JP4062920B2 - Manufacturing method of mold for forming honeycomb structure - Google Patents

Manufacturing method of mold for forming honeycomb structure Download PDF

Info

Publication number
JP4062920B2
JP4062920B2 JP2001397717A JP2001397717A JP4062920B2 JP 4062920 B2 JP4062920 B2 JP 4062920B2 JP 2001397717 A JP2001397717 A JP 2001397717A JP 2001397717 A JP2001397717 A JP 2001397717A JP 4062920 B2 JP4062920 B2 JP 4062920B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
supply hole
forming
groove
slit groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001397717A
Other languages
Japanese (ja)
Other versions
JP2003011111A (en
Inventor
武 福嶋
章 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001397717A priority Critical patent/JP4062920B2/en
Priority to US10/059,245 priority patent/US6765174B2/en
Priority to DE10204428A priority patent/DE10204428B4/en
Priority to BE2002/0066A priority patent/BE1016830A5/en
Publication of JP2003011111A publication Critical patent/JP2003011111A/en
Priority to US10/857,943 priority patent/US7164098B2/en
Priority to BE2007/0286A priority patent/BE1017633A5/en
Application granted granted Critical
Publication of JP4062920B2 publication Critical patent/JP4062920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Laser Beam Processing (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【0001】
【技術分野】
本発明は,薄肉のハニカム構造体を押出成形するための成形用金型に関するものである。
【0002】
【従来技術】
例えばコーディエライト等を主成分としたセラミック製のハニカム構造体は,成形用金型を用いて材料を押出成形することにより製造される。このハニカム構造体は,隔壁を格子状に設けて多数のセルを構成してなり,そのセル形状としては例えば四角形,六角形等がある。
そして,上記ハニカム構造体成形用金型としては,材料を供給するための供給穴と,供給穴に連通し材料を上記ハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型が用いられる。
【0003】
上記ハニカム構造体としては,近年その隔壁の薄肉化,例えば100μm以下の薄肉化が求められている。これに対応して,上記ハニカム構造体成形用金型のスリット溝の溝幅も当然に幅狭化が求められている。
【0004】
【解決しようとする課題】
しかしながら,ハニカム構造体成形用金型のスリット溝の溝幅を狭くすれば,上記供給穴から供給され材料がスリット溝を通過する際の材料流れが悪化する。そのため,成形時の成形圧力が増大し,成形性が低下するおそれがある。
【0005】
本発明は,かかる従来の問題点に鑑みてなされたもので,成形性を低下させることなく,薄肉のハニカム構造体を成形することができるハニカム構造体成形用金型及びその製造方法を提供しようとするものである。
【0006】
【課題の解決手段】
少なくとも,材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型において,
上記スリット溝の底部と上記供給穴の側面とが交わって形成される角部に傾斜部が設けられており,該傾斜部においては,上記スリット溝の深さが上記供給穴に近づくにしたがって徐々に深くなっていることを特徴とするハニカム構造体成形用金型ある。
【0007】
上記ハニカム構造体成形用金型は,上記のごとく,スリット溝の深さが均一ではなく,上記角部に傾斜部を設けて,スリット溝の深さを上記供給穴に近づくに従って深くしてある。そのため,供給穴からスリット溝に抜ける材料の流れをスムーズにすることができる。
【0008】
すなわち,上記スリット溝の底部と供給穴の側面とが交差する上記角部が傾斜しているので,供給穴からスリット溝に抜ける材料が,上記傾斜部に沿って徐々に広がる。そのため,上記角部に傾斜部がない場合と比べて,材料が幅方向に広がる際の流れ方向の変化を小さくすることができる。それ故,材料が供給穴からスリット溝に侵入する際の材料流れをスムーズにすることができる。
そして,それ故,上記スリット溝の溝幅を狭幅化した場合においても,成形圧力の増大等を抑制することができ,優れた成形性を維持することができる。
【0009】
発明は,少なくとも,材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
金型素材の穴形成面から上記供給穴を形成した後,
該穴形成面と反対側の溝形成面の溝形成位置に対して水を噴射して水柱を形成すると共に,該水柱の中を通してレーザ光を照射し,該レーザ光の照射位置を上記溝形成位置に沿って移動させて同じ溝形成位置を複数回通過させる照射スキャンを行い,
かつ,形成される上記スリット溝の底部と上記供給穴の側面とが交わって形成される角部近傍において上記照射スキャンの回数を増やし,上記スリット溝の深さが上記供給穴に近づくにしたがって徐々に深くなる傾斜部を設けることを特徴とするハニカム構造体成形用金型の製造方法(請求項1)にある。
【0010】
本発明においては,上記のごとく,スリット溝の加工に上記水柱の中を通すレーザ光を用いる。そして,このレーザ光を上記のごとく照射スキャンさせることにより徐々に溝深さを深くする。
このようなレーザ加工方法を採用することによって,局部的に照射スキャンの回数を変更することにより,局部的に溝深さを変更することができる。
【0011】
そのため,本発明では,この照射スキャン回数の変化によって,上記スリット溝の底部と供給穴の側面とが交わって形成される角部近傍において,上記照射スキャンの回数を増やす。これにより,上記角部に傾斜部を形成し,供給穴に近づくほどスリット溝の深さを深くすることができる。
【0012】
また,本発明では,上記のごとく水柱の中を上記レーザ光を通して照射する。これにより,レーザ光が上記水柱の径内に収まった状態で進行し,溝幅を上記水柱の径内に精度よく制御することができる。それ故,上記ハニカム構造体成形用金型に要求される精度に十分対応できる高精度のスリット溝加工を行うことができる。
【0013】
このように,本発明では,上記レーザ加工方法を積極的に採用することにより,従来の研削方法或いは放電加工方法では極めて困難であった局部的な溝深さの変更を実現した。そして,特に上記角部に傾斜部を形成するように溝深さを変化することにより,上記のごとく材料流れのスムーズなハニカム構造体成形用金型を得ることができる。
【0014】
【発明の実施の形態】
上記ハニカム構造体成形用金型における上記角部の傾斜部は,例えば,いわゆる面取りを行った場合のような非常に微細な傾斜でもよいし,比較的長いテーパ状のものでもよい。さらに,上記傾斜部分が直線であっても,曲線状であってもよい。
また,上記スリット溝の配置は,四角形格子状,あるいは六角形格子状等,様々な配置をとることができる。
【0015】
また,スリット溝の溝幅としては,例えば20〜150μmという狭い幅寸法を採用することができる。この場合にも,上記のごとく成形材料のスムーズな流れを確保することができる。また,上記スリット溝の溝深さは,溝幅の10倍以上に設定することもできる。この場合にも,上記角部の傾斜が有効に作用し,成形材料の流れの悪化を抑制することができる。
【0016】
また,本発明において,上記レーザ光の照射位置の移動は,相対速度150mm/分以上で行うことが好ましい(請求項2)。これにより,レーザ光を照射して溶融した溶融部を容易に分離除去しながら少しずつ溝加工を進めることができる。一方,上記相対速度が150mm/分未満の場合には,上記溶融部の分離除去が十分に行われず,溝形成の能率が低下するという問題がある。
【0017】
また,発明において,上記傾斜部は,上記供給穴の側面との距離が0.5mm以内の範囲において設けることが好ましい(請求項3)。この場合には,上記傾斜部の形成を比較的容易に行うことができる。
【0018】
また,上記傾斜部は,上記供給穴の側面との距離が0.3mm以上の範囲にわたって設けられており,その最終深さは0.3mm以上であることが好ましい(請求項4)。
この場合には,上記傾斜部の存在による材料流れをスムーズにする効果を十分に発揮することができる。
【0019】
【実施例】
(実施例1)
本発明の実施例につき,図1〜図3を用いて説明する。
本例のハニカム構造体成形用金型8は,図1,図2に示すごとく,少なくとも,材料を供給するための供給穴81と,該供給穴81に連通し材料をハニカム形状に成形するためのスリット溝82とを有するハニカム構造体成形用金型である。そして本例のハニカム構造体成形用金型8においては,スリット溝82の底部820と供給穴81の側面810とが交わって形成される角部に傾斜部85が設けられており,該傾斜部85においては,スリット溝82の深さが上記供給穴81に近づくにしたがって徐々に深くなっている。
【0020】
このハニカム構造体成形用金型8を製造するに当たっては,図3に示すレーザ加工装置3を用いる。このレーザ加工装置3は,レーザ光を発生させるレーザ発生部31と発生したレーザ光を所望の径に絞るレーザヘッド32と,これらの間を結びレーザ光を導く光ファイバー部33と,レーザ光1の周囲において噴射する水柱18用の高圧水をレーザヘッド32部分に供給する高圧水供給部35と,高圧水を水柱18として噴射するノズル36とを有する。
また,金型素材7を保持すると共に平面上で移動可能なベッド38を有する。このベッド38に内蔵されたベッド駆動部,高圧水供給部35,およびレーザ発生部31はこれらを操作するための操作盤39に接続されている。
【0021】
金型素材7は,同図に示すごとく,厚さ15mm,幅×長さが200×200mmの四角形の金属板であり,材質はSKD61よりなる。もちろん,これと異なるサイズ,材質の金型素材を用いることも可能である。
この金型素材7に対して,本例では,幅0.1mm,深さ2.0mmのスリット溝を形成する。また,本例では,スリット溝82の加工の前に,予めドリルにより供給穴81を設けた。
【0022】
そして,図示しない支持装置に上記金型素材7を平面方向に移動可能に保持する。そして,図3の矢印Aの方向に金型素材7を移動させながら,レーザ加工装置3から金型素材7における溝形成面の溝形成位置に対して水を噴射して水柱18を形成すると共に,該水柱18の中を通してレーザ光1を照射する。さらに,レーザ光1の照射位置を上記溝形成位置に沿って移動させて同じ溝形成位置を複数回通過させる照射スキャンを行う。
【0023】
このとき,金型素材7の移動速度は,150mm/分以上の240mm/分とした。そして,まず全ての溝形成位置を偏り無く150回通過するように照射スキャンした。これにより,上記のごとく幅0.1mm,深さ2.0mmのサイズを有する幅狭深底のスリット溝82が得られた。
【0024】
さらに本例では,形成されたスリット溝82の底部820と供給穴81の側面810とが交わって形成される角部の近傍において,供給穴81に近づくほどスキャン回数が多くなるように照射回数を増やした。これにより,図2に示すごとく,上記角部に傾斜部85が得られ,スリット溝82の深さが,供給穴81に近づくにしたがって徐々に深くなるように加工された。
【0025】
次に,本例の作用効果につき説明する。
本例のハニカム構造体成形用金型8は,上記のごとく,スリット溝82の深さが均一ではなく,角部を傾斜させて傾斜部85を形成し,スリット溝82の深さを供給穴81に近づくに従って深くしてある。そのため,供給穴81からスリット溝82に抜ける材料の流れをスムーズにすることができる。
【0026】
すなわち,上記スリット溝82の底部820と供給穴81の側面810とが交差する角部が傾斜しているので,供給穴81からスリット溝に抜ける材料が,傾斜部85に沿って徐々に広がる。そのため,角部に傾斜部85がない場合と比べて,材料が幅方向に広がる際の流れ方向の変化を小さくすることができる。それ故,材料が供給穴81からスリット溝82に侵入する際の材料流れをスムーズにすることができる。そして,それ故,上記のごとくスリット溝82の溝幅が0.1mmと狭い場合においても,成形圧力の増大等を抑制することができ,優れた成形性を維持することができる。
【0027】
また,このような優れたハニカム構造体成形用金型8のスリット溝82を加工するに当たり,上記の独特な加工方法を採用している。すなわち,水柱18の中を通すレーザ光1を用い,その照射スキャン回数を局部的に変更する。これにより,局部的に溝深さを変更することができる。
【0028】
そして本例では,この照射スキャン回数の増加を上記角部の近傍において行う。これにより,容易に上記傾斜部85を形成することができ,供給穴81に近づくほどスリット溝82の深さが深くなる形状得ることができるのである。
そして,このような有利な点は,従来より行われていた研削方法或いは放電加工方法では得ることが困難である。
【0029】
(比較例1)
比較例1は,図4に示すごとく,スリット溝82の加工方法を従来よりある放電加工方法に変更し,スリット溝82の深さを均一にしたハニカム構造体成形用金型9の例である。その他の構造は実施例1と同様である。
この比較例1のハニカム構造体成形用金型9及び上記実施例1のハニカム構造体成形用金型8を用いてハニカム構造体を押出成形した場合の材料の流れ方を図2,図4に示す。なお,上記ハニカム構造体用のセラミック材料としては,例えば,コーディエライトの原料となる複数の粉末とバインダーを混練したものがある。また原料粉末の粒径としては60μm以下のものを採用することができる。
【0030】
図4に示すごとく,従来のハニカム構造体成形用金型9の場合には,スリット溝82の深さが均一に形成されているので,供給穴81に矢印B方向に供給された成形材料の流れは,スリット溝82と交わる角部で直角の矢印D方向に変更された後,スリット溝82内での成形材料同士の衝突により矢印E方向に変更されてスリット溝82から押出成形される。
【0031】
一方,図2に示すごとく,本発明のハニカム構造体成形用金型8の場合には,上記傾斜部85を有しており,スリット溝82の深さが供給穴81に近づくにしたがって徐々に深くなっているので,供給穴81に矢印B方向に供給された成形材料の流れは,スリット溝82と交わる角部で上記傾斜部85の傾斜に沿って,矢印C方向に流れを変える。そして,最終的に矢印E方向に変更されてスリット溝82から押出成形される。
【0032】
このように,実施例1のハニカム構造体成形用金型を用いた場合には,比較例1のハニカム構造体成形用金型を用いた場合よりも材料流れの方向変化量が少ないので,変形圧力の増加を抑制することができる。そのため,スリット溝幅が狭くなっても優れた成形性を維持することができる。
【0033】
(実施例2)
本例では,図5に示すごとく,六角形格子状のスリット溝82を有するハニカム構造体成形用金型8を製造する例である。
この場合には,実施例1におけるレーザ光1の照射スキャン経路を工夫して,その軌跡が六角形格子状となるようにした。その他は実施例1と同様である。
この場合にも実施例1と同様の作用効果が得られる。
【0034】
(実施例3)
本例では,実施例1と同様に,ハニカム構造体成形用金型8に傾斜部85を設け,その形状を定量的に測定した。
図6に示すごとく,本例のハニカム構造体成形用金型8は,供給穴81の直径を1mm,供給穴のピッチを2mmとすると共に,実施例1と同様にして傾斜部85を設けた。なお,スリット溝82の幅は実施例1と同様に0.1mmである。
【0035】
本例の傾斜部85は,同図に示すごとく,上記供給穴81の側面810との距離Lが0.3mm以上の範囲にわたって設けられており,その最終深さD(ダレ距離)は0.3mm以上である。
【0036】
本例では,比較のために,図7に示すごとく,上記スリット溝82の形成を研削加工に変更し,傾斜部を有していない構造のハニカム構造体成形用金型9を作製した。そして,上記本例のハニカム構造体成形用金型8(本発明品)と比較のためのハニカム構造体成形用金型9(比較品)とを用いて実際に押出成形を行い,比較した。
【0037】
比較の結果,本発明品の場合には,比較品に比べて,材料の流れがスムーズになり,優れた押出成形性が得られた。
この結果から,上記のごとく,少なくともスリット溝82の幅が0.1mmの場合には,供給穴81の側面810との距離Lが0.3mm以上の範囲にわたって設けられており,その最終深さD(ダレ距離)は0.3mm以上であるような傾斜部85を設けることによって,供給穴81からスリット溝82への材料の流れ性を向上させることができることが分かった。
【0038】
また,この結果,従来と同様の材料の流れ性でよい場合には,スリット溝82の深さを浅くしても十分に流れ性を確保することができる。そのため,例えば,上記ダレ距離Dの1/3程度の距離について,スリット溝82の深さを小さくすることができるので,加工時の能率を向上させることができる。
【図面の簡単な説明】
【図1】実施例1におけるハニカム構造体成形用金型の,(a)平面図,(b)要部拡大図。
【図2】実施例1におけるハニカム構造体成形用金型の,図1のA−A線矢視から見た断面図。
【図3】実施例1におけるレーザ加工装置の構成を示す説明図。
【図4】比較例1におけるハニカム構造体成形用金型の断面図。
【図5】実施例2におけるハニカム構造体成形用金型の,(a)平面図,(b)要部拡大図。
【図6】実施例3におけるハニカム構造体成形用金型の傾斜部の拡大説明図。
【図7】比較例におけるハニカム構造体成形用金型の傾斜部の拡大説明図。
【符号の説明】
1...レーザ光,
3...レーザ加工装置,
7...金型素材,
8...ハニカム構造体成形用金型,
81...供給穴,
810...側面,
82...スリット溝,
820...底部,
[0001]
【Technical field】
The present invention relates to a molding die for extruding a thin honeycomb structure.
[0002]
[Prior art]
For example, a ceramic honeycomb structure mainly composed of cordierite or the like is manufactured by extruding a material using a molding die. This honeycomb structure is formed of a large number of cells by providing partition walls in a lattice shape, and examples of the cell shape include a quadrangle and a hexagon.
The honeycomb structure molding die is a honeycomb structure molding die having a supply hole for supplying a material and a slit groove communicating with the supply hole to form a material into the honeycomb shape. Is used.
[0003]
In recent years, the honeycomb structure has been required to have a thinner partition wall, for example, a thickness of 100 μm or less. Correspondingly, the groove width of the slit groove of the honeycomb structure molding die is naturally required to be narrowed.
[0004]
[Problems to be solved]
However, if the groove width of the slit groove of the mold for forming a honeycomb structure is reduced, the material flow when the material supplied from the supply hole passes through the slit groove is deteriorated. Therefore, the molding pressure at the time of molding may increase, and the moldability may be reduced.
[0005]
The present invention has been made in view of such conventional problems, and it is intended to provide a die for forming a honeycomb structure that can form a thin honeycomb structure without lowering the formability and a method for manufacturing the same. It is what.
[0006]
[Means for solving problems]
In a honeycomb structure molding die having at least a supply hole for supplying a material and a slit groove for forming the material into a honeycomb shape in communication with the supply hole,
An inclined portion is provided at a corner formed by the bottom portion of the slit groove and the side surface of the supply hole, and in the inclined portion, the depth of the slit groove gradually increases as the supply hole approaches the supply hole. There is a mold for forming a honeycomb structure characterized by being deepened.
[0007]
As described above, the mold for forming the honeycomb structure is not uniform in the depth of the slit groove, and is provided with an inclined portion at the corner, and the depth of the slit groove is increased toward the supply hole. . Therefore, the flow of the material that passes from the supply hole to the slit groove can be made smooth.
[0008]
That is, since the corner portion where the bottom of the slit groove intersects the side surface of the supply hole is inclined, the material that passes through the supply hole into the slit groove gradually spreads along the inclined portion. Therefore, the change in the flow direction when the material spreads in the width direction can be reduced as compared with the case where there is no inclined portion at the corner. Therefore, the material flow when the material enters the slit groove from the supply hole can be made smooth.
Therefore, even when the groove width of the slit groove is narrowed, an increase in molding pressure or the like can be suppressed, and excellent moldability can be maintained.
[0009]
The present invention provides a method for manufacturing a honeycomb structure molding die having at least a supply hole for supplying a material and a slit groove for forming the material into a honeycomb shape in communication with the supply hole.
After forming the supply hole from the hole forming surface of the mold material,
Water is sprayed onto the groove forming position on the groove forming surface opposite to the hole forming surface to form a water column, and laser light is irradiated through the water column, and the irradiation position of the laser light is defined as the groove forming position. Perform an irradiation scan that moves along the position and passes through the same groove forming position multiple times.
In addition, the number of irradiation scans is increased in the vicinity of a corner formed by the bottom of the slit groove formed and the side surface of the supply hole, and the depth of the slit groove gradually approaches the supply hole. In the manufacturing method of a die for forming a honeycomb structure, which is provided with a deepened inclined portion ( claim 1 ).
[0010]
In the present invention, as described above, the laser beam that passes through the water column is used to process the slit groove. The groove depth is gradually increased by irradiating and scanning the laser light as described above.
By adopting such a laser processing method, the groove depth can be locally changed by locally changing the number of irradiation scans.
[0011]
Therefore, in the present invention, the number of irradiation scans is increased in the vicinity of the corner formed by the bottom of the slit groove and the side surface of the supply hole by the change in the number of irradiation scans. Thereby, an inclined part is formed in the said corner | angular part, and the depth of a slit groove | channel can be deepened, so that a supply hole is approached.
[0012]
In the present invention, the water column is irradiated through the laser beam as described above. As a result, the laser light travels in a state of being within the diameter of the water column, and the groove width can be accurately controlled within the diameter of the water column. Therefore, it is possible to perform highly accurate slit groove processing that can sufficiently cope with the accuracy required for the honeycomb structure molding die.
[0013]
As described above, in the present invention, by locally adopting the above laser processing method, a local groove depth change which has been extremely difficult with the conventional grinding method or electric discharge processing method has been realized. In particular, by changing the groove depth so as to form inclined portions at the corners, a honeycomb structure molding die having a smooth material flow can be obtained as described above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The inclined portion of the corner portion in the honeycomb structure forming mold may have a very fine inclination as in the case of so-called chamfering, or may have a relatively long taper shape. Furthermore, the inclined part may be a straight line or a curved line.
The slit grooves can be arranged in various ways such as a quadrangular lattice or a hexagonal lattice.
[0015]
Further, as the groove width of the slit groove, for example, a narrow width dimension of 20 to 150 μm can be adopted. Even in this case, a smooth flow of the molding material can be ensured as described above. Further, the groove depth of the slit groove can be set to 10 times or more of the groove width. Also in this case, the inclination of the corners acts effectively, and the deterioration of the flow of the molding material can be suppressed.
[0016]
In the present invention, the movement of the irradiation position of the laser light is preferably performed at a relative speed 150 mm / min or more (claim 2). As a result, the groove processing can be performed little by little while easily separating and removing the melted portion irradiated with the laser beam. On the other hand, when the relative speed is less than 150 mm / min, there is a problem in that the melted portion is not sufficiently separated and removed, and the efficiency of groove formation is reduced.
[0017]
Further, in the present invention, the inclined portion is preferably the distance between the side surface of the supply holes provided in the range within 0.5 mm (claim 3). In this case, the inclined portion can be formed relatively easily.
[0018]
Further, the inclined portion is provided over the range distance of more than 0.3mm between the side of the supply holes, it is preferred that the final depth is 0.3mm or more (claim 4).
In this case, the effect of smoothing the material flow due to the presence of the inclined portion can be sufficiently exerted.
[0019]
【Example】
Example 1
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the honeycomb structure molding die 8 of this example is provided with at least a supply hole 81 for supplying a material and a material communicating with the supply hole 81 to form a honeycomb shape. This is a honeycomb structure molding die having a slit groove 82. In the honeycomb structure forming mold 8 of this example, the inclined portion 85 is provided at the corner portion formed by the bottom portion 820 of the slit groove 82 and the side surface 810 of the supply hole 81 intersecting, and the inclined portion In 85, the depth of the slit groove 82 gradually increases as it approaches the supply hole 81.
[0020]
In manufacturing the honeycomb structure forming mold 8, a laser processing apparatus 3 shown in FIG. 3 is used. The laser processing apparatus 3 includes a laser generating unit 31 that generates laser light, a laser head 32 that narrows the generated laser light to a desired diameter, an optical fiber unit 33 that guides the laser light between them, and a laser beam 1 A high-pressure water supply unit 35 that supplies high-pressure water for the water column 18 to be jetted around the laser head 32 and a nozzle 36 that jets high-pressure water as the water column 18 are provided.
Moreover, it has the bed 38 which hold | maintains the metal mold | die material 7 and can move on a plane. The bed drive unit, the high-pressure water supply unit 35, and the laser generator unit 31 built in the bed 38 are connected to an operation panel 39 for operating them.
[0021]
The mold material 7 is a rectangular metal plate having a thickness of 15 mm and a width × length of 200 × 200 mm as shown in FIG. Of course, it is also possible to use a mold material of a different size and material.
In this example, a slit groove having a width of 0.1 mm and a depth of 2.0 mm is formed on the mold material 7. Further, in this example, the supply hole 81 is provided in advance by a drill before the slit groove 82 is processed.
[0022]
And the said mold raw material 7 is hold | maintained at the support apparatus which is not shown in figure so that a movement in a plane direction is possible. Then, while moving the mold material 7 in the direction of arrow A in FIG. 3, water is sprayed from the laser processing device 3 to the groove forming position on the groove forming surface of the mold material 7 to form the water column 18. The laser beam 1 is irradiated through the water column 18. Further, an irradiation scan is performed in which the irradiation position of the laser beam 1 is moved along the groove forming position and the same groove forming position is passed a plurality of times.
[0023]
At this time, the moving speed of the mold material 7 was set to 240 mm / min, which is 150 mm / min or more. First, irradiation scanning was performed so that all the groove forming positions passed 150 times without any deviation. As a result, the narrow and deep bottom slit groove 82 having a width of 0.1 mm and a depth of 2.0 mm was obtained as described above.
[0024]
Further, in this example, in the vicinity of the corner formed by the bottom portion 820 of the formed slit groove 82 and the side surface 810 of the supply hole 81, the number of times of irradiation is increased so that the number of scans increases as the supply hole 81 is approached. Increased. As a result, as shown in FIG. 2, inclined portions 85 are obtained at the corners, and the depth of the slit groove 82 is processed so as to gradually become deeper as the supply hole 81 is approached.
[0025]
Next, the effect of this example will be described.
As described above, the honeycomb structure molding die 8 of this example is not uniform in the depth of the slit groove 82, and the inclined portion 85 is formed by inclining the corner portion, and the depth of the slit groove 82 is set to the supply hole. It gets deeper as it gets closer to 81. Therefore, the flow of the material that passes from the supply hole 81 to the slit groove 82 can be made smooth.
[0026]
That is, since the corner portion where the bottom portion 820 of the slit groove 82 and the side surface 810 of the supply hole 81 intersect is inclined, the material that passes through the supply hole 81 into the slit groove gradually spreads along the inclined portion 85. Therefore, the change in the flow direction when the material spreads in the width direction can be reduced as compared with the case where the inclined portion 85 is not provided at the corner portion. Therefore, the material flow when the material enters the slit groove 82 from the supply hole 81 can be made smooth. Therefore, even when the groove width of the slit groove 82 is as narrow as 0.1 mm as described above, an increase in molding pressure or the like can be suppressed, and excellent moldability can be maintained.
[0027]
In addition, the above-described unique processing method is employed for processing the slit groove 82 of such an excellent honeycomb structure forming mold 8. That is, the laser beam 1 passing through the water column 18 is used, and the number of irradiation scans is locally changed. Thereby, the groove depth can be changed locally.
[0028]
In this example, the number of irradiation scans is increased in the vicinity of the corner. Thus, the inclined portion 85 can be easily formed, and a shape in which the depth of the slit groove 82 becomes deeper as the supply hole 81 is approached can be obtained.
Such advantages are difficult to obtain by a conventional grinding method or electric discharge machining method.
[0029]
(Comparative Example 1)
As shown in FIG. 4, Comparative Example 1 is an example of a honeycomb structure forming die 9 in which the slit groove 82 machining method is changed to a conventional electric discharge machining method, and the slit groove 82 has a uniform depth. . Other structures are the same as those in the first embodiment.
FIGS. 2 and 4 show how the material flows when the honeycomb structure is extruded using the honeycomb structure forming mold 9 of Comparative Example 1 and the honeycomb structure forming mold 8 of Example 1 described above. Show. The ceramic material for the honeycomb structure includes, for example, a material obtained by kneading a plurality of powders as a raw material for cordierite and a binder. Moreover, as a particle size of raw material powder, the thing of 60 micrometers or less is employable.
[0030]
As shown in FIG. 4, in the case of the conventional mold for forming a honeycomb structure 9, since the slit groove 82 is formed to have a uniform depth, the molding material supplied to the supply hole 81 in the direction of arrow B is formed. The flow is changed in the direction of a right-angled arrow D at the corner where it intersects with the slit groove 82, and then changed in the direction of arrow E due to collision of molding materials in the slit groove 82 and extruded from the slit groove 82.
[0031]
On the other hand, as shown in FIG. 2, the honeycomb structure molding die 8 of the present invention has the inclined portion 85 and gradually increases as the depth of the slit groove 82 approaches the supply hole 81. Since it is deeper, the flow of the molding material supplied to the supply hole 81 in the direction of arrow B changes the flow in the direction of arrow C along the inclination of the inclined portion 85 at the corner that intersects the slit groove 82. Then, it is finally changed in the direction of arrow E and extruded from the slit groove 82.
[0032]
As described above, when the honeycomb structure molding die of Example 1 is used, the amount of change in the direction of material flow is smaller than when the honeycomb structure molding die of Comparative Example 1 is used. An increase in pressure can be suppressed. Therefore, excellent formability can be maintained even when the slit groove width is narrowed.
[0033]
(Example 2)
In this example, as shown in FIG. 5, a honeycomb structure forming mold 8 having hexagonal lattice-shaped slit grooves 82 is manufactured.
In this case, the irradiation scan path of the laser beam 1 in the first embodiment is devised so that the locus becomes a hexagonal lattice shape. Others are the same as in the first embodiment.
In this case, the same effect as that of the first embodiment can be obtained.
[0034]
(Example 3)
In this example, as in Example 1, the inclined portion 85 was provided in the honeycomb structure forming mold 8 and the shape thereof was quantitatively measured.
As shown in FIG. 6, the honeycomb structure molding die 8 of this example has a diameter of the supply holes 81 of 1 mm, a pitch of the supply holes of 2 mm, and is provided with an inclined portion 85 as in the first embodiment. . The width of the slit groove 82 is 0.1 mm as in the first embodiment.
[0035]
As shown in the figure, the inclined portion 85 of the present example is provided over a range where the distance L between the supply hole 81 and the side surface 810 is 0.3 mm or more, and the final depth D (sag distance) is 0. 3 mm or more.
[0036]
In this example, for comparison, as shown in FIG. 7, the formation of the slit groove 82 was changed to grinding, and a honeycomb structure molding die 9 having a structure having no inclined portion was produced. Then, extrusion molding was actually performed using the honeycomb structure molding die 8 of the present example (product of the present invention) and the honeycomb structure molding die 9 for comparison (comparative product) for comparison.
[0037]
As a result of comparison, in the case of the product of the present invention, the material flow was smoother than that of the comparative product, and excellent extrusion moldability was obtained.
From this result, as described above, when at least the width of the slit groove 82 is 0.1 mm, the distance L with respect to the side surface 810 of the supply hole 81 is provided over a range of 0.3 mm or more, and its final depth It has been found that the flowability of the material from the supply hole 81 to the slit groove 82 can be improved by providing the inclined portion 85 whose D (sag distance) is 0.3 mm or more.
[0038]
As a result, when the flowability of the material is the same as that of the prior art, the flowability can be sufficiently ensured even if the depth of the slit groove 82 is reduced. Therefore, for example, the depth of the slit groove 82 can be reduced for a distance of about 1/3 of the sagging distance D, so that the efficiency during processing can be improved.
[Brief description of the drawings]
1A is a plan view and FIG. 1B is an enlarged view of a main part of a mold for forming a honeycomb structure in Example 1. FIG.
2 is a cross-sectional view of the honeycomb structure forming mold in Example 1 as viewed from the direction of arrows AA in FIG. 1;
3 is an explanatory diagram showing a configuration of a laser processing apparatus in Embodiment 1. FIG.
4 is a cross-sectional view of a honeycomb structure forming mold in Comparative Example 1. FIG.
5A is a plan view and FIG. 5B is an enlarged view of a main part of a mold for forming a honeycomb structure in Example 2. FIG.
6 is an enlarged explanatory view of an inclined portion of a honeycomb structure forming mold in Example 3. FIG.
FIG. 7 is an enlarged explanatory view of an inclined portion of a honeycomb structure forming mold in a comparative example.
[Explanation of symbols]
1. . . Laser light,
3. . . Laser processing equipment,
7). . . Mold material,
8). . . Mold for forming honeycomb structure,
81. . . Supply holes,
810. . . side,
82. . . Slit groove,
820. . . bottom,

Claims (4)

少なくとも,材料を供給するための供給穴と,該供給穴に連通し材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,  In a method for manufacturing a die for forming a honeycomb structure having at least a supply hole for supplying a material and a slit groove for forming the material into a honeycomb shape in communication with the supply hole,
金型素材の穴形成面から上記供給穴を形成した後,  After forming the supply hole from the hole forming surface of the mold material,
該穴形成面と反対側の溝形成面の溝形成位置に対して水を噴射して水柱を形成すると共に,該水柱の中を通してレーザ光を照射し,該レーザ光の照射位置を上記溝形成位置に沿って移動させて同じ溝形成位置を複数回通過させる照射スキャンを行い,  Water is sprayed onto the groove forming position on the groove forming surface opposite to the hole forming surface to form a water column, and laser light is irradiated through the water column, and the irradiation position of the laser light is defined as the groove forming position. Perform an irradiation scan that moves along the position and passes through the same groove forming position multiple times.
かつ,形成される上記スリット溝の底部と上記供給穴の側面とが交わって形成される角部近傍において上記照射スキャンの回数を増やし,上記スリット溝の深さが上記供給穴に近づくにしたがって徐々に深くなる傾斜部を設けることを特徴とするハニカム構造体成形用金型の製造方法。  In addition, the number of irradiation scans is increased near the corner formed by the bottom of the slit groove formed and the side surface of the supply hole, and the depth of the slit groove gradually approaches the supply hole. A method for manufacturing a honeycomb structure molding die, characterized in that a deeply inclined portion is provided.
請求項1において,上記レーザ光の照射位置の移動は,相対速度150mm/分以上で行うことを特徴とするハニカム構造体成形用金型の製造方法。  2. The method for manufacturing a honeycomb structure molding die according to claim 1, wherein the movement of the laser beam irradiation position is performed at a relative speed of 150 mm / min or more. 請求項1又は2において,上記傾斜部は,上記供給穴の側面との距離が0.5mm以内の範囲において設けられていることを特徴とするハニカム構造体成形用金型の製造方法。  3. The method for manufacturing a honeycomb structure molding die according to claim 1, wherein the inclined portion is provided in a range within 0.5 mm from the side surface of the supply hole. 請求項1〜3のいずれか1項において,上記傾斜部は,上記供給穴の側面との距離が0.3mm以上の範囲にわたって設けられており,その最終深さは0.3mm以上であることを特徴とするハニカム構造体成形用金型の製造方法。  The inclined portion according to any one of claims 1 to 3, wherein the inclined portion is provided over a range of a distance of 0.3 mm or more from a side surface of the supply hole, and a final depth thereof is 0.3 mm or more. A method for manufacturing a die for forming a honeycomb structure.
JP2001397717A 2001-02-05 2001-12-27 Manufacturing method of mold for forming honeycomb structure Expired - Fee Related JP4062920B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001397717A JP4062920B2 (en) 2001-04-27 2001-12-27 Manufacturing method of mold for forming honeycomb structure
US10/059,245 US6765174B2 (en) 2001-02-05 2002-01-31 Method for machining grooves by a laser and honeycomb structure forming die and method for producing the same die
DE10204428A DE10204428B4 (en) 2001-02-05 2002-02-04 Laser recess removal method and method of manufacturing a honeycomb molding tool
BE2002/0066A BE1016830A5 (en) 2001-02-05 2002-02-05 METHOD OF FORMING GROOVES BY MEANS OF A LASER, DIE FOR PRODUCING HONEYCOMB STRUCTURES AND METHOD FOR PRODUCING SAME.
US10/857,943 US7164098B2 (en) 2001-02-05 2004-06-02 Method for machining grooves by a laser and honeycomb structure forming die and method for producing the same die
BE2007/0286A BE1017633A5 (en) 2001-02-05 2007-06-08 PROCESS FOR PRODUCING A HONEYCOMB STRUCTURE FORMING DIE AND DIE THUS OBTAINED

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-133131 2001-04-27
JP2001133131 2001-04-27
JP2001397717A JP4062920B2 (en) 2001-04-27 2001-12-27 Manufacturing method of mold for forming honeycomb structure

Publications (2)

Publication Number Publication Date
JP2003011111A JP2003011111A (en) 2003-01-15
JP4062920B2 true JP4062920B2 (en) 2008-03-19

Family

ID=26614516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397717A Expired - Fee Related JP4062920B2 (en) 2001-02-05 2001-12-27 Manufacturing method of mold for forming honeycomb structure

Country Status (1)

Country Link
JP (1) JP4062920B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325679B2 (en) 2007-02-08 2009-09-02 株式会社デンソー Manufacturing method of mold for forming honeycomb structure

Also Published As

Publication number Publication date
JP2003011111A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
KR101606426B1 (en) Production method for three-dimensionally shaped molded object
RU2085351C1 (en) Method of and device for making grooves on articles
US10682700B2 (en) Device and method for producing a three-dimensional object layer-by-layer
US7164098B2 (en) Method for machining grooves by a laser and honeycomb structure forming die and method for producing the same die
US11845226B2 (en) Additive manufacturing nozzle and additive manufacturing device
US8173038B2 (en) Methods and systems for forming microstructures in glass substrates
US6670575B1 (en) Method and apparatus for removing substance from the surface of a workpiece
JP2005511313A (en) Laser milling method
WO1997010067A1 (en) Process and device for making metal workpieces
DE102020123146A1 (en) Method and device for making a cut in a workpiece
JP4325679B2 (en) Manufacturing method of mold for forming honeycomb structure
WO2021039327A1 (en) Recoater, layered shaping device equipped therewith, and layered shaping method
KR102410764B1 (en) Laser processing method and machine for printed circuit board
JP4062920B2 (en) Manufacturing method of mold for forming honeycomb structure
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP3903733B2 (en) Mold for forming honeycomb structure
US20180345410A1 (en) Device and method for producing a three-dimensional, shaped metal body
JP2021115625A (en) Laminate molding device, laminate molding method and processing path creation method
JP3925168B2 (en) Groove processing method using laser and method for manufacturing die for forming honeycomb structure
JP2008194845A (en) Manufacturing method of mold for molding honeycomb structure and groove processing device used therein
JP2008194848A (en) Mold for molding honeycomb structure and its manufacturing method
US20220266533A1 (en) Support structure for a three-dimensional object and method of producing the same
JPH07304179A (en) Passage plate and its manufacture
JP4332947B2 (en) Manufacturing method of dies for forming honeycomb structure and groove processing apparatus
US11045664B2 (en) Resin laminate ridge filter for particle therapy system and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees