JP4059677B2 - Bismuth recovery method and bismuth sulfate recovery method - Google Patents

Bismuth recovery method and bismuth sulfate recovery method Download PDF

Info

Publication number
JP4059677B2
JP4059677B2 JP2002015029A JP2002015029A JP4059677B2 JP 4059677 B2 JP4059677 B2 JP 4059677B2 JP 2002015029 A JP2002015029 A JP 2002015029A JP 2002015029 A JP2002015029 A JP 2002015029A JP 4059677 B2 JP4059677 B2 JP 4059677B2
Authority
JP
Japan
Prior art keywords
bismuth
liquid
sulfate
lead
recovery method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015029A
Other languages
Japanese (ja)
Other versions
JP2003213350A (en
Inventor
敏文 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002015029A priority Critical patent/JP4059677B2/en
Publication of JP2003213350A publication Critical patent/JP2003213350A/en
Application granted granted Critical
Publication of JP4059677B2 publication Critical patent/JP4059677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、非鉄金属製錬工程より産出する有価物を含む原料から、有価物を回収する方法に関するものであり、更に詳しく述べると有価物であるビスマスを湿式処理により回収する方法に関するものである。
【0002】
【従来の技術】
ビスマスは、鉛、銅、錫、銀、金などの鉱石中に含まれ、これらの非鉄金属の製錬副産物として産出されている。ビスマスは、銅や鉛鉱石に随伴して産出されることが多く、乾式製錬によってその粗金属中に残留する。例えば、粗銅中に残留したビスマスは、銅の電解精製工程において他の不純物と共に電解液に濃縮される。一方大部分のビスマスは、銅製錬の乾式工程で高熱によって揮発し、煙灰として鉛、砒素、アンチモンなどと共にコットレル等に捕集され、これらは更に鉛製錬工程に送られる。
【0003】
銅電解液中に濃縮されたビスマスは、例えば脱銅電解で除去され、除去されたビスマスは大部分が乾式工程へ繰返される。
【0004】
高熱揮発して鉛と共に捕集されたビスマスは、鉛製錬工程へ送られ、電気炉等の乾式処理を行い、粗鉛中に移行する。粗鉛は、例えばケイフッ化水素酸浴で電解精製され、鉛が陰極に電着しビスマスが陽極泥(アノードスライム)となる。陽極泥は更に乾式処理が行われ、粗ビスマスとなる。この粗ビスマスは、例えばケイフッ化水素酸浴や塩化物浴にて電解精製されて製品ビスマスとなる。
【0005】
製品ビスマスの回収に当たっては、説明した通り多くの場合乾式処理が行われ、この乾式処理は鉛を使用するため、作業環境上好ましくない。このため、乾式処理を行わないビスマスの回収法の開発が望まれている。またビスマスは鉛や銅あるいは同族元素である砒素、アンチモンと挙動を共にすることが多く、これらの成分との分離も課題となっている。
【0006】
【発明が解決しようとする課題】
上記問題点を解決する、湿式法によるビスマス回収方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、種々のビスマス回収法検討を行った結果、ビスマス回収方法として、
(1)非鉄製錬の煙灰処理において産出する、塩酸酸性の水溶液中のビスマスを配位結合有するMRT樹脂に、BV(ベッドボリューム)=0.1〜4において選択吸着させるビスマスの回収方法。
(2)上記(1)において、吸着したビスマスをBV=0.5以上1.5未満として、硫酸溶液にて溶離する硫酸ビスマスの回収方法。
(3)ビスマスを含む水溶液が、銅及び鉛製錬工程の中間処理物である上記(1)又は(2)に記載の方法。
(4)ビスマス溶離液が、8モル/L以上の硫酸であり、かつ溶離時の液温が40℃以上である上記(3)に記載の方法。
(5)ビスマス濃度の高い液であるBV=0.5以上1.5未満の溶離液を冷却し、硫酸ビスマスを晶析回収した後、該液を再び溶離液として使用する上記(3)に記載の方法。
を提供するものである。
【作用】
以下本発明の構成を詳しく説明する。なお構成は例を挙げて説明しているが、本発明はこの例に制限されるものではない。
【0008】
ビスマスは、鉛、銅、錫、銀、金などの鉱石中に含まれ、これらの非鉄金属の製錬副産物として産出されている。ビスマスは、銅や鉛鉱石に随伴して産出されることが多く、乾式製錬によってその粗金属中に残留する。例えば、粗銅中に残留したビスマスは、銅の電解精製工程において他の不純物と共に電解液に濃縮される。
一方大部分のビスマスは、銅製錬の乾式工程で高熱によって揮発し、煙灰として鉛、砒素、アンチモンなどと共にコットレル等に捕集され、これらは更に鉛製錬工程に送られる。鉛製錬工程では、電気炉等の乾式処理を行い、ビスマスを粗鉛中に移行させる。粗鉛は、例えばケイフッ化水素酸浴で電解精製され、鉛が陰極に電着しビスマスが陽極泥(アノードスライム)となる。
陽極泥は更に乾式処理が行われ、粗ビスマスとなる。この粗ビスマスは、例えばケイフッ化水素酸浴や塩化物浴にて電解精製されて製品ビスマスとなる。
製品ビスマスの回収に当たっては、説明した通り多くの場合乾式処理が行われ、この乾式処理は鉛を使用するため、作業環境上好ましくない。このため、さまざまな湿式処理法が提案されている。
【0009】
例えば特開2000−109939に開示されているように、ビスマスを含む非鉄製錬工程中間物として、煙灰に種々の湿式処理を行った塩酸酸性のビスマス塩水溶液がある。この塩酸酸性ビスマス塩水溶液にはビスマスが濃縮されており、ビスマス回収の原料として好適である。
【0010】
一方、回収されるビスマス形態として、金属ビスマス、オキシ塩化ビスマス、硫酸ビスマス等が挙げられる。本発明者は、種々の検討を行った結果、塩酸酸性ビスマス塩水溶液に樹脂法を適用することにより、高純度な硫酸ビスマスを得ることが可能であることを見出した。
【0011】
すなわち、該ビスマス含有液に配位結合を有する樹脂を接触させ、ビスマスを選択的に樹脂に吸着させた後、硫酸で溶離することにより、高純度の硫酸ビスマスを得る。
配位結合を有する樹脂の一態様として、以下に示すMRTが有効であると本発明者は見出した。配位結合とは、共有結合の一種で、一方の原子の非結合電子対が相手の原子に供与され共有されることによって結合するものである。この配位結合の例としてクラウンエーテル等が挙げられる。
【0012】
樹脂はイオン交換樹脂等の適用も可能であるが、特許第2984683号(登録日;平成11年10月1日)に開示されている樹脂であって、よりビスマスの選択性の高い(本発明者が、初めて見出した。)米国IBC社製品であるMRT(olecular ecognition echnology、分子認識技術)樹脂が好適である。その構造の例を以下に示す。特徴は、下式における下線部がクラウンエーテルとなり、このクラウンエーテルとカチオンが配位結合する。このクラウンエーテルの大きさ、即ち輪の大きさによりカチオンの選択性が可能となる。
マトリクス-O-SiYZ- CH2 a OCH2R1CHCH2 b BCHR2CH2 c DCHR3CH2 dE
B及びD:例えばO、OCH2、S等から選択
E:例えば低級アルキル、SH、OH等から選択
R1:例えばH、SH、OH等から選択
R2:例えばH及び低級アルキル等から選択
R3:例えばH、低級アルキル、アリール等より選択
Y及びZ:Cl、OCH3、OC2H5等から選択
a:2ないし10
b:0または1
c:1ないし2000
d:0ないし2000
マトリクス:砂、シリカゲル、ガラス、アルミナ等から選択
【0013】
配位結合を有する樹脂と処理液とのBV値(ベッドボリューム、通液量を樹脂体積で割った値、すなわち樹脂体積の何倍の液量を通液したという指標)は、表4に示すように0.1〜8が望ましい。Biが吸着され、不純物となるCu、Pb、Asが吸着され難いからである。
このMRT樹脂に原料である塩酸酸性ビスマス水溶液を常温で作用(吸着)させる。塩酸酸性下でのビスマス溶解度は常温でも十分にあるため、吸着液温を高くすることは経済上好ましくない。吸着操作の通液速度は、カラム法における一般的な値、すなわち空間速度(space velocity)5〜20(1/hr)で十分である。SVを大きくしすぎると流速がビスマス吸着速度を上回るため、ビスマスが十分に吸着されずカラムから流出してくる。ビスマス以外の成分、例えば銅、砒素、鉛は、吸着されないため、ビスマスの選択濃縮が可能となる。
【0014】
溶離工程における吸着後の樹脂と溶離液のBV値は、表5に示すように0.5以上、1.5未満が望ましい。これは、ビスマスが好適に樹脂より回収できるからである。
溶離操作の液温は、表2に示すように40℃以上、溶離液である硫酸濃度は、表1に示すように8モル/L以上が好ましい。液温低下並びに硫酸濃度の低下は硫酸ビスマスの溶解度低下を招く。通液速度は、カラム法における一般的な値、すなわちSV(空間速度)0.5〜10(1/hr)で十分である。SVを大きくしすぎると流速がビスマス溶離速度を上回るため、ビスマスが十分に溶離されずカラム中に残留するばかりか、溶離液中のビスマス濃度を高くすることができない。
【0015】
【表1】

Figure 0004059677
【0016】
【表2】
Figure 0004059677
【0017】
溶離した硫酸ビスマスは、冷却することにより硫酸ビスマス白色結晶が晶析する。放冷時の温度は、20℃以下が好ましい。低温になるほど硫酸水溶液中の硫酸ビスマスの溶解度が低下する。ビスマスを晶析回収した後の溶離液は、再び溶離液として繰返すことが可能である。
【0018】
晶析した硫酸ビスマスを固液分離した後、付着液を洗い流すために硫酸で洗浄する。水で洗浄を行うと溶解度のため硫酸ビスマスが溶出してしまう。洗浄後の硫酸ビスマスは、洗浄液である硫酸が付着しているため、真空乾燥を行う。
【0019】
このようにして得られた硫酸ビスマスの純度は99.99%以上であった。本発明は、工程数が少なくかつ製品となる高純度硫酸ビスマスを直接得るものである。
【0020】
以上説明したように、簡便な硫酸ビスマス回収方法を確立した。
【実施例】
【0021】
以下本発明の実施例を説明する。なお本発明は実施例に制限されるものではない。
【0022】
非鉄製錬中間物である塩酸酸性ビスマス水溶液の組成を表3に示す。
【0023】
【表3】
Figure 0004059677
【0024】
カラムにMRT樹脂(商品名:SuperLig#83)30gを充填し、塩酸酸性ビスマス水溶液を下降流でBV=20の液量を通液した。SVは10(1/hr)であった。吸着操作中の液濃度推移を表4に示す。ビスマスに関して、表3の処理対象液中のビスマス濃度4.9g/Lに対して表4に示すカラム流出液(処理後液)BV=0.1〜8までにおいて、ビスマス濃度が0.07〜3.68g/Lに減っていること、
更に、Cu、As、Pbが、表3の処理対象液中のCu0.97g/L、As1.34g/L、Pb0.63g/Lに対して、表4では、BV=4において、Cu1.06、As1.33、Pb0.64とほぼ同程度の濃度となっていることから、ビスマスのみが選択吸着されていることが分かる。
【0025】
【表4】
Figure 0004059677
【0026】
ビスマスを選択吸着した樹脂を0.5モル/L塩酸と1モル/L硫酸で押し出し洗浄した後、溶離液である9モル/Lの硫酸を60℃、SV2の条件で作用させた。溶離液中の濃度推移を表5に示す。
【0027】
【表5】
Figure 0004059677
【0028】
BV=0.5〜1の溶離液を20℃まで冷却した結果、硫酸ビスマス白色結晶2.74gが得られた。この時の析出後液中ビスマス濃度は、2.41g/Lであった。この結晶を9モル/Lの硫酸で洗浄した後、真空乾燥を25℃、10mmHg、12hrの条件下で行い、成分分析を行った。その結果を表6に示す。
【0029】
【表6】
Figure 0004059677
【0030】
表6に示すように極めて高純度の硫酸ビスマスが得られた。
【比較例】
【0031】
キレート樹脂(MX−2、ミヨシ油脂)30gを実施例と同様にカラムに充填し供試液を通液した。このときの吸着後液中濃度推移を表7に示す。
実施例の表4と比較してビスマスは、吸着されているが
他の銅、砒素、鉛が、実施例では、BV=4において、Cu=1.06g/L、As1.33g/L、Pb=0.64g/Lと吸着されていないのに対して、本比較例においては、Cu=0.68g/L、As=0.87g/L、Pb=0.26g/Lと処理後液中の濃度が減少し、吸着していることを確認できる。このためビスマスの選択分離性はMRT樹脂に比べ劣ることが分かる。
【0032】
【表7】
Figure 0004059677
【0033】
【発明の効果】
以上説明したように、本発明により簡便な方法で高純度ビスマス及び高純度硫酸ビスマスの回収が可能となった。
【図面の簡単な説明】
【図1】本発明の処理フロー一態様を示す。[0001]
[Industrial application fields]
The present invention relates to a method for recovering valuable materials from raw materials containing valuable materials produced from a non-ferrous metal smelting process, and more particularly to a method for recovering valuable bismuth by wet processing. .
[0002]
[Prior art]
Bismuth is contained in ores such as lead, copper, tin, silver, and gold, and is produced as a smelting byproduct of these non-ferrous metals. Bismuth is often produced along with copper and lead ore, and remains in the crude metal by dry smelting. For example, bismuth remaining in the crude copper is concentrated in the electrolytic solution together with other impurities in the copper electrolytic purification process. On the other hand, most of bismuth is volatilized by high heat in a copper smelting dry process and is collected as smoky ash together with lead, arsenic, antimony, etc., and then sent to the lead smelting process.
[0003]
The bismuth concentrated in the copper electrolyte is removed by, for example, copper removal electrolysis, and most of the removed bismuth is repeated in the dry process.
[0004]
Bismuth that has been volatilized at high temperature and collected together with lead is sent to a lead smelting process, and is subjected to dry treatment such as an electric furnace, and then transferred into crude lead. Crude lead is electrolytically purified in, for example, a hydrofluoric acid bath, lead is electrodeposited on the cathode, and bismuth becomes anode mud (anode slime). The anode mud is further subjected to a dry treatment to become crude bismuth. This crude bismuth is electrolytically purified in, for example, a silicohydrofluoric acid bath or a chloride bath to produce product bismuth.
[0005]
In the recovery of the product bismuth, as described above, in many cases, a dry process is performed, and this dry process uses lead, which is not preferable in the work environment. For this reason, development of the recovery method of bismuth which does not perform a dry process is desired. In addition, bismuth often behaves together with lead, copper, or arsenic and antimony, and separation from these components is also an issue.
[0006]
[Problems to be solved by the invention]
The present invention provides a bismuth recovery method by a wet method that solves the above-mentioned problems.
[0007]
[Means for Solving the Problems]
As a result of investigating various bismuth recovery methods, the present inventors, as a bismuth recovery method,
(1) A method for recovering bismuth produced by non-ferrous smelting ash treatment by selectively adsorbing bismuth in an acidic aqueous solution of hydrochloric acid to an MRT resin having a coordination bond at BV (bed volume) = 0.1-4 .
(2) A method for recovering bismuth sulfate in which the adsorbed bismuth in (1) is BV = 0.5 or more and less than 1.5 and is eluted with a sulfuric acid solution.
(3) The method according to (1) or (2) above, wherein the aqueous solution containing bismuth is an intermediate treatment product of a copper and lead smelting step.
(4) The method according to (3) above, wherein the bismuth eluent is 8 mol / L or more of sulfuric acid, and the liquid temperature at the time of elution is 40 ° C. or more.
(5) After cooling the eluent having a high bismuth concentration of BV = 0.5 or more and less than 1.5 to crystallize and recover bismuth sulfate, the liquid is used again as the eluent. The method described.
Is to provide.
[Action]
The configuration of the present invention will be described in detail below. Although the configuration has been described with an example, the present invention is not limited to this example.
[0008]
Bismuth is contained in ores such as lead, copper, tin, silver, and gold, and is produced as a smelting byproduct of these non-ferrous metals. Bismuth is often produced along with copper and lead ore, and remains in the crude metal by dry smelting. For example, bismuth remaining in the crude copper is concentrated in the electrolytic solution together with other impurities in the copper electrolytic purification process.
On the other hand, most of bismuth is volatilized by high heat in a copper smelting dry process and is collected as smoky ash together with lead, arsenic, antimony, etc., and then sent to the lead smelting process. In the lead smelting process, a dry process such as an electric furnace is performed to transfer bismuth into crude lead. Crude lead is electrolytically purified in, for example, a hydrofluoric acid bath, lead is electrodeposited on the cathode, and bismuth becomes anode mud (anode slime).
The anode mud is further subjected to a dry treatment to become crude bismuth. This crude bismuth is electrolytically purified in, for example, a silicohydrofluoric acid bath or a chloride bath to produce product bismuth.
In the recovery of the product bismuth, as described above, in many cases, a dry process is performed, and this dry process uses lead, which is not preferable in the work environment. For this reason, various wet processing methods have been proposed.
[0009]
For example, as disclosed in JP-A-2000-109939, as a non-ferrous smelting process intermediate containing bismuth, there is a hydrochloric acid acidic bismuth salt aqueous solution obtained by subjecting smoke ash to various wet treatments. Bismuth is concentrated in this acidic bismuth hydrochloric acid salt aqueous solution, which is suitable as a raw material for bismuth recovery.
[0010]
On the other hand, metal bismuth, bismuth oxychloride, bismuth sulfate, etc. are mentioned as the bismuth form recovered. As a result of various studies, the present inventors have found that high-purity bismuth sulfate can be obtained by applying a resin method to an acidic bismuth hydrochloride aqueous solution.
[0011]
That is, a resin having a coordination bond is brought into contact with the bismuth-containing liquid, bismuth is selectively adsorbed on the resin, and then eluted with sulfuric acid to obtain high-purity bismuth sulfate.
The present inventors have found that the following MRT is effective as one embodiment of a resin having a coordinate bond. A coordinate bond is a kind of covalent bond, and bonds when a non-bonded electron pair of one atom is donated to a partner atom and shared. An example of this coordination bond is crown ether.
[0012]
As the resin, an ion exchange resin or the like can be applied, but it is a resin disclosed in Japanese Patent No. 2984683 (registration date; October 1, 1999) and has a higher selectivity for bismuth (the present invention). person, first found was.) is US IBC's products MRT (M olecular R ecognition T echnology , molecular recognition technology) resin is preferred. An example of the structure is shown below. The feature is that the underlined portion in the following formula is crown ether, and this crown ether and cation are coordinated. Depending on the size of the crown ether, that is, the size of the ring, cation selectivity can be achieved.
Matrix-O-SiYZ- ( CH2 ) a ( OCH2R1CHCH2 ) b ( BCHR2CH2 ) c ( DCHR3CH2 ) dE
B and D: Selected from, for example, O, OCH2, S, etc. E: Selected from, for example, lower alkyl, SH, OH, etc. R1: Selected from, for example, H, SH, OH, etc. R2: Selected from, for example, H and lower alkyl, etc. R3: For example, H Selected from lower alkyl, aryl, etc. Y and Z: selected from Cl, OCH3, OC2H5, etc. a: 2 to 10
b: 0 or 1
c: 1 to 2000
d: 0 to 2000
Matrix: Select from sand, silica gel, glass, alumina, etc.
Table 4 shows the BV values of the resin having a coordinate bond and the treatment liquid (bed volume, a value obtained by dividing the liquid flow rate by the resin volume, that is, an index indicating how many times the liquid volume passed through the resin volume). Thus, 0.1-8 is desirable. This is because Bi is adsorbed and Cu, Pb and As which are impurities are hardly adsorbed.
The MRT resin is allowed to act (adsorb) at room temperature with an acidic aqueous bismuth hydrochloride solution as a raw material. Since the solubility of bismuth under acidic hydrochloric acid is sufficient even at room temperature, it is not economically preferable to raise the adsorbed solution temperature. A general value in the column method, that is, a space velocity (space velocity) of 5 to 20 (1 / hr) is sufficient for the liquid passing speed of the adsorption operation. If the SV is increased too much, the flow rate exceeds the bismuth adsorption rate, so that bismuth is not sufficiently adsorbed and flows out of the column. Components other than bismuth, such as copper, arsenic, and lead, are not adsorbed, so that bismuth can be selectively concentrated.
[0014]
As shown in Table 5, the BV value of the resin and the eluent after adsorption in the elution step is desirably 0.5 or more and less than 1.5. This is because bismuth can be suitably recovered from the resin.
As shown in Table 2, the temperature of the elution operation is preferably 40 ° C. or higher, and the concentration of sulfuric acid as the eluent is preferably 8 mol / L or higher as shown in Table 1. A decrease in liquid temperature and a decrease in sulfuric acid concentration lead to a decrease in the solubility of bismuth sulfate. As the flow rate, a general value in the column method, that is, SV (space velocity) 0.5 to 10 (1 / hr) is sufficient. If the SV is too large, the flow rate exceeds the bismuth elution rate, so that bismuth is not sufficiently eluted and remains in the column, and the bismuth concentration in the eluent cannot be increased.
[0015]
[Table 1]
Figure 0004059677
[0016]
[Table 2]
Figure 0004059677
[0017]
When the eluted bismuth sulfate is cooled, white crystals of bismuth sulfate are crystallized. The temperature during cooling is preferably 20 ° C. or lower. The solubility of bismuth sulfate in the aqueous sulfuric acid solution decreases as the temperature decreases. The eluent after the bismuth has been crystallized and recovered can be repeated as the eluent again.
[0018]
The crystallized bismuth sulfate is solid-liquid separated and then washed with sulfuric acid in order to wash away the adhering liquid. When washed with water, bismuth sulfate is eluted due to solubility. The washed bismuth sulfate is vacuum-dried because sulfuric acid, which is a washing solution, is attached.
[0019]
The purity of the bismuth sulfate thus obtained was 99.99% or higher. The present invention directly obtains high-purity bismuth sulfate which has a small number of steps and is a product.
[0020]
As explained above, a simple bismuth sulfate recovery method was established.
【Example】
[0021]
Examples of the present invention will be described below. In addition, this invention is not restrict | limited to an Example.
[0022]
Table 3 shows the composition of the acidic bismuth hydrochloric acid aqueous solution that is a non-ferrous smelting intermediate.
[0023]
[Table 3]
Figure 0004059677
[0024]
The column was filled with 30 g of MRT resin (trade name: SuperLig # 83), and an aqueous solution of acidic bismuth hydrochloride was passed through the column in a downward flow. SV was 10 (1 / hr). Table 4 shows the transition of the liquid concentration during the adsorption operation. Regarding bismuth, the bismuth concentration is 0.07 to 0.08 in the column effluent (liquid after treatment) BV = 0.1 to 8 shown in Table 4 with respect to the bismuth concentration of 4.9 g / L in the treatment target liquid of Table 3. Reduced to 3.68 g / L,
Furthermore, Cu, As, and Pb are Cu 0.97 g / L, As 1.34 g / L, and Pb 0.63 g / L in the liquid to be processed shown in Table 3. In Table 4, when BV = 4, Cu 1.06 , As 1.33 and Pb 0.64, the concentration is almost the same, indicating that only bismuth is selectively adsorbed.
[0025]
[Table 4]
Figure 0004059677
[0026]
The resin selectively adsorbed with bismuth was extruded and washed with 0.5 mol / L hydrochloric acid and 1 mol / L sulfuric acid, and then 9 mol / L sulfuric acid as an eluent was allowed to act at 60 ° C. under SV2. The concentration transition in the eluent is shown in Table 5.
[0027]
[Table 5]
Figure 0004059677
[0028]
As a result of cooling the eluent of BV = 0.5 to 1 to 20 ° C., 2.74 g of bismuth sulfate white crystals were obtained. At this time, the concentration of bismuth in the solution after precipitation was 2.41 g / L. The crystals were washed with 9 mol / L sulfuric acid, and then vacuum-dried under conditions of 25 ° C., 10 mmHg, and 12 hours, and component analysis was performed. The results are shown in Table 6.
[0029]
[Table 6]
Figure 0004059677
[0030]
As shown in Table 6, extremely high purity bismuth sulfate was obtained.
[Comparative example]
[0031]
30 g of chelate resin (MX-2, Miyoshi oil and fat) was packed in the column in the same manner as in the Examples, and the test solution was passed through. Table 7 shows the concentration transition in the liquid after adsorption.
Compared with Table 4 of the examples, bismuth is adsorbed, but other copper, arsenic, and lead are Cu = 1.06 g / L, As1.33 g / L, Pb at BV = 4 in the examples. = 0.64 g / L, but in this comparative example, Cu = 0.68 g / L, As = 0.87 g / L, Pb = 0.26 g / L, and in the post-treatment liquid It can be confirmed that the concentration of is decreased and adsorbed. Therefore, it can be seen that the selective separation of bismuth is inferior to that of MRT resin.
[0032]
[Table 7]
Figure 0004059677
[0033]
【The invention's effect】
As described above, the present invention makes it possible to recover high-purity bismuth and high-purity bismuth sulfate by a simple method.
[Brief description of the drawings]
FIG. 1 shows one embodiment of a processing flow of the present invention.

Claims (5)

非鉄製錬の煙灰処理において産出する、塩酸酸性の水溶液中のビスマスを配位結合有するMRT樹脂に、BV(ベッドボリューム)=0.1〜4において選択吸着させることを特徴とするビスマスの回収方法。Bismuth produced in non-ferrous smelting ash treatment is selectively adsorbed to MRT resin having a coordination bond at a BV (bed volume) of 0.1 to 4 in an acidic aqueous solution of hydrochloric acid. Collection method. 請求項1において、吸着したビスマスをBV=0.5以上1.5未満として、硫酸溶液にて溶離することを特徴とする硫酸ビスマスの回収方法。The method for recovering bismuth sulfate according to claim 1, wherein the adsorbed bismuth is set to BV = 0.5 or more and less than 1.5 and is eluted with a sulfuric acid solution. ビスマスを含む水溶液が、銅及び鉛製錬工程の中間処理物であることを特徴とする請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the aqueous solution containing bismuth is an intermediate treatment product of a copper and lead smelting step. ビスマス溶離液が、8モル/L以上の硫酸であり、かつ溶離時の液温が40℃以上であることを特徴とする請求項3に記載の方法。The method according to claim 3, wherein the bismuth eluent is 8 mol / L or more of sulfuric acid, and the temperature of the liquid at the time of elution is 40 ° C or more. ビスマス濃度の高い液であるBV=0.5以上1.5未満の溶離液を冷却し、硫酸ビスマスを晶析回収した後、該液を再び溶離液として使用することを特徴とする請求項3に記載の方法。4. A liquid having a high bismuth concentration of BV = 0.5 or more and less than 1.5 is cooled, and after bismuth sulfate is crystallized and recovered, the liquid is used again as an eluent. The method described in 1.
JP2002015029A 2002-01-24 2002-01-24 Bismuth recovery method and bismuth sulfate recovery method Expired - Fee Related JP4059677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015029A JP4059677B2 (en) 2002-01-24 2002-01-24 Bismuth recovery method and bismuth sulfate recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015029A JP4059677B2 (en) 2002-01-24 2002-01-24 Bismuth recovery method and bismuth sulfate recovery method

Publications (2)

Publication Number Publication Date
JP2003213350A JP2003213350A (en) 2003-07-30
JP4059677B2 true JP4059677B2 (en) 2008-03-12

Family

ID=27651544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015029A Expired - Fee Related JP4059677B2 (en) 2002-01-24 2002-01-24 Bismuth recovery method and bismuth sulfate recovery method

Country Status (1)

Country Link
JP (1) JP4059677B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013699B1 (en) 2008-09-30 2011-02-10 엘에스니꼬동제련 주식회사 Bismuth resin column of a molecular recognition technology system
JP5403224B2 (en) * 2009-02-27 2014-01-29 三菱マテリアル株式会社 How to recover bismuth
JP5120663B2 (en) * 2009-06-23 2013-01-16 住友金属鉱山株式会社 Method for producing bismuth oxide powder
JP2014029033A (en) * 2013-09-24 2014-02-13 Pan Pacific Copper Co Ltd Treatment method of dust contained in exhaust gas of flash furnace
CN118028615B (en) * 2024-04-12 2024-07-09 栾川县亨凯冶金材料销售有限公司 Bismuth removing agent for lead smelting, preparation method of bismuth removing agent and bismuth removing method

Also Published As

Publication number Publication date
JP2003213350A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
TWI428451B (en) Valuable metal recovery method from lead-free waste solder
CN101514396A (en) Method for separating tin and stibium from tin-lead anode slime
JP5589854B2 (en) How to recover bismuth
JP4059677B2 (en) Bismuth recovery method and bismuth sulfate recovery method
JP2005054211A (en) Method for recovering rubidium from dust
JP5403224B2 (en) How to recover bismuth
JPH09316561A (en) Recovering method of gold
JP2005523992A (en) Gold collection method
JPH09316560A (en) Recovering method of platinum
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP3975901B2 (en) Iridium separation and purification method
CN109402402B (en) Method for recovering gold and silver from gold-silver-copper alloy waste
JP5042090B2 (en) Method for producing high purity zinc oxide powder
JP2012246197A (en) Method for purifying selenium by wet process
JP3548097B2 (en) Separation and recovery method of bismuth and copper etc. from treatment object containing cuprous oxide and bismuth
RU2421529C1 (en) Procedure for production of refined silver
JP7486021B2 (en) Method for producing cadmium hydroxide
JPH0781172B2 (en) Silver refining ore mud purification method
JP4506660B2 (en) Silver recovery method in wet copper smelting process
JP4358594B2 (en) Collection method of valuable materials
JPS6389635A (en) Method for separating and recovering in
JP4274039B2 (en) Method for producing high purity gallium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees