、フィードバックに電圧信号を用いると、フィードバックコイルの抵抗値の温度特性により、測定出力信号は温度特性を示すことになる。つまり、温度による抵抗値の変化は電圧信号の変化として捉えられるものと考え、電圧信号をフィードバックするものであり、この発明は、このような原理を利用するものである。
【0010】
【発明の実施の形態】
図1はこの発明の実施の形態を示す構成図である。
これは、図2の従来例に対し定電圧駆動回路CVD、センサ切り替えスイッチSWおよびマイコンμCOMを付加して構成される。スイッチSWはフィードバック系統を、定電流駆動回路CID2を介する電流フィードバック系とするか、または定電圧駆動回路CVDを介する電圧フィードバック系とするかの切り替えを行ない、マイコンμCOMによって制御される。
【0011】
したがって、スイッチSWが図示の位置にあれば、回路的には図2と同じとなり電流センサとして作用する。これに対し、スイッチSWを図示とは反対の位置に切り替えると、フィードバック系統が電流フィードバック系から、定電圧駆動回路CVDによる電圧フィードバック系に切り替えられる。つまり、フィードバック系統が定電流駆動回路CID2の場合は、フィードバックコイルFBCの温度が変わってそのインピーダンスが変化しても、何の変化も起こらず測定出力IMは温度によっては変化しないことになる。
【0012】
しかし、フィードバック系統が定電圧駆動回路CVDであると、フィードバックコイルFBCの温度が例えば上昇すると、そのインピーダンスはコイル抵抗の温度依存性により大きくなる。ただし、フィードバックは定電圧回路であるため、MI素子にフィードバックされる磁界は減少する。すなわち、MI素子の総磁界は減少し、これにより測定出力IMはフィードバックコイルFBCの温度に比例するものとなる。
【0013】
したがって、スイッチSWを図示の位置にして、電流フィードバック系を形成することで電流計測が可能となり、スイッチSWを図示とは反対の位置に切り替えて、電圧フィードバック系を形成することで温度計測が可能となる。
以上では、電流により発生する磁界を測定することで、間接的に電流を測定するようにしているが、直接的に磁界を測定できるのは勿論であり、したがって、温度の測定が可能な磁界センサも同様にして実現することができる。
【0014】
【発明の効果】
この発明によれば、スイッチの切り替えにより電流センサになったり、温度センサになったりするので、2種類のセンサを用意する必要がなくなり、センサに要するコストを低減することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成図
【図2】従来例を示す構成図
【符号の説明】
RFD…高周波駆動回路、MI…マグネトインピーダンス素子(MI素子)、D1,D2…検波回路、EAMP…誤差アンプ、CID1,CID2…定電流駆動回路、FBC…フィードバックコイル、BC…バイアスコイル、R1〜R7…抵抗、C1〜C4…コンデンサ、D10,D11,D20,D21…ダイオード、CVD…定電圧駆動回路、μCOM…マイコン、SW…センサ切り替えスイッチ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field and current sensor that uses a magneto-impedance (Magneto-Impedance) effect and can also be used as a temperature sensor.
[0002]
[Prior art]
A current sensor using an amorphous wire as an MI effect element is disclosed in, for example, Kashiwagi et al. 2 “300A CURRENT SENSOR USING AMORPHOUS WIRE CORE” “IEEE TRANSACTION MAGNETICS” VOL26, NO. 5, SEPTEMBER 1990, p1566-1568, a current (magnetic field) sensor using the principle as shown in this paper is known from, for example, Japanese Patent Application Laid-Open No. 2002-151405.
[0003]
FIG. 2 is a circuit diagram showing an example of such a current (magnetic field) sensor.
In the figure, RFD is a high frequency drive circuit, MI is a magneto-impedance element, D1 and D2 are detection circuits, EAMP is an error amplifier, and CID2 is a constant current drive circuit. A bias coil BC and a feedback coil FBC are wound around the element MI, and constitute a bridge circuit together with the resistors R1, R2, and R3. The bias coil BC is driven with a constant current by a constant current drive circuit CID1, thereby generating a bias magnetic field in the element MI.
[0004]
When a magnetic field proportional to the measurement current I is applied to the element MI driven by the high-frequency driving circuit RFD, a feedback circuit that cancels this magnetic field acts on the element MI. That is, when the bridge circuit including the resistors R1, R2, and R3 and the element MI is driven at high frequency by the circuit RFD, the output of the bridge circuit includes the capacitor C1, the charging resistor R4, the detection diodes D10 and D11, the resistor R6, and the capacitor C3. The difference signal between the detection circuit D1 and the detection circuit D2 including the capacitor C2, the charging resistor R5, the detection diodes D20 and D21, the resistor R7, and the capacitor C4 is input to the error amplifier EAMP and amplified. The output voltage from the error amplifier EAMP is converted into a current by the constant current drive circuit CID2, and this current is passed through the feedback coil FBC, whereby the magnetic field generated in the element MI is canceled by the measurement current I. Further, a voltage proportional to the measurement current I is obtained as a measurement output IM from the output of the error amplifier EAMP.
[0005]
[Patent Document 1]
JP 2002-318250 A (5th page, FIG. 1)
[0006]
[Problems to be solved by the invention]
By the way, a temperature sensor is a sensor that is frequently used among various sensors. For example, power devices such as transformers and switchboards have a large amount of heat generated by a large current, and therefore, temperature measurement is often required. In this case, the temperature sensor is generally installed in the power device separately from the current sensor. That is, the current sensor and the temperature sensor are completely different, and there is a problem that the cost for the sensor increases.
Accordingly, an object of the present invention is to reduce the cost required for the sensor.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, a magnetic impedance element whose electrical impedance changes upon receiving a magnetic field to be measured, a coil for applying a bias magnetic field to the element, and the element at a high frequency current. A driving means for driving; a detecting means for detecting the impedance of the element; a current applying means for causing a current that causes the detected impedance to coincide with a reference value; and a feedback current signal or a voltage applied to the feedback coil. In a magnetic field sensor using a voltage signal converted into a signal as a magnetic field measurement signal,
A voltage applying unit that applies a voltage that matches the detected impedance to a reference value to the feedback coil; and a selecting unit that selects one of the voltage applying unit and the current applying unit. When the current application means is selected by the selection means, a current signal is fed back to the feedback coil to measure the magnetic field, and when the voltage application means is selected by the selection means, the feedback coil On the other hand, a temperature signal is measured by feeding back a voltage signal.
[0008]
According to a second aspect of the present invention, there is provided a magneto-impedance element whose electrical impedance changes upon receiving a magnetic field generated by a current to be measured, a coil for applying a bias magnetic field to the element, and a driving means for driving the element with a high-frequency current. Detecting means for detecting the impedance of the element; current applying means for passing a current that causes the detected impedance to match a reference value to the feedback coil; and the feedback current signal or the voltage signal. In a current sensor that uses a voltage signal as a current measurement signal,
A voltage applying unit that applies a voltage that matches the detected impedance to a reference value to the feedback coil; and a selecting unit that selects one of the voltage applying unit and the current applying unit. When the current application means is selected by the selection means, a current signal is fed back to the feedback coil to measure current, and when the voltage application means is selected by the selection means, the feedback coil On the other hand, a temperature signal is measured by feeding back a voltage signal.
[0009]
In the circuit of FIG. 2, the measurement output signal from the MI element does not show temperature characteristics, but when a voltage signal is used for feedback, the measurement output signal shows temperature characteristics due to the temperature characteristics of the resistance value of the feedback coil. . That is, the change in resistance value due to temperature is considered as a change in voltage signal, and the voltage signal is fed back, and the present invention utilizes such a principle.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention.
This is configured by adding a constant voltage drive circuit CVD, a sensor changeover switch SW and a microcomputer μCOM to the conventional example of FIG. The switch SW switches the feedback system between a current feedback system via the constant current drive circuit CID2 or a voltage feedback system via the constant voltage drive circuit CVD, and is controlled by the microcomputer μCOM.
[0011]
Therefore, if the switch SW is in the position shown in the figure, the circuit is the same as that in FIG. On the other hand, when the switch SW is switched to a position opposite to that shown in the figure, the feedback system is switched from the current feedback system to the voltage feedback system by the constant voltage drive circuit CVD. That is, when the feedback system is the constant current drive circuit CID2, even if the temperature of the feedback coil FBC changes and its impedance changes, no change occurs and the measurement output IM does not change depending on the temperature.
[0012]
However, when the feedback system is the constant voltage drive circuit CVD, when the temperature of the feedback coil FBC rises, for example, the impedance increases due to the temperature dependence of the coil resistance. However, since the feedback is a constant voltage circuit, the magnetic field fed back to the MI element decreases. That is, the total magnetic field of the MI element is reduced, and the measurement output IM is proportional to the temperature of the feedback coil FBC.
[0013]
Therefore, the current can be measured by forming the current feedback system with the switch SW in the position shown in the figure, and the temperature can be measured by forming the voltage feedback system by switching the switch SW to the position opposite to that illustrated in the figure. It becomes.
In the above, the current is indirectly measured by measuring the magnetic field generated by the current, but it is of course possible to directly measure the magnetic field, and therefore the magnetic field sensor capable of measuring the temperature. Can be realized in the same manner.
[0014]
【The invention's effect】
According to this invention, since it becomes a current sensor or a temperature sensor by switching the switch, it is not necessary to prepare two types of sensors, and the cost required for the sensor can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a block diagram showing a conventional example.
RFD: high frequency drive circuit, MI: magnetoimpedance element (MI element), D1, D2: detection circuit, EAMP: error amplifier, CID1, CID2: constant current drive circuit, FBC: feedback coil, BC: bias coil, R1 to R7 ... resistors, C1 to C4 ... capacitors, D10, D11, D20, D21 ... diodes, CVD ... constant voltage drive circuits, .mu.COM ... microcomputers, SW ... sensor changeover switches.

Claims (2)

測定すべき磁界を受けその電気的インピーダンスが変化する磁気インピーダンス素子と、この素子にバイアス磁界を与えるコイルと、前記素子を高周波電流で駆動する駆動手段と、前記素子のインピーダンスを検出する検出手段と、その検出したインピーダンスを基準値に一致させるような電流をフィードバック用コイルに流す電流印加手段と、このフィードバック電流信号、またはこれを電圧信号に変換した電圧信号を磁界計測信号とする磁界センサにおいて、
前記フィードバック用コイルに対し前記検出したインピーダンスを基準値に一致させるような電圧を印加する電圧印加手段と、この電圧印加手段と前記電流印加手段のいずれか一方を選択する選択手段とを設け、この選択手段により前記電流印加手段を選択したときは、前記フィードバック用コイルに対し電流信号をフィードバックして磁界の計測を行ない、前記選択手段により前記電圧印加手段を選択したときは、前記フィードバック用コイルに対し電圧信号をフィードバックして温度の計測を行なうことを特徴とする磁界センサ。
A magneto-impedance element that changes its electrical impedance upon receiving a magnetic field to be measured; a coil that applies a bias magnetic field to the element; a drive unit that drives the element with a high-frequency current; and a detection unit that detects the impedance of the element; In the magnetic field sensor using the current application means for flowing a current that matches the detected impedance to the reference value to the feedback coil and the feedback current signal, or a voltage signal obtained by converting the feedback current signal into a voltage signal,
A voltage applying unit that applies a voltage that matches the detected impedance to a reference value to the feedback coil; and a selecting unit that selects one of the voltage applying unit and the current applying unit. When the current application means is selected by the selection means, a current signal is fed back to the feedback coil to measure the magnetic field, and when the voltage application means is selected by the selection means, the feedback coil A magnetic field sensor that measures a temperature by feeding back a voltage signal.
測定すべき電流の発生磁界を受けその電気的インピーダンスが変化する磁気インピーダンス素子と、この素子にバイアス磁界を与えるコイルと、前記素子を高周波電流で駆動する駆動手段と、前記素子のインピーダンスを検出する検出手段と、その検出したインピーダンスを基準値に一致させるような電流をフィードバック用コイルに流す電流印加手段と、このフィードバック電流信号、またはこれを電圧信号に変換した電圧信号を電流計測信号とする電流センサにおいて、
前記フィードバック用コイルに対し前記検出したインピーダンスを基準値に一致させるような電圧を印加する電圧印加手段と、この電圧印加手段と前記電流印加手段のいずれか一方を選択する選択手段とを設け、この選択手段により前記電流印加手段を選択したときは、前記フィードバック用コイルに対し電流信号をフィードバックして電流の計測を行ない、前記選択手段により前記電圧印加手段を選択したときは、前記フィードバック用コイルに対し電圧信号をフィードバックして温度の計測を行なうことを特徴とする電流センサ。
A magneto-impedance element that changes its electrical impedance in response to a generated magnetic field of a current to be measured, a coil that applies a bias magnetic field to the element, a driving means that drives the element with a high-frequency current, and an impedance of the element is detected Current detecting means, current applying means for passing a current that causes the detected impedance to match the reference value to the feedback coil, and current using this feedback current signal or a voltage signal converted from this as a voltage signal as a current measurement signal In the sensor
A voltage applying unit that applies a voltage that matches the detected impedance to a reference value to the feedback coil; and a selecting unit that selects one of the voltage applying unit and the current applying unit. When the current application means is selected by the selection means, a current signal is fed back to the feedback coil to measure current, and when the voltage application means is selected by the selection means, the feedback coil A current sensor for measuring temperature by feeding back a voltage signal.
JP2003112508A 2003-04-17 2003-04-17 Magnetic field sensor and current sensor Expired - Fee Related JP4069418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112508A JP4069418B2 (en) 2003-04-17 2003-04-17 Magnetic field sensor and current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112508A JP4069418B2 (en) 2003-04-17 2003-04-17 Magnetic field sensor and current sensor

Publications (2)

Publication Number Publication Date
JP2004317333A JP2004317333A (en) 2004-11-11
JP4069418B2 true JP4069418B2 (en) 2008-04-02

Family

ID=33472683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112508A Expired - Fee Related JP4069418B2 (en) 2003-04-17 2003-04-17 Magnetic field sensor and current sensor

Country Status (1)

Country Link
JP (1) JP4069418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848180B2 (en) 2005-10-28 2010-12-07 Casio Computer Co., Ltd. Antenna apparatus, receiving apparatus and watch using magnetic sensor
JP4687585B2 (en) * 2006-06-28 2011-05-25 カシオ計算機株式会社 Antenna circuit and clock

Also Published As

Publication number Publication date
JP2004317333A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3691551B2 (en) Current sensor based on compensation principle
JP2923307B2 (en) Current sensor
JPS60104263A (en) Detector measuring parameter
RU2473096C1 (en) Method and device to detect dc current and device for contact welding
EP0981760B1 (en) Conditioner circuit for torque sensor
WO2000036427A1 (en) Magnetic sensor and current sensor
JPH04306890A (en) Induction type linear displacement transducer and temperature-compensating-signal processor
JPH10332722A (en) Rotational speed detector
JPH0329801A (en) Method of compensating temperature dependency of output signal
JP4925595B2 (en) AC impedance measuring apparatus and method
JP2816175B2 (en) DC current measuring device
JP4418755B2 (en) Device for measuring current intensity
JP4069418B2 (en) Magnetic field sensor and current sensor
JP2001511892A (en) Current sensor based on compensation principle
US7089808B2 (en) Torque sensor for vehicle steering system
JP2776693B2 (en) Temperature compensation device for torque measuring device
JPH08304481A (en) Wattmeter
JP2569595B2 (en) Contact resistance detection device for sensor signal input device
JP2577800B2 (en) Automotive DC power supply current detector
JPS6249227A (en) Harmonic measuring oscillator
CN114280350B (en) High-precision current sensor and shunt-based high-current measurement method
CN217034077U (en) Large current measuring device based on high-precision current sensor and shunt
US6703822B2 (en) Circuit for detecting a current passing through a consumer
JPH05333069A (en) Method for measuring electric resistance
JPH11257908A (en) Electromagnetic induction type sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees