JPH05333069A - Method for measuring electric resistance - Google Patents

Method for measuring electric resistance

Info

Publication number
JPH05333069A
JPH05333069A JP13515392A JP13515392A JPH05333069A JP H05333069 A JPH05333069 A JP H05333069A JP 13515392 A JP13515392 A JP 13515392A JP 13515392 A JP13515392 A JP 13515392A JP H05333069 A JPH05333069 A JP H05333069A
Authority
JP
Japan
Prior art keywords
voltage
resistor
measured
resistance value
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13515392A
Other languages
Japanese (ja)
Inventor
Tomoichirou Oota
智市郎 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13515392A priority Critical patent/JPH05333069A/en
Publication of JPH05333069A publication Critical patent/JPH05333069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To measure a stable and highly accurate resistance value without dependence on power supply voltage by producing pulse signals having different pulse widths according to a resistance value of a resistor to be measured and measuring its pulse width. CONSTITUTION:When power is supplied to a circuit, operational amplifiers OP1, OP2 actuate. Since the amplifier OP2, with normal feedback applied by resistors R1, R2, operates as a hysteresis comparator, output voltage V1 from the amplifier OP1 rises due to flow-in current from a resistor RX to be measured and if it exceeds reverse voltage VT determined by the resistors R1, R2, output voltage V0 from the amplifier OP2 is instantaneously inverted to be applied to the resistor RX. Then a flow-in current direction to the amplifier OP1 is also inverted and if the voltage V1 exceeds the reverse voltage VT, the voltage V0 is again inverted having voltage V0 of original polarity applied to the resistor RX. Thus the amplifiers OP1, OP2 maintain oscillation states. Pulse width of an oscillating waveform at this time is stable and is proportional to a resistance value of the resistor RX, so that a correct resistance value can be obtained by measuring this.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種素子等の電気抵抗
測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring electric resistance of various elements and the like.

【0002】[0002]

【従来の技術】従来、電気抵抗の測定方法としては、被
測定体である抵抗に一定の電流をながしその抵抗体の電
圧ドロップを測定し測定電圧値を流した電流の定電流値
で割る事により抵抗値を算出する方法が広く知られてい
る。この方法の利点としては例えば1mAの定電流源を
用意すれば被測定体の電圧ドロップが1V当りの抵抗値
としては1KΩになるため、電圧値を直読すれば抵抗値
がそのまま換算でき、また、特別に割算等の演算を行な
う必要が無いので、非常に簡単な構成で済むことが挙げ
られる。
2. Description of the Related Art Conventionally, as a method of measuring electric resistance, a constant current is applied to a resistance which is an object to be measured, the voltage drop of the resistance is measured, and the measured voltage value is divided by a constant current value of the applied current. A widely known method is to calculate the resistance value. As an advantage of this method, for example, if a constant current source of 1 mA is prepared, the voltage drop of the measured object becomes 1 KΩ as a resistance value per 1 V, so the resistance value can be directly converted by directly reading the voltage value. Since it is not necessary to perform special operations such as division, it is possible to use a very simple configuration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
電気抵抗測定方法では、正確な抵抗値測定を行なうため
には、定電流源の電流値が正確である事が要求され、高
精度の定電流源を作成する必要があるので非常に高価な
回路や精密な部品を使用する必要が有った。
However, in the conventional electric resistance measuring method, in order to measure the resistance value accurately, it is required that the current value of the constant current source is accurate. Since it was necessary to create the source, it was necessary to use very expensive circuits and precision components.

【0004】また前記の方法では高抵抗値を計るために
は定電流源として非常に微小電流が要求されるため定電
流電源の実現が難しかった。
Further, in the above method, a very small current is required as a constant current source in order to measure a high resistance value, so that it is difficult to realize a constant current power source.

【0005】そこで、本発明の目的は、電源に抵抗より
測定値が左右されていない電気抵抗測定方法を提供する
ことにある。
Therefore, an object of the present invention is to provide an electric resistance measuring method in which the measured value is not affected by the resistance of the power supply.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために本発明は、測定対象の抵抗体の抵抗値に応じて
パルス幅が異なるパルス信号を作成し、当該作成された
パルス信号のパルス幅を測定することを特徴とする。
In order to achieve such an object, the present invention creates a pulse signal having a different pulse width according to the resistance value of the resistor to be measured, and It is characterized by measuring the pulse width.

【0007】[0007]

【作用】測定対象の抵抗体を用いて作成したパルス信号
のパルス幅を測定する事により、抵抗値測定を行なうの
で、電流値が正確である必要はない。
Since the resistance value is measured by measuring the pulse width of the pulse signal created by using the resistor to be measured, the current value does not need to be accurate.

【0008】[0008]

【実施例】図1は本発明の一実施例を示す図面であり、
図4および図6〜図8と同一符号は同一構成部分を示し
ている。
FIG. 1 is a view showing an embodiment of the present invention,
The same reference numerals as those in FIGS. 4 and 6 to 8 denote the same components.

【0009】図1においてRXは、測定対象物である抵
抗体であり、(積分用)オペアンプOP1のマイナス端
子と(ヒステリシス用)オペアンプOP2の出力端子に
接続される。C1は、オペアンプOP1のマイナス端子
と出力端子間に接続されRXに流れる電流を蓄える積分
コンデンサであり、オペアンプOP1は、コンデンサC
1と組合せることにより抵抗体RXに流れる電流を蓄積
するミラー積分回路を構成する。
In FIG. 1, RX is a resistor which is an object to be measured, and is connected to the negative terminal of the (integration) operational amplifier OP1 and the output terminal of the (hysteresis) operational amplifier OP2. C1 is an integrating capacitor that is connected between the negative terminal and the output terminal of the operational amplifier OP1 and stores the current flowing in RX, and the operational amplifier OP1 is a capacitor C
A combination with 1 forms a Miller integrating circuit that accumulates the current flowing through the resistor RX.

【0010】オペアンプOP1の出力端子は、抵抗R1
を介してオペアンプOP2のプラス端子に接続され、そ
のプラス端子は、抵抗R2を介しオペアンプOP2の出
力端子に接続することでオペアンプOP2にポジティブ
フィードバックをかけている。オペアンプOP1のプラ
ス入力端子とオペアンプOP2のマイナス入力端子は接
地される。以上の接続により発振回路を構成する。ま
た、オペアンプOP2の出力端子の発振出力は、パルス
幅を測定するパルス幅カウンターに接続される。
The output terminal of the operational amplifier OP1 is a resistor R1.
Is connected to the positive terminal of the operational amplifier OP2 via the resistor R2, and the positive terminal is connected to the output terminal of the operational amplifier OP2 via the resistor R2 to give positive feedback to the operational amplifier OP2. The positive input terminal of the operational amplifier OP1 and the negative input terminal of the operational amplifier OP2 are grounded. The oscillation circuit is configured by the above connection. The oscillation output from the output terminal of the operational amplifier OP2 is connected to a pulse width counter that measures the pulse width.

【0011】次に動作に付いて説明する。Next, the operation will be described.

【0012】この回路に電源を投入することによりオペ
アンプOP1とオペアンプOP2は動作を始める。まず
オペアンプOP2は、抵抗R1とR2により正帰還が掛
っているためノイズやオフセット電圧などを増幅し出力
電圧VO は、プラス側もしくはマイナス側の電源電圧に
近い値に飽和する。
By turning on the power supply to this circuit, the operational amplifiers OP1 and OP2 start operating. First, the operational amplifier OP2 amplifies noise and offset voltage because positive feedback is applied by the resistors R1 and R2, and the output voltage V O is saturated to a value close to the power supply voltage on the plus side or the minus side.

【0013】オペアンプOP1のマイナス入力端子は、
コンデンサC1からのフィードバックにより接地電位に
なるように制御されているため被測定抵抗RXにはオペ
アンプOP2の出力電圧VO が印加される。
The negative input terminal of the operational amplifier OP1 is
The measured resistance RX since it is controlled so that the ground potential by the feedback from the capacitor C1 the output voltage V O of the operational amplifier OP2 is applied.

【0014】オペアンプOP1のマイナス端子には、オ
ペアンプOP2の出力電圧VO を被測定抵抗RXの抵抗
値で割った値の電流が流れ込むため、オペアンプOP1
の出力電圧は流入電流に見合うだけ出力電圧V1の電圧
を増やしてゆき、コンデンサC1により流入電流を吸収
する。この出力電圧V1は、マイナス端子の電流を打消
す方向のため出力電圧VO とは逆極性になる。
A current having a value obtained by dividing the output voltage V O of the operational amplifier OP2 by the resistance value of the resistance RX to be measured flows into the negative terminal of the operational amplifier OP1.
Output voltage V1 increases as much as the inflow current, and the inflow current is absorbed by the capacitor C1. This output voltage V1 has a polarity opposite to that of the output voltage V O because it is in the direction of canceling the current at the negative terminal.

【0015】ここでオペアンプOP2は、抵抗R1とR
2により正帰還が掛っておりヒステリシスコンパレータ
として動作するためオペアンプOP1の出力電圧V1が
ある値以上になった時に出力を反転させる動作を行な
う。そのため、オペアンプOP1の出力電圧V1が、被
測定抵抗RXからの流入電流により上昇して行きR1と
R2の抵抗で決定される反転電圧VT を越えると出力電
圧VO は瞬時にして反転し被測定抵抗RXには逆転され
たVO が印加され、オペアンプOP1に対する流入電流
の方向も逆転する。
Here, the operational amplifier OP2 includes resistors R1 and R
Since positive feedback is applied by 2 and operates as a hysteresis comparator, the operation of inverting the output is performed when the output voltage V1 of the operational amplifier OP1 exceeds a certain value. Therefore, when the output voltage V1 of the operational amplifier OP1 rises due to the inflow current from the resistor RX to be measured and exceeds the inversion voltage V T determined by the resistances of R1 and R2, the output voltage V O is instantly inverted and the output voltage V O is inverted. The reversed V O is applied to the measurement resistor RX, and the direction of the inflow current to the operational amplifier OP1 is also reversed.

【0016】そこで、オペアンプOP1の出力電圧V1
も逆方向に増加する事により流入電流をC1により吸収
する。
Therefore, the output voltage V1 of the operational amplifier OP1
Also increases in the opposite direction so that the inflow current is absorbed by C1.

【0017】オペアンプOP1の出力電圧V1は、オペ
アンプOP2の先程とは逆方向の反転電圧VT に達する
まで上昇して行き、反転電圧VT をこえると出力電圧V
O は瞬時にして反転し被測定抵抗RXには最初に印加さ
れた極性のVO が印加され、オペアンプOP1に対する
流入電流の方向も最初の向きになる。
The output voltage V1 of the operational amplifier OP1 rises until it reaches an inversion voltage V T in the opposite direction to that of the operational amplifier OP2, and when it exceeds the inversion voltage V T , the output voltage V 1 rises.
O is instantly inverted and V O having the first applied polarity is applied to the measured resistor RX, and the direction of the inflow current to the operational amplifier OP1 is also the first direction.

【0018】このようにしてオペアンプOP1とオペア
ンプOP2は、発振を開始し、発振状態を維持する。そ
の時の発振波形を、図2に示す。
In this way, the operational amplifier OP1 and the operational amplifier OP2 start oscillation and maintain the oscillation state. The oscillation waveform at that time is shown in FIG.

【0019】ここでこの回路の発振時のパルス幅Tw
は、
Here, the pulse width Tw during oscillation of this circuit
Is

【0020】[0020]

【数1】 [Equation 1]

【0021】で示され式中、の電流ixは、Where the current ix of

【0022】[0022]

【数2】 [Equation 2]

【0023】のため(数1)式に(数2)式を代入する
Therefore, by substituting the equation (2) into the equation (1),

【0024】[0024]

【数3】 [Equation 3]

【0025】となりパルス幅Twは、RXの値に比例す
るので発振パルス幅Twを測定する事により、被測定抵
抗であるRXの値を測定することが実現できる。また本
実施例ではVT は、
Since the pulse width Tw is proportional to the value of RX, the value of RX which is the resistance to be measured can be realized by measuring the oscillation pulse width Tw. In this embodiment, V T is

【0026】[0026]

【数4】 [Equation 4]

【0027】で示され(数3)式に代入すると、Substituting into the equation (3) shown by

【0028】[0028]

【数5】 [Equation 5]

【0029】となり、発振パルス幅は、被測定抵抗RX
及び定数R1とR2とC1により設定されるため電源電
圧の影響などもない非常に安定したパルス幅が発振可能
なため被測定抵抗RXの測定も高精度に行なう事が出来
る。
Therefore, the oscillation pulse width is the resistance RX to be measured.
Further, since it is set by the constants R1, R2 and C1, a very stable pulse width without the influence of the power supply voltage can be oscillated, so that the measured resistance RX can be measured with high accuracy.

【0030】図4は、本発明の第2の実施例の回路構成
を示す。
FIG. 4 shows the circuit configuration of the second embodiment of the present invention.

【0031】この回路では抵抗値測定回路を単一電源に
より動作させるためVCCの中間電圧を分割抵抗R3とR
4により作成し、オペアンプOP1のプラス入力端子と
オペアンプOP2のマイナス入力端子を接続する事によ
り中間電圧を中心に発振が出来るので被測定抵抗RXの
値をパルス幅で読取る事が単一電源でも実現できる。そ
のため電源系統が簡略化でき低価格化が計れる。
In this circuit, since the resistance value measuring circuit is operated by a single power source, the intermediate voltage of V CC is divided into the dividing resistors R3 and R3.
4 and connect the positive input terminal of the operational amplifier OP1 and the negative input terminal of the operational amplifier OP2 to oscillate around the intermediate voltage, so reading the value of the measured resistance RX with the pulse width is also possible with a single power supply. it can. Therefore, the power supply system can be simplified and the price can be reduced.

【0032】また、その時の動作波形は、図5の様にな
る。
The operation waveform at that time is as shown in FIG.

【0033】図6は、本発明の第3の実施例の回路構成
を示す。この回路は、被測定抵抗であるRXに印加され
る電力や電圧を制限した例である。
FIG. 6 shows the circuit configuration of the third embodiment of the present invention. This circuit is an example in which the power and voltage applied to the measured resistance RX is limited.

【0034】本実施例では、ヒステリシスコンパレータ
であるOP2の出力電圧を抵抗R5とツェナーダイオー
ドZD1とZD2によりクランプし、オペアンプOP3
のバッファーを通じたものを出力電圧VO とする事によ
り被測定体RXに印加する電圧値を制限するものであ
る。
In this embodiment, the output voltage of the hysteresis comparator OP2 is clamped by the resistor R5 and the Zener diodes ZD1 and ZD2, and the operational amplifier OP3 is provided.
The voltage value applied to the measured object RX is limited by setting the output voltage V O through the buffer.

【0035】これは、被測定体である抵抗RXが何等か
のセンサーなどの場合、印加電力が大き過ぎると抵抗体
RXが自己昇温してしまい正確な値が測定できないとい
う等の問題点に対策を施すものである。また、図中のク
ランプ回路に対しては、種々の方式を使用しても構わな
いので、例えばツェナーダイオードの替りにダイオード
を使用しそのVF 値によりクランプを行なうなどの方法
が可能である。
This is a problem in that in the case of a sensor or the like having a resistance RX which is an object to be measured, if the applied power is too large, the resistance RX will self-heat and an accurate value cannot be measured. It is to take measures. Further, since various methods may be used for the clamp circuit in the figure, for example, a diode may be used instead of the Zener diode and clamping may be performed by the V F value.

【0036】図7は、本発明の第4の実施例であり、回
路構成を示し、この回路は、被抵抗値測定体RXの印加
電圧VO と反転電圧VT を各々独立に設定できるように
した1例である。
[0036] Figure 7 is a fourth embodiment of the present invention, shows a circuit configuration, the circuit to be set independently of the inverted voltage V T and the applied voltage V O of the resistance measuring element RX It is an example of

【0037】本実施例では、コンパレータCMP1とC
MP2でオペアンプOP1の積分出力電圧V1を比較判
定しその出力をフリップ−フロップ回路でラッチして出
力の極性反転を発生させることにより被抵抗値測定体R
Xの印加電圧VO と反転電圧VT の関係を独立に設定で
きるようにしたものである。
In this embodiment, the comparators CMP1 and CMP
By comparing and judging the integrated output voltage V1 of the operational amplifier OP1 with MP2 and latching the output by the flip-flop circuit to generate polarity inversion of the output, the resistance value measured object R
The relationship between the applied voltage V O of X and the inversion voltage V T can be set independently.

【0038】通常反転電圧VT は印加電圧VO よりも小
さい値となり被抵抗値測定体RXの印加電圧VO を制限
した時は、反転電圧VT も小さくなる。そのためオペア
ンプOP1の出力電圧V1の振幅も小さくなりヒステリ
シスコンパレータではノイズの影響を受けやすくなり精
度の高い測定が出来ないという問題点の対策方法とし
て、この様に反転電圧VT を各々独立に設定する事で、
積分用オペアンプOP1の出力電圧V1の振幅を大きく
出来るので被抵抗値測定体RXの値を高精度に測定する
事が可能になる。
[0038] When normal that limits the applied voltage V O of the inverted voltage V T is the applied voltage V O value smaller than a will be the resistance value measuring element RX is also small inversion voltage V T. Therefore, the amplitude of the output voltage V1 of the operational amplifier OP1 also becomes small, and the hysteresis comparator is easily affected by noise, so that the inversion voltage V T is independently set as a countermeasure against the problem that accurate measurement cannot be performed. Thing
Since the amplitude of the output voltage V1 of the integrating operational amplifier OP1 can be increased, it becomes possible to measure the value of the resistance value measured object RX with high accuracy.

【0039】図8は、本発明の第5の実施例の回路構成
を示し、この回路は被抵抗値測定体RXの値の範囲が非
常に広範囲に渉る時の1例である。
FIG. 8 shows the circuit configuration of the fifth embodiment of the present invention, and this circuit is an example when the range of the value of the resistance value measured object RX extends over a very wide range.

【0040】本実施例では、被抵抗値測定体RXの値の
範囲が広範囲に渉る場合は図3に示されるようにコンデ
ンサC1の積分コンデンサの容量値を切換える事が有効
である。このため、パルス幅カウンターのカウント値が
オーバーした場合は、レンジアップ信号を、また、カウ
ント値が少ない場合は、レンジダウン信号を発生させ
る。そのアップダウン信号によりコンデンサC1からC
4に直列に接続されているスイッチS1からS4を切換
える事で広い範囲で高精度の抵抗値測定が実現できる。
In this embodiment, it is effective to switch the capacitance value of the integrating capacitor of the capacitor C1 as shown in FIG. 3 when the range of the value of the resistance value measuring object RX extends over a wide range. Therefore, when the count value of the pulse width counter exceeds, a range up signal is generated, and when the count value is small, a range down signal is generated. The up / down signal causes capacitors C1 to C
By switching the switches S1 to S4 which are connected in series with the resistor 4, the resistance value can be measured with high accuracy in a wide range.

【0041】[0041]

【発明の効果】以上説明したように、積分回路と、その
出力電圧を比較、反転させるヒステリシスコンパレータ
とそのコンパレータの出力から測定対象物である抵抗体
を積分回路の入力として接続する事によって測定対象物
である抵抗体の抵抗値に比例したパルス幅を発生させ、
そのパルス幅を測定する事により被測定抵抗の抵抗値と
する構成により、電源電圧依存性の無い安定で、高精度
の抵抗値測定が実現できる。
As described above, an integrating circuit, a hysteresis comparator for comparing and inverting the output voltage of the integrating circuit, and a resistor as a measuring object from the output of the comparator are connected as the input of the integrating circuit to measure the measuring object. Generates a pulse width proportional to the resistance value of the resistor
With the configuration in which the resistance value of the resistance to be measured is measured by measuring the pulse width, stable and highly accurate resistance value measurement without power supply voltage dependency can be realized.

【0042】またこの方法では、特別な定電流源などが
不用なため積分コンデンサの絶縁抵抗が高いものを使用
する事により、非常に高抵抗まで測定が可能になる。更
に、この測定方法では被測定体に印加される電圧は、交
流分のみであるため測定対象物が有機物などを使用した
センサーの抵抗値測定を行なうのにも適している特徴を
持つ。
Further, in this method, since a special constant current source or the like is unnecessary, by using an integrating capacitor having a high insulation resistance, it is possible to measure a very high resistance. Further, in this measuring method, the voltage applied to the object to be measured is only an alternating current component, and therefore has a characteristic that it is suitable for measuring the resistance value of a sensor using an organic substance as the object to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の回路構成を示す回路図である。FIG. 1 is a circuit diagram showing a circuit configuration of a first embodiment.

【図2】図1の回路の信号波形を示す波形図である。FIG. 2 is a waveform diagram showing signal waveforms of the circuit of FIG.

【図3】積分コンデンサ容量対発振パルス幅特性を示す
特性図である。
FIG. 3 is a characteristic diagram showing an integration capacitor capacity vs. oscillation pulse width characteristic.

【図4】第2の実施例の回路構成を示す回路図である。FIG. 4 is a circuit diagram showing a circuit configuration of a second embodiment.

【図5】図4の回路の信号波形を示す波形図である。5 is a waveform diagram showing a signal waveform of the circuit of FIG.

【図6】第3の実施例の回路構成を示す回路図である。FIG. 6 is a circuit diagram showing a circuit configuration of a third embodiment.

【図7】第4の実施例の回路構成を示す回路図である。FIG. 7 is a circuit diagram showing a circuit configuration of a fourth embodiment.

【図8】第5の実施例の回路構成を示す回路図である。FIG. 8 is a circuit diagram showing a circuit configuration of a fifth embodiment.

【符号の説明】[Explanation of symbols]

C1〜C4 積分コンデンサ C5 バイパスコンデンサ OP1 (積分用)オペアンプ OP2 (ヒステリシス用)オペアンプ R1,R2 ヒステリシス設定用抵抗 RX 測定対象抵抗 C1 to C4 integration capacitor C5 bypass capacitor OP1 (for integration) operational amplifier OP2 (for hysteresis) operational amplifier R1, R2 hysteresis setting resistance RX measurement target resistance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象の抵抗体の抵抗値に応じてパル
ス幅が異なるパルス信号を作成し、当該作成されたパル
ス信号のパルス幅を測定することを特徴とする電気抵抗
測定方法。
1. A method for measuring electrical resistance, characterized in that a pulse signal having a different pulse width is created in accordance with the resistance value of a resistor to be measured, and the pulse width of the created pulse signal is measured.
JP13515392A 1992-05-27 1992-05-27 Method for measuring electric resistance Pending JPH05333069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13515392A JPH05333069A (en) 1992-05-27 1992-05-27 Method for measuring electric resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13515392A JPH05333069A (en) 1992-05-27 1992-05-27 Method for measuring electric resistance

Publications (1)

Publication Number Publication Date
JPH05333069A true JPH05333069A (en) 1993-12-17

Family

ID=15145060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13515392A Pending JPH05333069A (en) 1992-05-27 1992-05-27 Method for measuring electric resistance

Country Status (1)

Country Link
JP (1) JPH05333069A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051966A (en) * 2005-08-19 2007-03-01 Hioki Ee Corp Inspection device
CN102539925A (en) * 2010-12-30 2012-07-04 北京中科微纳物联网技术股份有限公司 High-accuracy dynamic testing method for sensor
CN102539924A (en) * 2010-12-13 2012-07-04 北京中科微纳物联网技术股份有限公司 Wide-range precise measuring circuit for resistance of nano sensor and method
CN112130029A (en) * 2020-10-10 2020-12-25 中车青岛四方机车车辆股份有限公司 Train network fault detection tool and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051966A (en) * 2005-08-19 2007-03-01 Hioki Ee Corp Inspection device
CN102539924A (en) * 2010-12-13 2012-07-04 北京中科微纳物联网技术股份有限公司 Wide-range precise measuring circuit for resistance of nano sensor and method
CN102539925A (en) * 2010-12-30 2012-07-04 北京中科微纳物联网技术股份有限公司 High-accuracy dynamic testing method for sensor
CN112130029A (en) * 2020-10-10 2020-12-25 中车青岛四方机车车辆股份有限公司 Train network fault detection tool and detection method
CN112130029B (en) * 2020-10-10 2024-03-01 中车青岛四方机车车辆股份有限公司 Train network fault detection tool and detection method

Similar Documents

Publication Publication Date Title
KR960006439B1 (en) Circuit for converting analog signal to logic signal
EP0975982B1 (en) Impedance detection apparatus and method
US6346812B1 (en) Conditioner circuit for magnetic field sensor
EP0774178B1 (en) Detection circuit with hysteresis proportional to the peak input voltage
JPS60104263A (en) Detector measuring parameter
US4384251A (en) Pulse-duty-cycle-type evaluation circuit for a variable inductance
US5150611A (en) Flow sensor
US5497667A (en) Torque detecting apparatus
JPH05333069A (en) Method for measuring electric resistance
US4868909A (en) Signal shaping circuit utilizing a magneto-resistor in a voltage divider circuit
US6407631B2 (en) Charge-type sensor amplifying circuit
EP0228809B1 (en) Electromagnetic flowmeters
US6172507B1 (en) Circuit configuration for measuring resistance and leakage
US5745062A (en) Pulse width modulation analog to digital converter
US20030155931A1 (en) Current detection circuit for A/F sensor
SU756313A1 (en) Measuring converter of active electric conductivity into voltage
JP2687615B2 (en) Switch arc voltage measuring device
SU672571A1 (en) Magnetic field measuring device
SU1160321A1 (en) Device for measuring amplitude values of a.c.electric signals
RU2143122C1 (en) Flux density measuring transducer
JPH0450500Y2 (en)
KR790001827Y1 (en) Temperature measurement device
SU1147930A1 (en) Device for measuring vibration amplitude
SU1185063A1 (en) Inductive measuring device
SU1187101A1 (en) Apparatus for measuring electric circuit ratings