JP4060494B2 - 三次元表面形状測定装置 - Google Patents

三次元表面形状測定装置 Download PDF

Info

Publication number
JP4060494B2
JP4060494B2 JP24330499A JP24330499A JP4060494B2 JP 4060494 B2 JP4060494 B2 JP 4060494B2 JP 24330499 A JP24330499 A JP 24330499A JP 24330499 A JP24330499 A JP 24330499A JP 4060494 B2 JP4060494 B2 JP 4060494B2
Authority
JP
Japan
Prior art keywords
light
optical axis
beam splitter
lens
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24330499A
Other languages
English (en)
Other versions
JP2001066124A (ja
Inventor
利治 小島
雄二 竹内
秀人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP24330499A priority Critical patent/JP4060494B2/ja
Publication of JP2001066124A publication Critical patent/JP2001066124A/ja
Application granted granted Critical
Publication of JP4060494B2 publication Critical patent/JP4060494B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体表面の三次元形状を測定する三次元表面形状測定装置に係わり、特に、共焦点法を用いた三次元表面形状測定装置に関する。
【0002】
【従来の技術】
物体表面の例えばμmオーダの微細な三次元形状(凹凸)を正確に測定する手法として種々の手法が提唱されている。
【0003】
これらの手法のうち、共焦点法を採用し、かつマイクロレンズアレイとピンホールアレイとを用いた三次元表面形状測定装置が実用化されている。この三次元表面形状測定装置は図3に示すように構成されている。
【0004】
ハロゲンランプ等からなる光源1から出力された照射光2はコリメータレンズ3で進行方向が互いに平行する光に直されて、光軸に対して45°方向に配設された偏光ビームスプリッタ4へ入射する。この偏光ビームスプリッタ4は、入射光のうち偏光方向が基準方向(0°方向)の光成分を反射し、入射光のうち偏光方向が基準方向(0°方向)に対して90°異なる方向の光成分を透過させる。
【0005】
偏光ビームスプリッタ4へ入射した照射光2のうち基準方向(0°方向)に対して90°異なる方向の光成分からなる直性偏光の照射光2はマイクロレンズアレイ5に入射される。
【0006】
マイクロレンズアレイ5は、図4(a)に示すように、マトリックス状に配列された複数の単位レンズ5aで構成されている。また、このマイクロレンズアレイ5に隣接してピンホールアレイ6が設置されている。このピンホールアレイ6は図4(b)に示すように、マトリックス状に配列された複数の貫通孔6aで構成されている。そして、マイクロレンズアレイ5の各単位レンズ5aの設置位置とピンホールアレイ6の各貫通孔6aの穿設位置は1対1で対応している。そして、図3に示すように、マイクロレンズアレイ5の各単位レンズ5aの焦点位置がピンホールアレイ6の各貫通孔6aに位置するように、マイクロレンズアレイ5とピンホールアレイ6とが位置決めされている。
【0007】
マイクロレンズアレイ5の各単位レンズ5aから出力された各照明光2はピンホールアレイ6の各貫通孔6a位置で焦点を結んだ後、距離調整用のレンズ7へ入射される。距離調整用のレンズ7は入射された各貫通孔6aからの各照明光2を進行方向が互いに平行な照明光2に直して1/4波長板8を介して対物レンズ9へ入射させる。1/4(λ/4)波長板8は、周知の通り、入射した直線偏光の光を円偏光とする。
なお、この距離調整用のレンズ7及び対物レンズ9は共焦点レンズを構成する。
【0008】
対物レンズ9は、距離調整用のレンズ7を介して入射された各貫通孔6aからの各照明光2を測定対象表面10の各位置へ照射する。各照明光2は測定対象表面10の各照射位置で反射され、各位置からの各反射光12として対物レンズ9へ入射する。対物レンズ9へ入射した各反射光12は、各照射光2と同じ経路を通り、距離調整用のレンズ7、ピンホールアレイ6の各貫通孔6aを介してマイクロレンズアレイ5の各単位レンズ5aへ逆方向から入射する。各反射光12はこの各単位レンズ5aで進行方向が互いに平行する光に直されて、偏光ビームスプリッタ4へ逆方向から45°の角度で入射する。
【0009】
この偏光ビームスプリッタ4へ入射する反射光12は、逆方向の円偏光となり、照射光2のときを含めて1/4(λ/4)波長板8を再度通過しているので、この各反射光12の偏光方向は90°回転した基準方向(0°方向)の直線偏光となっている。その結果、この各反射光12はこの偏光ビームスプリッタ4で反射されて、コンデンサレンズ11へ入射する。
【0010】
コンデンサレンズ11は、入射された各反射光12をスリット13を介してコリメータレンズ14へ入射させる。コリメータレンズ14は入射された各反射光12をCCDカメラ15の二次元CCD16上の各素子上に入射させる。
【0011】
CCDカメラ15の二次元CCD16上の各素子は、測定対象表面10の各位置に対応してしているので、CCDカメラ15の二次元CCD16上の各素子での受光強度が測定対象表面10の各位置からの反射光12の光強度となる。
【0012】
次に、共焦点法における測定対象面10までの距離測定原理を説明する。ピンホールアレイ6の各貫通孔6aから出力された各照明光2は距離調整用のレンズ7と対物レンズ9とからなる共焦点レンズを介して測定対象表面10に照射され、その反射光12が同じピンホールアレイ6の各貫通孔6aを介して二次元CCD16上の各素子で受光される。
【0013】
ここで、図5に示すように、光学系と測定対象表面10と距離を変化させていった場合に、測定対象表面10の光軸方向位置が単位レンズ5aと共焦点レンズとからなるレンズ系の焦点位置に位置したときに反射光12がピンホールアレイ6の同一貫通孔6a位置で結像し、対応するCCD16上の素子の検出する光強度が最大値を示す。
【0014】
したがって、測定対象表面10又は光学系を光軸方向に移動させて、各素子の検出光強度が最大値を示す移動位置を特定すれば、該当移動位置が測定対象表面10の光軸方向位置となる。
【0015】
このようにして、各素子における検出光強度が最大値を示す各移動位置を求めれば、測定対象表面10全体の三次元表面形状が得られる。
【0016】
【発明が解決しようとする課題】
しかしながら図3に示す三次元表面形状測定装置においてもまだ解消すべき次のような課題があった。
【0017】
すなわち、前述したように各素子における検出光強度が最大値を示す各移動位置を求めるためには、測定対象表面10又は光学系を光軸方向に移動させる必要があるが、この測定対象表面10又はマイクロレンズアレイ5、ピンホールアレイ6、共焦点レンズを含む光学系全体を光軸方向にμmオーダの高い制度で移動させる機構を構築する必要があるので、装置全体が複雑化する問題がある。
【0018】
特に、マイクロレンズアレイ5、ピンホールアレイ6はマトリックス状に配列された多数の単位レンズや多数の貫通孔から構成されているので、光軸方向に高い精度で移動させる必要があるのみならず、光軸と直交する方向の位置も高い精度を維持した状態で光軸方向に移動させる必要があるので、より高い移動機構が要求される。
【0019】
本発明はこのような事情に鑑みてなされたものであり、マイクロレンズアレイから共焦点レンズまでの距離を可変する簡単な光学機構を設けることにより、移動対象の光学部材を極力少なくでき、移動機構を簡素化でき、簡単な構成で測定精度を大幅に向上できる三次元表面形状測定装置を提供することを目的とする。
【0020】
【課題を解決するための手段】
上記課題を解消するために、本発明の三次元表面形状測定装置は、直線偏光された照射光を出力する光源と、この光源から出力される照射光の光軸である第1の光軸に直交する面内に配設され、マトリックス配列された複数の単位レンズからなるマイクロレンズアレイと、このマイクロレンズアレイの各単位レンズの焦点位置にそれぞれ貫通孔が形成された第1のピンホールアレイと、第1の光軸に45°傾斜して挿入された偏光ビームスプリッタと、第1の光軸と直交する第2の光軸に設けられ、偏光ビームスプリッタで反射された光源からの照射光をビームスプリッタへ折り返す平面ミラーと、この平面ミラーと偏光ビームスプリッタとの間に介挿された第1の1/4波長板と、第2の光軸に設けられ、ビームスプリッタを透過した平面ミラーで折り返された照射光を測定対象面に照射すると共に、この測定対象面からの反射光を偏光ビームスプリッタへ入射させる共焦点レンズと、測定対象面と偏光ビームスプリッタとの間に介挿された第2の1/4波長板と、第1の光軸に設けられ、マトリックス配列された複数の貫通孔が形成された第2のピンホールアレイと、第1の光軸に設けられ、第2のピンホールアレイの各単位貫通孔を透過した各反射光を受光するマトリックス配列された複数の受光素子からなる受光器と、平面ミラーを第2の光軸方向に移動させるミラー移動部と、このミラー移動部で平面ミラーの位置を変化させた時に、受光器の各受光素子の最大光強度が得られる各ミラー位置から、測定対象面における三次元形状を算出するデータ処理部とを備えたものである。
【0021】
このように構成された三次元表面形状測定装置においては、光源から出力された照射光はマイクロレンズアレイ及び第1のピンホールアレイへ入射される。ピンホールアレイの各貫通孔で焦点を結んだ各照射光は、偏光ビームスプリッタで反射されて第2の光軸に沿って移動可能に設けられた平面ミラーで折り返されて再度偏光ビームスプリッタへ入射される。この各照射光は偏光ビームスプリッタを透過して共焦点レンズ系を介して測定対象面へ照射される。
【0022】
測定対象面からの各反射光は、照射光と同じ経路を通り偏光ビームスプリッタへ入射される。この各反射光は偏光ビームスプリッタで反射されて、第2のピンホールアレイの各貫通孔へ入射され、この各貫通孔の後方に位置する受光器の各受光素子へ入射される。
【0023】
このような構成において、平面ミラーの第2の光軸方向の位置を可変することによって、マイクロレンズアレイから共焦点レンズまでの距離、すなわち、マイクロレンズアレイの単位レンズと共焦点レンズとで構成されるレンズ系の焦点距離が変化する。したがって、従来装置における光学系全体を光軸方向に移動させることと同一の作用効果が得られる。
【0024】
よって、平面ミラーを移動させたときに受光器の各受光素子にて最大光強度が得られる各ミラー位置から測定対象面の各照射光の照射位置における第2の光軸方向位置、すなわち、測定対象面の三次元形状が得られる。
【0025】
この場合、移動するのは平面ミラーのみであるので、光学系全体を移動させる従来装置に比較して、移動機構が大幅に簡素化される。
【0026】
また、別の発明においては、上述した発明の三次元表面形状測定装置に対して、さらに、第2のピンホールアレイと受光器との間に介挿され、この第2のピンホールアレイの各貫通孔を透過した各反射光を受光器の各受光素子へ導くための複数の単位レンズからなる第2のマイクロレンズアレイとを備えている。
【0027】
このように構成された三次元表面形状測定装置においては、第2のマイクロレンズアレイを用いることにより、第2のピンホールアレイと受光器との間の距離を任意に設定できると共に、受光器を任意の大きさに設計できる。
【0028】
【発明の実施の形態】
以下、本発明の一実施形態を図面を用いて説明する。
図1は実施形態に係る三次元表面形状測定装置の概略構成図である。また、図2は、この三次元表面形状測定装置に組込まれた偏光ビームスプリッタ27に対して入出力される照射光22及び反射光36の各偏光方向を示す図である。
【0029】
例えばレーザ光源からなる光源21から出力された偏光方向が基準方向(0°)に設定された照射光22はコリメータレンズ24で進行方向が互いに平行する光に直されて、この照射光22の光軸である第1の光軸23に対して直交する面内に配設された第1のマイクロレンズアレイ25に入射される。
【0030】
この第1のマイクロレンズアレイ25は、前述した図4(a)に示したマイクロレンズアレイ5と同様に、マトリックス状に配列された複数の単位レンズ25aで構成されている。また、この第1のマイクロレンズアレイ25に隣接して第1のピンホールアレイ26が設置されている。この第1のピンホールアレイ26は、図4(b)に示したピンホールアレイ6と同様に、マトリックス状に配列された複数の貫通孔26aで構成されている。そして、第1のマイクロレンズアレイ25の各単位レンズ25aの設置位置と第1のピンホールアレイ26の各貫通孔26aの穿設位置は1対1で対応している。そして、第1のマイクロレンズアレイ25の各単位レンズ25aの焦点位置が第1のピンホールアレイ26の各貫通孔26aに位置するように、第1のマイクロレンズアレイ25と第1のピンホールアレイ26とが位置決めされている。
【0031】
第1のマイクロレンズアレイ25の各単位レンズ25aから出力された各照明光22は第1のピンホールアレイ26の各貫通孔26a位置で焦点を結んだ後、第1の光軸23に対して45°傾斜して挿入された偏光ビームスプリッタ27へ入射される。この偏光ビームスプリッタ27は図3に示した従来装置の偏光ビームスプリッタ4と同一構成を有している。
【0032】
図2に示すように、偏光方向が基準方向(0°)である照射光22は、この偏光ビームスプリッタ27で反射されて、第1の光軸23に直交する第2の光軸28方向へ反射される。第2の光軸28方向へ反射された照射光22は第1の1/4(λ/4)波長板29を介して、この第2の光軸28に対して直交する方向に配設された平面ミラー30で折返される。
【0033】
平面ミラー30は第2の光軸28方向へ移動自在に設けられた移動機構31aに固定されている。そして、この移動機構31aは駆動部31bで光軸28方向へ移動制御させられる。よって、移動機構31aと駆動部31bとはミラー移動部31を構成する。なお、第2の光軸28方向にμmオーダの移動精度を確保するために圧電素子を用いる。
【0034】
平面ミラー30で折返された照射光22は再度第1の1/4(λ/4)波長板29を介して再度偏光ビームスプリッタ27へ入射される。この場合、図2に示すように、照射光22は偏光方向が90°方向に回転されているので、照射光22は偏光ビームスプリッタ27をそのまま透過して、第2の光軸28上に配設された距離調整用のレンズ32へ入射される。距離調整用のレンズ32は入射された各照明光22を進行方向が互いに平行な照明光2に直して対物レンズ33へ入射させる。この距離調整用のレンズ32と対物レンズ33とは共焦点レンズを構成する。
【0035】
対物レンズ9は、入射された各各照明光22を第2の1/4(λ/4)波長板34を介して測定対象表面35の各位置へ照射する。
【0036】
したがって、前述したミラー移動部31は、結果的に、第1のマイクロレンズアレイ25の各単位レンズ25aと共焦点レンズで構成されるレンズ系の焦点距離(焦点位置)を変化させる。
【0037】
各照明光22は測定対象表面35の各照射位置で反射され、各位置からの各反射光36として第2の1/4(λ/4)波長板34を介して対物レンズ33へ入射する。対物レンズ33へ入射した各反射光36は、各照射光22と同じ経路を通り、距離調整用のレンズ32を介して、再度偏光ビームスプリッタ27へ入射される。
【0038】
この場合、各反射光36は照射光22のときを含めて第2の1/4(λ/4)波長板34を2回通過するので、図2に示すように、各反射光36の偏光方向はさらに90°回転して元の基準方向(0°)となる。
【0039】
したがって、偏光ビームスプリッタ27へ入射された各反射光36はこの偏光ビームスプリッタ27で第1の光軸23方向に反射されて、この第1の光軸23に直交する面内に設けられた第1のピンホールアレイ26と同一構成の第2のピンホールアレイ37の各貫通孔37aを介して第2のマイクロレンズアレイ38の各単位レンズ38aへ入射する。
【0040】
第2のマイクロレンズアレイ38の各単位レンズ38aから出力された各反射光36は距離調整用のレンズ39へ入射される。距離調整用のレンズ39は入射された各反射光36を進行方向が互いに平行な反射光36に直してコンデンサレンズ40へ入射する。
【0041】
コンデンサレンズ40は、入射された各反射光36を、第1の光軸23に直交する面内に設けられた受光器41の各受光素子41a上に入射させる。
【0042】
受光器41の第1の光軸23に直交する面内にマトリックス状に配設された各受光素子41aは、測定対象表面35の各位置に対応しているので、受光器41の各受光素子41aでの各受光強度が測定対象表面35の各位置からの反射光36の光強度となる。受光器41の各受光素子41aの各受光強度は入力IF42でデジタル値に変換されて、マイクロコンピユータからなるデータ処理部43へ入力される。
【0043】
マイクロコンピユータからなるデータ処理部43は、移動機構31aと駆動部31bとからなるミラー移動部31を駆動して、平面ミラー30を第2の光軸28方向へμmオーダ単位で移動させながら、受光器41の各受光素子41aの各光強度を測定していく。
【0044】
そして、各受光素子41aにおける平面ミラー30の各移動位置dと該当移動位置における各光強度Iとの関係から、光強度が最大となる移動位置dmを求め、この光強度が最大となる移動位置dmを該当受光素子41aに対応する測定対象面35の二次元位置における第2の光軸方向位置Dとなる。すなわち、ミラー移動部31を制御して第1のマイクロレンズアレイ25の各単位レンズ25aと共焦点レンズで構成されるレンズ系の焦点位置を変化させる。このことは、図3で示した従来装置における光学系全体を光軸方向に移動させることと同一の作用効果が得られる。
【0045】
したがって、上述した手法で受光器41の全ての受光素子41aに対応する測定対象面35の各位置における光軸方向位置Dを求めて二次元配列すれば、図3に示した従来装置と同様に、他測定対象面35の三次元表面形状が得られる。
【0046】
このように構成された三次元表面形状測定装置においては、移動すべき光学部部材は、平面ミラー30のみであるので、全部の光学系を移動させる従来装置に比較して移動機構を大幅に簡素化できる。
【0047】
さらに、マイクロレンズアレイ25、38や、ピンホールアレイ26、37を含む大部分の光学部品は一つのべース上に固定することができるので、全部の光学系を移動可能にした従来装置に比較して測定精度を大幅に向上きる。
【0048】
【発明の効果】
以上説明したように、本発明の三次元表面形状測定装置においては、マイクロレンズアレイから共焦点レンズ系までの距離を可変する簡単な光学機構を設けることにより、マイクロレンズアレイの単位レンズと共焦点レンズとで構成されるレンズ系の焦点位置を可変としている。したがって、移動すべき光学系を平面ミラーのみとでき、移動機構を大幅に簡素化でき、簡単な構成で測定精度を向上できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の三次元表面形状測定装置の概略構成図
【図2】同三次元表面形状測定装置に組込まれた偏光ビームスプリッタに対して入出力される照射光と反射光との偏光方向を示す図
【図3】状態の三次元表面形状測定装置の概略構成図
【図4】同三次元表面形状測定装置内に組込まれたマイクロレンズアレイ及びピンホールアレイを示す図
【図5】同三次元表面形状測定装置で測定される測定対象面の光軸方向の位置と素子の光強度との関係を示す図
【符号の説明】
21…光源
22…照射光
23…第1の光軸
24…コリメータレンズ
25…第1のマイクロレンズアレイ
26…第1のピンホールアレイ
27…偏光ビームスプリッタ
28…第2の光軸
29…第1の1/4波長板
30…平面ミラー
31…ミラー移動部
32,39…距離調整用のレンズ
33…対物レンズ
34…第2の1/4波長板
35…測定対象面
36…反射光
37…第2のピンホールアレイ
38…第2のマイクロレンズアレイ
40…コンデンサレンズ
41…受光器
42…入力IF
43…データ処理部

Claims (2)

  1. 直線偏光された照射光を出力する光源(21)と、
    この光源から出力される照射光の光軸である第1の光軸に直交する面内に配設され、マトリックス配列された複数の単位レンズからなるマイクロレンズアレイ(25)と、
    このマイクロレンズアレイの各単位レンズの焦点位置にそれぞれ貫通孔が形成された第1のピンホールアレイ(26)と、
    前記第1の光軸に45°傾斜して挿入された偏光ビームスプリッタ(27)と、
    前記第1の光軸と直交する第2の光軸に設けられ、前記偏光ビームスプリッタで反射された前記光源からの照射光を前記ビームスプリッタへ折り返す平面ミラー(30)と、
    この平面ミラーと前記偏光ビームスプリッタとの間に介挿された第1の1/4波長板(29)と、
    前記第2の光軸に設けられ、前記ビームスプリッタを透過し前記平面ミラーで折り返された照射光を測定対象面(35)に照射すると共に、この測定対象面からの反射光を前記偏光ビームスプリッタへ入射させる共焦点レンズ(32,33)と、
    前記測定対象面と前記偏光ビームスプリッタとの間に介挿された第2の1/4波長板(34)と、
    前記第1の光軸に設けられ、マトリックス配列された複数の貫通孔が形成された第2のピンホールアレイ(37)と、
    前記第1の光軸に設けられ、前記第2のピンホールアレイの各単位貫通孔を透過した各反射光を受光するマトリックス配列された複数の受光素子からなる受光器(41)と、
    前記平面ミラーを前記第2の光軸方向に移動させるミラー移動部(31)と、
    このミラー移動部で平面ミラーの位置を変化させた時に、前記受光器の各受光素子の最大光強度が得られる各ミラー位置から、前記測定対象面における三次元形状を算出するデータ処理部(43)と
    を備えた三次元表面形状測定装置。
  2. 前記第2のピンホールアレイと前記受光器との間に介挿され、この第2のピンホールアレイの各貫通孔を透過した各反射光を前記受光器の各受光素子へ導くための複数の単位レンズからなる第2のマイクロレンズアレイ(38)とを備えたことを特徴とする請求項1記載の三次元表面形状測定装置。
JP24330499A 1999-08-30 1999-08-30 三次元表面形状測定装置 Expired - Fee Related JP4060494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24330499A JP4060494B2 (ja) 1999-08-30 1999-08-30 三次元表面形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24330499A JP4060494B2 (ja) 1999-08-30 1999-08-30 三次元表面形状測定装置

Publications (2)

Publication Number Publication Date
JP2001066124A JP2001066124A (ja) 2001-03-16
JP4060494B2 true JP4060494B2 (ja) 2008-03-12

Family

ID=17101852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24330499A Expired - Fee Related JP4060494B2 (ja) 1999-08-30 1999-08-30 三次元表面形状測定装置

Country Status (1)

Country Link
JP (1) JP4060494B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162616A (zh) * 2013-03-06 2013-06-19 哈尔滨工业大学 用于微球表面形貌检测的瞬时移相干涉测量仪及采用该测量仪实现微球表面形貌的测量方法
CN103196361A (zh) * 2013-02-28 2013-07-10 哈尔滨工业大学 用于微球表面形貌快速检测的短相干瞬时移相干涉测量仪及测量方法
CN106052585A (zh) * 2016-06-13 2016-10-26 中国科学院高能物理研究所 一种面形检测装置与检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721685B2 (ja) * 2004-10-07 2011-07-13 パナソニック株式会社 形状測定方法及び形状測定装置
CN103411559B (zh) * 2013-08-15 2015-12-09 哈尔滨工业大学 基于阵列照明的角谱扫描准共焦微结构测量方法
JP5999121B2 (ja) * 2014-02-17 2016-09-28 横河電機株式会社 共焦点光スキャナ
KR101759971B1 (ko) * 2015-11-26 2017-07-24 주식회사 선진기술 평행광을 이용한 축오차 측정장치
CN113251949B (zh) * 2021-06-18 2021-11-30 三代光学科技(天津)有限公司 一种微透镜阵列面形的单点光学测量路径生成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136810A (ja) * 1994-11-08 1996-05-31 Hamamatsu Photonics Kk 共焦点顕微鏡
JP3350918B2 (ja) * 1996-03-26 2002-11-25 株式会社高岳製作所 2次元配列型共焦点光学装置
JPH09145332A (ja) * 1995-11-29 1997-06-06 Komatsu Ltd 物体の計測装置における検出データ読出し装置
JP3459327B2 (ja) * 1996-06-17 2003-10-20 理化学研究所 積層構造体の層厚および屈折率の測定方法およびその測定装置
DE19651667C2 (de) * 1996-12-12 2003-07-03 Rudolf Groskopf Vorrichtung zur dreidimensionalen Untersuchung eines Objektes
JP3509088B2 (ja) * 1997-02-25 2004-03-22 株式会社高岳製作所 3次元形状計測用光学装置
JPH11119106A (ja) * 1997-10-16 1999-04-30 Olympus Optical Co Ltd レーザ走査型顕微鏡
JPH11211439A (ja) * 1998-01-22 1999-08-06 Takaoka Electric Mfg Co Ltd 表面形状計測装置
JP3610569B2 (ja) * 1999-03-23 2005-01-12 株式会社高岳製作所 能動共焦点撮像装置とそれを用いた三次元計測方法
JP3611755B2 (ja) * 1999-08-24 2005-01-19 株式会社日立製作所 立体形状検出方法及びその装置並びに共焦点検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196361A (zh) * 2013-02-28 2013-07-10 哈尔滨工业大学 用于微球表面形貌快速检测的短相干瞬时移相干涉测量仪及测量方法
CN103196361B (zh) * 2013-02-28 2015-11-11 哈尔滨工业大学 用于微球表面形貌快速检测的短相干瞬时移相干涉测量仪及测量方法
CN103162616A (zh) * 2013-03-06 2013-06-19 哈尔滨工业大学 用于微球表面形貌检测的瞬时移相干涉测量仪及采用该测量仪实现微球表面形貌的测量方法
CN103162616B (zh) * 2013-03-06 2015-09-16 哈尔滨工业大学 用于微球表面形貌检测的瞬时移相干涉测量仪及采用该测量仪实现微球表面形貌的测量方法
CN106052585A (zh) * 2016-06-13 2016-10-26 中国科学院高能物理研究所 一种面形检测装置与检测方法
CN106052585B (zh) * 2016-06-13 2019-04-05 中国科学院高能物理研究所 一种面形检测装置与检测方法

Also Published As

Publication number Publication date
JP2001066124A (ja) 2001-03-16

Similar Documents

Publication Publication Date Title
JP5281923B2 (ja) 投射型表示装置
EP2724361B1 (en) Illumination control
JP4343237B2 (ja) ボンディングのための基板のアラインメント装置
JP4734502B2 (ja) 光学測定システム及び光学測定方法
US6934079B2 (en) Confocal microscope comprising two microlens arrays and a pinhole diaphragm array
KR20100134609A (ko) 물체의 표면 형태를 측정하기 위한 장치 및 방법
JP2014508969A (ja) 蛍光顕微鏡検査法における照明位相制御のためのシステムおよび方法
JP2862311B2 (ja) 面位置検出装置
JP2006313356A5 (ja)
JP2000275027A (ja) スリット共焦点顕微鏡とそれを用いた表面形状計測装置
JP2007524807A (ja) 球形光散乱及び遠視野位相の測定
TW201107905A (en) Measurement apparatus, exposure apparatus, and device fabrication method
JP4060494B2 (ja) 三次元表面形状測定装置
JPH0593888A (ja) オフ・セツト鏡の光軸を決めるための方法および装置
JPH083576B2 (ja) 光学式結像装置及びマスクパタ−ン結像装置
JPH11173821A (ja) 光学式検査装置
JPH10318733A (ja) 2次元配列型共焦点光学装置
JP2580824Y2 (ja) 焦点調整装置
JP4723842B2 (ja) 走査型光学顕微鏡
JP2950004B2 (ja) 共焦点レーザ顕微鏡
KR102315010B1 (ko) 파라볼릭 미러를 이용한 반사형 fpm
KR102628967B1 (ko) 튜닝이 가능한 fpm
RU2447468C2 (ru) Способ автоматической фокусировки рабочего излучения на 3d оптическую поверхность
JPH1138298A (ja) 光学系調整方法
JPH1183722A (ja) 粒度分布測定装置のオートアライメント機構

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees