JP4062165B2 - Method for producing positive electrode active material for lithium ion secondary battery - Google Patents

Method for producing positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP4062165B2
JP4062165B2 JP2003127719A JP2003127719A JP4062165B2 JP 4062165 B2 JP4062165 B2 JP 4062165B2 JP 2003127719 A JP2003127719 A JP 2003127719A JP 2003127719 A JP2003127719 A JP 2003127719A JP 4062165 B2 JP4062165 B2 JP 4062165B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particle
crystallite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003127719A
Other languages
Japanese (ja)
Other versions
JP2003346809A (en
Inventor
武志 高橋
寛人 玉置
弘康 江藤
賢治 藤野
孝浩 藤井
敬治 一ノ宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2003127719A priority Critical patent/JP4062165B2/en
Publication of JP2003346809A publication Critical patent/JP2003346809A/en
Application granted granted Critical
Publication of JP4062165B2 publication Critical patent/JP4062165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、二次電池の正極活物質に係り、特に、サイクル特性、及び熱安定性を向上できる非水系のリチウムイオン二次電池用正極活物質の製造方法に関する。
【0002】
【従来の技術】
近年、カメラ一体形VTR、オーディオ・ビデオ機器、ノート型パソコン、携帯電話などの新しいコードレス型電子機器が次々と出現し、短期間で急速に広く普及した。これら機器の小型・軽量化には、携帯用電源である二次電池の高性能化は不可欠である。
【0003】
非水系リチウムイオン二次電池は、電池電圧が高く、高放電容量、及びサイクル特性などに優れ、このような用途に合致し最近盛んに研究されている。
【0004】
この電池の正極活物質にはコバルト酸リチウム(LiCoO2)を代表とするLiの重金属酸塩LiMO2(M=Co、Ni、Fe、Mn、Cr等)が使用されている。
【0005】
従来、LiMO2を正極活物質に用いた非水系二次電池では、充放電サイクルを繰り返し行うことにより、その電池放電容量が徐々に減少するというサイクル特性の劣化の問題があった。この原因は、LiMO2の結晶が崩れることによると考えられていた。特に、充放電を繰り返すことにより、正極活物質を構成する微小粒子のc軸方向への膨張、収縮が起こり、多結晶体等の場合は結晶子の界面が多いので、そこから結晶が崩れ、正極の集電体からの正極活物質の剥離が起こることがサイクル特性を劣化する原因とされていた。これに対し、サイクル特性の改善のために、結晶を単結晶化させ、かつc軸に垂直な方向((003)面)に配向する扁平粒子を成長させる方法が特開平9−22693号公報に提案されている。
【0006】
また、正極活物質のLiCoO2のX線回折線の(003)面と(104)面のピーク強度比を特定の範囲に限定することにより、サイクル特性は向上することが特開平5−258751号公報、特開平9−22692号公報、特開平9−22693号公報、及び特開平8−55624号公報に記載されている。
【0007】
さらに、リチウムイオン二次電池の正極活物質は、高温空気中では安定であるが、充電状態におかれることにより熱安定性が低下し、二次電池の電解液を構成する有機溶媒を酸化分解し、場合によっては発火を引き起こすという重大な問題が潜在している。
【0008】
これまで、リチウムイオン二次電池用正極活物質の特性については、充放電のサイクル特性を向上するための研究が数々なされてきたが、充電時の熱安定性についてはあまり触れられることはなかった。それは充電時の熱安定性を改良すれば、充放電のサイクル特性は低下するという相反する関係にあるとの見解が常識であったからである。
【0009】
【発明が解決しようとする課題】
本発明は上述した事情に鑑みなされ、リチウムイオン二次電池の充電時の熱安定性を改善し、さらに良好な充放電サイクル特性を両立する正極活物質の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は正極活物質の粒子形状及び構造について鋭意検討したところ、正極活物質は、結晶子と呼ばれる微小な単結晶が集合した粒子からなり、この結晶子及び一次粒子の大きさ或いは形状がリチウムイオン電池の熱安定性及び充放電サイクル特性に密接に関係することを見出し本発明を完成させるに至った。
【0011】
すなわち、本発明のリチウムイオン二次電池用正極活物質は、一般式LiMO2で表現されるリチウムイオン二次電池用正極活物質であって、
その粒子構造は、微小な結晶子を単位とする単結晶が集合した粒子からなり、該結晶子及び該粒子の形状は立体的にほぼ等方的形状であることを特徴とする。
(但しMはCo、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種の重金属元素)
【0012】
結晶子とは、単結晶と考えられる最大限の集合を示し、XRD(X−ray diffraction)測定より、次のシェラーの式を用いることにより計算できる。
<シェラーの式>
結晶子の大きさD(オングストローム)=Kλ/(βsinθ)
K:シェラー定数 (βを積分幅より算出した場合K=1.05)
λ:使用X線管球の波長(CuKα1=1.540562オングストローム
β:結晶子の大きさによる回折線の広がりの幅(radian)
θ:回折角2θ/2(degree)
【0013】
ここでいう粒子とはSEMで結像する最小の粒子を指し、粒子が1つの単結晶で構成されている場合は結晶子径と粒子径は同じ大きさである。一つの粒子に複数の単結晶を包含する場合、当然その大きさは一致しない。
【0014】
立体的にほぼ等方的形状とは、粒子に配向性がなく、空間の全ての方向に等方的に成長した形状をいい、典型的には球状であるが、必ずしも真球に限定するものではなく、ほぼ球状であるものも含む。通常の結晶性のある物質はその結晶構造を反映したような粒子形状を有する。これに対し、本発明において有用な正極活物質はそのような配向性を有しない特別な形状であるということができる。
【0015】
該正極活物質の一次粒子を構成する結晶子の立体形状を、層を重ねる方向((003)ベクトル方向)、及びそれに垂直な方向((110)ベクトル方向)で表現する場合、(110)ベクトル方向の結晶子径に対する(003)方向の結晶子径の比率は、0.5〜1.6の範囲であることが好ましい。層を重ねる方向とは、正極活物質のLiMO2の基本格子は六方晶系であり、c軸方向を指す。従って、それに垂直な方向とはa軸方向を指す。
【0016】
該正極活物質の結晶子の(003)ベクトル方向の結晶子径は500〜750オングストロームの範囲であることが好ましい。
【0017】
該正極活物質の結晶子の(110)ベクトル方向の結晶子径は450〜1000オングストロームの範囲であることが好ましい。
【0018】
正極活物質の平均粒径は、空気透過法により比表面積を測定し、一次粒子の粒径の平均値を求めたものであり、具体的にはフィッシャーサブシーブサイザー(F.S.S.S.)を用いて測定した値である。
【0019】
SEM観察による該粒子の長軸粒子径に対する短軸粒子径の比率は0.5〜1.0の範囲であることが好ましい。次のようにして該比率を計算する。図1に示すように、SEM写真からランダムに20個抽出した粒子像の個々の中心を求め、中心を通る最長径を決定し、これを長軸粒子径と定義する。次に中心を通り長軸に垂直な方向の径を短軸粒子径として定義する。得られた個々の粒子の短軸粒子径/長軸粒子径の比率の平均を算出する。
【0020】
本発明のリチウムイオン二次電池用正極活物質の製造方法は、原料の重金属酸化物とリチウム塩をLi/M比が0.98〜1.01の範囲となるように混合して焼成する正極活物質の製造方法において、
重金属酸化物の粒子形状は、立体的にほぼ等方的形状を有する一次粒子又は一次粒子が集合した二次粒子からなり、その中心粒径は0.1〜10μmであることを特徴とする。
(但しMはCo、Ni、Fe、Mn、Crの群から選ばれる少なくとも一種の重金属元素)
【0021】
原料の重金属酸化物の中心粒径は、電気抵抗法の粒度分布測定装置を用いて測定される値であり、ここではCoulter Multisizer2を用いて測定した中心粒径である。これは測定原理から分散状態にあるか凝集状態にあるかの知見を含んだ粒径ということができる。
【0022】
【発明の実施の形態】
<粒子形状>
本発明に於いて、正極活物質の粒子内の結晶子の成長度が、電池特性に影響を及ぼすこと、また特定のベクトル方向への成長度が、個々の特性と相関があることを見いだした。リチウムイオン二次電池の正極活物質であるLiMO2は本来層状構造を有している。本発明の正極活物質の結晶子の粒子形状は図2(a)に示すように空間に等方的に成長しており、(b)比較例のようなc軸配向のないものである。そのことをシェラーの式による結晶子径を用いて表現すると、(003)ベクトル方向に500〜750オングストロームの範囲、(110)ベクトル方向に450〜1000オングストロームの範囲、(105)ベクトル方向に500〜900オングストロームの範囲、(113)ベクトル方向に450〜1000オングストロームの範囲にあるということができる。
【0023】
本発明において、(105)、(113)ベクトル方向についても言及したが、これは、結晶が三次元的に成長しているか否かを表現するための手段であり、層に平行、垂直でないような面であれば(104)や(108)ベクトル方向の様な他の面方向をとって表現してもかまわない。但し、これらの結晶子も大きすぎると、Liイオンの拡散を阻害し、小さすぎると結晶の崩れの原因となると考えられる。
【0024】
<重金属酸化物原料>
本発明のリチウムイオン二次電池用正極活物質は、上述したような粒子形状に特徴がある。このような粒子構造とするためには、原料として二次粒子が球状であり、一次粒子の結晶子径の小さな重金属酸化物原料を選択する。正極活物質の粒子形状は、原料の粒子形状をそのまま引き継ぎやすい。例えば、重金属原料の二次粒子の形状が八面体構造である場合、得られるLiMO2の結晶子及び粒子は八面体構造となりやすく、また、重金属酸化物の形状が球状の場合、得られるLiMO2の結晶子及び粒子は球状構造となりやすい。さらに、二次粒子の形状が六角板状構造の場合、得られるLiMO2の結晶子及び粒子は六角板状構造となりやすい。本発明は、六角板状の構造は除外される。特に、重金属元素MがCoであるCo3O4の場合は、(222)ベクトル方向の結晶子のサイズが100〜400オングストロームの範囲であることが好ましい。
【0025】
重金属酸化物は一次粒子の粒径が0.01〜0.5μmのほぼ球状の形状であり、二次粒子の粒径は0.1〜10.0μmの範囲が好ましい。例えば、MがCoである場合、炭酸コバルトCoCO3であって、短軸粒子径/長軸粒子径の比率が0.5〜1.0の範囲である粒子を熱分解することで得ることができる。
【0026】
重金属元素酸化物の二次粒子の短軸粒子径/長軸粒子径の比率、重金属酸化物の二次粒子の中心粒径を上記した範囲に選択するのは、それは前述したように、M3O4の粒子構造がそのままLiMO2の粒子構造に反映されるため、この原料粒子のパラメータの限定は非常に重要となるからである。
【0027】
<リチウム原料>
本発明においてリチウム二次電池に使用する原料のLi塩としては、種々検討した結果、融点が比較的高いLi2CO3、Li2(COO)2又はLiOHが好ましく使用できる。
【0028】
<重金属原料とリチウムの混合>
本発明において、M3O4とリチウム塩をLi/M比が0.98〜1.01の範囲となるように混合する。それはLi/M比がこの範囲から逸脱すると、過剰分が融剤として作用することで粒子が異常成長し、粒子径及び粒子形状を制御困難となるからである。
【0029】
<焼成>
得られた混合原料を大気雰囲気下で、750〜1100℃で焼成する。融剤として、アルカリ金属塩類や、Bさらには、Bi、Pb等を加える場合、もしくは、造粒する場合は、(110)ベクトル方向の成長を促進しやすくなり、サイクル特性を低下するので(110)ベクトル方向の成長を制御する必要がある。
【0030】
【作用】
リチウムイオン二次電池の正極活物質は、充電することによりLiが結晶中から脱離し、LixMO2(x<1.0)の状態に変化し、六方晶系であるLiMO2が単斜晶系へと転移する。この転移により結晶が崩れることが正極活物質の充電時の熱安定性の最も大きな低下要因である。これは次のようなメカニズムにより熱安定性が低下する。
【0031】
充電時に結晶が崩れると正極活物質から酸素が遊離する。正極活物質はEC(エチレンカーボネート)等の電解液に接触した状態で電池を構成しているが、この遊離酸素が電解液を酸化分解することによって酸化反応が起こり、発熱し、場合によっては発火に至るという重大な問題に発展する可能性がある。
【0032】
<熱安定性>
本発明において熱安定性が改善されるのは次のような理由による。本発明の正極物質のLiMO2は、基本的に結晶子の形状が空間に等方的に成長した球状であり、しかも結晶子径を大きくしている。結晶子の形状を球形の等方的構造とすることで、充放電に伴うLiの移動による結晶の歪みの方向が全ての空間方向に均等となるため、一定方向に配向した従来の結晶構造に比べ、崩れを最小に抑えることが可能となる。また、結晶子を大きくすることによりLiイオンの脱離時に生じる結晶構造の崩れを軽減できる。このような理由で、(003)ベクトル方向の結晶子は500オングストローム以上、(110)ベクトル方向の結晶子は450オングストローム以上が好ましい。
【0033】
本発明の正極活物質の熱安定性について次のようにして測定した。
充電を完了したリチウムイオン二次電池をドライボックス中で分解し、正極板を取り出して約10mgを切り出し測定試料とする。得られた測定試料をThermal Gravimetric Analyzer(TGA)を用いて熱重量分析を行った。(Solid State Ionics vol.69,No.3/4 Page 265-270(1994))基本的にはその試料の温度を外部から上昇させながら試料の重量変化を引き起こす限界温度を測定する方法である。この重量変化は主として正極活物質から酸素が遊離することによる重量減少に基づく。電池の電解液中にこの酸素濃度が増加すると異常発熱の原因となる。従って、限界温度は高いほど異常発熱の問題は低下し好ましい。
【0034】
結晶子径と、TGA装置の限界温度の関係について、ほぼ球状をした結晶子を有する正極活物質について測定し図3にプロットした。本発明の正極活物質はほぼ球状であるのでの結晶子径はどのようなベクトル方向で測定しても同等であるが、ここでは(003)ベクトル方向の結晶子径を上述したシェラーの式を用いて計算した。図2よりLiMO2の充電時の熱安定性と一次関数的に相関しており、結晶子径の大きい方が限界温度が高くなり、すなわち熱安定性が向上していることが理解できる。これは上述したように結晶子径が大きいと充電時のLiの離脱による結晶の崩れの影響は小さくなり、遊離酸素濃度が低下することによる。
【0035】
<充放電サイクル特性>
充放電サイクルについては、(110)ベクトル方向への結晶子径が1000オングストローム以上に成長し過ぎないことが重要である。これは、(110)ベクトル方向に結晶を成長し過ぎると、図2(b)に示すように、正極活物質にLiを挿入(放電)する際、層に対して平行な方向しかLiイオンが挿入できないため、相対的にLiイオン挿入可能な面が減少し、粒子界面でのLiイオンの拡散が悪化するためである。特に、高い電流密度で放電させた場合、この傾向が顕著になる。
【0036】
図4に本発明の正極活物質の結晶子径と100サイクル劣化率の関係をプロットした。ここで本発明品は球形であることから、結晶子径はどの方向で評価してもほぼ同じであるが、ここでは(110)ベクトル方向の結晶子径に対してプロットした。図3より結晶子径が500からおよそ1000オングストロームの範囲ではサイクル特性はほぼ変化しないが、およそ1000オングストロームを超えると後に定義する容量維持率は低下することが分かる。
【0037】
リチウム二次電池の充放電試験は次のようにして行う。先ず、正極としてLiMO2を70重量部、アセチレンブラックを15重量部、PTFT(ポリテトラフルオロエチレン)15重量部をエタノールで混合し練り延ばしたものをペースト状とし、SUSメッシュ上に圧着し、それを乾燥して正極板を得る。これに対し、Li金属を負極として、これら両電極をEC(エチレンカーボネート)、DEC(ジエチレンカーボネート)及び電解質LiPCl4を混合した電解液に浸漬する。充電は0.2C(1Cは1時間で充電又は放電が終了する電流負荷)の電流負荷に設定し、充電上限電圧を4.20Vとする。放電は0.6C電流負荷に設定し、下限電圧を2.75Vとし、100サイクルの充放電を行う。容量維持率は(10回目の放電容量)/(1回目の放電容量)×100の(%)式により算出する。
【0038】
前述したように従来技術では、サイクル特性を向上させるために、粒子を平板状単結晶にし、c軸方向の粒子の伸縮を一定方向にすることにより、粒子の崩れを防止し、集電体からの剥離を防止するとしている。これに対し、本発明では逆に、結晶を配向性のない球状に近い形状とした。そのことで、粒子そのものの集電体への接着力が増大し、充放電サイクルによる正極活物質の集電体からの剥離を防止し、さらに、粒子界面でのLi挿入可能な面を増加させることにより、サイクル特性が改善される。
【0039】
【実施例】
本発明の実施例を正極活物質としてLiCoO2について説明するが、この組成に限定するものではなく、LiMO2(但しMはCo、Ni、Fe、Crの群から選ばれる少なくとも一種の重金属元素)の全ての可能な組成についても同様である。
【0040】
[実施例1]
<原料仕込み>
・四三酸化コバルト(Co3O4)・・・・・ 3.000kg
・炭酸リチウム(Li2CO3)・・・・・・ 1.380kg
四三酸化コバルトは(222)ベクトル方向の結晶子径が200オングストロームであり、二次粒子の形状がほぼ球状の多結晶の粒子である。二次粒子径について、Coulter Multisizer2を用いて測定したところ中心粒径は5.0μmであった。上記原料のLi/Coの仕込み比率は1.00である。これら原料をセラミックポットに仕込み、ボールミルを行い正極活物質の混合原料を得る。
【0041】
得られた混合原料を空気中900℃で10時間焼成し、粉砕し、目的とするLiCoO2を合成した。
【0042】
得られたLiCoO2をCuKαを線源とする粉末X線回折を測定し、シェラーの式を用いて計算したところ、(003)ベクトル方向の結晶子径は606オングストローム、及び(110)ベクトル方向の結晶子径は879オングストロームであり、その他(115)ベクトル方向の結晶子径は795オングストローム、(113)ベクトル方向の結晶子径は848オングストロームであった。
【0043】
LiCoO2正極活物質の粒子径について、F.S.S.S.を用いて測定したところ平均粒径は4.0μmであり、個々の粒子の短軸粒子径/長軸粒子径の比率の平均を計算したところ0.9であった。SEMに供する測定用試料を作製する場合、圧力を加えて作製すると、本発明の等方的形状の粒子と見分けが付けにくくなる。そこで、SEM測定試料を作製する場合、粒子の形状を受けにくくするため試料面に圧力をかけないように準備した。
【0044】
<サイクル特性>
得られた正極活物質LiCoO2を70重量部、アセチレンブラックを15重量部、PTFT(ポリテトラフルオロエチレン)15重量部をエタノールで混合し練り延ばしたものをペースト状とし、SUSメッシュ上に圧着し、それを乾燥して正極板を得る。これに対しLi金属を負極として、これら両電極をEC(エチレンカーボネート)、DEC(ジエチレンカーボネート)及び電解質LiPCl4を混合した電解液に浸漬する。充電は0.2C(1Cは1時間で充電又は放電が終了する電流負荷)の電流負荷に設定し、充電上限電圧を4.20Vとする。放電は0.6C電流負荷に設定し、下限電圧を2.75Vとし、100サイクルの充放電を行う。容量維持率は(100回目の放電容量)/(1回目の放電容量)×100の式により求めた結果95.2%であった。
【0045】
<熱安定性>
得られた正極活物質LiCO2を使用し、サイクル特性測定と同じ条件の二次電池を作製し、充電負荷0.2C、充電上限電圧4.20Vの条件で充電を行い、次に、リチウムイオン二次電池をドライボックス中で分解し、正極板を取り出してその内の約10mgを切り出し測定試料とする。得られた測定試料をTGA装置を用いて熱重量分析を行った結果、218.0℃で酸素遊離に基づく重量変化が観測され、限界温度はすなわち218.0℃であった。
【0046】
[比較例1]
四三酸化コバルト粒子はSEMによる観察によると六角板状粒子であり、(222)ベクトル方向の結晶子径が100オングストローム、Coulter Multisizer2を用いて測定した二次粒子の中心粒径が6.2μmであるものを使用する以外実施例1と同じ条件で原料を混合し、焼成することでLiCoO2を合成した。
【0047】
得られたLiCoO2を実施例1と同様にしてシェラーの式を用いて計算したところ、(003)ベクトル方向の結晶子径は649オングストローム、及び(110)ベクトル方向の結晶子径は1150オングストロームであり、その他(115)ベクトル方向の結晶子径は798オングストローム、(113)ベクトル方向の結晶子径は868オングストロームであった。
【0048】
LiCoO2正極活物質の粒子径についてF.S.S.S.を用いて測定したところ平均粒径は3.5μmであった。
【0049】
さらに、SEM観察によるLiCoO2の粒子の長軸粒子径に対する短軸粒子径の比率は0.3であった。
【0050】
<サイクル特性>
得られた正極活物質を使用する以外実施例1と同様にして二次電池を作製し、100サイクル充放電を行った。容量維持率は85.0%であった。
【0051】
<熱安定性>
得られた正極活物質LiCO2を使用し、実施例1と同様にしてTGAを用いて熱重量分析を行った結果、酸素遊離に基づく重量変化が観測される限界温度は190.8℃であった。
【0052】
【発明の効果】
以上説明したように、本発明の正極物質のLiMO2は、基本的に結晶子の形状が空間に等方的に成長した球状であり、しかも結晶子径を大きくしている。結晶子の形状を球形の等方的構造とすることで、充放電に伴うLiの移動による結晶の歪みの方向が全ての空間方向に均等となるため、一定方向に配向した従来の結晶構造に比べ、崩れを最小に抑えることが可能となる。また、さらに結晶子を特定の範囲に大きくすることによりLiイオンの脱離時に生じる結晶構造の崩れを軽減できる。これらの点で本発明品は従来品に比べ正極活物質の熱安定性及びサイクル特性を著しく改善することができた。
【図面の簡単な説明】
【図1】SEM写真による長軸粒子径、短軸粒子径の評価方法を示す模式図。
【図2】(a)本発明品及び(b)比較品の正極活物質の粒子形状の比較を示す拡大模式図。
【図3】結晶子径と限界温度の関係を示す特性図。
【図4】容量維持率と結晶子径の関係を示す特性図。
【符号の説明】
1・・・・・・・Liイオンが挿入可能な面
[0001]
[Industrial application fields]
The present invention relates to a positive electrode active material for a secondary battery, particularly, cycle characteristics, and a method for producing a thermally stable cathode active substance for lithium ion secondary battery of nonaqueous can be improved.
[0002]
[Prior art]
In recent years, new cordless electronic devices such as camera-integrated VTRs, audio / video devices, notebook computers, mobile phones and the like have appeared one after another, and have rapidly spread widely in a short period of time. In order to reduce the size and weight of these devices, it is essential to improve the performance of secondary batteries that are portable power sources.
[0003]
Non-aqueous lithium ion secondary batteries have high battery voltage, high discharge capacity, excellent cycle characteristics, and the like.
[0004]
As the positive electrode active material of this battery, Li heavy metal salt LiMO2 (M = Co, Ni, Fe, Mn, Cr, etc.) typified by lithium cobaltate (LiCoO2) is used.
[0005]
Conventionally, in a non-aqueous secondary battery using LiMO2 as a positive electrode active material, there has been a problem of deterioration in cycle characteristics in that the battery discharge capacity is gradually decreased by repeatedly performing a charge / discharge cycle. This cause was thought to be due to the collapse of the LiMO2 crystal. In particular, by repeating charge and discharge, microparticles constituting the positive electrode active material expand and contract in the c-axis direction, and in the case of a polycrystal or the like, there are many crystallite interfaces, so the crystals collapse from there, The separation of the positive electrode active material from the positive electrode current collector has been a cause of deterioration in cycle characteristics. On the other hand, in order to improve cycle characteristics, a method for growing a flat particle oriented in a direction ((003) plane) perpendicular to the c-axis and crystallizing is disclosed in Japanese Patent Application Laid-Open No. 9-22893. Proposed.
[0006]
JP-A-5-258751 discloses that the cycle characteristics are improved by limiting the peak intensity ratio between the (003) plane and the (104) plane of the X-ray diffraction line of LiCoO2 as the positive electrode active material to a specific range. JP-A-9-22692, JP-A-9-22693, and JP-A-8-55624.
[0007]
In addition, the positive electrode active material of a lithium ion secondary battery is stable in high-temperature air, but its thermal stability is reduced by being charged, and the organic solvent constituting the electrolyte of the secondary battery is oxidatively decomposed. In some cases, however, there is a serious problem of causing ignition.
[0008]
So far, regarding the characteristics of the positive electrode active material for lithium ion secondary batteries, many studies have been made to improve the charge / discharge cycle characteristics, but the thermal stability during charging has not been mentioned much. . This is because it was common knowledge that there is a conflicting relationship that if the thermal stability during charging is improved, the cycle characteristics of charge and discharge are reduced.
[0009]
[Problems to be solved by the invention]
This invention is made in view of the situation mentioned above, and aims at providing the manufacturing method of the positive electrode active material which improves the thermal stability at the time of charge of a lithium ion secondary battery, and also makes compatible favorable charging / discharging cycling characteristics. .
[0010]
[Means for Solving the Problems]
The present inventor has intensively studied the particle shape and structure of the positive electrode active material, and the positive electrode active material is made up of fine single crystals called crystallites, and the size and shape of the crystallites and primary particles are The present inventors have found that it is closely related to the thermal stability and charge / discharge cycle characteristics of a lithium ion battery, and completed the present invention.
[0011]
That is, the positive electrode active material for a lithium ion secondary battery of the present invention is a positive electrode active material for a lithium ion secondary battery expressed by a general formula LiMO2,
The particle structure is composed of particles in which single crystals each having a minute crystallite as a unit, and the shape of the crystallite and the particle is a three-dimensional substantially isotropic shape.
(Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
[0012]
The crystallite indicates a maximum group considered to be a single crystal, and can be calculated by using the following Scherrer's formula from XRD (X-ray diffraction) measurement.
<Scherrer formula>
Crystallite size D (angstrom) = Kλ / (βsinθ)
K: Scherrer constant (when β is calculated from the integral width, K = 1.05)
λ: wavelength of the X-ray tube used (CuKα1 = 1.540562 angstrom β: width of the diffraction line spread depending on the crystallite size (radian)
θ: diffraction angle 2θ / 2 (degree)
[0013]
The term “particle” as used herein refers to the smallest particle imaged by SEM. When the particle is composed of one single crystal, the crystallite diameter and the particle diameter are the same. When a plurality of single crystals are included in one particle, naturally the sizes do not match.
[0014]
Three-dimensional substantially isotropic shape means a shape in which particles are not oriented and isotropically grown in all directions of space, typically spherical, but not necessarily limited to a true sphere Instead, it includes those that are almost spherical. A normal crystalline substance has a particle shape that reflects its crystal structure. On the other hand, it can be said that the positive electrode active material useful in the present invention has a special shape having no such orientation.
[0015]
In the case where the three-dimensional shape of the crystallites constituting the primary particles of the positive electrode active material is expressed by a direction in which the layers are overlapped ((003) vector direction) and a direction perpendicular to the direction ((110) vector direction), (110) vector The ratio of the crystallite diameter in the (003) direction to the crystallite diameter in the direction is preferably in the range of 0.5 to 1.6. The direction of stacking layers refers to the c-axis direction in which the basic lattice of LiMO2 of the positive electrode active material is a hexagonal system. Therefore, the direction perpendicular to it indicates the a-axis direction.
[0016]
The crystallite diameter of the positive electrode active material crystallites in the (003) vector direction is preferably in the range of 500 to 750 angstroms.
[0017]
The crystallite diameter of the positive electrode active material crystallites in the (110) vector direction is preferably in the range of 450 to 1000 angstroms.
[0018]
The average particle diameter of the positive electrode active material is a value obtained by measuring a specific surface area by an air permeation method and obtaining an average value of particle diameters of primary particles, and specifically, a Fischer sub-sieve sizer (FSSS). )).
[0019]
The ratio of the short axis particle diameter to the long axis particle diameter of the particles by SEM observation is preferably in the range of 0.5 to 1.0. The ratio is calculated as follows. As shown in FIG. 1, the individual centers of 20 particle images randomly extracted from the SEM photograph are obtained, the longest diameter passing through the center is determined, and this is defined as the long axis particle diameter. Next, the diameter in the direction perpendicular to the long axis through the center is defined as the short axis particle diameter. The average of the ratio of the minor axis particle diameter / major axis particle diameter of the obtained individual particles is calculated.
[0020]
The method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention comprises mixing a raw material heavy metal oxide and a lithium salt so that the Li / M ratio is in the range of 0.98 to 1.01, and firing the positive electrode. In the method for producing an active material,
The particle shape of the heavy metal oxide is composed of primary particles having a substantially three-dimensional isotropic shape or secondary particles in which primary particles are aggregated, and the center particle size is 0.1 to 10 μm.
(Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
[0021]
The center particle size of the raw metal heavy metal oxide is a value measured using a particle size distribution measuring apparatus of the electric resistance method, and here is a center particle size measured using a Coulter Multisizer2. This can be said to be a particle size including the knowledge of whether it is in a dispersed state or an agglomerated state from the measurement principle.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
<Particle shape>
In the present invention, it has been found that the degree of growth of crystallites in the particles of the positive electrode active material affects battery characteristics, and that the degree of growth in a specific vector direction correlates with individual characteristics. . LiMO2, which is a positive electrode active material of a lithium ion secondary battery, originally has a layered structure. The crystallite particle shape of the positive electrode active material of the present invention grows isotropically in the space as shown in FIG. 2 (a), and (b) has no c-axis orientation as in the comparative example. Expressing this using the crystallite diameter according to Scherrer's equation, the range of 500 to 750 angstroms in the (003) vector direction, the range of 450 to 1000 angstroms in the (110) vector direction, and the range of 500 to 500 in the (105) vector direction. It can be said that it is in the range of 900 angstroms and (113) in the range of 450 to 1000 angstroms in the vector direction.
[0023]
In the present invention, the (105) and (113) vector directions are also mentioned, but this is a means for expressing whether or not the crystal is grown three-dimensionally, and is not parallel or perpendicular to the layer. As long as it is a smooth surface, other surface directions such as (104) and (108) vector directions may be used. However, it is considered that if these crystallites are too large, the diffusion of Li ions is inhibited, and if they are too small, the crystals are broken.
[0024]
<Raw metal oxide raw material>
The positive electrode active material for a lithium ion secondary battery of the present invention is characterized by the particle shape as described above. In order to obtain such a particle structure, a heavy metal oxide raw material in which the secondary particles are spherical and the crystallite diameter of the primary particles is small is selected. The particle shape of the positive electrode active material is easy to inherit the particle shape of the raw material. For example, when the shape of the secondary particles of the heavy metal raw material has an octahedral structure, the resulting LiMO2 crystallites and particles are likely to have an octahedral structure, and when the heavy metal oxide has a spherical shape, the resulting LiMO2 crystal The child and particles tend to have a spherical structure. Further, when the secondary particles have a hexagonal plate-like structure, the resulting LiMO2 crystallites and particles are likely to have a hexagonal plate-like structure. In the present invention, a hexagonal plate-like structure is excluded. In particular, in the case where the heavy metal element M is Co3O4, the crystallite size in the (222) vector direction is preferably in the range of 100 to 400 angstroms.
[0025]
The heavy metal oxide has a substantially spherical shape with a primary particle size of 0.01 to 0.5 μm, and a secondary particle size of 0.1 to 10.0 μm is preferable. For example, when M is Co, it can be obtained by pyrolyzing particles that are cobalt carbonate CoCO3 and the ratio of the short axis particle diameter / long axis particle diameter is in the range of 0.5 to 1.0. .
[0026]
The ratio of the minor axis particle diameter / major axis particle diameter of the secondary particle of the heavy metal element oxide and the central particle diameter of the secondary particle of the heavy metal oxide are selected within the above-mentioned ranges as described above. This is because, since the particle structure is directly reflected in the LiMO2 particle structure, it is very important to limit the parameters of the raw material particles.
[0027]
<Lithium raw material>
As a raw material Li salt used for the lithium secondary battery in the present invention, as a result of various studies, Li2CO3, Li2 (COO) 2 or LiOH having a relatively high melting point can be preferably used.
[0028]
<Mixing of heavy metal raw material and lithium>
In the present invention, M3O4 and a lithium salt are mixed so that the Li / M ratio is in the range of 0.98 to 1.01. This is because if the Li / M ratio deviates from this range, the excess will act as a flux, causing the particles to grow abnormally, making it difficult to control the particle size and shape.
[0029]
<Baking>
The obtained mixed raw material is fired at 750 to 1100 ° C. in an air atmosphere. When an alkali metal salt, B, Bi, Pb, or the like is added as a flux, or when granulation is performed, growth in the (110) vector direction is facilitated and cycle characteristics are reduced (110 It is necessary to control the growth in the vector direction.
[0030]
[Action]
When the positive electrode active material of the lithium ion secondary battery is charged, Li is desorbed from the crystal and changes to a state of LixMO2 (x <1.0), and the hexagonal system LiMO2 changes to a monoclinic system. Metastasize. Crystal breakage due to this transition is the biggest factor for the decrease in thermal stability during charging of the positive electrode active material. This is because the thermal stability is lowered by the following mechanism.
[0031]
When the crystals are broken during charging, oxygen is released from the positive electrode active material. The positive electrode active material constitutes the battery in contact with an electrolytic solution such as EC (ethylene carbonate), but this free oxygen oxidizes and decomposes the electrolytic solution, generating heat, and in some cases igniting It can develop into a serious problem.
[0032]
<Thermal stability>
The reason why the thermal stability is improved in the present invention is as follows. LiMO2 of the positive electrode material of the present invention is basically a sphere whose crystallite shape isotropically grown in the space, and has a large crystallite diameter. By making the crystallite shape into a spherical isotropic structure, the direction of crystal distortion due to movement of Li accompanying charge / discharge is uniform in all spatial directions, so the conventional crystal structure oriented in a certain direction In comparison, collapse can be minimized. In addition, by increasing the crystallite, it is possible to reduce the collapse of the crystal structure that occurs when Li ions are desorbed. For this reason, the crystallite in the (003) vector direction is preferably 500 angstroms or more, and the crystallite in the (110) vector direction is preferably 450 angstroms or more.
[0033]
The thermal stability of the positive electrode active material of the present invention was measured as follows.
The charged lithium ion secondary battery is disassembled in a dry box, the positive electrode plate is taken out, and about 10 mg is cut out as a measurement sample. The obtained measurement sample was subjected to thermogravimetric analysis using a thermal gravimetric analyzer (TGA). (Solid State Ionics vol.69, No.3 / 4 Page 265-270 (1994)) Basically, it is a method of measuring the limit temperature that causes the weight change of the sample while raising the temperature of the sample from the outside. This change in weight is mainly based on a decrease in weight due to the release of oxygen from the positive electrode active material. If this oxygen concentration increases in the battery electrolyte, it will cause abnormal heat generation. Therefore, the higher the limit temperature, the lower the problem of abnormal heat generation.
[0034]
The relationship between the crystallite diameter and the limit temperature of the TGA apparatus was measured for a positive electrode active material having a substantially spherical crystallite and plotted in FIG. Since the positive electrode active material of the present invention is almost spherical, the crystallite diameter is the same regardless of the vector direction, but here the (003) vector direction crystallite diameter is the Scherrer equation described above. Used to calculate. From FIG. 2, it can be understood that there is a linear function correlation with the thermal stability during charging of LiMO2, and that the larger the crystallite diameter, the higher the limit temperature, that is, the thermal stability is improved. This is because, as described above, when the crystallite size is large, the influence of the crystal breakage due to the separation of Li at the time of charging is reduced, and the free oxygen concentration is lowered.
[0035]
<Charge / discharge cycle characteristics>
Regarding the charge / discharge cycle, it is important that the crystallite diameter in the (110) vector direction does not grow too much to 1000 angstroms or more. This is because if the crystal grows too much in the (110) vector direction, as shown in FIG. 2B, when Li is inserted (discharged) into the positive electrode active material, Li ions are only in the direction parallel to the layer. This is because the insertion of Li ions relatively decreases, and the diffusion of Li ions at the particle interface deteriorates. In particular, this tendency becomes prominent when discharged at a high current density.
[0036]
FIG. 4 plots the relationship between the crystallite diameter of the positive electrode active material of the present invention and the 100 cycle deterioration rate. Here, since the product of the present invention has a spherical shape, the crystallite diameter is almost the same in any direction, but here it is plotted against the crystallite diameter in the (110) vector direction. As can be seen from FIG. 3, the cycle characteristics hardly change when the crystallite diameter is in the range of 500 to about 1000 angstroms, but the capacity retention rate defined later decreases when the crystallite diameter exceeds about 1000 angstroms.
[0037]
The charge / discharge test of the lithium secondary battery is performed as follows. First, 70 parts by weight of LiMO2 as a positive electrode, 15 parts by weight of acetylene black, and 15 parts by weight of PTFT (polytetrafluoroethylene) were mixed and kneaded with ethanol to form a paste, which was pressure-bonded onto a SUS mesh. Dry to obtain a positive electrode plate. On the other hand, using Li metal as a negative electrode, these two electrodes are immersed in an electrolytic solution in which EC (ethylene carbonate), DEC (diethylene carbonate) and an electrolyte LiPCl4 are mixed. Charging is set to a current load of 0.2 C (1 C is a current load that completes charging or discharging in one hour), and the charging upper limit voltage is set to 4.20 V. Discharging is set to a 0.6 C current load, the lower limit voltage is set to 2.75 V, and charging and discharging are performed for 100 cycles. The capacity retention rate is calculated by the formula (%) of (10th discharge capacity) / (1st discharge capacity) × 100.
[0038]
As described above, in the prior art, in order to improve the cycle characteristics, the grains are made into a flat single crystal, and the expansion and contraction of the grains in the c-axis direction is made constant, thereby preventing the collapse of the grains. It is supposed to prevent peeling. On the other hand, in the present invention, conversely, the crystal is formed in a nearly spherical shape without orientation. As a result, the adhesion force of the particles themselves to the current collector is increased, the peeling of the positive electrode active material from the current collector due to the charge / discharge cycle is prevented, and the surface where Li can be inserted at the particle interface is increased. As a result, cycle characteristics are improved.
[0039]
【Example】
Examples of the present invention will be described with respect to LiCoO2 as a positive electrode active material. However, the present invention is not limited to this composition, and LiMO2 (where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, and Cr) The same applies to possible compositions.
[0040]
[Example 1]
<Raw material preparation>
・ Cobalt tetroxide (Co3O4) ... 3000kg
・ Lithium carbonate (Li2CO3) ... 1.380kg
Cobalt tetroxide is a polycrystalline particle having a crystallite diameter of 200 angstroms in the (222) vector direction and a substantially spherical secondary particle shape. The secondary particle size was measured using a Coulter Multisizer 2 and found to have a center particle size of 5.0 μm. The charging ratio of the raw material Li / Co is 1.00. These raw materials are charged into a ceramic pot and ball milled to obtain a mixed raw material of the positive electrode active material.
[0041]
The obtained mixed raw material was calcined in air at 900 ° C. for 10 hours and pulverized to synthesize target LiCoO 2.
[0042]
The obtained LiCoO 2 was measured by powder X-ray diffraction using CuKα as a radiation source and calculated using Scherrer's equation. The crystallite diameter in the (003) vector direction was 606 Å, and the crystal in the (110) vector direction The crystallite diameter was 879 angstroms, the crystallite diameter in the (115) vector direction was 795 angstroms, and the crystallite diameter in the (113) vector direction was 848 angstroms.
[0043]
Regarding the particle diameter of the LiCoO 2 positive electrode active material, see F.C. S. S. S. The average particle diameter was 4.0 μm, and the average ratio of the short axis particle diameter / long axis particle diameter of each particle was calculated to be 0.9. When producing a measurement sample to be subjected to SEM, if it is produced by applying pressure, it is difficult to distinguish it from the isotropic particles of the present invention. Therefore, when preparing an SEM measurement sample, preparation was made so as not to apply pressure to the sample surface in order to make it difficult to receive the shape of the particles.
[0044]
<Cycle characteristics>
70 parts by weight of the obtained positive electrode active material LiCoO2, 15 parts by weight of acetylene black, and 15 parts by weight of PTFT (polytetrafluoroethylene) were mixed and kneaded with ethanol to form a paste, which was pressure-bonded onto a SUS mesh, It is dried to obtain a positive electrode plate. On the other hand, using Li metal as a negative electrode, these two electrodes are immersed in an electrolytic solution in which EC (ethylene carbonate), DEC (diethylene carbonate) and an electrolyte LiPCl4 are mixed. Charging is set to a current load of 0.2 C (1 C is a current load that completes charging or discharging in one hour), and the charging upper limit voltage is set to 4.20 V. Discharging is set to a 0.6 C current load, the lower limit voltage is set to 2.75 V, and charging and discharging are performed for 100 cycles. The capacity retention rate was found to be 95.2% as determined by the formula of (100th discharge capacity) / (first discharge capacity) × 100.
[0045]
<Thermal stability>
Using the obtained positive electrode active material LiCO2, a secondary battery under the same conditions as in the cycle characteristic measurement was prepared, and charged under the conditions of a charging load of 0.2 C and a charging upper limit voltage of 4.20 V. The secondary battery is disassembled in a dry box, the positive electrode plate is taken out, and about 10 mg is cut out and used as a measurement sample. The obtained measurement sample was subjected to thermogravimetric analysis using a TGA apparatus. As a result, a weight change based on oxygen release was observed at 218.0 ° C., and the limit temperature was 218.0 ° C.
[0046]
[Comparative Example 1]
Cobalt tetroxide particles are hexagonal plate-like particles as observed by SEM. (222) The crystallite diameter in the vector direction is 100 angstroms, and the secondary particle central particle diameter measured with a Coulter Multisizer 2 is 6.2 μm. LiCoO2 was synthesized by mixing and firing the raw materials under the same conditions as in Example 1 except that some were used.
[0047]
The obtained LiCoO 2 was calculated using Scherrer's equation in the same manner as in Example 1. As a result, the crystallite diameter in the (003) vector direction was 649 angstroms, and the crystallite diameter in the (110) vector direction was 1150 angstroms. In addition, the crystallite diameter in the (115) vector direction was 798 angstroms, and the crystallite diameter in the (113) vector direction was 868 angstroms.
[0048]
Regarding the particle size of the LiCoO2 cathode active material S. S. S. The average particle size was 3.5 μm as measured using
[0049]
Further, the ratio of the short axis particle diameter to the long axis particle diameter of the LiCoO 2 particles by SEM observation was 0.3.
[0050]
<Cycle characteristics>
A secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used, and 100 cycles of charge / discharge were performed. The capacity retention rate was 85.0%.
[0051]
<Thermal stability>
As a result of thermogravimetric analysis using TGA in the same manner as in Example 1 using the obtained positive electrode active material LiCO2, the limit temperature at which a weight change based on oxygen release was observed was 190.8 ° C. .
[0052]
【The invention's effect】
As described above, LiMO2 of the positive electrode material of the present invention is basically a sphere whose crystallite shape is isotropically grown in the space, and has a large crystallite diameter. By making the crystallite shape into a spherical isotropic structure, the direction of crystal distortion due to movement of Li accompanying charge / discharge is uniform in all spatial directions, so the conventional crystal structure oriented in a certain direction In comparison, collapse can be minimized. Further, by further increasing the crystallite within a specific range, it is possible to reduce the collapse of the crystal structure that occurs when Li ions are desorbed. In these respects, the product of the present invention was able to significantly improve the thermal stability and cycle characteristics of the positive electrode active material as compared with the conventional product.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for evaluating a long axis particle diameter and a short axis particle diameter according to an SEM photograph.
FIG. 2 is an enlarged schematic view showing a comparison of particle shapes of positive electrode active materials of (a) the product of the present invention and (b) a comparative product.
FIG. 3 is a characteristic diagram showing the relationship between the crystallite diameter and the limit temperature.
FIG. 4 is a characteristic diagram showing the relationship between capacity retention rate and crystallite diameter.
[Explanation of symbols]
1 .... Pattern on which Li ions can be inserted

Claims (1)

一般式LiMO(式中、MはCo、Ni、Fe、MnおよびCrからなる群から選ばれる少なくとも1種の重金属元素を表す。)で表されるリチウムイオン二次電池用正極活物質の製造方法であって、
短軸粒子径/長軸粒子径の比率が0.5〜1.0の範囲である粒子を熱分解することにより、一次粒子の粒径が0.01〜0.5μmであり、二次粒子の粒径が0.1〜10.0μmであり、(222)ベクトル方向の結晶子のサイズが100〜400オングストロームの範囲である重金属酸化物を得る工程と、
該重金属酸化物とリチウム塩の(リチウム)/(重金属)比が0.98〜1.01の混合原料を得る工程と、
該混合原料を大気雰囲気下において750〜1100℃で焼成する工程と、
を有するリチウムイオン二次電池用正極活物質の製造方法。
Production of cathode active material for lithium ion secondary battery represented by general formula LiMO 2 (wherein M represents at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn and Cr) A method,
By thermally decomposing particles whose ratio of short axis particle diameter / major axis particle diameter is in the range of 0.5 to 1.0, the primary particles have a particle diameter of 0.01 to 0.5 μm, and secondary particles particle size 0.1~10.0μm der of is, obtaining a heavy metal oxide is in a range size from 100 to 400 Å (222) vector direction crystallite,
Obtaining a mixed raw material having a (lithium) / (heavy metal) ratio of the heavy metal oxide and lithium salt of 0.98 to 1.01;
Baking the mixed raw material at 750 to 1100 ° C. in an air atmosphere;
The manufacturing method of the positive electrode active material for lithium ion secondary batteries which has this.
JP2003127719A 1997-03-07 2003-05-06 Method for producing positive electrode active material for lithium ion secondary battery Expired - Fee Related JP4062165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127719A JP4062165B2 (en) 1997-03-07 2003-05-06 Method for producing positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-52900 1997-03-07
JP5290097 1997-03-07
JP2003127719A JP4062165B2 (en) 1997-03-07 2003-05-06 Method for producing positive electrode active material for lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07490797A Division JP3591195B2 (en) 1997-03-07 1997-03-27 Cathode active material for lithium ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2003346809A JP2003346809A (en) 2003-12-05
JP4062165B2 true JP4062165B2 (en) 2008-03-19

Family

ID=29781682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127719A Expired - Fee Related JP4062165B2 (en) 1997-03-07 2003-05-06 Method for producing positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4062165B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219064A (en) 2010-06-18 2010-09-30 Ngk Insulators Ltd Manufacturing method of cathode active material for lithium secondary battery
US8709662B2 (en) 2010-06-18 2014-04-29 Ngk Insulators, Ltd. Method for producing cathode active material for a lithium secondary battery
JP2012012272A (en) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd Raw material mixture for alkali metal-based complex metal oxide
JP5482755B2 (en) * 2011-09-20 2014-05-07 東ソー株式会社 Novel lithium manganese composite oxide, method for producing the same, and use thereof
JP5701343B2 (en) * 2013-07-10 2015-04-15 株式会社田中化学研究所 Positive electrode active material for lithium secondary battery, positive electrode and secondary battery
WO2015129187A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2003346809A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP3591195B2 (en) Cathode active material for lithium ion secondary batteries
JP4644895B2 (en) Lithium secondary battery
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP6612356B2 (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
JP5518182B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, precursor of the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
US6783890B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
KR100326455B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
JP4276442B2 (en) Positive electrode active material powder for lithium secondary battery
US7829045B2 (en) Method for producing lithium composite oxide for use as positive electrode active material for lithium secondary batteries
JP2004292264A (en) Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method
JPH0922693A (en) Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US9786914B2 (en) Spinel-type lithium cobalt manganese-containing complex oxide
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JPWO2004088776A1 (en) Method for producing positive electrode active material for lithium secondary battery
JP2005332713A (en) Lithium secondary battery and positive electrode active material for secondary battery
JP3489391B2 (en) Positive active material for lithium ion secondary battery and method for producing the same
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP4062165B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP2024516811A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees