JP4064090B2 - Resin paste for semiconductor and semiconductor device - Google Patents

Resin paste for semiconductor and semiconductor device Download PDF

Info

Publication number
JP4064090B2
JP4064090B2 JP2001339018A JP2001339018A JP4064090B2 JP 4064090 B2 JP4064090 B2 JP 4064090B2 JP 2001339018 A JP2001339018 A JP 2001339018A JP 2001339018 A JP2001339018 A JP 2001339018A JP 4064090 B2 JP4064090 B2 JP 4064090B2
Authority
JP
Japan
Prior art keywords
resin
filler
semiconductor
semiconductor device
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001339018A
Other languages
Japanese (ja)
Other versions
JP2003138244A (en
Inventor
隆 八木澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001339018A priority Critical patent/JP4064090B2/en
Publication of JP2003138244A publication Critical patent/JP2003138244A/en
Application granted granted Critical
Publication of JP4064090B2 publication Critical patent/JP4064090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、IC、LSI等の半導体素子を金属フレーム、有機基板等に接着する絶縁性半導体用樹脂ペーストに関するものである。
【0002】
【従来の技術】
従来、IC等の半導体素子をリードフレームに接着する方法として半導体用樹脂ペーストが一般的に使用されている。近年の電子機器の小型軽量化、高機能化の動向に対応して、半導体装置の小型化、薄型化、狭ピッチ化が益々加速する方向にある。半導体素子では、細線化や高速化により発熱量が増加する傾向にあり、半導体用樹脂ペーストには高熱伝導性が求められるようになってきた。フィラーとして金属粉を用いる導電性樹脂ペーストの場合は、金属粉を高充填化することで高熱伝導化が可能であるが、絶縁性の樹脂ペーストではセラミック系のフィラーや有機フィラーが用いられるため、フィラーの熱伝導率が低く、高熱伝導化が困難であった。また、熱伝導率を向上させるためにフィラーを高充填化すると、リードフレームや半導体素子と半導体用樹脂ペーストとの密着性が低下してしまうといった問題や、粘度が上昇してしまい樹脂ペーストの塗布作業性が劣るといった問題があった。このため、塗布作業性と接着強度に優れた絶縁性の高熱伝導半導体用樹脂ペーストが求められていた。
【0003】
【発明が解決しようとする課題】
本発明の目的は、熱伝導性、接着性と作業性に優れた絶縁性半導体用樹脂ペーストを提供することにある。
【0004】
【課題を解決するための手段】
本発明は、半導体素子を金属フレームまたは有機基板に絶縁性半導体用樹脂ペーストを用いて接着した半導体装置であって、前記絶縁性半導体用樹脂ペーストが、(A)熱硬化性樹脂と(B)フィラーからなり、(B)フィラー100重量部中に、金属粉を有機樹脂で被覆したフィラーを30重量部以上含むことを特徴とする半導体装置である。更に好ましい形態としては、(B)フィラーの平均粒径が、0.3〜20μmであり、且つ最大粒径が50μm以下であり、フィラー中の金属粉に有機樹脂で被覆したフィラーの金属粉が銀粉又は/及び銅粉である半導体装置である。
また、上記に記載の半導体装置に用いられることを特徴とする絶縁性半導体用樹脂ペーストである。
【0005】
【発明の実施の形態】
本発明で用いられる有機樹脂で被覆した金属粉は、フィラーの熱伝導性が優れているため、このフィラーを充填した半導体用樹脂ペーストは熱伝導性に優れ、且つ絶縁性という特徴がある。また、高充填化しなくても熱伝導率が良好であり、樹脂ペーストの粘度を低く出来るため、塗布作業性、接着強度に優れるという特徴がある。
【0006】
本発明に用いる熱硬化性樹脂(A)は、樹脂、硬化剤、硬化促進剤等からなる一般的な熱硬化性樹脂であり、特に限定されるものではないがペーストを形成する材料であることから樹脂としては室温で液状であることが望ましい。
【0007】
本発明に用いられる液状の樹脂としては、例えば、液状のシアネート樹脂、液状エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、グリシジルアミン型の液状エポキシ樹脂、ラジカル重合性の各種アクリル樹脂、アリール基を有するトリアリールイソシアヌレートなどが挙げられる。
【0008】
シアネート樹脂の硬化触媒としては、例えば、銅アセチルアセトナート、亜鉛アセチルアセトナート等の金属錯体が挙げられる。エポキシ樹脂の硬化剤としては、例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジカルボン酸ジヒドラジド化合物、フェノール樹脂等が例として挙げられる。ジヒドラジド化合物の例としては、アジピン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、P-オキシ安息香酸ジヒドラジド等のカルボン酸ジヒドラジドなどが挙げられる。
【0009】
硬化促進剤兼硬化剤としては各種のイミダゾール化合物あり、その例としては、2−メチルイミダゾール,2−エチルイミダゾール,2−フェニルイミダゾール,2−フェニル−4−メチルイミダゾール,2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール,2−フェニル−4,5−ジヒドロキシメチルイミダゾール,2−C1123−イミダゾール等の一般的なイミダゾールやトリアジンやイソシアヌル酸を付加し、保存安定性を付与した2,4−ジアミノ−6−{2−メチルイミダゾール−(1)}−エチル−S−トリアジン、またそのイソシアネート付加物等があり、これらは何れも1種類あるいは複数種と併用して使うことが可能である。
【0010】
本発明においては室温で固体の熱硬化性樹脂成分を特性低下が起きない程度に混合して用いることも充分可能である。例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、クレゾールノボラック類とエピクロルヒドリンとの反応により得られるポリグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等の脂肪族エポキシ、ジグリシジルヒダントイン等の複素環式エポキシ、ビニルシクロヘキセンジオキサイド、ジシクロペンタジエンジオキサイド、アリサイクリックジエポキシーアジペイトのような脂環式エポキシがあり、これらの内の1種類あるいは複数種と併用可能である。
【0011】
本発明に用いるフィラー(B)において、金属粉に有機樹脂で被覆したフィラーの金属粉として、例えば、金、銀、銅、アルミニウム、ニッケル、鉄等の粉末及び錫−鉛や錫−銀、錫−銀−ビスマス等の半田粉等があるが、入手のし易さ、形状、粒径の多様さ、価格、熱伝導性から銀粉、銅粉が特に好ましい。被覆する有機樹脂には熱硬化樹脂と熱可塑樹脂があり、熱硬化樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ユリア樹脂、ベンゾグアナミン樹脂、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂等があり、熱可塑樹脂としてはポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、熱可塑性ポリイミド樹脂、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリテトラフロロエチレン等のフッ素樹脂がある。熱硬化樹脂は金属粉を被覆後、硬化させたものが望ましく、熱可塑樹脂の場合は金属粉を被覆し且つ絶縁性を保つため、融点が180℃以上が望ましい。180℃以下では硬化時や半導体素子の封止時に被覆が溶けたり膜厚が薄くなり、絶縁性を保てなくなるため好ましくない。
有機樹脂は金属粉全体を被覆していることが望ましく、被覆に欠陥があると絶縁性を保てないため、好ましくない。
有機樹脂で金属粉を被覆する方法としては、金属粉を完全に被覆可能であれば特定する方法は無いが、界面重合法、in situ重合法、液中硬化被覆法等の化学的マイクロカプセル化法や気中懸濁被覆法、スプレードライ法等の物理的・機械的製法、又は界面沈澱法等の物理化学的製法がある。
【0012】
本発明に用いる有機樹脂を被覆した金属粉以外のフィラーとしては、例えば、溶融シリカ、結晶シリカ、窒化珪素、アルミナ、窒化アルミ、タルク等の無機フィラーやシリコーン樹脂、ポリテトラフロロエチレン等のフッ素樹脂、ポリメチルメタクリレート等のアクリル樹脂、ベンゾグアナミンやメラミンとホルムアルデヒドとの架橋物等の有機フィラーが挙げられる。また、粒径が1〜100nm程度のナノスケールフィラーやシリカとアクリル複合材のような有機と無機の複合フィラーがある。
使用するフィラーは、ハロゲンイオン、アルカリ金属イオン等のイオン性不純物の含有量は10ppm以下であることが好ましい。又形状としてはフレーク状、鱗片状、樹脂状や球状等が用いられる。必要とするペーストの粘度により、使用する粒径は異なるが、通常平均粒径は0.3〜20μm、最大粒径は50μm程度のものが好ましい。平均粒径が0.3μm未満だと粘度が高くなり、20μmを越えると塗布又は硬化時に樹脂分が流出するのでブリードが発生するため好ましくない。最大粒径が50μmを越えるとディスペンサーでペーストを塗布するときに、ニードルの出口を塞ぎ長時間の連続使用ができない。又比較的粗いフィラーと細かいフィラーとを混合して用いることもでき、種類、形状についても各種のものを適宜混合してもよい。
尚、本発明のフィラーは、予め表面をアルコキシシラン、アシロキシシラン、シラザン、オルガノアミノシラン等のシランカップリング材等で処理したものを用いてもよい。
【0013】
本発明の半導体用樹脂ペーストは、(A)、(B)成分、及びその他の添加剤等を予備混合し、ロール等を用いて混練した後、真空下脱泡する等の製造方法で得られる。
半導体装置の製造方法は公知の方法を用いることができる。
【0014】
【実施例】
以下に実施例と比較例を示し、本発明を具体的に説明する。
<実施例1〜7>
実施例1〜7は表1に示した組成の各成分とフィラーを配合し、3本ロールで混練して樹脂ペーストを得た。
この樹脂ペーストを真空チャンバーにて2mmHgで30分間脱泡した後、以下の方法により各種の性能を評価した。実施例の評価結果を表1に示す。
【0015】
<用いる原料成分>
・液状エポキシ樹脂:ビスフェノールF型エポキシ樹脂(粘度4.0Pa・s/25℃、エポキシ当量170)(以下、BPFEPという)
・フェノール樹脂:フェノールノボラック樹脂(軟化点110℃、水酸基当量105)(以下、PNという)
・ジシアンジアミド(以下、DDAという)
・2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(以下、2P4MHZという)
・シアネートL−10
【化1】

Figure 0004064090
【0016】
・ナフテン酸コバルト
・ウレタンアクリレート(東亞合成株式会社製、アロニックスRM−1600)・1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン(以下、パーヘキサ3M)
・無機フィラー
被覆銀粉−1:平均粒径3.0μmで、最大粒径30μmのフレーク状銀粉を熱硬化樹脂のエポキシ樹脂(ビスフェノールA型エポキシ樹脂とジアミノジフェニルメタンの混合物)で被覆し、樹脂を硬化させたフィラーで被覆した樹脂の膜厚は1μm
被覆銀粉―2:平均粒径3.0μmで、最大粒径30μmのフレーク状銀粉を熱可塑樹脂のポリアミド樹脂(ナイロン66、融点265℃)で被覆したフィラーで被覆した樹脂の膜厚は1μm
被覆銅粉:平均粒径3.0μmで、最大粒径30μmのフレーク状銅粉を熱硬化樹脂のエポキシ樹脂(ビスフェノールA型エポキシ樹脂とジアミノジフェニルメタンの混合物)で被覆し、樹脂を硬化させたフィラーで被覆した樹脂の膜厚は1μm
シリカ:平均粒径1.5μmで、最大粒径20μmのシリカ粉
窒化アルミ:平均粒径2.0μmで、最大粒径20μmの窒化アルミ粉
【0017】
<評価方法>
・粘度:E型粘度計(3°コーン)を用い25℃、2.5rpmでの値を測定し粘度とした。
・チキソ比: E型粘度計(3°コーン)を用い25℃でのチキソ比(0.5rpmでの粘度/2.5rpmでの粘度)を計算した。
・熱伝導率:半導体樹脂ペーストを型に入れて200℃60分で硬化させて10mmφ、厚み1mmの硬化物を作成した。この硬化物の熱伝導率をレーザーフラッ シュ方で測定した。
・接着強度:6×6mmのシリコンチップを半導体用樹脂ペーストを用いて銅フレームにマウントし、オーブンを使用し200℃60分で硬化させた。硬化後マウ ント強度測定装置を用い250℃での熱時ダイシェア強度を測定した。
【0018】
【表1】
Figure 0004064090
【0019】
<比較例1〜12>
表2に示す配合割合に基づき実施例と同様にして半導体用樹脂ペーストを得、実施例1と同様にして評価した。結果を表2に示す。
【0020】
【表2】
Figure 0004064090
【0021】
【発明の効果】
本発明によれば、熱伝導性、接着性に優れ、且つ塗布作業性に優れた絶縁性半導体用樹脂ペースト、及びこれを用いた半導体装置が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulating semiconductor resin paste for bonding a semiconductor element such as an IC or LSI to a metal frame, an organic substrate or the like.
[0002]
[Prior art]
Conventionally, a semiconductor resin paste is generally used as a method of bonding a semiconductor element such as an IC to a lead frame. In response to the recent trend toward smaller and lighter electronic devices and higher functionality, semiconductor devices are becoming increasingly smaller, thinner, and narrower in pitch. In semiconductor elements, the amount of heat generation tends to increase due to thinning and high speed, and high thermal conductivity has been demanded for resin pastes for semiconductors. In the case of a conductive resin paste using metal powder as a filler, it is possible to increase the thermal conductivity by highly filling the metal powder, but in the insulating resin paste, ceramic-based fillers and organic fillers are used. The thermal conductivity of the filler was low, and it was difficult to achieve high thermal conductivity. In addition, if the filler is increased in order to improve the thermal conductivity, the adhesiveness between the lead frame or the semiconductor element and the resin paste for the semiconductor may decrease, and the viscosity may increase, and the resin paste may be applied. There was a problem that workability was inferior. For this reason, there has been a demand for an insulating resin paste for high thermal conductive semiconductors that is excellent in coating workability and adhesive strength.
[0003]
[Problems to be solved by the invention]
The objective of this invention is providing the resin paste for insulating semiconductors excellent in thermal conductivity, adhesiveness, and workability | operativity.
[0004]
[Means for Solving the Problems]
The present invention is a semiconductor device in which a semiconductor element is bonded to a metal frame or an organic substrate using an insulating semiconductor resin paste, the insulating semiconductor resin paste comprising (A) a thermosetting resin and (B). A semiconductor device comprising a filler, wherein (B) 100 parts by weight of filler contains 30 parts by weight or more of a filler obtained by coating metal powder with an organic resin. As a more preferable form, (B) the filler has an average particle diameter of 0.3 to 20 μm and a maximum particle diameter of 50 μm or less, and the filler metal powder coated with an organic resin on the metal powder in the filler. It is a semiconductor device which is silver powder or / and copper powder.
Moreover, it is the resin paste for insulating semiconductors used for the semiconductor device as described above .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Since the metal powder coated with the organic resin used in the present invention has excellent thermal conductivity of the filler, the resin paste for semiconductors filled with this filler has the characteristics of excellent thermal conductivity and insulating properties. Further, even if it is not highly filled, the thermal conductivity is good, and the viscosity of the resin paste can be lowered. Therefore, there is a feature that the coating workability and the adhesive strength are excellent.
[0006]
The thermosetting resin (A) used in the present invention is a general thermosetting resin composed of a resin, a curing agent, a curing accelerator and the like, and is not particularly limited, but is a material for forming a paste. Therefore, the resin is preferably liquid at room temperature.
[0007]
Examples of liquid resins used in the present invention include liquid cyanate resins, and liquid epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol E type epoxy resins, alicyclic epoxy resins, and aliphatic epoxies. Examples thereof include resins, glycidylamine type liquid epoxy resins, various radical polymerizable acrylic resins, and triaryl isocyanurates having an aryl group.
[0008]
Examples of the curing catalyst for the cyanate resin include metal complexes such as copper acetylacetonate and zinc acetylacetonate. Examples of epoxy resin curing agents include aliphatic amines, aromatic amines, dicyandiamide, dicarboxylic acid dihydrazide compounds, and phenol resins. Examples of dihydrazide compounds include carboxylic acid dihydrazides such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and P-oxybenzoic acid dihydrazide.
[0009]
Examples of curing accelerators and curing agents include various imidazole compounds, such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-phenyl-4-methyl. 5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxy methyl imidazole, 2-C 11 H 23 - adds a generic imidazole or triazine and isocyanuric acid such as imidazole, to impart storage stability 2, There are 4-diamino-6- {2-methylimidazole- (1)}-ethyl-S-triazine and its isocyanate adduct, etc., all of which can be used in combination with one or more kinds. is there.
[0010]
In the present invention, it is also possible to mix and use a thermosetting resin component that is solid at room temperature to such an extent that characteristic deterioration does not occur. For example, aliphatic epoxies such as polyglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether obtained by the reaction of bisphenol A, bisphenol F, phenol novolak, cresol novolaks and epichlorohydrin, complex such as diglycidyl hydantoin There are alicyclic epoxies such as cyclic epoxy, vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diepoxy adipate, and one or more of these can be used in combination.
[0011]
In the filler (B) used in the present invention, as the metal powder of the filler coated with an organic resin on the metal powder, for example, powder of gold, silver, copper, aluminum, nickel, iron, etc. and tin-lead, tin-silver, tin -Although there are solder powders such as silver-bismuth, silver powder and copper powder are particularly preferable from the viewpoint of availability, variety of shapes, particle diameters, price, and thermal conductivity. The organic resin to be coated includes a thermosetting resin and a thermoplastic resin. Examples of the thermosetting resin include phenol resin, melamine resin, urea resin, benzoguanamine resin, epoxy resin, acrylic resin, and polyimide resin. Examples of the resin include a fluororesin such as a polyamide resin, a polyamideimide resin, a polyester resin, a polycarbonate resin, a polyacetal resin, a thermoplastic polyimide resin, a polysulfone resin, a polyphenylene oxide resin, and polytetrafluoroethylene. The thermosetting resin is preferably cured after being coated with metal powder. In the case of a thermoplastic resin, the melting point is preferably 180 ° C. or higher in order to cover the metal powder and maintain insulation. A temperature of 180 ° C. or lower is not preferable because the coating melts or becomes thin when cured or when the semiconductor element is sealed, and the insulation cannot be maintained.
The organic resin desirably covers the entire metal powder, and if the coating is defective, the insulating property cannot be maintained, which is not preferable.
There is no specific method for coating metal powder with organic resin as long as metal powder can be completely coated, but chemical microencapsulation such as interfacial polymerization, in situ polymerization, and submerged curing coating. And physical / mechanical production methods such as air suspension coating method and spray drying method, or physicochemical production methods such as interfacial precipitation method.
[0012]
Examples of the filler other than the metal powder coated with the organic resin used in the present invention include inorganic fillers such as fused silica, crystalline silica, silicon nitride, alumina, aluminum nitride, and talc, silicone resins, and fluororesins such as polytetrafluoroethylene. And organic fillers such as an acrylic resin such as polymethyl methacrylate, and a cross-linked product of benzoguanamine or melamine and formaldehyde. In addition, there are organic and inorganic composite fillers such as nanoscale fillers having a particle size of about 1 to 100 nm and silica and acrylic composites.
The filler used preferably has a content of ionic impurities such as halogen ions and alkali metal ions of 10 ppm or less. As the shape, a flake shape, a scale shape, a resin shape, a spherical shape, or the like is used. Although the particle size to be used varies depending on the required viscosity of the paste, it is usually preferable that the average particle size is 0.3 to 20 μm and the maximum particle size is about 50 μm. If the average particle size is less than 0.3 μm, the viscosity will be high, and if it exceeds 20 μm, the resin will flow out during coating or curing, causing bleeding, which is not preferable. When the maximum particle size exceeds 50 μm, when applying the paste with a dispenser, the needle outlet is blocked and continuous use for a long time cannot be performed. Moreover, a comparatively coarse filler and a fine filler can also be mixed and used, and various kinds of shapes and shapes may be appropriately mixed.
The filler of the present invention may be prepared by treating the surface with a silane coupling material such as alkoxysilane, acyloxysilane, silazane, or organoaminosilane in advance.
[0013]
The semiconductor resin paste of the present invention can be obtained by a production method such as premixing the components (A) and (B) and other additives, kneading using a roll or the like, and degassing under vacuum. .
A known method can be used as a method of manufacturing the semiconductor device.
[0014]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
<Examples 1-7>
In Examples 1 to 7, each component having the composition shown in Table 1 and a filler were blended and kneaded with three rolls to obtain a resin paste.
The resin paste was defoamed at 2 mmHg for 30 minutes in a vacuum chamber, and various performances were evaluated by the following methods. The evaluation results of the examples are shown in Table 1.
[0015]
<Used raw material components>
Liquid epoxy resin: Bisphenol F type epoxy resin (viscosity 4.0 Pa · s / 25 ° C., epoxy equivalent 170) (hereinafter referred to as BPFEP)
Phenol resin: phenol novolac resin (softening point 110 ° C., hydroxyl group equivalent 105) (hereinafter referred to as PN)
・ Dicyandiamide (hereinafter referred to as DDA)
2-phenyl-4-methyl-5-hydroxymethylimidazole (hereinafter referred to as 2P4MHZ)
・ Cyanate L-10
[Chemical 1]
Figure 0004064090
[0016]
· Cobalt naphthenate Urethane acrylate (Toagosei Co., Ltd., Aronix R M-1600), 1,1-bis (t-hexyl peroxy) -3,3,5-trimethylcyclohexane (hereinafter, Perhexa 3M)
・ Inorganic filler-coated silver powder-1: Flaky silver powder with an average particle size of 3.0 μm and a maximum particle size of 30 μm is coated with a thermosetting epoxy resin (mixture of bisphenol A type epoxy resin and diaminodiphenylmethane) to cure the resin. The film thickness of the resin covered with the filler is 1 μm
Coated silver powder-2: The film thickness of the resin coated with a filler in which flaky silver powder having an average particle size of 3.0 μm and a maximum particle size of 30 μm is coated with a polyamide resin (nylon 66, melting point 265 ° C.) of thermoplastic resin is 1 μm
Coated copper powder: Filler in which flaky copper powder with an average particle size of 3.0 μm and a maximum particle size of 30 μm is coated with a thermosetting resin epoxy resin (mixture of bisphenol A type epoxy resin and diaminodiphenylmethane) and the resin is cured The film thickness of the resin coated with 1μm
Silica: Silica powder aluminum nitride having an average particle size of 1.5 μm and a maximum particle size of 20 μm: Aluminum nitride powder having an average particle size of 2.0 μm and a maximum particle size of 20 μm
<Evaluation method>
-Viscosity: Using an E-type viscometer (3 ° cone), the value at 25 ° C. and 2.5 rpm was measured to obtain the viscosity.
Thixo ratio: An E-type viscometer (3 ° cone) was used to calculate the thixo ratio (viscosity at 0.5 rpm / viscosity at 2.5 rpm) at 25 ° C.
Thermal conductivity: A semiconductor resin paste was put in a mold and cured at 200 ° C. for 60 minutes to prepare a cured product having a diameter of 10 mm and a thickness of 1 mm. The thermal conductivity of the cured product was measured by a laser flash method.
Adhesive strength: A 6 × 6 mm silicon chip was mounted on a copper frame using a semiconductor resin paste, and cured at 200 ° C. for 60 minutes using an oven. After curing, the die shear strength during heating at 250 ° C. was measured using a mount strength measuring device.
[0018]
[Table 1]
Figure 0004064090
[0019]
<Comparative Examples 1-12>
Based on the blending ratio shown in Table 2, a semiconductor resin paste was obtained in the same manner as in Example, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0020]
[Table 2]
Figure 0004064090
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the resin paste for insulating semiconductors which was excellent in thermal conductivity and adhesiveness, and was excellent in application | coating workability | operativity, and a semiconductor device using the same are obtained.

Claims (6)

半導体素子を金属フレームまたは有機基板に絶縁性半導体用樹脂ペーストを用いて接着した半導体装置であって、前記絶縁性半導体用樹脂ペーストが、(A)熱硬化性樹脂と(B)フィラーからなり、(B)フィラー100重量部中に、金属粉を有機樹脂で被覆したフィラーを30重量部以上含むことを特徴とする半導体装置。A semiconductor device in which a semiconductor element is bonded to a metal frame or an organic substrate using an insulating semiconductor resin paste, the insulating semiconductor resin paste comprising (A) a thermosetting resin and (B) a filler, (B) A semiconductor device comprising 30 parts by weight or more of a filler obtained by coating a metal powder with an organic resin in 100 parts by weight of a filler. (B)フィラーの平均粒径が、0.3〜20μmであり、且つ最大粒径が50μm以下である請求項1記載の半導体装置。(B) The semiconductor device according to claim 1, wherein the filler has an average particle size of 0.3 to 20 μm and a maximum particle size of 50 μm or less. (B)フィラー中の金属粉に有機樹脂で被覆したフィラーの金属粉が銀粉又は/及び銅粉である請求項1又は2記載の半導体装置。(B) The semiconductor device according to claim 1 or 2, wherein the metal powder of the filler obtained by coating the metal powder in the filler with an organic resin is silver powder or / and copper powder. (B)フィラー中の金属粉に有機樹脂で被覆後、有機樹脂を硬化させたものである請求項1〜3のいずれかに記載の半導体装置。(B) The semiconductor device according to claim 1, wherein the metal powder in the filler is coated with an organic resin, and then the organic resin is cured. (B)フィラー中の金属粉に被覆する有機樹脂が、融点180℃以上の熱可塑性樹脂である請求項1〜3のいずれかに記載の半導体装置。(B) The semiconductor device according to claim 1, wherein the organic resin coated on the metal powder in the filler is a thermoplastic resin having a melting point of 180 ° C. or higher. 請求項1〜5のいずれかに記載の半導体装置に用いられることを特徴とする絶縁性半導体用樹脂ペースト A resin paste for an insulating semiconductor, which is used in the semiconductor device according to claim 1 .
JP2001339018A 2001-11-05 2001-11-05 Resin paste for semiconductor and semiconductor device Expired - Fee Related JP4064090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339018A JP4064090B2 (en) 2001-11-05 2001-11-05 Resin paste for semiconductor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339018A JP4064090B2 (en) 2001-11-05 2001-11-05 Resin paste for semiconductor and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003138244A JP2003138244A (en) 2003-05-14
JP4064090B2 true JP4064090B2 (en) 2008-03-19

Family

ID=19153426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339018A Expired - Fee Related JP4064090B2 (en) 2001-11-05 2001-11-05 Resin paste for semiconductor and semiconductor device

Country Status (1)

Country Link
JP (1) JP4064090B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076713A (en) * 2007-09-21 2009-04-09 Sumitomo Bakelite Co Ltd Paste for circuit board
JP2009120826A (en) * 2007-10-23 2009-06-04 Hitachi Chem Co Ltd Adhesive composition and semiconductor device
JP2009230092A (en) * 2008-02-27 2009-10-08 Kyocera Corp Optical isolator module and optical element module using the same
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film
JP2010132840A (en) * 2008-12-08 2010-06-17 Asahi Kasei E-Materials Corp Epoxy resin composition for adhesive sheet
CA2766859A1 (en) 2009-07-08 2011-01-13 Henkel Ag & Co. Kgaa Electrically conductive adhesives
KR101328297B1 (en) * 2011-12-22 2013-11-14 삼성전기주식회사 Adhesive resin composition for HDD motor and HDD motor fabricated by using the same
KR101489159B1 (en) * 2011-12-23 2015-02-05 주식회사 잉크테크 Method for manufacturing metal printed circuit board
JP6327549B2 (en) * 2013-12-06 2018-05-23 ナガセケムテックス株式会社 Thermosetting resin composition and heat conductive sheet
WO2016072463A1 (en) * 2014-11-07 2016-05-12 日立化成株式会社 Resin composition for sealing film, sealing film, sealing film with support, and electronic apparatus

Also Published As

Publication number Publication date
JP2003138244A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP4780041B2 (en) Resin paste for semiconductor and semiconductor device
JP4064090B2 (en) Resin paste for semiconductor and semiconductor device
JP2004315688A (en) Adhesive film for semiconductor, semiconductor device, and manufacturing method of semiconductor device
KR20190057400A (en) Thermally conductive pastes and electronic devices
EP1325053B1 (en) Die-attaching paste and semiconductor device
JP4622131B2 (en) Resin paste for semiconductor and semiconductor device
JP2003129017A (en) Conductive adhesive film and semiconductor device using the same
CN110692126B (en) Resin composition for bonding electronic component, method for bonding small chip component, electronic circuit board, and method for manufacturing electronic circuit board
JP6134597B2 (en) Die attach agent
JP2002284889A (en) Manufacturing method of resin paste for semiconductor, resin paste for semiconductor and semiconductor device
JP4387085B2 (en) Die attach paste and semiconductor device
JP4342772B2 (en) Resin paste for semiconductor and semiconductor device
JP2002252235A (en) Resin paste for semiconductor and semiconductor device using it
JP5061760B2 (en) Die attach paste and semiconductor device
JP2004186525A (en) Area package type semiconductor device
JP3960515B2 (en) Resin paste for semiconductor and semiconductor device
JP2004155982A (en) Resin paste for semiconductor and semiconductor device
JP2004288560A (en) Conductive adhesion film and semiconductor device using the same
JP2012188598A (en) Thermosetting resin composition for semiconductor adhesion, and semiconductor device
JP2002134530A (en) Resin paste for semiconductor, manufacturing method thereof, and semiconductor device
JP3719856B2 (en) Resin paste for semiconductor
JP2003335923A (en) Resin paste for semiconductor and semiconductor device
JP3719855B2 (en) Resin paste for semiconductor
JP2002241584A (en) Resin paste for semiconductor and semiconductor device
JP3608908B2 (en) Resin paste for semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees