JP4068440B2 - Method for producing copper ultrafine particles - Google Patents

Method for producing copper ultrafine particles Download PDF

Info

Publication number
JP4068440B2
JP4068440B2 JP2002345347A JP2002345347A JP4068440B2 JP 4068440 B2 JP4068440 B2 JP 4068440B2 JP 2002345347 A JP2002345347 A JP 2002345347A JP 2002345347 A JP2002345347 A JP 2002345347A JP 4068440 B2 JP4068440 B2 JP 4068440B2
Authority
JP
Japan
Prior art keywords
copper
particles
ultrafine
particle size
diethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002345347A
Other languages
Japanese (ja)
Other versions
JP2004176147A (en
Inventor
恩海 孫
睦弘 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002345347A priority Critical patent/JP4068440B2/en
Publication of JP2004176147A publication Critical patent/JP2004176147A/en
Application granted granted Critical
Publication of JP4068440B2 publication Critical patent/JP4068440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、導電ペースト材料、電磁波シールド材料等の電子材料として有用な、銅超微粒子の製造方法に関する。
【0002】
【従来の技術】
ガラス、セラミックス等の絶縁性基板上にスクリーン印刷または直接、描画法等で導体ペーストを所定パターンに塗布し、焼成することにより電極および配線を形成技術は、厚膜技術としてすでに実用化されている。この厚膜において、銅導体ペーストは、低抵抗率であり、耐マイグレーションに優れ、微細回路が形成可能であるため、従来の銀系導体ペーストに代わる傾向にあることは知られている。
【0003】
この塗料には、通常、0.5〜10μm程度の銅微粉末が用いられているが、回路の高密度化に伴う微細配線化のため、さらに微細で、しかも球状の銅超微粒子金属粉末が強く求められている。
銅微粉末の製造には種々の方法が提案されているが、製造コストの有利性から溶液還元法が多く用いられている。この溶液還元法のうち、0.2〜10μmの粒径の銅微粒子製造方法には、これまで主に次のような技術が開示されている。
【0004】
1)炭酸銅水溶液にヒドラジンを加えて加熱することにより銅粉を得る方法(特許文献1)。
2)硫酸銅水溶液をヒドラジンで還元する際に、反応溶液に各種界面活性剤を添加する方法(特許文献2〜5)。
3)硫酸銅水溶液をヒドラジンで還元する際に、反応溶液中に保護コロイドを添加する方法(特許文献6)。
【0005】
4)酸化銅スラリーに保護コロイドを添加する方法(特許文献7)。
5)酸化銅粉末の表面にエチレングリコールで被覆した後にヒドラジン還元する方法(特許文献8)。
6)硫酸銅水溶液を還元糖で亜酸化銅に還元後ヒドラジン還元する方法(特許文献9)。
【0006】
しかし、これらの方法で製造された銅粉末は、粒径が0.2μm以上であって、0.1μm以下の銅超微粒子を得ることはできない。
粒径0.1μm以下の銅超微粒子を製造する方法としては、1価のアルコール中に水酸化銅を分散しながら還元剤を添加し、加熱することを特徴とする製造方法が知られているが(特許文献10)、この方法により製造される0.1μm以下の銅超微粒子は、凝集しやすく、実際には1μm以上の二次粒子になっている。また、この方法によると、50℃以上の加熱が必要であり、加熱のための製造設備を用いるために製造工程が煩雑になるという問題点を有する。
【0007】
【特許文献1】
特開昭57−155302号公報
【特許文献2】
特開昭62−27508号公報
【特許文献3】
特開昭62−40302号公報
【特許文献4】
特開昭62−77407号公報
【特許文献5】
特開昭62−77408号公報
【特許文献6】
特開昭62−77406号公報
【特許文献7】
特公昭61−55562号公報
【特許文献8】
特開平4−290706号公報
【特許文献9】
特開平4−116109号公報
【特許文献10】
特許第2621915号明細書
【0008】
【発明が解決しようとする課題】
本発明の課題は、銅超微粒子、特に、0.1μm以下の銅超微粒子を、低温で、容易に、短時間で製造する方法を提供することである。
【0009】
【問題を解決するための手段】
本発明者らは、上記の問題点を解決するために鋭意検討を進めた結果、カチオン系界面活性剤を含有する多価アルコール中において、酢酸銅水溶液を還元処理することによって、銅超微粒子、特に0.1μm以下の銅超微粒子が得られることを見出し、本発明を完成させるに至った。
すなわち、本発明の銅超微粒子の製造方法は、以下のとおりである。
(1) 分散体全量に対して、0.01〜70質量%のカチオン系界面活性剤、10質量%以上の多価アルコール、および酢酸銅を含む分散体中において、酢酸銅を還元処理することを特徴とする銅超微粒子の製造方法。
【0010】
(2) カチオン系界面活性剤が、炭鎖6〜10のテトラアルキルアンモニウム塩であることを特徴とする(1)に記載の銅超微粒子の製造方法。
(3) 多価アルコールが、ジエチレングリコールであることを特徴とする(1)または(2)に記載の銅超微粒子の製造方法。
(4) 10〜60℃の温度で還元処理を行うことを特徴とする(1)〜(3)のいずれか1つに記載の銅超微粒子の製造方法。
【0011】
本発明について、以下、詳細に説明する。
本発明の方法における出発原料の銅塩として、酢酸銅を用いることが必要である。酢酸銅以外の硫酸銅、シュウ化銅、硝酸銅等の銅塩を出発原料として用いると、得られる銅粒子の粒径が0.1μmを越える。ここで、粒径とは、電子顕微鏡を用いて測定が可能な1次粒径を指す。
分散体中における酢酸銅の割合は限定されないが、好ましくは0.1〜50質量%である。
【0012】
本発明は、カチオン系界面活性剤を含有する多価アルコール中において、酢酸銅を還元処理するものである。カチオン系界面活性剤としては、ピリジニウム塩型、アンモニウム塩型のいずれも使用可能であるが、好ましくは、テトラオクチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、テトラヘキサデシルアンモニウムブロマイド、テトラオクタデシルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、ドデシルトリメチルアンモニウムブロマイド、ドデシルトリメチルアンモニウムクロライド、等のテトラアルキルアンモニウム塩である。その中でも、より好ましいものは、炭鎖6〜10のアルチル基を有するテトラアルキルアンモニウム塩、例えば、テトラオクチルアンモニウムブロマイドである。これらの界面活性剤を反応液中に添加することによって、酢酸銅を還元して析出した銅超微粒子の凝集および粒成長が抑制され、粒径0.1μm以下の銅超微粒子が得られる。
【0013】
分散体中に加えるカチオン系界面活性剤の量は、分散体全量に対して0.01〜70質量%であり、好ましくは、0.1〜70質量%である。カチオン系界面活性剤の量が0.01質量%未満では、銅超微粒子を安定化する効果が充分でなく、70質量%を越えると、分散体の粘度が高くなりすぎて分散体の取り扱いが難しくなる。
本発明に用いられる多価アルコールは、その水酸基が、生成物の銅超微粒子又はその中間体である酸化銅超微粒子と水素結合することによって生成する銅超微粒子の凝集を防ぐ効果を有する。多価アルコールの量が、分散体全量に対して10質量%未満では、粒径0.1μm以下の銅超微粒子を得ることができない。
【0014】
本発明に使用される多価アルコールは、分子中に2個以上の水酸基を有するものであって、分散体全量に対して10質量%以上添加する必要がある。多価アルコールは、室温において溶液である化合物であることが好ましい。このような多価アルコールとしては、例えば、エチレングリコール、ジエンチレングリコール、トリエチレングリコール、ポリエチレングリコール、ゲリセリン、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール等が挙げられる。これらの多価アルコールは単独で用いても、複数の多価アルコールを混合して用いてもよい。なかでも、好ましいものはジエチレングリコールである。
本発明で用いられる分散媒体は限定されず、多価アルコールとカチオン系界面活性剤を均一に分散させるものが好ましい。このような分散媒体として、例えば、水、アルコール系、エーテル系、エステル系、アミド系等の有機溶媒等が挙げられる。
【0015】
酢酸銅の還元処理に用いられる還元剤には制限はなく、例えば、ヒドラジン、ヒドラジン水化物、ホルムアルデヒド、水素化ホウ素ナトリウム、水素化ホウ素リチウム等が用いられる。中でも、多価アルコールへの溶解度の高い、ヒドラジンおよびヒドラジン水和物が好ましい。加える還元剤の量は、酢酸銅1モルに対して、通常、2〜4モルである。この量よりも少ないと、すべての酢酸銅を銅に変えることができず、また過剰量の還元剤を加えても未反応の還元剤が多量に残る。
本発明において、好ましい還元処理温度は10℃以上60℃以下である。60℃を越える温度で反応を行わせると、還元反応が急激に促進され、生成した銅超微粒子が凝集しやすくなる場合がある。10℃未満では、反応終了に時間がかかる。
【0016】
【発明の実施の形態】
以下に実施例および比較例によって本発明を具体的に説明する。 本発明において、酸化第一銅粒子の粒径は、日立製作所製走査型電子顕微鏡(S−4700)を用いて表面を観察して測定する。
【0017】
【実施例1】
300mlのナスフラスコに、無水酢酸銅1.5g、ジエチレングリコール37.5ml、精製水0.5gおよびテトラオクチルアンモニウムブロマイド0.5gを加えて混合させた。その後、25℃でヒドラジン抱水物300μlを添加すると、10分後、赤色の沈殿物が生成した。得られた銅超微粒子を遠心分離で沈降分離し、ジエチレングリコールに再度分散させた後、粒度測定を行った。その結果、この銅超微粒子の粒径は0.06μmであった。
【0018】
【比較例1】
試験管に硝酸銅三水和物2.4g、ジエチレングリコール37.5ml、精製水0.5gおよびテトラオクチルアンモニウムブロマイド0.1gを加えて混合させた。その後、ヒドラジン抱水物300μlを添加すると、10分後、赤色の沈殿物が生成した。得られた銅微粒子を遠心分離で沈降分離し、ジエチレングリコールに再度分散させた後、粒度測定を行った。この銅微粒子の粒径は0.36μmであった。
【0019】
【比較例2】
試験管にビスアセチルアセトナト銅2.58g、ジエチレングリコール37.5ml、精製水0.5gおよびテトラオクチルアンモニウムブロマイド0.5gを加えて混合させた。その後、ヒドラジン一抱水物300μlを添加すると、10分後、赤色の沈殿物が生成した。得られた銅微粒子を遠心分離で沈降分離し、ジエチレングリコールに再度分散の後、粒度測定を行った。この銅微粒子の粒径は0.38μmであった。
【0020】
【比較例3】
試験管に硫酸銅1.56g、ジエチレングリコール37.5ml、精製水0.5gおよびテトラオクチルアンモニウムブロマイド0.5gを加えて混合させた。その後、ヒドラジン一抱水物300μlを添加すると、10分後、赤色の沈殿物が生成した。得られた銅微粒子を遠心分離で沈降分離し、ジエチレングリコールに再度分散させた後、粒度測定を行った。この銅微粒子の粒径は1μmであった。
【0021】
【比較例4】
試験管に無水酢酸銅1.5g、ジエチレングリコール37.5ml、精製水0.5gを加えて混合させた。その後、ヒドラジン一抱水物300μlを添加すると、10分後、赤色の沈殿物が生成した。得られた銅微粒子を遠心分離により沈降分離し、ジエチレングリコールに再度分散させた後、粒度測定を行った。この銅微粒子の粒径は2.2μmであった。
【0022】
【比較例5】
ジエチレングリコールを37.5ml加える代わりに、エタノール37.5mlを加える以外は実施例1と同じ条件で反応を行い、赤色の沈殿物を得た。得られた銅微粒子を遠心分離で沈降分離し、ジエチレングリコールに再度分散の後、粒度測定を行った。この銅微粒子の粒径は0.3μmであった。
【0023】
【発明の効果】
本発明によれば、単分散した、粒径0.1μm以下の銅超微粒子を室温で、短時間に、容易に、しかも安価に製造することができる。
本発明によって得られた銅超微粒子は、より緻密な厚膜導体を形成する銅塗料に特に適する。また高純度であることから、各種触媒用としても有用なものである。
この銅超微粒子を、プリント配線板の回路パターン形成、各種ビアホールの導体形成や微細部品の接合等に用いることにより、微細回路の描画性能、当該回路パターン等の導電率特性、光学(透過)特性、接合強度特性等を改善することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ultrafine copper particles useful as an electronic material such as a conductive paste material and an electromagnetic shielding material.
[0002]
[Prior art]
A technology for forming electrodes and wiring by applying a conductive paste in a predetermined pattern by screen printing or direct drawing method on an insulating substrate such as glass or ceramics and firing it has already been put into practical use as a thick film technology. . In this thick film, it is known that the copper conductor paste has a low resistivity, excellent migration resistance, and can form a fine circuit, and therefore tends to replace the conventional silver-based conductor paste.
[0003]
For this paint, copper fine powder of about 0.5 to 10 μm is usually used. However, finer and more spherical copper ultrafine metal powder is used for fine wiring due to higher circuit density. There is a strong demand.
Various methods have been proposed for the production of copper fine powder, but a solution reduction method is often used because of the advantage of production cost. Among the solution reduction methods, the following techniques have been mainly disclosed so far in the method for producing copper fine particles having a particle diameter of 0.2 to 10 μm.
[0004]
1) A method of obtaining copper powder by adding hydrazine to a copper carbonate aqueous solution and heating (Patent Document 1).
2) A method of adding various surfactants to the reaction solution when reducing the aqueous copper sulfate solution with hydrazine (Patent Documents 2 to 5).
3) A method of adding a protective colloid to the reaction solution when reducing the aqueous copper sulfate solution with hydrazine (Patent Document 6).
[0005]
4) A method of adding a protective colloid to the copper oxide slurry (Patent Document 7).
5) A method of reducing the hydrazine after coating the surface of the copper oxide powder with ethylene glycol (Patent Document 8).
6) A method in which an aqueous copper sulfate solution is reduced to cuprous oxide with a reducing sugar followed by hydrazine reduction (Patent Document 9).
[0006]
However, the copper powder produced by these methods has a particle size of 0.2 μm or more and cannot obtain ultrafine copper particles of 0.1 μm or less.
As a method for producing ultrafine copper particles having a particle size of 0.1 μm or less, a production method is known in which a reducing agent is added while copper hydroxide is dispersed in a monovalent alcohol and heated. (Patent Document 10), the ultrafine copper particles of 0.1 μm or less produced by this method are likely to aggregate, and are actually secondary particles of 1 μm or more. Further, according to this method, heating at 50 ° C. or higher is necessary, and the manufacturing process becomes complicated because the manufacturing equipment for heating is used.
[0007]
[Patent Document 1]
JP 57-155302 A [Patent Document 2]
JP 62-27508 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 62-40302 [Patent Document 4]
JP-A-62-77407 [Patent Document 5]
JP 62-77408 A [Patent Document 6]
JP 62-77406 A [Patent Document 7]
Japanese Patent Publication No. 61-55562 [Patent Document 8]
JP-A-4-290706 [Patent Document 9]
JP-A-4-116109 [Patent Document 10]
Japanese Patent No. 2621915 specification
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing copper ultrafine particles, particularly copper ultrafine particles of 0.1 μm or less, easily at a low temperature in a short time.
[0009]
[Means for solving problems]
As a result of diligent studies to solve the above problems, the inventors of the present invention reduced the copper acetate aqueous solution in a polyhydric alcohol containing a cationic surfactant, thereby reducing copper ultrafine particles, In particular, the inventors have found that ultrafine copper particles of 0.1 μm or less can be obtained, and have completed the present invention.
That is, the method for producing ultrafine copper particles of the present invention is as follows.
(1) Reduction treatment of copper acetate in a dispersion containing 0.01 to 70% by mass of a cationic surfactant, 10% by mass or more of polyhydric alcohol, and copper acetate with respect to the total amount of the dispersion. A method for producing copper ultrafine particles.
[0010]
(2) The method for producing ultrafine copper particles according to (1), wherein the cationic surfactant is a tetraalkylammonium salt having 6 to 10 carbon chains.
(3) The method for producing ultrafine copper particles according to (1) or (2), wherein the polyhydric alcohol is diethylene glycol.
(4) The method for producing ultrafine copper particles according to any one of (1) to (3), wherein the reduction treatment is performed at a temperature of 10 to 60 ° C.
[0011]
The present invention will be described in detail below.
It is necessary to use copper acetate as the starting copper salt in the process of the present invention. When copper salts other than copper acetate, such as copper sulfate, copper oxalate, and copper nitrate, are used as starting materials, the particle size of the obtained copper particles exceeds 0.1 μm. Here, the particle size refers to a primary particle size that can be measured using an electron microscope.
Although the ratio of the copper acetate in a dispersion is not limited, Preferably it is 0.1-50 mass%.
[0012]
In the present invention, copper acetate is reduced in a polyhydric alcohol containing a cationic surfactant. As the cationic surfactant, either a pyridinium salt type or an ammonium salt type can be used, but preferably tetraoctylammonium bromide, tetrabutylammonium bromide, tetrahexadecylammonium bromide, tetraoctadecylammonium bromide, cetyltrimethyl. Tetraalkylammonium salts such as ammonium bromide, dodecyltrimethylammonium bromide, dodecyltrimethylammonium chloride. Among them, more preferable are tetraalkylammonium salts having an alkyl group of 6 to 10 carbon chains, for example, tetraoctylammonium bromide. By adding these surfactants to the reaction solution, aggregation and grain growth of copper ultrafine particles deposited by reducing copper acetate are suppressed, and copper ultrafine particles having a particle diameter of 0.1 μm or less are obtained.
[0013]
The amount of the cationic surfactant added to the dispersion is 0.01 to 70% by mass, preferably 0.1 to 70% by mass with respect to the total amount of the dispersion. When the amount of the cationic surfactant is less than 0.01% by mass, the effect of stabilizing the copper ultrafine particles is not sufficient, and when it exceeds 70% by mass, the viscosity of the dispersion becomes too high and the dispersion can be handled. It becomes difficult.
The polyhydric alcohol used in the present invention has an effect of preventing aggregation of copper ultrafine particles produced by hydrogen bonding of the hydroxyl groups with copper ultrafine particles of the product or copper oxide ultrafine particles that are intermediates thereof. When the amount of the polyhydric alcohol is less than 10% by mass with respect to the total amount of the dispersion, copper ultrafine particles having a particle diameter of 0.1 μm or less cannot be obtained.
[0014]
The polyhydric alcohol used in the present invention has two or more hydroxyl groups in the molecule, and it is necessary to add 10% by mass or more based on the total amount of the dispersion. The polyhydric alcohol is preferably a compound that is a solution at room temperature. Examples of such polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, gericin, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1, Examples include 3-butanediol, 1,4-butanediol, 2,3-butanediol, pentanediol, hexanediol, and octanediol. These polyhydric alcohols may be used alone or as a mixture of a plurality of polyhydric alcohols. Of these, preferred is diethylene glycol.
The dispersion medium used in the present invention is not limited, and a dispersion medium in which a polyhydric alcohol and a cationic surfactant are uniformly dispersed is preferable. Examples of such a dispersion medium include water, alcohol-based, ether-based, ester-based, and amide-based organic solvents.
[0015]
There is no restriction | limiting in the reducing agent used for the reduction process of copper acetate, For example, hydrazine, hydrazine hydrate, formaldehyde, sodium borohydride, lithium borohydride etc. are used. Of these, hydrazine and hydrazine hydrate having high solubility in polyhydric alcohols are preferable. The amount of the reducing agent to be added is usually 2 to 4 mol with respect to 1 mol of copper acetate. Below this amount, all the copper acetate cannot be converted to copper, and a large amount of unreacted reducing agent remains even if an excessive amount of reducing agent is added.
In the present invention, a preferable reduction treatment temperature is 10 ° C. or more and 60 ° C. or less. When the reaction is carried out at a temperature exceeding 60 ° C., the reduction reaction is accelerated rapidly, and the produced copper ultrafine particles may easily aggregate. If it is less than 10 degreeC, it will take time for completion | finish of reaction.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below with reference to examples and comparative examples. In the present invention, the particle size of the cuprous oxide particles is measured by observing the surface using a scanning electron microscope (S-4700) manufactured by Hitachi, Ltd.
[0017]
[Example 1]
To a 300 ml eggplant flask, 1.5 g of anhydrous copper acetate, 37.5 ml of diethylene glycol, 0.5 g of purified water and 0.5 g of tetraoctylammonium bromide were added and mixed. Thereafter, 300 μl of hydrazine hydrate was added at 25 ° C., and a red precipitate was formed after 10 minutes. The obtained ultrafine copper particles were separated by centrifugation and dispersed again in diethylene glycol, and then the particle size was measured. As a result, the particle size of the copper ultrafine particles was 0.06 μm.
[0018]
[Comparative Example 1]
To a test tube, 2.4 g of copper nitrate trihydrate, 37.5 ml of diethylene glycol, 0.5 g of purified water and 0.1 g of tetraoctylammonium bromide were added and mixed. Thereafter, when 300 μl of hydrazine hydrate was added, a red precipitate was formed after 10 minutes. The obtained copper fine particles were settled and separated by centrifugal separation, dispersed again in diethylene glycol, and then subjected to particle size measurement. The particle size of the copper fine particles was 0.36 μm.
[0019]
[Comparative Example 2]
To a test tube, 2.58 g of bisacetylacetonate copper, 37.5 ml of diethylene glycol, 0.5 g of purified water and 0.5 g of tetraoctylammonium bromide were added and mixed. Thereafter, 300 μl of hydrazine monohydrate was added, and a red precipitate was formed after 10 minutes. The obtained copper fine particles were settled and separated by centrifugation, and dispersed again in diethylene glycol, and then the particle size was measured. The particle diameter of the copper fine particles was 0.38 μm.
[0020]
[Comparative Example 3]
To a test tube, 1.56 g of copper sulfate, 37.5 ml of diethylene glycol, 0.5 g of purified water and 0.5 g of tetraoctyl ammonium bromide were added and mixed. Thereafter, 300 μl of hydrazine monohydrate was added, and a red precipitate was formed after 10 minutes. The obtained copper fine particles were settled and separated by centrifugal separation, dispersed again in diethylene glycol, and then subjected to particle size measurement. The copper fine particles had a particle size of 1 μm.
[0021]
[Comparative Example 4]
To a test tube, 1.5 g of anhydrous copper acetate, 37.5 ml of diethylene glycol, and 0.5 g of purified water were added and mixed. Thereafter, 300 μl of hydrazine monohydrate was added, and a red precipitate was formed after 10 minutes. The obtained copper fine particles were settled and separated by centrifugation, and dispersed again in diethylene glycol, and then the particle size was measured. The copper fine particles had a particle size of 2.2 μm.
[0022]
[Comparative Example 5]
Instead of adding 37.5 ml of diethylene glycol, the reaction was carried out under the same conditions as in Example 1 except that 37.5 ml of ethanol was added to obtain a red precipitate. The obtained copper fine particles were settled and separated by centrifugation, and dispersed again in diethylene glycol, and then the particle size was measured. The particle size of the copper fine particles was 0.3 μm.
[0023]
【The invention's effect】
According to the present invention, it is possible to easily and inexpensively produce monodispersed copper ultrafine particles having a particle size of 0.1 μm or less at room temperature in a short time.
The ultrafine copper particles obtained by the present invention are particularly suitable for copper paints that form denser thick film conductors. Moreover, since it is highly pure, it is also useful for various catalysts.
By using these copper ultrafine particles for circuit pattern formation of printed wiring boards, conductor formation of various via holes, bonding of fine parts, etc., drawing performance of fine circuits, conductivity characteristics of the circuit patterns, optical (transmission) characteristics, etc. The bonding strength characteristics and the like can be improved.

Claims (4)

分散体全量に対して、0.01〜70質量%のカチオン系界面活性剤、10質量%以上の多価アルコール、および酢酸銅を含む分散体中において、酢酸銅を還元処理することを特徴とする銅超微粒子の製造方法。The copper acetate is reduced in a dispersion containing 0.01 to 70% by mass of a cationic surfactant, 10% by mass or more of a polyhydric alcohol, and copper acetate with respect to the total amount of the dispersion. A method for producing copper ultrafine particles. カチオン系界面活性剤が、炭鎖6〜10のテトラアルキルアンモニウム塩であることを特徴とする請求項1記載の銅超微粒子の製造方法。The method for producing ultrafine copper particles according to claim 1, wherein the cationic surfactant is a tetraalkylammonium salt having 6 to 10 carbon chains. 多価アルコールが、ジエチレングリコールであることを特徴とする請求項1または2記載の銅超微粒子の製造方法。The method for producing ultrafine copper particles according to claim 1 or 2, wherein the polyhydric alcohol is diethylene glycol. 10〜60℃の温度で還元処理を行うことを特徴とする請求項1〜3のいずれか1項に記載の銅超微粒子の製造方法。The method for producing ultrafine copper particles according to any one of claims 1 to 3, wherein the reduction treatment is performed at a temperature of 10 to 60 ° C.
JP2002345347A 2002-11-28 2002-11-28 Method for producing copper ultrafine particles Expired - Lifetime JP4068440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345347A JP4068440B2 (en) 2002-11-28 2002-11-28 Method for producing copper ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345347A JP4068440B2 (en) 2002-11-28 2002-11-28 Method for producing copper ultrafine particles

Publications (2)

Publication Number Publication Date
JP2004176147A JP2004176147A (en) 2004-06-24
JP4068440B2 true JP4068440B2 (en) 2008-03-26

Family

ID=32706542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345347A Expired - Lifetime JP4068440B2 (en) 2002-11-28 2002-11-28 Method for producing copper ultrafine particles

Country Status (1)

Country Link
JP (1) JP4068440B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961587B2 (en) * 2006-10-03 2012-06-27 トヨタ自動車株式会社 Copper fine particles, copper fine particle manufacturing method, insulating material, wiring structure, printed circuit board manufacturing method, and electronic / electric equipment
KR100936623B1 (en) * 2007-07-26 2010-01-13 주식회사 엘지화학 Preparation method of copper particles composition
JP4840369B2 (en) * 2008-01-08 2011-12-21 株式会社デンソー Nanoparticle production method and separation method
CN114316363A (en) * 2021-12-27 2022-04-12 江阴恒兴涂料有限公司 Carbon nano-copper modifier and preparation method thereof

Also Published As

Publication number Publication date
JP2004176147A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP5190412B2 (en) ALLOY NANOPARTICLE, PROCESS FOR PRODUCING THE SAME, AND INK AND PASTE USING THE ALLOY NANOPARTICLE
KR101375488B1 (en) Fine particle dispersion and method for producing fine particle dispersion
JP6274444B2 (en) Method for producing copper powder
CN108372313B (en) Nano silver wire dispersion liquid with small wire diameter distribution and preparation method of conductive ink thereof
JP2911429B2 (en) Production method of copper fine powder
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
US20060098065A1 (en) Copper oxide ultrafine particle
TW200536636A (en) Highly crystalline silver powder and method for production thereof
WO2006068061A1 (en) Superfine copper powder slurry and process for producing the same
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP5041440B2 (en) Method for producing fine particle dispersion, and fine particle dispersion
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2010059453A (en) Fine copper powder, dispersion liquid thereof, and method for producing fine copper powder
JP4068440B2 (en) Method for producing copper ultrafine particles
US20110284807A1 (en) Metal fine particle, conductive metal paste and metal film
JP5184488B2 (en) Method for forming conductive circuit
JP4931063B2 (en) Method for producing metal nanoparticle paste
JP2008231531A (en) Fine particle dispersion and method for producing fine particle dispersion
KR101283984B1 (en) Silver nanowire having protuberance and Method for preparing the same
KR101196796B1 (en) Preparation method of electroconductive copper patterning layer and copper patterning layer formed therefrom
JP2017002364A (en) Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
JP6404523B1 (en) Method for producing silver nanoparticles
JP2002115001A (en) Fine copper powder for forming circuit
WO2015045932A1 (en) Copper thin film forming composition
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4068440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term