JP4060627B2 - Roughened steel sheet and roughening method - Google Patents

Roughened steel sheet and roughening method Download PDF

Info

Publication number
JP4060627B2
JP4060627B2 JP2002110767A JP2002110767A JP4060627B2 JP 4060627 B2 JP4060627 B2 JP 4060627B2 JP 2002110767 A JP2002110767 A JP 2002110767A JP 2002110767 A JP2002110767 A JP 2002110767A JP 4060627 B2 JP4060627 B2 JP 4060627B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
steel plate
roughening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002110767A
Other languages
Japanese (ja)
Other versions
JP2003003300A (en
Inventor
圭二 和泉
政義 多々納
正司 平岡
雅夫 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002110767A priority Critical patent/JP4060627B2/en
Publication of JP2003003300A publication Critical patent/JP2003003300A/en
Application granted granted Critical
Publication of JP4060627B2 publication Critical patent/JP4060627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解により表面を粗面化した普通鋼または特殊鋼の鋼板、およびその電解粗面化方法に関するものである。
【0002】
【従来の技術】
一般に鋼板素材の表面には、防錆や塗膜密着性の観点からめっきが施される場合が多い。しかし、用途によっては、めっき層を介さずに鋼板素地に直接塗膜を形成させたり接着剤を塗布する必要が生じることがある。
【0003】
鋼板素地は一般に有機高分子等の塗膜や接着剤との密着性があまり良好ではない。このため、鋼板素地に直接塗料や接着剤を塗布した場合、曲げ加工や絞り加工において塗膜が剥離したり、接着剤を介して接合された被覆材料が外部応力によって剥離するといった問題が生じやすい。そこで、前処理として、鋼板表面の粗面化が行われることがある。その代表的手段として、ブラスト処理およびダルロール圧延が挙げられる。
【0004】
ブラスト処理は、シュートやグリッドなどの研磨粒子を高圧の空気で送り出して粗面化すべき材料の表面に衝突させるものであり、その衝突によって材料の表面を削り取って凹凸形状にする粗面化手段である。しかし、ブラスト処理は、削り取られた鋼粉の処理により連続生産性が低下し、また特に薄ゲージ鋼板に適用した場合には鋼板が反り返る等の形状不良の問題が生じやすい。さらに、研磨粒子の材質,形状,粒径,空気圧等の条件によって表面粗さが変動し易いため、品質管理が難しいという面もある。
【0005】
ダルロール圧延は、圧延ロール表面に施した凹凸形状を鋼板に転写する粗面化手段であり、表面粗さの制御はある程度可能である。しかし、塗膜等との密着性を大幅に向上させるような微細な粗面化は困難である。
【0006】
一方、ステンレス鋼を対象とした粗面化技術としては、電解粗面化方法がいくつか開発されている。ステンレス鋼には強固な不動態皮膜を形成し、腐食形態が本来孔食状になりやすいという性質があることから、不動態化と活性溶解が混在する電解条件、すなわち粗面化が可能な電解条件を実現しやすいと言える。
【0007】
その電解粗面化方法として、例えば、特開平6−136600号公報には、硝酸または硝酸を主成分とする水溶液中でステンレス鋼の陽極電解または陽極電解+陰極電解を行う粗面化方法が開示されている。具体的には、表面電位1.21〜1.82V vs SCE,陽極電解電流25〜220mA/cm2(=2.5〜22A/dm2),電解時間20〜60分といった、比較的低電流密度で長時間の過不動態溶解を行う例が示されている。
【0008】
また、特開平10−259499号公報には、塩化第二鉄水溶液中でステンレス鋼板を交番電解することにより、アンカー効果の高い特異な形状のピットを高密度に形成する方法が開示されている。
【0009】
【発明が解決しようとする課題】
ところが、上記のような電解粗面化技術を、普通鋼、あるいはステンレス鋼以外の特殊鋼に適用しても表面を粗面化することはできない。これらの鋼種は本来孔食よりも全面溶解の傾向が強いため、不動態化と活性溶解を混在させることが困難だからである。このため、普通鋼、あるいはステンレス鋼以外の特殊鋼など、強固な不動態皮膜を形成しない鋼種の電解粗面化は容易でなく、その方法は確立されていない。本発明は、このような鋼種について、鋼板素地の塗膜密着性を大幅に改善し得るような粗面化を、電解にて実現し、ブラスト処理やダルロール圧延の欠点を解消した粗面化鋼板を提供することを目的とする。
【0010】
【課題を解決するための手段】
Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼や特殊鋼(以下、これらを「普通鋼等」という)は、不動態化傾向があまり強くなく、酸やアルカリ水溶液中では孔食よりも全面溶解を生じやすい。発明者らは、このような鋼種について、表面を電解により粗面化する方法を鋭意研究してきた。その結果、以下のような知見を得た。
▲1▼硝酸水溶液中で、被処理材をアノード極とし、高電流密度で酸素気泡を多量に発生させながら電解すると、粗面化が可能であること。
▲2▼ただし、その場合、液温上昇が著しいため連続処理には適さないこと。
▲3▼ところが、硝酸水溶液中に強電解質硝酸塩を添加すると連続処理も可能になること。
▲4▼比較的短時間で電解を終了することで塗膜密着性の良い粗面化面が達成できること。
▲5▼硫酸や塩酸の水溶液では粗面化できないこと。
本発明は、このような知見に基づいて完成したものである。
【0011】
すなわち、発明者らは、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板表面に、中心線平均粗さRaが1.0〜4.0μm、最大高さRyが25μm以下、凹凸の平均間隔Smが0.03〜0.1mmである電解粗面化表面を形成した粗面化鋼板を提供し、上記目的を達成した。
【0012】
また、硝酸と強電解質硝酸塩の混合水溶液中、例えば、硝酸5〜30質量%と硝酸ナトリウム50〜100g/L(リットル)を含む水溶液中において、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板をアノード極とし、その鋼板表面上で酸素気泡を発生させながら当該鋼板を50〜150A/dm2の電流密度でアノード電解することにより、中心線平均粗さRaが1.0〜4.0μm、好ましくは最大高さRyが25μm以下、さらに好ましくは凹凸の平均間隔Smが0.03〜0.1mmの電解粗面化表面を形成する鋼板の粗面化方法を提供する。ここで、Ra,Ry,SmはJIS B 0660に規定されているものである。
【0013】
より具体的な好ましい方法として、硝酸5〜30質量%+硝酸ナトリウム50〜100g/Lの水溶液20〜40℃中において、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板をアノード極とし、その鋼板表面上で酸素気泡を発生させながら当該鋼板を50〜150A/dm2の電流密度で5〜120秒間アノード電解する鋼板の粗面化方法を提供する。その際、特に、+1.5〜+2.2VSCEのアノード電位でアノード電解する方法を提供する。ここで、「VSCE」は飽和カロメル参照電極電位に対する電位(V)を表す。
【0014】
さらに、上記の各粗面化方法において、特に、電流密度を80〜120A/dm2とする方法を提供する。
【0015】
【発明の実施の形態】
本発明では、粗面化の対象鋼として、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼を規定している。この範囲に属する鋼は広範な用途に使用されているが、ステンレス鋼のように強固な不動態皮膜を形成しないため、本質的に電解粗面化が困難なものである。しかし、このような鋼種でも、後述の電解方法により、塗料や接着剤との密着性を大きく改善させることのきる粗面化が可能になった。
【0016】
具体的な対象鋼として、例えば以下のようなものが挙げられる。
▲1▼質量%で、C:0.32%,Si:0.17%,Mn:0.72%,P:0.018%,S:0.021%,残部:Feおよび不可避的不純物
▲2▼質量%で、C:0.098%,Si:0.01%,Mn:0.39%,P:0.015%,S:0.004%,Al:0.031%,残部:Feおよび不可避的不純物
▲3▼質量%で、C:0.92%,Si:0.23%,Mn:0.42%,P:0.014%,S:0.021%,Cr:0.31%,残部:Feおよび不可避的不純物
▲4▼質量%で、C:0.90%,Si:0.22%,Mn:0.49%,P:0.013%,S:0.011%,Ni:0.45%,Cr:0.37%,残部:Feおよび不可避的不純物
▲5▼質量%で、C:0.22%,Si:0.18%,Mn:0.44%,P:0.012%,S:0.011%,Ni:3.15%,Cr:1.22%,Mo:0.19%,残部:Feおよび不可避的不純物
【0017】
これらの鋼板表面にめっき層を形成させることなく、鋼板素地を粗面化することによって塗膜や接着剤との密着性を大きく向上させるには、電解粗面化後の鋼板素地の中心線平均粗さRaが1.0〜4.0μmの範囲に調整されていることが重要である。Raが1.0μm未満では、塗膜等に対するアンカー効果が十分に発揮されず、塗膜剥離を生じやすい。一方、Raが4.0μmを超えると、凹凸の凸部が細く鋭利になる傾向が大きくなるため、加工時にこの凸部が破断する場合がある。
【0018】
また、凹凸部の最大高さRyが25μm以下であること、および凹凸の平均間隔Smが0.03〜0.1mmであることが必要である。鋼板単位面積あたりの塗膜付着量が同じなら、Ryが大きくなるほど凸部と塗膜最表面との距離が短くなるので、加工時に凸部による塗膜破断が生じやすくなる。Smが小さくなると単位断面曲線当たりの凹凸のピッチが細かい構造となり、深さ方向への塗料・接着剤の流れ込みが悪くなる箇所が生じて塗膜や接着剤との密着性が低下する。Smが大きくなりすぎると凹凸のピッチが大きくなって平面に近い状態となり、アンカー効果が十分に発揮されなくなり、この場合も塗膜や接着剤との密着性は低下する。種々検討の結果、Raが1.0〜4.0μmであって、かつRyが25μm以下に抑えられていると、塗膜に対するアンカー効果は十分に発揮されるとともに、比較的厳しい曲げ加工においても凸部による塗膜破断が生じにくいことがわかった。つまり、Raが1.0〜4.0μm、かつRyが25μm以下の場合に、特に優れた塗膜密着性が確保されると言える。また、特にSmが0.03〜0.1mmの範囲にあるとき、一層優れた塗膜・接着剤との密着性が安定して得られることがわかった。
【0019】
次に、電解粗面化方法について述べる。
電解粗面化は、基本的に、アノード溶解が生じる部分と生じない部分を材料表面に混在させることによって達成される。材料がステンレス鋼の場合、不動態化傾向が強いために適度な酸化力を有する溶液中でアノード電解すると材料表面のいたるところに孔食状のピットを形成させることができる。つまり、比較的小さい電流密度で孔食状の局部腐食を連続的に生じさせることにより粗面化が達成される。ところが、普通鋼等の場合は不動態化傾向が弱いために、アノード電解時に局部的な孔食状の溶解を生じさせることが困難であり、ステンレス鋼と同様のメカニズムで粗面化することはできない。
【0020】
本発明では、普通鋼等の鋼板表面にアノード溶解が生じる部分と生じない部分を混在させるために、水の電気分解によってアノード極上で発生する酸素の酸化力を積極的に利用するという、新たな手法を採用した。すなわち、鋼板をアノード極とし、水の電気分解が生じる電位で電解すると鋼板表面上で酸素気泡が発生するが、その際、特定の電解液を用いると、酸素気泡が発生する部分とアノード溶解が生じる部分が不規則に混在する状況を作り出せることがわかった。このとき、発生した酸素が、その発生箇所近傍の鋼板表面を酸化するに充分な量だけ存在すれば、その部分で局所的にアノード溶解が防止され、その結果、鋼板表面を粗面化することができるものと考えられる。
【0021】
以下、電解条件について説明する。
〔電解液〕
本発明では、普通鋼等の表面で酸素による酸化とアノード溶解を同時に生じさせることによって粗面化を実現する。そのためには、普通鋼等のアノード分極曲線(例えば、掃引速度50mV/secとしたときの分極曲線)において、活性溶解領域,不動態領域および過不動態領域がみられるような溶液、すなわち、普通鋼等をある程度不動態化させる性質のある溶液を使用する必要がある。このような溶液を用いると、水の電気分解によってアノード極上に生じる酸素の酸化力を利用して、アノード溶解が生じる部分と生じない部分を普通鋼表面に混在させることが可能になり、粗面化が実現できる。発明者らは、そのような溶液の例として、硝酸を主体とした水溶液が使用できることを確認した。塩酸や硫酸を含む水溶液では活性溶解が主体的となり、普通鋼等の粗面化はできなかった。
【0022】
硝酸を主体とし、塩酸や硫酸等の活性溶解を助長する酸を含まない水溶液(以下「硝酸系の水溶液」という)を使用した場合であっても、酸素の発泡が多量に生じるような高電流密度でアノード電解しなくては、普通鋼等を粗面化することはできない。これは、ステンレス鋼の場合と大きく異なる点である。このため、本発明に適用する電解液は、導電性が高いこと、すなわち液抵抗が低いことが望ましい。硝酸のみを溶解した「硝酸水溶液」を用いても普通鋼等の粗面化は可能である。しかし、この場合、液抵抗が高いため、高電流密度での電解を行うと短時間で液温が上昇してしまう。これでは工業的な連続生産に利用することは困難である。そこで、検討の結果、硝酸と強電解質硝酸塩の混合水溶液を用いることでこの問題は解消できることがわかった。強電解質硝酸塩としては、硝酸ナトリウム,硝酸カリウム,硝酸カルシウム等が挙げられる。これらを添加することにより液抵抗が大幅に低下し、大量生産に対応できるようになる。
【0023】
発明者らは、工業的な連続生産ラインへの適用を想定して、硝酸系の水溶液を用いた電解液組成を種々検討してきた。その結果、硝酸5〜30質量%と硝酸ナトリウム50〜100g/Lを含む水溶液が好適であることを見出した。硝酸と硝酸ナトリウム以外には、他の硝酸塩やその他のイオンを含んでも構わないが、塩酸や硫酸等、活性溶解を促進させる成分は極力含まないことが望ましい。いずれにしても、後述する電流密度でアノード電解することによって、発泡酸素によるアノード極表面の酸化が起こり、中心線平均粗さRaが1.0〜4.0μmの粗面化面が形成できる電解液であることが必要である。
【0024】
〔アノード電流密度〕
電解液に硝酸と強電解質硝酸塩を含む混合水溶液を用いた場合、普通鋼等の表面を酸化するに十分な量の酸素の発泡を生じさせるには、50A/dm2以上の高電流密度で電解することが好ましい。ただし、150A/dm2を超えると消費電力が過大になり、酸素の発泡が多くなりすぎて安定したアノード電解を維持するのが難しくなる。このため、本発明の粗面化方法では50〜150A/dm2の範囲の電流密度を規定している。一般的な連続ラインにおいて一層安定した操業を行うためには、80〜120A/dm2の範囲にコントロールするのが望ましい。ラインの電力供給能力が許せば、100超え〜120A/dm2、あるいは100超え〜150A/dm2の特に高い電流密度領域で操業することも生産性向上に有効である。アノード電流密度はアノード電位および液抵抗に大きく依存する。したがって、アノード電流密度は、アノード電位や、電解液の成分・濃度,液温,電極間の距離によってコントロールすることができる。
【0025】
〔アノード電位〕
水の電気分解が盛んに起こるアノード電位で電解する必要がある。硝酸と強電解質硝酸塩を含む混合水溶液を用いる場合、上述のように、50A/dm2以上のアノード電流密度が確保される電位とするのが好ましい。具体的に電解液として硝酸5〜30質量%+硝酸ナトリウム50〜100g/Lの水溶液を使用する場合について説明すると、浸漬電位から約+0.3VSCEの電位までは電位が高くなるほど溶解電流が増大し、鋼板表面は平滑に活性溶解される。この状態ではいわゆる電解研磨面となり、粗面化はできない。約+0.3VSCEを超え約+1.5VSCE未満の範囲では、電解中に鋼板表面は不動態皮膜で覆わる。この皮膜はステンレス鋼の場合のように強固なものではないが、絶縁性が高いため電流が流れにくくなり、粗面化は困難である。約+1.5VSCE以上では、水の電気分解が盛んに起こり、アノード極である鋼板表面では酸素が、カソード極では水素が発生する。このような電位で電解すると、鋼板表面では酸素の発泡により酸化される部分と、電解によって溶解される部分が不規則に混在し、鋼板表面には微細な凹凸を持つ粗面が形成されるのである。
【0026】
〔液温〕
電解液が硝酸5〜30質量%+硝酸ナトリウム50〜100g/Lの水溶液である場合において、液温が40℃を超えると活性溶解も激しくなるため、既に形成された粗面の凸部が化学エッチングされはじめ、表面粗さRaのコントロールが難しくなる。一方、液温が20℃未満であると溶解効率が低いために、粗面化には長時間を要する。このため、上記電解液において液温は20〜40℃の範囲に保つことが好ましい。30〜40℃の範囲に液温をコントロールすることが一層望ましい。
【0027】
〔電解時間〕
本発明は基本的に、i)高電流密度,ii)多量の酸素発泡,iii)短時間の電解、の思想によって普通鋼等を電解粗面化しようというものである。電解を長時間続けると、既に形成された粗面の凸部が電解と化学溶解によって平滑化されるので、Raは却って小さくなる点に留意すべきである。つまり、適度な粗面が形成された時点で電解を終了させることが重要となり、この点が普通鋼等の電解粗面化技術の成否を分ける大きな要因である。適正な電解時間の範囲は、電解液の種類,温度,電流密度などの諸条件によって異なるが、例えば、硝酸5〜30質量%+硝酸ナトリウム50〜100g/Lの水溶液20〜40℃中において、アノード電流密度を50〜150A/dm2にコントロールして粗面化する場合、5〜120秒間の電解時間とすることが望ましい。
【0028】
本発明に係る新規鋼板の今後期待される用途の一つに、自動車のオートマチック・トランスミッションの構成材料であるフリクションプレートのコア材が挙げられる。フリクションプレートは、粗面化した鋼板からなるコア材の表面に摩擦材(例えば、繊維基材に充填材や樹脂結合材などを含浸させて加熱硬化させた複合体)を貼り付けたものであり、トランスミッション内で湿式クラッチ板を構成する。コア材と摩擦材は接着剤を介して接合される。このため、コア材には接着剤との高い密着性が要求される。従来、コア材には炭素鋼板等にリン酸塩処理,エッチング処理,あるいはショットブラスト処理等を施して粗面化した材料が使用されてきた。しかし、これらの材料の接着剤との密着性は、今後の高負荷・高耐久ニーズを考慮すると、必ずしも満足できるものではない。この点、本発明に係る粗面化鋼板、特にRa,RyおよびSmを上記範囲に規定した鋼板は、従来の処理により製造された粗面化鋼板よりも接着剤との密着性に優れ、ひいては摩擦材との接合強度およびフリクションプレートの耐久性を向上させることができる。
【0029】
【実施例】
〔実施例1〕
まず、電解粗面化鋼板の表面粗度がどの程度になると十分な塗膜密着性を呈するようになるかを調べるために、Raが0.5〜1.5μmの範囲の電解粗面化鋼板を作製し、塗膜密着性を評価した。素材鋼板としては、質量%でC:0.22%,Si:0.18%,Mn:0.44%,P:0.012%,S:0.011%,Cr:1.22%,Ni:3.15%,Mo:0.19%を含む特殊鋼の冷延鋼板、板厚0.8mmを用いた。前処理として、オルソケイ酸ソーダ50g/L,液温55℃のアルカリ電解液で、電流密度5A/dm2で10秒間カソード電解することにより電解脱脂した後、硫酸10g/L,液温25℃の硫酸液に10秒間浸漬して酸洗し、水洗した。この原板を硝酸10質量%+硝酸ナトリウム80g/Lの水溶液35℃中で、酸素気泡を発生させながらアノード電解することにより粗面化した。アノード電位は+1.9VSCE、電流密度は80A/dm2とし、電解時間を変えることで中心線平均粗さRaを0.5〜1.5μmの範囲にコントロールした。なお、いずれのサンプルも、最大高さRyは25μm以下になるようにした。
【0030】
得られた粗面化表面にフェノール系接着剤を20μm厚さでを塗布し、250℃で焼き付けた。ここで、接着剤層の厚さは、「塗布した接着剤の質量」を「塗布面積×比重」で除した値であり、概念的にはJIS B 0601に規定される「粗さ曲線の中心線」から接着剤層最表面までの距離に相当するものである。接着剤層を形成させたままのサンプル、およびこれを沸騰水の蒸気に5時間曝したサンプルを用意した。これらのサンプルをポンチ先端半径が1mm(1R)の金型で90度V曲げ加工し、加工部にセロハンテープを貼り付けた後、セロハンテープを剥がす剥離試験を行い、接着剤の密着性を評価した。
【0031】
結果を図1に示す。図1中「接着剤剥離なし」のものは、接着剤層を形成させたままのサンプルおよび蒸気に曝したサンプルともに剥離が全く認められなかったものである。硝酸+強電解質硝酸塩の水溶液を用いた電解粗面化表面について、Raが1.0μm以上になると接着剤との密着性は非常に良好になることがわかる。
【0032】
なお、図1中に示したa〜hの各プロットにおけるSmの測定値(mm)は以下のとおりであった。
a:0.027,b:0.025,C:0.033,d:0.036,E:0.033,F:0.037,G:0.043,h:0.050。
【0033】
〔実施例2〕
次に、電解条件と、Raおよび塗膜密着性の関係を調べた。素材鋼板として、質量%でC:0.098%,Si:0.01%,Mn:0.39%,P:0.015%,S:0.004%,Al:0.031%を含有する普通鋼(中炭素鋼)のブライト仕上鋼板、板厚0.8mmを使用した。これに実施例1と同様の前処理を施して電化粗面化用の原板を準備した。電解液は硝酸+硝酸ナトリウムの水溶液とした。電解条件は、硝酸濃度,硝酸アンモニウム濃度,液温,アノード電位,アノード電流密度,電解時間を種々の値にすることで変化させた。なお、アノード電流密度は、アノード電位や、電解液の濃度,液温,電極間の距離によって変動するので、これらの諸条件の組み合わせによってコントロールした。
【0034】
アノード電解後の鋼板について、RaおよびRyを測定した。これらの鋼板表面にアクリル系樹脂を15μm厚さで塗布し、220℃で焼き付けたのち水冷した。塗膜厚さについては実施例1で説明したとおりである。塗膜密着性は以下の方法で調査した。
【0035】
各塗装鋼板について、塗装ままのサンプル、および、塗装材を沸騰水中に2時間浸漬したサンプルを用意した。これらのサンプルの表面にカッターナイフにて1mm間隔に11本の線を引き、さらにこれらの線に直角に交わる線を同様に1mm間隔に11本引き、100個の升目を作った。100個の升目の中央をエリクセン試験機で6mm押し出し加工を行った。この加工部の升目全体を覆うようにセロハンテープを貼り付けた後、セロハンテープを剥がす剥離試験を行い、100個の升目の塗膜が1つも剥離しないものを○、1つでも剥離したものを×と評価した。これらの結果を、電解条件とともに表1に示す。表1中、「一次密着性」とは塗装ままのサンプルについての剥離試験結果、「二次密着性」とは沸騰水浸漬後のサンプルについての剥離試験結果である。
【0036】
【表1】

Figure 0004060627
【0037】
表1中、試料No.1〜10は適正な電解条件によってアノード極上で多量の酸素気泡を発生させながらRaを1.0〜4.0μmにコントロールした発明例であり、いずれもRyは25μm以下,Smは0.03〜0.1mmに収まっていた。これらは、一次密着性,二次密着性とも良好で、塗膜剥離は認められなかった。
【0038】
これに対し、試料No.11は硝酸濃度が低かったためにRaが1.0μm以上,Smが0.03mm以上にならず、二次密着性に劣った。試料No.12はアノード電位が低く十分に酸素気泡が発生しない状態で電解したためほとんど粗面化が達成できず、一次密着性,二次密着性とも改善されなかった。試料No.13は電解時間が長かったため凸部が溶解され平滑化し、Raが1.0μm未満になってしまった例であり、一次密着性,二次密着性とも悪くなった。試料No.14は硝酸濃度が高かったためRaが1.0μm以上,Smが0.03mm以上にならず、二次密着性に劣った。試料No.15は硝酸濃度が低く電解時間が長かったためRaが4.0μmを超えた例であり、凸部が鋭利になって一次密着性,二次密着性とも却って悪くなった。試料No.16は硝酸ナトリウム等の強電解質硝酸塩を添加しない硝酸水溶液を使用した例であり、液抵抗が大きいために短時間で液温が上昇し、Raが1.0μm以上,Smが0.03mm以上の粗面化が達成できなかったものである。
【0039】
【発明の効果】
本発明は、従来困難とされていた普通鋼等における工業的な電解粗面化を可能にしたものである。これは、普通鋼等における従来の粗面化技術と比べ、以下のようなメリットを有する。
▲1▼従来のダルロール圧延材に比べ、塗膜との密着性や接着剤を介しての各種被覆材との密着性が大幅に向上した。
▲2▼従来のブラスト処理の欠点であった、i)作業性が悪いこと、ii)品質管理が難しいこと、iii)薄ゲージ鋼板への適用が困難であること、といった問題が解消された。
従って本発明は、普通鋼や特殊鋼(ステンレス鋼以外)の分野において、塗膜等との密着性の高い粗面化鋼板の工業的普及に寄与するものである。
【図面の簡単な説明】
【図1】中心線平均粗さRaが0.5〜1.5μmの範囲において、Raと接着剤密着性の関係を表すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate of ordinary steel or special steel whose surface is roughened by electrolysis, and a method of electrolytic surface roughening thereof.
[0002]
[Prior art]
In general, the surface of a steel plate material is often plated from the viewpoint of rust prevention and coating film adhesion. However, depending on the application, it may be necessary to form a coating film directly on the steel plate substrate or to apply an adhesive without using a plating layer.
[0003]
In general, a steel sheet substrate is not very good in adhesion to a coating film or an adhesive such as an organic polymer. For this reason, when a paint or an adhesive is applied directly to a steel plate substrate, the coating film is peeled off during bending or drawing, and the coating material joined via the adhesive is liable to peel off due to external stress. . Therefore, as a pretreatment, the surface of the steel sheet may be roughened. Representative means include blasting and dull roll rolling.
[0004]
Blasting is a roughening means that sends abrasive particles, such as chutes and grids, with high-pressure air and collides with the surface of the material to be roughened. is there. However, in the blasting process, the continuous productivity is lowered due to the processing of the scraped steel powder, and particularly when applied to a thin gauge steel sheet, there is a problem of shape defects such as warping of the steel sheet. Furthermore, since the surface roughness tends to fluctuate depending on conditions such as the material, shape, particle size, and air pressure of the abrasive particles, quality control is difficult.
[0005]
Dull roll rolling is a roughening means for transferring the irregular shape formed on the surface of the rolling roll to a steel sheet, and the surface roughness can be controlled to some extent. However, it is difficult to make a fine rough surface that greatly improves the adhesion to a coating film or the like.
[0006]
On the other hand, several electrolytic surface roughening methods have been developed as a surface roughening technique for stainless steel. Stainless steel has a characteristic that it forms a strong passive film, and the corrosion form tends to be pitting corrosion. It can be said that it is easy to realize the conditions.
[0007]
As an electrolytic surface roughening method, for example, JP-A-6-136600 discloses a surface roughening method in which anodic electrolysis or anodic electrolysis + cathodic electrolysis of stainless steel is performed in nitric acid or an aqueous solution mainly containing nitric acid. Has been. Specifically, surface potential of 1.21 to 1.82 V vs SCE, anode electrolysis current of 25 to 220 mA / cm 2 (= 2.5 to 22 A / dm 2 ), electrolysis time of 20 to 60 minutes, relatively low current density and long time An example of transpassive dissolution is shown.
[0008]
Japanese Patent Application Laid-Open No. 10-259499 discloses a method of forming high density pits with a high anchor effect at high density by alternating electrolysis of a stainless steel plate in a ferric chloride aqueous solution.
[0009]
[Problems to be solved by the invention]
However, even if the electrolytic surface roughening technique as described above is applied to ordinary steel or special steel other than stainless steel, the surface cannot be roughened. This is because these steel types are inherently more prone to dissolution than pitting corrosion, and it is difficult to mix passivation and active dissolution. For this reason, the electrolytic surface roughening of a steel type that does not form a strong passive film, such as ordinary steel or special steel other than stainless steel, is not easy, and the method has not been established. The present invention provides a roughened steel sheet that achieves roughening that can greatly improve the coating film adhesion of the steel sheet base by electrolysis, and eliminates the disadvantages of blasting and dull roll rolling. The purpose is to provide.
[0010]
[Means for Solving the Problems]
Ordinary steels and special steels (hereinafter referred to as “ordinary steels”) with Cr: 2.0% by mass or less, Ni: 5.0% by mass or less, Mo: 1.0% by mass or less are not so strong in passivation, In an alkaline aqueous solution, the entire surface is more easily dissolved than pitting corrosion. The inventors have intensively studied a method of roughening the surface of such steel types by electrolysis. As a result, the following findings were obtained.
(1) In an aqueous nitric acid solution, roughening is possible if the material to be treated is an anode electrode and electrolysis is performed while generating a large amount of oxygen bubbles at a high current density.
(2) However, in such a case, the liquid temperature rises remarkably and is not suitable for continuous treatment.
(3) However, continuous treatment is possible by adding strong electrolyte nitrate to the aqueous nitric acid solution.
(4) A roughened surface with good coating film adhesion can be achieved by completing the electrolysis in a relatively short time.
(5) The surface cannot be roughened with an aqueous solution of sulfuric acid or hydrochloric acid.
The present invention has been completed based on such findings.
[0011]
That is, the inventors have a center line average roughness Ra of 1.0 to 4.0 μm on a steel plate of ordinary steel or special steel with Cr: 2.0 mass% or less, Ni: 5.0 mass% or less, Mo: 1.0 mass% or less , maximum height Ry is 25μm or less, the average spacing Sm of concave convex provide roughened steel plate forming the electrolytic surface-roughening the surface is 0.03 to 0.1 mm, to achieve the above objects.
[0012]
Further, in a mixed aqueous solution of nitric acid and strong electrolyte nitrate, for example, in an aqueous solution containing 5 to 30% by mass of nitric acid and 50 to 100 g / L (liter) of sodium nitrate, Cr: 2.0% by mass or less, Ni: 5.0% by mass or less , Mo: A steel plate of ordinary steel or special steel of 1.0 mass% or less is used as an anode electrode, and the steel plate is subjected to anodic electrolysis at a current density of 50 to 150 A / dm 2 while generating oxygen bubbles on the steel plate surface. A method for roughening a steel sheet for forming an electrolytically roughened surface having an average centerline roughness Ra of 1.0 to 4.0 μm, preferably a maximum height Ry of 25 μm or less, and more preferably an average roughness Sm of 0.03 to 0.1 mm. I will provide a. Here, Ra, Ry and Sm are defined in JIS B 0660.
[0013]
As a more specific preferred method, Cr: 2.0 mass% or less, Ni: 5.0 mass% or less, Mo: 1.0 mass% in an aqueous solution of 20-30 ° C. of nitric acid 5-30 mass% + sodium nitrate 50-100 g / L The following plain steel or special steel plate is used as the anode electrode, and the surface of the steel plate is subjected to anodic electrolysis for 5 to 120 seconds at a current density of 50 to 150 A / dm 2 while generating oxygen bubbles on the steel plate surface. Provide a method. In particular, a method for anodic electrolysis at an anode potential of +1.5 to +2.2 V SCE is provided. Here, “V SCE ” represents the potential (V) with respect to the saturated calomel reference electrode potential.
[0014]
Furthermore, in each of the above-mentioned roughening methods, a method for setting the current density to 80 to 120 A / dm 2 is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, ordinary steel or special steel with Cr: 2.0 mass% or less, Ni: 5.0 mass% or less, Mo: 1.0 mass% or less is specified as the steel to be roughened. Steels belonging to this range are used in a wide range of applications, but they do not form a strong passive film like stainless steel, and are essentially difficult to roughen electrolytically. However, even such steel types can be roughened by greatly improving the adhesion to paints and adhesives by the electrolysis method described below.
[0016]
Specific examples of the target steel include the following.
(1) By mass%, C: 0.32%, Si: 0.17%, Mn: 0.72%, P: 0.018%, S: 0.021%, balance: Fe and unavoidable impurities (2) By mass%, C: 0.098% , Si: 0.01%, Mn: 0.39%, P: 0.015%, S: 0.004%, Al: 0.031%, the balance: Fe and unavoidable impurities (3) by mass, C: 0.92%, Si: 0.23%, Mn: 0.42%, P: 0.014%, S: 0.021%, Cr: 0.31%, the balance: Fe and inevitable impurities (4) by mass%, C: 0.90%, Si: 0.22%, Mn: 0.49%, P : 0.013%, S: 0.011%, Ni: 0.45%, Cr: 0.37%, balance: Fe and inevitable impurities (5)% by mass, C: 0.22%, Si: 0.18%, Mn: 0.44%, P: 0.012%, S: 0.011%, Ni: 3.15%, Cr: 1.22%, Mo: 0.19%, balance: Fe and inevitable impurities
In order to greatly improve the adhesion to the coating film and adhesive by roughening the steel plate substrate without forming a plating layer on the surface of these steel plates, the center line average of the steel plate substrate after electrolytic surface roughening is used. It is important that the roughness Ra is adjusted in the range of 1.0 to 4.0 μm. When Ra is less than 1.0 μm, the anchor effect on the coating film or the like is not sufficiently exhibited, and the coating film is easily peeled off. On the other hand, if Ra exceeds 4.0 μm, the uneven convex portion tends to be thin and sharp, and this convex portion may break during processing.
[0018]
Further, it is necessary that the maximum height Ry of the concavo-convex portion is 25 μm or less, and the average interval Sm between the concavo-convex portions is 0.03 to 0.1 mm. If the coating amount per unit area of the steel sheet is the same, the larger the Ry, the shorter the distance between the convex portion and the outermost surface of the coating film. When Sm becomes small, the pitch of the unevenness per unit cross-sectional curve becomes a fine structure, and a portion where the flow of the paint / adhesive in the depth direction becomes worse occurs, and the adhesion with the coating film or the adhesive decreases. When Sm becomes too large, the pitch of the unevenness becomes large and becomes a state close to a flat surface, and the anchor effect is not sufficiently exhibited. As a result of various studies, when Ra is 1.0 to 4.0 μm and Ry is suppressed to 25 μm or less, the anchor effect on the coating film is sufficiently exerted, and even in a relatively severe bending process, the convex portion is used. It was found that the coating film was hardly broken. That is, it can be said that particularly excellent coating film adhesion is secured when Ra is 1.0 to 4.0 μm and Ry is 25 μm or less. Further, it was found that particularly excellent adhesion with a coating film / adhesive can be obtained stably when Sm is in the range of 0.03 to 0.1 mm.
[0019]
Next, an electrolytic surface roughening method will be described.
Electrolytic surface roughening is basically achieved by mixing a portion where anodic dissolution occurs and a portion where no anodic dissolution occurs on the material surface. When the material is stainless steel, since the passivation tendency is strong, anodic electrolysis in a solution having an appropriate oxidizing power can form pitting corrosion-like pits everywhere on the material surface. That is, roughening is achieved by continuously generating pitting corrosion-like local corrosion at a relatively small current density. However, in the case of ordinary steel, etc., since the passivation tendency is weak, it is difficult to cause local pitting corrosion dissolution during anode electrolysis, and it is difficult to roughen the surface by the same mechanism as stainless steel. Can not.
[0020]
In the present invention, in order to mix a portion where anodic dissolution occurs and a portion where anodic dissolution does not occur on the surface of a steel plate such as ordinary steel, a new method of actively utilizing the oxidizing power of oxygen generated on the anode electrode by electrolysis of water is proposed. The method was adopted. That is, when the steel plate is used as an anode electrode and electrolysis is performed at a potential at which water electrolysis occurs, oxygen bubbles are generated on the surface of the steel plate. At that time, when a specific electrolyte is used, the portion where the oxygen bubbles are generated and anodic dissolution occur. It turns out that the situation where the part which arises can be mixed irregularly can be created. At this time, if the generated oxygen is present in an amount sufficient to oxidize the steel plate surface in the vicinity of the generation site, anodic dissolution is locally prevented at that portion, and as a result, the steel plate surface is roughened. Can be considered.
[0021]
Hereinafter, electrolysis conditions will be described.
[Electrolyte]
In the present invention, surface roughening is realized by simultaneously causing oxygen oxidation and anodic dissolution on the surface of ordinary steel or the like. For this purpose, a solution in which an active dissolution region, a passive region and a hyperpassive region are observed in an anodic polarization curve of ordinary steel or the like (for example, a polarization curve at a sweep rate of 50 mV / sec), that is, ordinary It is necessary to use a solution that has the property of passivating steel to some extent. When such a solution is used, it becomes possible to mix the portion where the anodic dissolution occurs and the portion where the anodic dissolution does not occur on the surface of ordinary steel by utilizing the oxidizing power of oxygen generated on the anode electrode by the electrolysis of water. Can be realized. The inventors have confirmed that an aqueous solution mainly composed of nitric acid can be used as an example of such a solution. In an aqueous solution containing hydrochloric acid or sulfuric acid, active dissolution became dominant, and roughening of ordinary steel and the like was not possible.
[0022]
High current that causes a large amount of foaming of oxygen even when using an aqueous solution that contains nitric acid as its main component and does not contain an acid that promotes active dissolution of hydrochloric acid or sulfuric acid (hereinafter referred to as “nitric acid aqueous solution”) Without anodic electrolysis at a density, ordinary steel cannot be roughened. This is a significant difference from the case of stainless steel. For this reason, it is desirable that the electrolytic solution applied to the present invention has high conductivity, that is, low liquid resistance. Even using “aqueous nitric acid solution” in which only nitric acid is dissolved, roughening of ordinary steel and the like is possible. However, in this case, since the liquid resistance is high, the liquid temperature rises in a short time when electrolysis is performed at a high current density. This makes it difficult to use for industrial continuous production. As a result, it was found that this problem can be solved by using a mixed aqueous solution of nitric acid and strong electrolyte nitrate. Examples of the strong electrolyte nitrate include sodium nitrate, potassium nitrate, and calcium nitrate. By adding these, the liquid resistance is greatly reduced, and it becomes possible to cope with mass production.
[0023]
The inventors have studied various electrolytic solution compositions using nitric acid-based aqueous solutions, assuming application to industrial continuous production lines. As a result, it was found that an aqueous solution containing 5 to 30% by mass of nitric acid and 50 to 100 g / L of sodium nitrate is suitable. In addition to nitric acid and sodium nitrate, other nitrates and other ions may be included, but it is desirable that components that promote active dissolution such as hydrochloric acid and sulfuric acid are not included as much as possible. In any case, the electrolytic solution is capable of forming a roughened surface having a center line average roughness Ra of 1.0 to 4.0 μm by oxidizing the anode electrode surface with foamed oxygen by anodic electrolysis at a current density described later. It is necessary.
[0024]
[Anode current density]
When a mixed aqueous solution containing nitric acid and strong electrolyte nitrate is used as the electrolytic solution, electrolysis is performed at a high current density of 50 A / dm 2 or more in order to generate a sufficient amount of oxygen to oxidize the surface of ordinary steel. It is preferable to do. However, if it exceeds 150 A / dm 2 , the power consumption becomes excessive, and oxygen foaming increases so that it becomes difficult to maintain stable anode electrolysis. For this reason, in the roughening method of the present invention, a current density in the range of 50 to 150 A / dm 2 is specified. In order to perform a more stable operation in general continuous line, it is desirable to control the range of 80~120A / dm 2. If the power supply capacity of the line permits, operating in a particularly high current density region of more than 100 to 120 A / dm 2 or more than 100 to 150 A / dm 2 is also effective for improving productivity. The anode current density greatly depends on the anode potential and the liquid resistance. Therefore, the anode current density can be controlled by the anode potential, the component / concentration of the electrolytic solution, the solution temperature, and the distance between the electrodes.
[0025]
[Anode potential]
It is necessary to perform electrolysis at an anode potential at which water electrolysis occurs frequently. In the case of using a mixed aqueous solution containing nitric acid and strong electrolyte nitrate, it is preferable to set the potential to ensure an anode current density of 50 A / dm 2 or more as described above. Specifically, when using an aqueous solution of 5 to 30% by mass of nitric acid + 50 to 100 g / L of sodium nitrate as the electrolyte, the dissolution current increases as the potential increases from the immersion potential to the potential of about +0.3 V SCE. In addition, the steel plate surface is activated and dissolved smoothly. In this state, it becomes a so-called electropolished surface and cannot be roughened. In about + 0.3V range of less than about + 1.5V SCE exceed SCE, the steel sheet surface during the electrolysis Oowaru in the passive film. This film is not as strong as in the case of stainless steel, but because of its high insulating properties, it becomes difficult for current to flow and roughening is difficult. At about +1.5 V SCE or more, electrolysis of water occurs vigorously, and oxygen is generated on the surface of the steel plate, which is the anode electrode, and hydrogen is generated on the cathode electrode. When electrolysis is performed at such a potential, a portion oxidized by foaming of oxygen and a portion dissolved by electrolysis are irregularly mixed on the steel plate surface, and a rough surface having fine irregularities is formed on the steel plate surface. is there.
[0026]
[Liquid temperature]
When the electrolyte is an aqueous solution of 5 to 30% by mass of nitric acid + 50 to 100 g / L of sodium nitrate, the active dissolution becomes intense when the liquid temperature exceeds 40 ° C. As the etching begins, it becomes difficult to control the surface roughness Ra. On the other hand, when the liquid temperature is less than 20 ° C., the dissolution efficiency is low, so that roughening takes a long time. For this reason, in the said electrolyte solution, it is preferable to keep the liquid temperature in the range of 20-40 degreeC. It is more desirable to control the liquid temperature in the range of 30 to 40 ° C.
[0027]
[Electrolysis time]
The present invention is basically intended to roughen ordinary steel or the like by the concept of i) high current density, ii) a large amount of oxygen foaming, and iii) short-time electrolysis. It should be noted that if the electrolysis is continued for a long time, the already formed rough surface projections are smoothed by electrolysis and chemical dissolution, so that Ra becomes smaller. In other words, it is important to terminate electrolysis when an appropriate rough surface is formed, and this is a major factor that determines the success or failure of the electrolytic surface roughening technology such as ordinary steel. The appropriate electrolysis time range varies depending on various conditions such as the type of electrolyte, temperature, current density, etc., for example, in an aqueous solution of 20 to 40 ° C. of nitric acid 5 to 30% by mass + sodium nitrate 50 to 100 g / L. When roughening the surface by controlling the anode current density to 50 to 150 A / dm 2 , the electrolysis time is preferably 5 to 120 seconds.
[0028]
One of the uses expected from the new steel sheet according to the present invention is a core material of a friction plate which is a constituent material of an automatic transmission for an automobile. The friction plate is obtained by attaching a friction material (for example, a composite in which a fiber base material is impregnated with a filler or a resin binder to be heat-cured) to the surface of a core material made of a roughened steel plate. The wet clutch plate is configured in the transmission. The core material and the friction material are joined via an adhesive. For this reason, the core material is required to have high adhesiveness with the adhesive. Conventionally, a material roughened by subjecting a carbon steel plate or the like to phosphate treatment, etching treatment, or shot blast treatment has been used as the core material. However, the adhesiveness of these materials to the adhesive is not always satisfactory in consideration of future high load and high durability needs. In this regard, the roughened steel sheet according to the present invention, in particular, the steel sheet in which Ra, Ry, and Sm are defined in the above range is superior in adhesion to the adhesive than the roughened steel sheet produced by the conventional treatment, and consequently The joining strength with the friction material and the durability of the friction plate can be improved.
[0029]
【Example】
[Example 1]
First, in order to investigate what level of surface roughness of the electrolytically roughened steel sheet will give sufficient coating film adhesion, an electrolytically roughened steel sheet with a Ra in the range of 0.5 to 1.5 μm is prepared. The coating film adhesion was evaluated. Special steel sheets including C: 0.22%, Si: 0.18%, Mn: 0.44%, P: 0.012%, S: 0.011%, Cr: 1.22%, Ni: 3.15%, Mo: 0.19% by mass% A cold-rolled steel plate having a thickness of 0.8 mm was used. As a pretreatment, after degreasing by cathodic electrolysis with an alkaline electrolyte of sodium orthosilicate 50 g / L and liquid temperature 55 ° C. for 10 seconds at a current density of 5 A / dm 2 , sulfuric acid 10 g / L and liquid temperature 25 ° C. It was immersed in a sulfuric acid solution for 10 seconds, pickled, and washed with water. The original plate was roughened by anodic electrolysis in an aqueous solution of 35% by weight of nitric acid 10 mass% + sodium nitrate 80 g / L while generating oxygen bubbles. The anode potential was +1.9 V SCE , the current density was 80 A / dm 2, and the center line average roughness Ra was controlled in the range of 0.5 to 1.5 μm by changing the electrolysis time. In all samples, the maximum height Ry was set to 25 μm or less.
[0030]
A phenolic adhesive with a thickness of 20 μm was applied to the roughened surface thus obtained and baked at 250 ° C. Here, the thickness of the adhesive layer is a value obtained by dividing "mass of applied adhesive" by "applied area x specific gravity" and is conceptually defined as "center of roughness curve" defined in JIS B 0601. This corresponds to the distance from the “line” to the outermost surface of the adhesive layer. A sample with the adhesive layer formed and a sample in which the sample was exposed to boiling water vapor for 5 hours were prepared. These samples are bent 90 degrees in a die with a punch tip radius of 1 mm (1R), and after applying cellophane tape to the processed area, a peel test is performed to remove the cellophane tape, and the adhesiveness of the adhesive is evaluated. did.
[0031]
The results are shown in FIG. In FIG. 1, “no adhesive peeling” indicates that no peeling was observed in both the sample with the adhesive layer formed and the sample exposed to vapor. It can be seen that the adhesiveness to the adhesive is very good when Ra is 1.0 μm or more on the roughened electrolytic surface using an aqueous solution of nitric acid + strong electrolyte nitrate.
[0032]
In addition, the measured value (mm) of Sm in each plot of ah shown in FIG. 1 was as follows.
a: 0.027, b: 0.025, C: 0.033, d: 0.036, E: 0.033, F: 0.037, G: 0.043, h: 0.050.
[0033]
[Example 2]
Next, the relationship between electrolysis conditions, Ra, and coating film adhesion was examined. Bright finish steel plate of plain steel (medium carbon steel) containing C: 0.098%, Si: 0.01%, Mn: 0.39%, P: 0.015%, S: 0.004%, Al: 0.031% by mass% A plate thickness of 0.8 mm was used. This was subjected to the same pretreatment as in Example 1 to prepare an electroroughening original plate. The electrolyte was an aqueous solution of nitric acid + sodium nitrate. The electrolysis conditions were changed by changing the nitric acid concentration, ammonium nitrate concentration, liquid temperature, anode potential, anode current density, and electrolysis time to various values. The anode current density fluctuates depending on the anode potential, the concentration of the electrolytic solution, the liquid temperature, and the distance between the electrodes. Therefore, the anode current density was controlled by a combination of these various conditions.
[0034]
For the steel plate after anodic electrolysis, Ra and Ry were measured. An acrylic resin was applied to the surface of these steel plates to a thickness of 15 μm, baked at 220 ° C., and then cooled with water. The coating thickness is as described in Example 1. The coating film adhesion was investigated by the following method.
[0035]
About each coated steel plate, the sample as-painted and the sample which immersed the coating material in boiling water for 2 hours were prepared. On the surface of these samples, 11 lines were drawn at intervals of 1 mm with a cutter knife, and 11 lines at right angles to these lines were similarly drawn at intervals of 1 mm to make 100 squares. The center of 100 squares was extruded 6mm with an Eriksen testing machine. After the cellophane tape is applied to cover the entire cell of this processed part, a peeling test is performed to remove the cellophane tape, and no one of the 100 cells is peeled off. X was evaluated. These results are shown in Table 1 together with the electrolysis conditions. In Table 1, “primary adhesion” is a peel test result for a sample as-painted, and “secondary adhesion” is a peel test result for a sample after boiling water immersion.
[0036]
[Table 1]
Figure 0004060627
[0037]
In Table 1, Sample Nos. 1 to 10 are invention examples in which Ra is controlled to 1.0 to 4.0 μm while generating a large amount of oxygen bubbles on the anode electrode under appropriate electrolysis conditions. In each case, Ry is 25 μm or less, and Sm is It was within 0.03-0.1mm. These had good primary adhesion and secondary adhesion, and no film peeling was observed.
[0038]
On the other hand, sample No. 11 was inferior in secondary adhesion because Ra was not more than 1.0 μm and Sm was not more than 0.03 mm because the nitric acid concentration was low. Sample No. 12 was electrolyzed in a state where the anode potential was low and oxygen bubbles were not sufficiently generated, so that roughening could hardly be achieved, and neither primary adhesion nor secondary adhesion was improved. Sample No. 13 was an example in which the convex portion was dissolved and smoothed due to the long electrolysis time, and Ra was less than 1.0 μm, and both the primary adhesion and the secondary adhesion deteriorated. Sample No. 14 was inferior in secondary adhesion because Ra was not higher than 1.0 μm and Sm was not higher than 0.03 mm because of high nitric acid concentration. Sample No. 15 was an example in which Ra was more than 4.0 μm because the nitric acid concentration was low and the electrolysis time was long, and the convexity became sharp and the primary adhesion and secondary adhesion deteriorated. Sample No.16 is an example using nitric acid aqueous solution without adding strong electrolyte nitrate such as sodium nitrate. The liquid temperature rises in a short time due to high liquid resistance, Ra is 1.0μm or more, Sm is 0.03mm or more. The roughening was not achieved.
[0039]
【The invention's effect】
The present invention enables industrial electrolytic surface roughening in plain steel and the like, which has heretofore been considered difficult. This has the following merits compared with the conventional surface roughening technology in ordinary steel or the like.
(1) Compared with the conventional dull roll rolled material, the adhesion to the coating film and the adhesion to various coating materials through adhesives are greatly improved.
(2) The problems such as i) poor workability, ii) difficult quality control, and iii) difficult application to thin gauge steel plates, which were disadvantages of conventional blasting, were solved.
Therefore, the present invention contributes to the industrial spread of roughened steel sheets having high adhesion to coating films and the like in the fields of ordinary steel and special steel (other than stainless steel).
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Ra and adhesive adhesion when the center line average roughness Ra is in the range of 0.5 to 1.5 μm.

Claims (9)

Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板表面に、中心線平均粗さRaが1.0〜4.0μm、最大高さRyが25μm以下、かつ凹凸の平均間隔Smが0.03〜0.1mmの電解粗面化表面を形成した粗面化鋼板。  Cr: 2.0% by mass or less, Ni: 5.0% by mass or less, Mo: 1.0% by mass or less on a steel plate of ordinary steel or special steel, centerline average roughness Ra is 1.0 to 4.0 μm, and maximum height Ry is 25 μm or less. And the roughened steel plate which formed the electrolytic roughening surface whose average space | interval Sm of an unevenness | corrugation is 0.03-0.1 mm. 電解粗面化表面は、硝酸と強電解質硝酸塩の混合水溶液中におけるアノード電解により形成したものである請求項1に記載の鋼板。The steel sheet according to claim 1, wherein the electrolytic roughened surface is formed by anodic electrolysis in a mixed aqueous solution of nitric acid and strong electrolyte nitrate. 硝酸と強電解質硝酸塩の混合水溶液中において、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板をアノード極とし、その鋼板表面上で酸素気泡を発生させながら当該鋼板を50〜150A/dm2の電流密度でアノード電解することにより、中心線平均粗さRaが1.0〜4.0μmの電解粗面化表面を形成する鋼板の粗面化方法。In a mixed aqueous solution of nitric acid and strong electrolyte nitrate, a steel plate of ordinary steel or special steel with Cr: 2.0% by mass or less, Ni: 5.0% by mass or less, Mo: 1.0% by mass or less is used as an anode electrode, and oxygen is present on the steel plate surface. A method of roughening a steel sheet, in which an electrolytic surface roughening surface having a center line average roughness Ra of 1.0 to 4.0 μm is formed by anodic electrolysis of the steel sheet at a current density of 50 to 150 A / dm 2 while generating bubbles. . 硝酸5〜30質量%と硝酸ナトリウム50〜100g/Lを含む水溶液中において、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板をアノード極とし、その鋼板表面上で酸素気泡を発生させながら当該鋼板を50〜150A/dm2の電流密度でアノード電解することにより、中心線平均粗さRaが1.0〜4.0μmの電解粗面化表面を形成する鋼板の粗面化方法。In an aqueous solution containing 5 to 30% by mass of nitric acid and 50 to 100g / L of sodium nitrate, a steel plate of ordinary steel or special steel with Cr: 2.0% by mass or less, Ni: 5.0% by mass or less, Mo: 1.0% by mass or less Electrolytically roughened surface with a center line average roughness Ra of 1.0 to 4.0 μm by anodic electrolysis at a current density of 50 to 150 A / dm 2 while generating oxygen bubbles on the surface of the steel plate A method for roughening a steel sheet. 中心線平均粗さRaが1.0〜4.0μm、かつ最大高さRyが25μm以下の電解粗面化表面を形成する請求項3または4に記載の粗面化方法。The roughening method according to claim 3 or 4 , wherein an electrolytic roughened surface having a center line average roughness Ra of 1.0 to 4.0 µm and a maximum height Ry of 25 µm or less is formed. 中心線平均粗さRaが1.0〜4.0μm、最大高さRyが25μm以下、かつ凹凸の平均間隔Smが0.03〜0.1mmの電解粗面化表面を形成する請求項3または4に記載の粗面化方法。The rough surface according to claim 3 or 4 , which forms an electrolytically roughened surface having a center line average roughness Ra of 1.0 to 4.0 µm, a maximum height Ry of 25 µm or less, and an average interval Sm of unevenness of 0.03 to 0.1 mm. Method. 硝酸5〜30質量%+硝酸ナトリウム50〜100g/Lの水溶液20〜40℃中において、Cr:2.0質量%以下,Ni:5.0質量%以下,Mo:1.0質量%以下の普通鋼または特殊鋼の鋼板をアノード極とし、その鋼板表面上で酸素気泡を発生させながら当該鋼板を50〜150A/dm2の電流密度で5〜120秒間アノード電解する鋼板の粗面化方法。Nitrogen 5 to 30% by mass + sodium nitrate 50 to 100g / L in aqueous solution 20 to 40 ° C, Cr: 2.0% by mass or less, Ni: 5.0% by mass or less, Mo: 1.0% by mass or less A method for roughening a steel plate, comprising using a steel plate as an anode electrode and subjecting the steel plate to anodic electrolysis for 5 to 120 seconds at a current density of 50 to 150 A / dm 2 while generating oxygen bubbles on the surface of the steel plate. +1.5〜+2.2VSCEのアノード電位で電解する請求項に記載の粗面化方法。The roughening method according to claim 7 , wherein electrolysis is performed at an anode potential of +1.5 to +2.2 V SCE . 電流密度を80〜120A/dm2とする請求項3〜8のいずれかに記載の粗面化方法。The surface roughening method according to claim 3 , wherein the current density is 80 to 120 A / dm 2 .
JP2002110767A 2001-04-18 2002-04-12 Roughened steel sheet and roughening method Expired - Lifetime JP4060627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110767A JP4060627B2 (en) 2001-04-18 2002-04-12 Roughened steel sheet and roughening method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-119129 2001-04-18
JP2001119129 2001-04-18
JP2002110767A JP4060627B2 (en) 2001-04-18 2002-04-12 Roughened steel sheet and roughening method

Publications (2)

Publication Number Publication Date
JP2003003300A JP2003003300A (en) 2003-01-08
JP4060627B2 true JP4060627B2 (en) 2008-03-12

Family

ID=26613751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110767A Expired - Lifetime JP4060627B2 (en) 2001-04-18 2002-04-12 Roughened steel sheet and roughening method

Country Status (1)

Country Link
JP (1) JP4060627B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296517B2 (en) * 2003-11-11 2007-11-20 Fujifilm Corporation Roll for metal rolling, and support for lithographic printing plate
JP2005329451A (en) 2004-05-21 2005-12-02 Fuji Photo Film Co Ltd Method for working surface of aluminum plate, base material for lithographic printing plate and lithographic printing plate
US20080236869A1 (en) * 2007-03-30 2008-10-02 General Electric Company Low resistivity joints for joining wires and methods for making the same
JP5100255B2 (en) * 2007-08-27 2012-12-19 日新製鋼株式会社 Stainless steel plate / adhesive structure between objects and disassembly method thereof
JP2010053392A (en) * 2008-08-27 2010-03-11 Sanbesuto:Kk Surface modified metallic material and composite body of surface modified material, resin, elastomer and coating film and method of manufacturing the same
JP5614313B2 (en) * 2011-02-08 2014-10-29 株式会社Ihi Standard specimen for nondestructive inspection and its manufacturing method
MX356543B (en) * 2011-09-30 2018-06-01 Nippon Steel & Sumitomo Metal Corp High-strength hot-dip galvanized steel sheet.
JP6168256B1 (en) * 2016-01-12 2017-07-26 Jfeスチール株式会社 Stainless steel sheet having Ni and O-containing coating on its surface and method for producing the same
JP6521203B1 (en) * 2017-10-25 2019-05-29 Jfeスチール株式会社 Method of manufacturing stainless steel plate for fuel cell separator
CN108441917B (en) * 2018-04-20 2020-01-21 赣州超越摩擦材料有限公司 Method for preparing wet friction plate by electric discharge machining
CN113652734B (en) * 2021-08-23 2022-06-03 安徽工业大学 Stainless steel surface electrolytic coarsening agent and coarsening method thereof

Also Published As

Publication number Publication date
JP2003003300A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US6183570B1 (en) Surface treatment process of metallic material and metallic material obtained thereby
JP4060627B2 (en) Roughened steel sheet and roughening method
JPH08158100A (en) Roughening of copper foil surface
US3951759A (en) Chromium electroplating baths and method of electrodepositing chromium
TWI477662B (en) Method for production of tin plated steel sheet, tin plated steel sheet and chemical conversion treatment liquid
JP3818723B2 (en) Roughening method for stainless steel plate surface
CN113652734B (en) Stainless steel surface electrolytic coarsening agent and coarsening method thereof
US20100126878A1 (en) Method for Electrolytic Stripping of Spray Metal Coated Substrate
JP4561359B2 (en) Conductor roll
JP4312489B2 (en) Manufacturing method of roughened steel sheet
JP2005008972A (en) Surface roughening method and surface roughening device for copper foil
JP2000080497A (en) Quick formation of phosphate film on steel wire rod and device
CN1113969A (en) Surface treatment method for titanium matrix metal electrode
JP7400766B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
JP2005330502A (en) CHEMICAL TREATMENT METHOD FOR Ni PLATED STEEL SHEET
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JP4280174B2 (en) Steel plate for welding can and method for producing the same
JP2002106718A (en) Rubber coated stainless steel gasket
JP3222329B2 (en) Manufacturing method of stainless steel sheet for painting
JP3151584B2 (en) Method for producing chromium-containing steel foil with excellent adhesion to resin or paint
JPS61119694A (en) Production of electroplated steel plate
JP2790717B2 (en) Phosphate undercoating method for dissimilar metal joints
JP2000212768A (en) Production of hot dip metal coated steel sheet
JPS5861294A (en) Preventing method for discoloration of steel plate electroplated on one side
JP2022515160A (en) Electroplated steel sheet with excellent surface appearance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term