JP4058381B2 - Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure - Google Patents

Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure Download PDF

Info

Publication number
JP4058381B2
JP4058381B2 JP2003153190A JP2003153190A JP4058381B2 JP 4058381 B2 JP4058381 B2 JP 4058381B2 JP 2003153190 A JP2003153190 A JP 2003153190A JP 2003153190 A JP2003153190 A JP 2003153190A JP 4058381 B2 JP4058381 B2 JP 4058381B2
Authority
JP
Japan
Prior art keywords
dielectric
waveguide
line
conductor
dielectric waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003153190A
Other languages
Japanese (ja)
Other versions
JP2004357042A (en
Inventor
直行 志野
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003153190A priority Critical patent/JP4058381B2/en
Publication of JP2004357042A publication Critical patent/JP2004357042A/en
Application granted granted Critical
Publication of JP4058381B2 publication Critical patent/JP4058381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はマイクロ波帯やミリ波帯等の高周波信号を伝達するための誘電体導波管線路と導波管との接続構造に関し、特に高周波信号の伝送方向がほぼ直交する場合に、信頼性が高く、低損失に接続することができる誘電体導波管線路と導波管との接続構造に関するものである。
【0002】
【従来の技術】
近年、マイクロ波帯やミリ波帯等の高周波信号を用いた移動体通信及び車間レーダ等の研究が盛んに進められている。これらの通信を扱う高周波回路において、高周波信号を伝送するための伝送線路には小型で伝送損失が小さいことが求められている。特に、伝送線路を、高周波回路を構成する基板上または基板内に形成できると小型化の面で有利となることから、従来、そのような伝送線路として、ストリップ線路やマイクロストリップ線路、コプレーナ線路、誘電体導波管線路等が用いられてきた。
【0003】
これらのうちストリップ線路・マイクロストリップ線路・コプレーナ線路は誘電体基板と線路導体層とグランド(接地)導体層とで構成されており、線路導体層とグランド導体層の周囲の空間又は誘電体基板中を高周波信号の電磁波が伝搬するものである。これらの線路は30GHz帯域までの信号伝送に対しては良好に伝送できるが、30GHz以上では伝送損失が生じやすいという問題点がある。
これに対して導波管型の伝送線路は30GHz以上のミリ波帯域においても伝送損失が小さい点で有利である。
【0004】
このうち方形導波管は、断面が方形の金属壁で囲まれた空気中を電磁波が伝搬する構造となっており、誘電体による損失がないため30GHz以上のミリ波帯域においても伝送損失が非常に小さいものである。
しかし、線路断面の長手方向の長さを、伝搬する信号波長の2分の1以上とする必要があるため、寸法が大きく高密度での配線が困難であるという問題点がある。また、金属壁で構成されるため、高精度な加工が困難であり加工コストが高いという問題点もある。
【0005】
これに対し、導波管の優れた伝送特性を活かした、誘電体多層基板内に形成可能な伝送線路である誘電体導波管線路は、導体壁あるいは擬似的な導体壁で囲まれた領域の内部に誘電体が満たされた構造となっているため、誘電体による伝送損失があるものの、損失の小さい誘電体を用いれば伝送損失を実用上問題ない程度に小さくすることができる。方形導波管と同じ周波数範囲で信号を伝搬させようとすると、誘電体の比誘電率をεとしたときに線路の断面のサイズを1/√εと小型にできるメリットがある。
【0006】
例えば、特開平6-53711号公報において、誘電体基板を一対の主導体層で挟み、さらに主導体層間を接続する2列に配設された複数のビアホールによって側壁を形成した誘電体導波管線路が提案されている。この誘電体導波管線路は誘電体材料の四方を一対の主導体層とビアホールによる疑似的な導体壁で囲むことによって導体壁内の領域を信号伝送用の線路としたものである。このような構成によれば、構成がいたって簡単となって装置全体の小型化も図ることができる。
【0007】
さらに、特開平10-75108号公報において、誘電体基板中に形成した多層構造による誘電体導波管線路が提案されている。これは積層型導波管と呼ばれるものであり、前述のような誘電体導波管線路を、誘電体層と一対の主導体層と貫通導体群とで形成し、さらに貫通導体群に加えて副導体層を形成することにより、電気的な壁としての側壁を強化したものである。前述の誘電体導波管線路では導波管内に貫通導体に平行でない電界が存在すると側壁から電界の漏れが発生するおそれがあるが、この積層型導波管では副導体層があるためにこのような電界の漏れが発生しにくい、優れたものとなる。
【0008】
【特許文献1】
特開平6-53711号公報
【特許文献2】
特開平10-75108号公報
【特許文献3】
特開2000-196301号公報
【0009】
【発明が解決しようとする課題】
しかしながら、誘電体導波管線路を用いて構成された高周波回路について、例えば高周波特性を測定・評価するためにネットワークアナライザ等の測定装置へ接続するためには、誘電体導波管線路を直接接続することが困難であり、方形導波管を介すると容易に接続することができてより正確な測定が可能になる。
また、MMIC(マイクロ波モノリシック集積回路)等の能動回路に誘電体導波管線路を接続する場合にも、方形導波管を介することによって接続が容易となり、回路全体の小型化が可能となる。
【0010】
そのため、良好な伝送特性を有する、方形導波管と誘電体導波管線路との接続構造が求められていた。
これを解決する手法として特開2000-196301号において方形導波管と誘電体導波管線路との接続構造が提案されているが、その構造では導体が表層に露出しており表層導体の腐食や貫通導体の腐食、及び貫通導体を介した内層導体の腐食など信頼性上問題がある。また表層導体部の信頼性向上のために金メッキを行うことがあったが、それは高価でありコスト上昇の大きな要因となっていた。
【0011】
本発明の目的は、接続部での信頼性を向上させ、かつ製造コストが低く、そして高周波信号の反射を低減して、低損失で接続することができる誘電体導波管線路と導波管との接続構造を提供することにある。
【0012】
【課題を解決するための手段】
本発明の誘電体導波管線路と導波管との接続構造は、誘電体基板と、誘電体基板の両面に形成された一対の導体層と、高周波信号の伝送方向に所定の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で、前記導体層間を電気的に接続して形成された2列の貫通導体群とを具備する誘電体導波管線路を設け、前記一対の導体層のうち、前記誘電体導波管線路の終端面の近くの一方の導体層に前記2列の貫通導体群の幅よりも狭い幅の結合用窓を設け、この結合用窓及びその周囲の前記一方の導体層を前記導波管の開口端面より広い範囲で前記高周波信号の半波長以下の厚みの誘電体層で覆い、この誘電体層を介して、前記2列の貫通導体群の幅よりも広い幅の前記開口端面を対向させて前記導波管を接続しているものである。
【0013】
この誘電体導波管線路は、前記一対の導体層及び前記貫通導体群で囲まれた伝送領域によって高周波信号を伝送するが、誘電体導波管線路の終端部に、本発明の接続構造を形成することにより、誘電体導波管線路の終端面の近くの一方の導体層に設けられた誘電体導波管線路の幅よりも狭い幅の結合用窓と、この結合用窓及びその周囲の一方の導体層を導波管の開口端面より広い範囲で覆う高周波信号の半波長以下の厚みの誘電体層とを介して、誘電体導波管線路の幅よりも広い幅の開口端面を対向させた導波管に高周波信号を受け渡しすることができる。このような簡単な接続構造によって、高周波信号の結合効率に優れた、信頼性の高い、しかも製造コストの低い誘電体導波管線路と導波管との接続を実現することができる。
【0014】
また、前記誘電体導波管線路に、前記貫通導体と前記一対の導体層からなる共振器を作製し、該共振器の一方の導体層に前記結合用窓が形成されている構造を用いることにより、接続部における高周波伝送特性の向上を図ることができる。
またさらに、前記誘電体導波管線路に、高周波信号の伝送時の反射を低減する電磁界整合部を含むこととすれば、接続部における高周波伝送特性のさらなる向上を図ることができる。
【0015】
電磁界整合部の具体的な形状として、誘電体導波管線路の断面の高さが異なる構造、誘電体導波管線路の断面の幅が異なる構造、誘電体導波管線路とは異なる誘電率材料を含む構造、又は誘電体導波管線路内にピン導体を配置した構造があげられる。いずれかの構造又はこれらの2種以上を組み合わせた構造を設けることにより、接続部における反射を抑制し、他の回路や素子への悪影響を低減し、さらに高周波特性を向上できる。
【0016】
なお、前記誘電体基板は、低温焼成セラミックスとすることによって、低抵抗の金属を用いて各種導体層を形成することができるために、高周波信号の伝送に対して低損失にでき、好適である。
前記導波管はどのような構造の導波管であっても、本発明は適用できるが、例えば方形導波管であってもよい。
前記誘電体導波管線路と導波管との高周波信号の伝送方向は、任意の角度で交差させることができるが、この角度は例えばほぼ90°としてもよい。
【0017】
また本発明のアンテナ基板は、アンテナ基板に、前記誘電体導波管線路を設け、誘電体導波管線路の上下に形成された一対の導体層のうち、一方の導体層に結合用窓を設け、この結合用窓に、誘電体層を介して、高周波信号の伝送方向が異なるように開口端面を対向させた給電用導波管を接続しているものである。
また、本発明のフィルター基板は、フィルター基板に、前記誘電体導波管線路を設け、誘電体導波管線路の上下に形成された一対の導体層のうち、一方の導体層に結合用窓を設け、この結合用窓に、誘電体層を介して、高周波信号の伝送方向が異なるように開口端面を対向させた給電用導波管を接続しているものである。
【0018】
【発明の実施の形態】
以下、本発明の誘電体導波管線路と導波管との接続構造について図面を参照しながら説明する。
図1は本発明に用いる誘電体導波管線路の構造例を説明するための概略斜視図である。
図1において、1は高周波信号の伝送方向Aに延びる所定の厚みaを有する誘電体基板である。2及び3は、誘電体基板1の上下面に形成された一対の導体層であり、4は誘電体基板1の中に形成され、高周波信号の伝送方向Aに沿って配列された2列の貫通導体群である。
【0019】
貫通導体群4は、一対の導体層2,3間を電気的に接続するものであり、1本1本の貫通導体は、スルーホール導体やビアホール導体等により形成される。これら多数の貫通導体により2列の貫通導体群4を形成している。貫通導体群4は、図示するように、高周波信号の伝送方向Aすなわち線路形成方向に信号波長の2分の1未満の所定の繰り返し間隔cで、かつ同伝送方向Aと直交する方向に所定の一定の間隔(幅)bをもって形成されている。これにより、この誘電体導波管線路6に対する電気的な側壁を形成している。
【0020】
これら、一対の導体層2,3、及び貫通導体群4によって、誘電体基板1の一部に高さa、幅bを有する誘電体導波管線路6が形成される。
また、5は貫通導体群4の各列を形成する貫通導体同士を電気的に接続するため、誘電体基板1の中に導体層2,3と平行に形成された補助導体層であり、必要に応じて適宜設けられる。なお、補助導体層5を設ける場合は、例えば誘電体基板1をそれぞれ半分の厚さの2枚の誘電体基板で構成し、それらの誘電体基板の間に、かつ誘電体導波管線路6の非形成部分に金属層を形成して両者を貼り合わせることにより、補助導体層5を形成することができる。
【0021】
このように上下壁が一対の導体層2,3によって構成され、側壁が貫通導体群4によって構成された構造の誘電体導波管線路6により、様々な方向の電磁波が遮蔽される。さらに補助導体層5を形成していれば、その側壁は補助導体層5によってさらに細かな格子状に区切られて、電磁波の遮蔽効果は増大する。
【0022】
なお、前記導体層2,3は、図1に示したように誘電体基板1の上下全面にわたって形成されているが、必ずしも誘電体基板1の上下全面にわたって形成されている必要はなく、少なくとも誘電体導波管線路6の形成部を挟む上下面に形成されていればよい。
なお、図示していないが、誘電体導波管線路6の終端面には、側壁と同様の貫通導体群4が終端面を形成するように同じピッチcで配列されている。これによって、誘電体導波管線路6の終端面が電気的に閉じられた構造を作ることができる。
【0023】
誘電体基板1の厚みa、すなわち一対の導体層2,3間の間隔に対する制限は特にないが、厚みaは、誘電体導波管線路6をシングルモードで用いる場合には間隔bに対して2分の1程度または2倍程度とすることがよい。図1の例では間隔bに対して厚みaが2分の1程度となっており、誘電体導波管線路6のH面に当たる部分が導体層2,3で、E面に当たる部分が貫通導体群4及び補助導体層5でそれぞれ形成される。また、間隔bに対して厚みaを2倍程度とすれば、誘電体導波管線路6のE面に当たる部分が導体層2,3で、H面に当たる部分が貫通導体群4及び補助導体層5でそれぞれ形成されることになる。
【0024】
また、貫通導体群4の各列における貫通導体の間隔cは、信号波長の2分の1未満の間隔に設定されることで貫通導体群4により電気的な壁が形成できる。この間隔cは、望ましくは信号波長の4分の1未満であればよい。
間隔cが信号波長λの2分の1(λ/2)よりも大きいと、平行に配置された一対の導体層2,3間にはTEM波が伝搬できるため、この誘電体導波管線路6に電磁波を給電しても電磁波は貫通導体群4の間から漏れてしまう。貫通導体群4の間隔cがλ/2よりも小さければ、電気的な側壁を形成することができ、電磁波は誘電体導波管線路6に対して垂直方向に漏洩することがなく、反射しながら誘電体導波管線路6の信号伝送方向に伝搬される。
【0025】
その結果、図1のような構成によれば、一対の導体層2,3と2列の貫通導体群4及び補助導体層5とによって囲まれる断面積a×bのサイズの誘電体領域が誘電体導波管線路6を規定する。
なお、図1に示した態様では貫通導体群4は2列に形成したが、この貫通導体群4を4列あるいは6列に配設して、貫通導体群4による導体壁を2重・3重に形成することにより導体壁からの電磁波の漏れをより効果的に防止することもできる。
【0026】
このような誘電体導波管線路6は、誘電体による伝送線路となるので、誘電体基板1の比誘電率をεとすると、その導波管サイズは通常の導波管の1/√εの大きさになる。従って、誘電体基板1を構成する材料の比誘電率εを大きいものとするほど、導波管サイズを小さくすることができて、高周波回路の小型化を図ることができる。したがって、高密度に配線が形成される多層配線基板、半導体素子収納用パッケージ又は車間レーダの伝送線路としても好適に利用できる。
【0027】
なお、貫通導体群4を構成する貫通導体は、前述のように信号波長の2分の1未満の繰り返し間隔cで配設されており、この間隔cは良好な伝送特性を実現するためには一定の繰り返し間隔とすることが望ましいが、信号波長の2分の1未満の間隔であれば、適宜変化させたりいくつかの値を組み合わせたりしてもよい。
このような誘電体導波管線路6を構成する誘電体基板1の材質は、誘電体として機能し高周波信号の伝送を妨げることのない特性を有するものであればとりわけ限定されるものではないが、伝送線路を形成する際の精度及び製造の容易性の点からは、誘電体基板1はセラミックスから成ることが望ましい。
【0028】
このようなセラミックスとしては、これまで様々な比誘電率を持つセラミックスが知られているが、本発明に係る誘電体導波管線路によって高周波信号を伝送するためには、常誘電体であることが望ましい。これは、一般に強誘電体セラミックスは高周波領域では誘電損失が大きく、したがって導波管線路の伝送損失が大きくなるためである。
誘電体基板1を構成する常誘電体の比誘電率εは4〜100程度が適当である。
【0029】
一般に多層配線基板や半導体素子収納用パッケージ、あるいは車間レーダに形成される配線層の線幅は最大でも1mm程度である。このことから、誘電体導波管線路6の幅bを1mmとし、比誘電率ε100の常誘電体を用い、上部がH面、すなわち磁界が上側の面に平行に巻く電磁界分布になるように用いた場合は、使用することのできる最小の周波数は15GHzと算出される。したがって、マイクロ波帯の領域で十分利用可能となる。
【0030】
一方、誘電体基板として一般的に用いられる樹脂からなる誘電体は、比誘電率εが2程度であるため、線幅が1mmの場合は約100GHz以上でないと利用することができないものとなる。
また、全ての常誘電体セラミックスが利用可能であるわけではない。誘電体導波管線路の場合は導体による損失はほとんどなく、信号伝送時の損失のほとんどは誘電体による損失で決まる。その誘電体による損失α(dB/m)は次のように表わされる。
【0031】
α=27.3×tanδ/〔λ/{1−(λ/λ1/2〕 (1)
式(1)中、tanδは誘電体の誘電正接、λは誘電体中の波長、λは遮断波長である。規格化された矩形導波管(WRJシリーズ)形状に準ずると、上式中の{1−(λ/λ1/2は0.75程度である。
従って、実用に供し得る伝送損失である−100dB/m又はそれ以下を実現するには、次の関係が成立するように誘電体を選択することが必要である。
【0032】
f×√ε×tanδ≦0.8 (2)
式(2)中、fは使用する高周波信号の周波数(GHz)である。
例えば、使用する高周波信号の周波数を10〜100GHzとした場合、前記の不等式を満たす常誘電体材料としては、アルミナセラミックスや窒化アルミニウムセラミックス、ガラスセラミックスなどの低温焼成セラミックス(後述)から選ばれる少なくとも1種であることが望ましい。
【0033】
次に、このような誘電体導波管線路を用いた、本発明の誘電体導波管線路と導波管との接続構造の形態例を図2及び図3に示す。
図2は、誘電体導波管線路6の上下一対の導体層2,3のうち、上側に位置する導体層2の上に、高周波信号の伝送方向が直交するように、内部が中空の金属壁で構成された方形導波管8の開口端面9を、誘電体層16を介して当接させた接続構造を示す分解斜視図である。また図3(a)は、同接続構造を示す側断面図である。
【0034】
表示を簡単にするために誘電体導波管線路6は、上下一対の導体層2,3及び貫通導体群4から構成される輪郭で表示し、この輪郭外部に存在する誘電体基板1の図示は省略している。なお誘電体導波管線路6の終端面も、前述したように貫通導体群4が配置されているが、これも輪郭で表示している。
この例では、誘電体導波管線路6において導体層2,3がH面となり、貫通導体群4による疑似的な導体壁がE面となる。
【0035】
誘電体導波管線路6の終端面の近くの導体層2には、高周波信号の結合用の開口として設けた、導体層2が存在しない結合用窓7がある。方形導波管8は、図3に示すように、誘電体層16を介して導体層2に間接的に当接されている。両者は電気的に導通している必要はない。また図3からわかるように、接続部構造の表層部分は誘電体層16に覆われているために導体層2が露出しておらず、導体層2の腐食が発生しない構造となっている。またメッキの必要性も無いことからコスト低減が可能となっている。
【0036】
方形導波管8より電磁波が入射した時を考える。シングルモードの場合、図3(b)に示すように、方形導波管8内では、電界は断面の短手方向に平行なベクトルV1を有するが、それが結合用窓7を介し誘電体導波管線路6内に入射した後は、誘電体導波管線路6の短手方向に平行なベクトルV2に方向変換される。その際、誘電体層16の厚みtが伝送信号の半波長よりも大きい場合は、誘電体層16内を横方向に伝送可能なモドが発生することとなり、その結果、誘電体層16の側面から信号が漏洩しやすくなる。これに対して、誘電体層16の厚みtを伝送信号の半波長以下、望ましくは4分の1波長以下とすることにより、前記モードの発生を抑制することができ、誘電体層16の側面から電磁波が漏洩するのを防止することができる。
【0037】
本発明の誘電体導波管線路6と方形導波管8との接続構造における結合用窓7の位置・形状及び大きさについては、接続構造に要求される周波数特性、結合量及び反射量が複雑に関与する。このため、要求される周波数特性を満足するように電磁界解析により繰り返し計算することによって、所望の接続特性を有する結合用窓7の位置、形状及び大きさ等が決定されることとなる。
これらの材料により誘電体基板1、誘電体層16を形成するには、例えば前述した常誘電体材料のセラミックス原料粉末に適当な有機溶剤・溶媒を添加混合して泥漿状になすとともに、これを従来周知のドクターブレード法やカレンダーロール法等を採用してシート状となすことによって複数枚のセラミックグリーンシートを得る。しかる後、これらセラミックグリーンシートの各々に適当な打ち抜き加工を施すとともにこれらを積層し、アルミナセラミックスの場合は1300〜1700℃、低温焼成セラミックスの場合は850〜1050℃、窒化アルミニウムセラミックスの場合は1500〜1900℃の温度で焼成することによって、誘電体基板1や誘電体層16を製作する。
【0038】
また、一対の導体層2,3は、例えば誘電体基板1や誘電体層16がアルミナセラミックスから成る場合には、タングステン等の金属粉末に適当なアルミナ、シリカ、マグネシア等の酸化物や有機溶剤・溶媒等を添加混合してペースト状にしたものを用いて厚膜印刷法により、少なくとも伝送線路部分を完全に覆うようにセラミックグリーンシート上に印刷する。しかる後、グリーンシートとともに約1600℃の高温で焼成して形成する。なお、金属粉末としては、低温焼成セラミックスの場合は銅、金、銀が、窒化アルミニウムセラミックスの場合はタングステン、モリブデンが好適である。また、導体層2,3の厚みは5〜50μm程度とする。
【0039】
また、貫通導体群4を構成する貫通導体は、例えばビアホール導体やスルーホール導体等により形成すればよい。その断面形状は製作が容易な円形の他、矩形や菱形等の多角形であってもよい。これら貫通導体は、例えばセラミックグリーンシートに打ち抜き加工を施して作製した貫通孔に導体層2,3と同様の金属ペーストを埋め込み、しかる後、誘電体基板1と同時に焼成して形成する。なお、貫通導体の直径は50〜300μmが適当である。
【0040】
また、上で詳述した本発明の誘電体導波管線路と方形導波管の接続構造によれぱ、特に誘電体基板1、誘電体層16は、低温焼成セラミックスを用いて作製されることが望ましい。低温焼成セラミックスは、焼成温度が低いため、導電率の高い銅、あるいは銀を導体に用いることができる。このため導体損を低減できる利点があり、接続部のメッキが不要なためコストを低減できる。また低温焼成セラミックスは、一般的な有機基板に比べて誘電率を高く調整できるため、構造をコンパクトにできるメリットもある。さらに、信頼性の観点から有機基板と異なり耐水蒸気性が高いため高信頼性が得られる。
【0041】
低温焼成セラミックスとしては、SiO2を必須成分とし、Al23、アルカリ土類酸化物(BaO,CaO,SrO,MgOなど)、アルカリ金属酸化物(Li2O,Na2O,K2Oなど)、Fe23,B23,CuOの群から選ばれる少なくとも一種を組み合わせた酸化物混合系、また、酸化物の混合物を溶融後、急冷して作成されたガラス系、又はこのガラスに、石英(SiO2)、Al23、アルカリ土類酸化物(BaO,CaO,SrO,MgOなど)、アルカリ金属酸化物(Li2O,Na2O,K2Oなど)、Fe23,B23,CuOなどの単独酸化物、又は2種以上の複合酸化物、AlN、窒化珪素、炭化珪素の群から選ばれる少なくとも1種のセラミックフィラーを添加混合した、いわゆるガラスセラミックスなどがあげられる。なお、前記ガラスとしては、焼成後も非晶質のままである非晶質ガラス、または焼成後に結晶化する結晶化ガラスのいずれでもよい。
【0042】
図4は、本発明の誘電体導波管線路と導波管との接続構造の他の形態例を示す分解斜視図である。この例では、誘電体導波管線路6と方形導波管8とを誘電体層16及び誘電体共振器11を介して接合している。
図4において2,3は一対の導体層、4は貫通導体群、6が誘電体導波管線路、11は誘電体共振器である。この例では、誘電体導波管線路6において導体層2,3がH面となり、貫通導体群4による疑似的な導体壁がE面となる。
【0043】
誘電体共振器11は、誘電体基板1において、導体層2,3のそれぞれ延長となる一対の導体層2,3及びそれら一対の導体層2,3を電気的に導通させる貫通導体群4に囲まれて形成されている。
図5は、誘電体共振器11を示す平面図である。誘電体共振器11は、図5に示すように、誘電体導波管線路6の終端部近くで、一定の長さdにわたって貫通導体群4の幅bをb′(b′>b)に広げて配置し、終端を閉じることによって形成することができる。この誘電体共振器11の共振特性は、幅b′及び幅dを調整することによって制御できる。
【0044】
また誘電体共振器11の上側導体層2には、図3と同様、高周波信号の結合用の開口として結合用窓7を設けている。
また、図4に示される番号8は内部が中空の金属壁で構成された方形導波管であり、その開口端面9が誘電体層16を介して、高周波信号の伝送方向が直交するように誘電体共振器11の導体層2に当接させて配置されている。
この接続構造においては、方形導波管8内の導波管断面の短手方向に平行な電界ベクトルから、結合用窓7を介して誘電体導波管線路6内にて誘電体導波管線路6の断面の短手方向に平行な電界ベクトルに方向変換される際、誘電体共振器11で共振が作用し、電界方向が変わることによって乱れた位相が共振器11内で調整され、そろった位相で誘電体導波管線路6へ伝送することができるため、方向変換時の反射が減り、信号透過特性が向上する。
【0045】
この実施形態においても、本発明の誘電体導波管線路6と方形導波管8との接続構造において結合用窓7を形成しているが、この位置、形状及び大きさについては、接続構造に要求される周波数特性、結合量及び反射量が複雑に関与する。このため、要求される周波数特性を満足するように電磁界解析により繰り返し計算することによって、所望の接続特性を有する結合用窓7の位置、形状及び大きさ等が決定されることとなる。
【0046】
さらに、本発明の誘電体導波管線路と導波管との接続構造の他の形態例をいくつか説明する。
本発明の誘電体導波管線路6と方形導波管8との接続構造においては、接続構造で発生した反射が、誘電体導波管線路6の先に接続される回路部分、あるいは方形導波管8の先に接続される回路部分に悪い影響を与える可能性がある。そこで、本接続構造では、誘電体導波管線路6に電磁界整合部を備えている。
【0047】
図6は、誘電体導波管線路6と方形導波管8との他の接続構造を示す斜視図であり、表示を簡単にするため方形導波管8、誘電体層16は省略し、共振器11、誘電体導波管線路6のみを示した。図4と同様の箇所には同じ符号を付してある。
この実施形態によれば、共振器11の後段側に電磁界整合部20が設けられている。誘電体導波管線路6の高さを誘電体導波管線路6の高さから変更した部分(この例では、高さを低くしている。)が、電磁界整合部20に相当する。この電磁界整合部20は、誘電体共振器11からの電磁界をさらに誘電体導波管線路6で伝送する電磁界モードにあわせ、誘電体導波管線路と方形導波管との接続部における反射を低減するために機能する部分である。
【0048】
誘電体導波管線路6の高さの変更は、例えば図1に示した誘電体基板1として、2枚の誘電体基板を用意し、電磁界整合部20以外の部分は2枚の誘電体基板を重ね合わせて構成し、電磁界整合部20の形成部分のみ1枚の誘電体基板で構成することにより、実現することができる。電磁界整合部20の高さは、用いる誘電体基板の厚さを選定することにより、任意に設定することができる。
電磁界整合部の例として、図6に示すような誘電体導波管線路6の高さを変えた構造の他に、図7に示すような誘電体導波管線路6の幅を変えた電磁界整合部21の構造を採用してもよい。図7の例では、電磁界整合部21の幅を誘電体導波管線路6の幅よりも大きくしている。幅の変更は、貫通導体4のスルーホールやビアホールの形成位置を変更することにより、簡単に実現できる。
【0049】
また、図8のように誘電体導波管線路6の一部分22を、誘電体導波管線路6で用いている誘電体とは異なる誘電率をもつ物質で構成してもよい。この構造は、例えば、誘電体基板の電磁界整合部分を除去し、代わりに異なる誘電率の誘電体を接合したり、誘電体基板を形成するセラミックスグリーンシートの電磁界整合部分に所定の孔を設け、その中に異種誘電体ペーストを埋め込み、積層し、同時焼成することによって製造することができる。
【0050】
また、図9のようにピン導体15を誘電体導波管線路6の中に配置した構造の電磁界整合部23を採用しても、電磁界整合効果が得られる。なお、図9でピン導体15の高さは誘電体導波管線路6と同じ高さであってもよいが、必ずしも同じ高さである必要は無く、たとえば誘電体導波管線路6の高さの半分でもよい。半分の高さのピン導体を形成するには、例えば図1に示した誘電体基板1として、2枚の誘電体基板を用意し、そのうち1枚の誘電体基板のみに対してスルーホールやビアホールを形成し、その中に金属ペーストで埋めて、その上から2枚目の誘電体基板を重ね合わせることにより実現することができる。
【0051】
さらに、異なる構造の複数の電磁界整合部を組み合わせた構造も効果があり、例えば図10に示すように、誘電体導波管線路の高さを変えて構成される電磁界整合部20と、ピン導体15をもって構成される電磁界整合部23とを両方有する構造なども、反射防止と高周波特性向上に効果がみられる。
図9、図10に示した誘電体導波管線路6に設けたピン導体15は、信号が誘電体導波管線路6から伝搬してきた場合、方形導波管8との接続構造で発生した反射波を打ち消す働きを担っている。つまり、方形導波管8との接続構造で反射された波と180度位相の異なる反射波をピン導体15で発生させ、反射波を抑える構造となっている。そのため基本的には、ピン導体15は、結合用窓7の中心から1波長内に設ければ機能する。ただし、その箇所から波長の整数倍離れた箇所に設置しても同様の働きが期待でき、必ずしも設置場所を一波長内に特定する必要はない。
【0052】
以上の電磁界整合部20,21,22,23は、放射を伴わない受動素子として機能するため、上記に示した反射低減効果は、電磁波が誘電体導波管線路6から方形導波管8に伝搬するときのみならず、電磁波が方形導波管8から誘電体導波管線路6に伝搬するときも成立する。
次に、本発明の誘電体導波管線路と導波管との接続構造の応用例を説明する。図11は、誘電体導波管線路6をアンテナ基板1a内に内蔵し、方形導波管8からアンテナへの給電を行う場合の、誘電体導波管線路6と方形導波管8の接続構造を示す透視斜視図である。この接続構造により信頼性が高く反射損失の少ないアンテナ基板を作成できる。なお、この図11では誘電体導波管線路6の片側の導体層に切り欠き24aを設けたスロットアンテナ24を示したが、スロットあるいはビア導体を介して給電するパッチアンテナを用いても問題は無く、アンテナ形態には依存しない。
【0053】
また、図12は、フィルター基板1bに本発明の誘電体導波管線路6と方形導波管8の接続構造を適用した例を示す透視斜視図である。この構成においても、本発明の誘電体導波管線路6と方形導波管8の接続構造により、高信頼性が得られフィルター反射損失を低減できる。また接続部のメッキが不要なためコストを低減できる。このとき、フィルター基板1bに形成されるフィルター25の形態は、図12に示した誘電体を用いるものには限らず、ストリップラインなどを用いたフィルターでもよい。
【0054】
【実施例】
図2に示した構成の誘電体導波管線路と導波管との接続構造を作製し、以下のようにして信頼性試験を行った。
信頼性試験は、温度150℃、−65℃の条件で行い150℃と−65℃でそれぞれ30分保持し1000サイクル行った。本発明の誘電体導波管線路と導波管との接続構造を有する誘電体基板と、特開平12-196301号に示された表層導体部を伴う接続構造を有する誘電体基板との外観比較を行ったところ、本発明品では信頼性試験後外観に変化は無かったが、後者の基板ではメタライズ表層部にシミや腐食による変色など外観不良になったものが存在した。これにより、本発明の誘電体導波管線路と導波管との接続構造が信頼性に優れるものであるということがわかる。
【0055】
またさらに本発明品の高周波特性を評価するために、Sパラメータの評価を行った。方形導波管8にはWR−15、つまり高周波信号の伝送方向に垂直な断面の寸法が3.76mm×1.88mmのものを用いた。誘電体導波管線路6を作製するための誘電体基板1には比誘電率εrが4.9の銅導体同時焼成ガラスセラミックスを用い、貫通導体はφ0.2mmのビアで形成した。2列の貫通導体群4の間隔bはビアの中心間距離で3.0mm、一対の導体層2,3の間隔aは0.6mmとした。また、導体層には結合用窓7として1.12mm×1.62mmの開口を設けた。このような誘電体導波管線路6の結合用窓7を覆うように厚み0.1mmの誘電体層16を介して方形導波管8の開口端面9を導体層2に当接させた。
【0056】
この接続構造について、方形導波管8から誘電体導波管線路6へ高周波信号を伝送したときの高周波信号の伝送特性を図13に示す。
図13はSパラメータの周波数特性を示す線図であり、横軸は周波数(GHz)を、縦軸はSパラメータの値(dB)を表わしている。図中の特性曲線は、Sパラメータのうち反射係数(S11)及び透過係数(S21)の周波数特性を示している。破線が反射係数(S11)、実線が透過係数(S21)である。
【0057】
つぎに、方形導波管8を誘電体層16及び共振器11を介して誘電体導波管線路6に接続した図4の構造を製作し、Sパラメータを測定した結果が図14である。共振器11の大きさはそれを形成するビア4の中心間距離で3.4mm×1.59mmとした。Sパラメータの周波数特性を求めたところ、反射係数(S11)が58.7GHz近傍と60.0GHz近傍で極小になり、透過係数(S21)が極大となり、図13に比べて反射が減少し、透過係数(S21)の信号透過特性が向上していることがわかる。
【0058】
またさらに、電磁界整合部として図6に示したような高さの異なる誘電体導波管線路部を設けた場合のSパラメータの周波数特性を図15に示す。電磁波整合部20の長さは1.11mm、電磁波整合部20における上下の導体層の間隔が0.3mm、電磁波整合部20の中心位置は結合用窓中心部から1.545mmである。この電磁波整合部20により、図15にあるように、反射係数(S11)がさらに減少し、信号透過特性が向上していることがわかる。
【0059】
さらに、図10に示したように誘電体導波管線路の高さを変えて構成した電磁界整合部20に、さらにピン導体15で構成した電磁界整合部23を備えた誘電体導波管線路6を作製した。ここでピン導体15の高さは0.3mmであり、高さの異なる電磁界整合部20の端面から1.665mm、貫通導体4から0.365mmの箇所に2本設置した。この場合のSパラメータの周波数特性を図16に示す。この構造は図15に比べてさらに高周波特性が向上していることがわかる。
【0060】
以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を施すことは何ら差し支えない。
【0061】
【発明の効果】
以上のように本発明によれば、誘電体導波管線路の終端面の近くの一方の導体層に設けた誘電体導波管線路の幅よりも狭い幅の結合用窓と、この結合用窓及びその周囲の一方の導体層を導波管の開口端面より広い範囲で覆う高周波信号の半波長以下の厚みの誘電体層を介して高周波信号の伝送方向が異なるように誘電体導波管線路の幅よりも広い幅の開口端面を対向させた導波管を接続することにより、構造が単純で、信頼性が高く製造コストの低い誘電体導波管線路と導波管との接続構造を提供できる。さらに前記誘電体導波管線路に、前記貫通導体と前記一対の導体層を用いた共振器を作製し、該共振器の一方の導体層に前記結合用窓を形成して、この結合用窓に対して高周波信号の伝送方向が所定方向になるように誘電体層を介して導波管の開口端面を接続することにより、反射を低減でき、信号透過特性の優れた接続構造を提供できる。
【0062】
また、前記誘電体導波管線路に、高周波信号の伝送時の反射を低減するための電磁界整合部を形成することにより、信号伝送損失が低減可能となり、高周波伝送特性がさらに向上した接続構造を実現することができる。
また、本発明の誘電体導波管線路と導波管との接続構造をアンテナ基板及びフィルター基板に用いることにより、信頼性が高く、かつ製造コストの低いアンテナ基板及びフィルター基板を提供できる。
【図面の簡単な説明】
【図1】本発明に用いる誘電体導波管線路の内部構造を説明するための概略斜視図である。
【図2】本発明の誘電体導波管線路と導波管との接続構造の一例を示す分解斜視図である。
【図3】同接続構造を示すX−X線側断面図(a)及び電界ベクトルを示す図(b)である。
【図4】本発明の、誘電体共振器が形成された誘電体導波管線路と導波管との接続構造の例を示す分解斜視図である。
【図5】誘電体導波管線路に形成される誘電体共振器を示す平面図である。
【図6】本発明の、誘電体導波管線路の断面の高さを変えた電磁界整合部が形成された誘電体導波管線路と、導波管との接続構造を示す斜視図である。
【図7】本発明の、誘電体導波管線路の断面の幅を変えた電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図8】本発明の、誘電体導波管線路の誘電体材料を変えた電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図9】本発明の、誘電体導波管線路内にピン導体を配置した電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図10】本発明の、誘電体導波管線路の断面の高さを変えた電磁界整合部と、誘電体導波管線路内にピン導体を配置した電磁界整合部が形成された誘電体導波管線路と導波管との接続構造を示す斜視図である。
【図11】本発明の誘電体導波管線路と導波管との接続構造を内蔵するアンテナ基板の例を示す斜視図である。
【図12】本発明の誘電体導波管線路と導波管との接続構造を内蔵するフィルター基板の例を示す斜視図である。
【図13】誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【図14】誘電体導波管線路に共振器とを設けた場合の誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【図15】誘電体導波管線路に共振器と電磁界整合部とを設けた場合の誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【図16】誘電体導波管線路に共振器と2種類の電磁界整合部とを設けた場合の誘電体導波管線路と導波管との接続構造におけるSパラメータの周波数特性を示す線図である。
【符号の説明】
1 誘電体基板
1a アンテナ基板
1b フィルター基板
2、3 導体層
4 貫通導体群
5 補助導体層
6 誘電体導波管線路
7 結合用窓
8 方形導波管
9 開口端面
11 誘電体共振器
15 ピン導体
16 誘電体層
20〜23 電磁界整合部
24 スロットアンテナ
25 フィルター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connection structure between a dielectric waveguide line and a waveguide for transmitting a high-frequency signal such as a microwave band and a millimeter wave band, and in particular, when the transmission direction of a high-frequency signal is substantially orthogonal, The present invention relates to a connection structure between a dielectric waveguide line and a waveguide that is high and can be connected with low loss.
[0002]
[Prior art]
In recent years, researches on mobile communication and inter-vehicle radar using high-frequency signals such as a microwave band and a millimeter wave band have been actively pursued. In a high-frequency circuit that handles these communications, a transmission line for transmitting a high-frequency signal is required to be small and have a small transmission loss. In particular, since it is advantageous in terms of miniaturization if the transmission line can be formed on or in the substrate constituting the high frequency circuit, conventionally, as such a transmission line, a strip line, a microstrip line, a coplanar line, Dielectric waveguide lines and the like have been used.
[0003]
Of these, the strip line, microstrip line, and coplanar line are composed of a dielectric substrate, a line conductor layer, and a ground (ground) conductor layer, and the space around the line conductor layer and the ground conductor layer or in the dielectric substrate. The electromagnetic wave of the high-frequency signal propagates through. These lines can be transmitted satisfactorily for signal transmission up to the 30 GHz band, but there is a problem that transmission loss tends to occur above 30 GHz.
On the other hand, the waveguide type transmission line is advantageous in that the transmission loss is small even in a millimeter wave band of 30 GHz or more.
[0004]
Among these, the rectangular waveguide has a structure in which electromagnetic waves propagate through the air surrounded by a metal wall with a square cross section. Since there is no loss due to dielectrics, transmission loss is very high even in the millimeter wave band above 30 GHz. It is a small one.
However, the length in the longitudinal direction of the cross section of the line needs to be at least half of the signal wavelength to be propagated, so that there is a problem that wiring with high dimensions and high density is difficult. Moreover, since it is comprised with a metal wall, there exists a problem that a highly accurate process is difficult and processing cost is high.
[0005]
In contrast, a dielectric waveguide line, which is a transmission line that can be formed in a dielectric multilayer substrate, taking advantage of the excellent transmission characteristics of a waveguide, is a region surrounded by a conductor wall or a pseudo conductor wall. Since the structure is filled with a dielectric, there is a transmission loss due to the dielectric. However, if a dielectric with a small loss is used, the transmission loss can be reduced to a level that does not cause a problem in practice. When trying to propagate a signal in the same frequency range as a rectangular waveguide, the dielectric constant of the dielectric is ε r The size of the cross section of the line is 1 / √ε r There is a merit that can be downsized.
[0006]
For example, JP-A-6 - Japanese Patent No. 53711 proposes a dielectric waveguide line in which a dielectric substrate is sandwiched between a pair of main conductor layers, and side walls are formed by a plurality of via holes arranged in two rows connecting the main conductor layers. . In this dielectric waveguide line, a region in a conductor wall is used as a signal transmission line by surrounding four sides of a dielectric material with a pair of main conductor layers and a pseudo conductor wall made of a via hole. According to such a configuration, the configuration becomes simple and the entire apparatus can be downsized.
[0007]
Furthermore, 10-75108 In the publication, a dielectric waveguide line having a multilayer structure formed in a dielectric substrate is proposed. This is called a laminated waveguide. A dielectric waveguide line as described above is formed by a dielectric layer, a pair of main conductor layers, and a through conductor group, and in addition to the through conductor group. By forming the sub conductor layer, the side wall as an electrical wall is reinforced. In the dielectric waveguide described above, if an electric field that is not parallel to the through conductor is present in the waveguide, there is a risk of electric field leakage from the side wall. Such an electric field leakage is less likely to occur.
[0008]
[Patent Document 1]
JP-A-6-53711
[Patent Document 2]
JP-A-10-75108
[Patent Document 3]
JP 2000-196301 A
[0009]
[Problems to be solved by the invention]
However, for a high-frequency circuit configured using a dielectric waveguide line, for example, to connect to a measurement device such as a network analyzer in order to measure and evaluate high-frequency characteristics, the dielectric waveguide line is directly connected. It is difficult to do this, and it can be easily connected via a rectangular waveguide, thereby enabling more accurate measurement.
In addition, when a dielectric waveguide line is connected to an active circuit such as an MMIC (microwave monolithic integrated circuit), the connection is facilitated through the rectangular waveguide, and the entire circuit can be reduced in size. .
[0010]
Therefore, there has been a demand for a connection structure between a rectangular waveguide and a dielectric waveguide line having good transmission characteristics.
As a technique for solving this problem, Japanese Patent Application Laid-Open No. 2000-196301 proposes a connection structure between a rectangular waveguide and a dielectric waveguide line. In this structure, the conductor is exposed to the surface layer and the surface layer conductor is corroded. There is a problem in reliability such as corrosion of through conductors and corrosion of inner layer conductors through the through conductors. In addition, gold plating is sometimes performed to improve the reliability of the surface conductor portion, but it is expensive and causes a large increase in cost.
[0011]
An object of the present invention is to provide a dielectric waveguide line and a waveguide that can be connected with low loss by improving the reliability at the connecting portion, at a low manufacturing cost, and reducing the reflection of high-frequency signals. It is to provide a connection structure.
[0012]
[Means for Solving the Problems]
The connection structure of the dielectric waveguide line and the waveguide according to the present invention includes a dielectric substrate, a pair of conductor layers formed on both surfaces of the dielectric substrate, and a predetermined repetition interval in the high-frequency signal transmission direction. A pair of through conductor groups formed by electrically connecting the conductor layers with a predetermined width in a direction orthogonal to the transmission direction, and providing the pair of dielectric waveguide lines. Of the conductor layers, Near the end face of the dielectric waveguide On one conductor layer A width narrower than the width of the two rows of through conductor groups. A coupling window is provided, and the coupling window and the one conductor layer around the coupling window are provided. The thickness of the high-frequency signal is less than half the wavelength in a range wider than the opening end face of the waveguide Cover with a dielectric layer, through this dielectric layer, The width wider than the width of the two rows of through conductor groups. Opposite end faces Said The waveguide is connected.
[0013]
The dielectric waveguide line transmits a high-frequency signal through a transmission region surrounded by the pair of conductor layers and the through conductor group. End of By forming the connection structure of the present invention at the end, the dielectric waveguide line Near the end face Provided on one conductor layer Narrower than the width of the dielectric waveguide Join window A dielectric layer having a thickness equal to or less than a half wavelength of a high-frequency signal covering the coupling window and one of the surrounding conductor layers in a range wider than the opening end face of the waveguide; Through Open end faces wider than the width of the dielectric waveguide line are made to face each other A high frequency signal can be passed to the waveguide. With such a simple connection structure, it is possible to realize a connection between a dielectric waveguide line having excellent high-frequency signal coupling efficiency, high reliability, and low manufacturing cost, and the waveguide.
[0014]
In addition, a resonator including the through conductor and the pair of conductor layers is manufactured in the dielectric waveguide line, and the coupling window is formed in one conductor layer of the resonator. As a result, it is possible to improve the high-frequency transmission characteristics in the connection portion.
Furthermore, if the dielectric waveguide line includes an electromagnetic field matching portion that reduces reflection during transmission of a high-frequency signal, the high-frequency transmission characteristics at the connection portion can be further improved.
[0015]
The specific shape of the electromagnetic field matching part includes a structure with a different cross-sectional height of the dielectric waveguide line, a structure with a different cross-sectional width of the dielectric waveguide line, and a dielectric different from that of the dielectric waveguide line. Examples thereof include a structure including a refractive index material or a structure in which a pin conductor is disposed in a dielectric waveguide line. By providing any structure or a combination of two or more of these structures, reflection at the connection portion can be suppressed, adverse effects on other circuits and elements can be reduced, and high-frequency characteristics can be improved.
[0016]
The dielectric substrate is preferably made of low-temperature fired ceramics, so that various conductor layers can be formed using a low-resistance metal, so that low loss can be achieved for transmission of high-frequency signals. .
The present invention can be applied to any waveguide having any structure, but may be a rectangular waveguide, for example.
The transmission direction of the high-frequency signal between the dielectric waveguide line and the waveguide can intersect at an arbitrary angle, but this angle may be, for example, approximately 90 °.
[0017]
In the antenna substrate of the present invention, the antenna substrate is provided with the dielectric waveguide line, and a coupling window is provided on one of the pair of conductor layers formed above and below the dielectric waveguide line. Provided to this coupling window is a power feeding waveguide with an opening end face facing each other through a dielectric layer so that the transmission direction of the high-frequency signal is different.
Further, the filter substrate of the present invention is provided with the dielectric waveguide line on the filter substrate, and a coupling window is formed on one of the pair of conductor layers formed above and below the dielectric waveguide line. The feeding window is connected to the coupling window via the dielectric layer so that the opening end faces are opposed to each other so that the transmission direction of the high-frequency signal is different.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a connection structure between a dielectric waveguide line and a waveguide according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view for explaining a structural example of a dielectric waveguide line used in the present invention.
In FIG. 1, reference numeral 1 denotes a dielectric substrate having a predetermined thickness a extending in the high-frequency signal transmission direction A. Reference numerals 2 and 3 denote a pair of conductor layers formed on the upper and lower surfaces of the dielectric substrate 1, and 4 denotes two rows formed in the dielectric substrate 1 and arranged along the transmission direction A of the high-frequency signal. This is a through conductor group.
[0019]
The through conductor group 4 electrically connects the pair of conductor layers 2 and 3, and each through conductor is formed of a through-hole conductor or a via-hole conductor. These multiple through conductors form two rows of through conductor groups 4. As shown in the figure, the through conductor group 4 has a predetermined repetition interval c less than a half of the signal wavelength in the transmission direction A of the high frequency signal, that is, the line formation direction, and a predetermined direction in the direction orthogonal to the transmission direction A It is formed with a constant interval (width) b. Thereby, an electrical side wall with respect to the dielectric waveguide line 6 is formed.
[0020]
A dielectric waveguide line 6 having a height a and a width b is formed in a part of the dielectric substrate 1 by the pair of conductor layers 2 and 3 and the through conductor group 4.
Reference numeral 5 denotes an auxiliary conductor layer formed in the dielectric substrate 1 in parallel with the conductor layers 2 and 3 in order to electrically connect the through conductors forming each row of the through conductor group 4. Depending on the situation, it is provided as appropriate. When the auxiliary conductor layer 5 is provided, for example, the dielectric substrate 1 is composed of two dielectric substrates each having a half thickness, and the dielectric waveguide line 6 is provided between the dielectric substrates. The auxiliary conductor layer 5 can be formed by forming a metal layer on the non-formed portion and bonding them together.
[0021]
in this way The upper and lower walls are constituted by a pair of conductor layers 2 and 3, and the side walls are constituted by through conductor groups 4. Dielectric waveguide line 6 Thus, electromagnetic waves in various directions are shielded. Further, if the auxiliary conductor layer 5 is formed, the side walls thereof are partitioned into a finer lattice by the auxiliary conductor layer 5 and the electromagnetic wave shielding effect is increased.
[0022]
The conductor layers 2 and 3 are formed over the entire upper and lower surfaces of the dielectric substrate 1 as shown in FIG. 1. However, the conductor layers 2 and 3 are not necessarily formed over the entire upper and lower surfaces of the dielectric substrate 1. What is necessary is just to be formed in the up-and-down surface which pinches | interposes the formation part of the body waveguide line 6. FIG.
Although not shown, a penetrating conductor group 4 similar to the side wall is connected to the end surface of the dielectric waveguide 6. Form Are arranged at the same pitch c. Thereby, it is possible to make a structure in which the end face of the dielectric waveguide 6 is electrically closed.
[0023]
There is no particular limitation on the thickness a of the dielectric substrate 1, that is, the distance between the pair of conductor layers 2 and 3, but the thickness a is relative to the distance b when the dielectric waveguide 6 is used in a single mode. It is good to set it to about a half or about twice. In the example of FIG. 1, the thickness a is about one half of the interval b, the portion corresponding to the H surface of the dielectric waveguide 6 is the conductor layers 2 and 3, and the portion corresponding to the E surface is the through conductor. Each of the group 4 and the auxiliary conductor layer 5 is formed. If the thickness a is about twice as large as the interval b, the portions corresponding to the E surface of the dielectric waveguide 6 are the conductor layers 2 and 3, and the portions corresponding to the H surface are the through conductor group 4 and the auxiliary conductor layer. 5, respectively.
[0024]
Further, the through conductor group 4 can form an electrical wall by setting the distance c between the through conductors in each row of the through conductor group 4 to be less than one half of the signal wavelength. This interval c is desirably less than a quarter of the signal wavelength.
When the interval c is larger than half the signal wavelength λ (λ / 2), a TEM wave can propagate between the pair of conductor layers 2 and 3 arranged in parallel. Even if an electromagnetic wave is fed to 6, the electromagnetic wave leaks from between the through conductor groups 4. Teshi Mae. If the interval c between the through conductor groups 4 is smaller than λ / 2, an electrical side wall can be formed, and the electromagnetic wave can be reflected without leaking in the vertical direction with respect to the dielectric waveguide 6. However, the signal transmission direction of the dielectric waveguide 6 A Is propagated to.
[0025]
As a result, according to the configuration as shown in FIG. 1, the dielectric region having a cross-sectional area of a × b surrounded by the pair of conductor layers 2 and 3 and the two rows of through conductor groups 4 and the auxiliary conductor layer 5 is dielectric. A body waveguide 6 is defined.
In the embodiment shown in FIG. 1, the through conductor groups 4 are formed in two rows. However, the through conductor groups 4 are arranged in four rows or six rows, and the conductor walls of the through conductor groups 4 are double and three. By forming a heavy layer, leakage of electromagnetic waves from the conductor wall can be more effectively prevented.
[0026]
Since such a dielectric waveguide 6 becomes a transmission line made of a dielectric, the dielectric constant of the dielectric substrate 1 is set to ε r Then, the waveguide size is 1 / √ε of normal waveguide r It becomes the size of. Therefore, the relative dielectric constant ε of the material constituting the dielectric substrate 1 r The larger the is, the smaller the waveguide size can be and the miniaturization of the high-frequency circuit can be achieved. Therefore, it can be suitably used as a multilayer wiring board on which wirings are formed at high density, a package for housing semiconductor elements, or a transmission line for inter-vehicle radar.
[0027]
Note that the through conductors constituting the through conductor group 4 are arranged at a repeating interval c of less than half of the signal wavelength as described above, and this interval c is used to realize good transmission characteristics. Although it is desirable to set a constant repetition interval, the interval may be appropriately changed or several values may be combined as long as the interval is less than half the signal wavelength.
The material of the dielectric substrate 1 constituting such a dielectric waveguide 6 is not particularly limited as long as it has a characteristic that functions as a dielectric and does not hinder the transmission of high-frequency signals. The dielectric substrate 1 is preferably made of ceramics in terms of accuracy in forming the transmission line and ease of manufacture.
[0028]
As such ceramics, ceramics having various relative dielectric constants have been known so far, but in order to transmit a high frequency signal by the dielectric waveguide line according to the present invention, it is a paraelectric material. Is desirable. This is because, in general, ferroelectric ceramics have a large dielectric loss in the high-frequency region, and thus the transmission loss of the waveguide line is large.
Dielectric constant ε of paraelectric material constituting the dielectric substrate 1 r Is 4 ~ 100 The degree is appropriate.
[0029]
Generally, the line width of a wiring layer formed in a multilayer wiring board, a semiconductor element housing package, or an inter-vehicle radar is about 1 mm at the maximum. From this, the width b of the dielectric waveguide 6 is set to 1 mm, and the relative permittivity ε r But 100 When the paraelectric material is used and the upper part is an H-plane, that is, the electromagnetic field distribution is such that the magnetic field is wound parallel to the upper surface, the minimum frequency that can be used is calculated as 15 GHz. Therefore, it can be sufficiently used in the microwave band region.
[0030]
On the other hand, a dielectric made of resin generally used as a dielectric substrate has a relative dielectric constant ε r Is about 2, so when the line width is 1mm, 100 It cannot be used unless the frequency is higher than GHz.
Also, not all paraelectric ceramics are available. In the case of a dielectric waveguide line, there is almost no loss due to the conductor, and most of the loss during signal transmission is determined by the loss due to the dielectric. The loss α (dB / m) due to the dielectric is expressed as follows.
[0031]
α = 27.3 × tanδ / [λ / {1- (λ / λ c ) 2 } 1/2 ] (1)
In equation (1), tan δ is the dielectric loss tangent of the dielectric, λ is the wavelength in the dielectric, λ c Is the cutoff wavelength. According to the standardized rectangular waveguide (WRJ series) shape, {1- (λ / λ) in the above equation c ) 2 } 1/2 Is about 0.75.
Therefore, it is a transmission loss that can be practically used- 100 In order to realize dB / m or less, it is necessary to select a dielectric so that the following relationship is established.
[0032]
f × √ε r × tanδ ≦ 0.8 (2)
In formula (2), f is the frequency (GHz) of the high-frequency signal used.
For example, when the frequency of the high frequency signal used is 10 to 100 GHz, the paraelectric material satisfying the above inequality is at least one selected from low-temperature fired ceramics (described later) such as alumina ceramics, aluminum nitride ceramics, and glass ceramics. It is desirable to be a seed.
[0033]
Next, FIG. 2 and FIG. 3 show examples of the connection structure between the dielectric waveguide line of the present invention and the waveguide using such a dielectric waveguide line.
FIG. 2 shows a metal with a hollow inside so that the transmission direction of a high-frequency signal is orthogonal to the upper conductor layer 2 of the pair of upper and lower conductor layers 2 and 3 of the dielectric waveguide 6. 3 is an exploded perspective view showing a connection structure in which an opening end face 9 of a rectangular waveguide 8 constituted by walls is brought into contact with a dielectric layer 16. FIG. FIG. 3A is a side sectional view showing the connection structure.
[0034]
In order to simplify the display, the dielectric waveguide line 6 is displayed with a contour composed of a pair of upper and lower conductor layers 2 and 3 and a through conductor group 4, and the dielectric substrate 1 existing outside the contour is illustrated. Is omitted. Note that the through conductor group 4 is also disposed on the end surface of the dielectric waveguide 6 as described above, but this is also indicated by the outline.
In this example, in the dielectric waveguide 6, the conductor layers 2 and 3 become the H plane, and the pseudo conductor wall formed by the through conductor group 4 becomes the E plane.
[0035]
In the conductor layer 2 near the end face of the dielectric waveguide 6, there is a coupling window 7 provided as an opening for coupling a high-frequency signal and without the conductor layer 2. As shown in FIG. 3, the rectangular waveguide 8 is indirectly in contact with the conductor layer 2 via the dielectric layer 16. Both need not be electrically conductive. As can be seen from FIG. 3, the surface layer portion of the connection portion structure is covered with the dielectric layer 16, so that the conductor layer 2 is not exposed and the conductor layer 2 is not corroded. Further, since there is no need for plating, the cost can be reduced.
[0036]
Consider the case where electromagnetic waves are incident from the rectangular waveguide 8. In the single mode, as shown in FIG. 3B, in the rectangular waveguide 8, the electric field has a vector V 1 parallel to the short direction of the cross section, but it is dielectrically guided through the coupling window 7. After entering the wave tube line 6, the direction is changed to a vector V 2 parallel to the short direction of the dielectric waveguide line 6. At that time, when the thickness t of the dielectric layer 16 is larger than the half wavelength of the transmission signal, the dielectric layer 16 can be transmitted in the lateral direction. Namo - Do As a result, the signal easily leaks from the side surface of the dielectric layer 16. On the other hand, by setting the thickness t of the dielectric layer 16 to a half wavelength or less of the transmission signal, preferably to a quarter wavelength or less, Writing The generation of the load can be suppressed, and the electromagnetic wave can be prevented from leaking from the side surface of the dielectric layer 16.
[0037]
Regarding the position, shape and size of the coupling window 7 in the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention, the frequency characteristics, the coupling amount and the reflection amount required for the connection structure are as follows. Involved in complexity. For this reason, the position, shape, size, and the like of the coupling window 7 having the desired connection characteristics are determined by repeatedly calculating by electromagnetic field analysis so as to satisfy the required frequency characteristics.
In order to form the dielectric substrate 1 and the dielectric layer 16 using these materials, for example, an appropriate organic solvent / solvent is added to and mixed with the ceramic raw material powder of the above-mentioned paraelectric material to form a slurry, A plurality of ceramic green sheets are obtained by adopting a conventionally known doctor blade method, calendar roll method, or the like to form a sheet. After that, each of these ceramic green sheets is appropriately punched and laminated, and in the case of alumina ceramics, 1300-1700 ° C, in the case of low-temperature fired ceramics 850 The dielectric substrate 1 and the dielectric layer 16 are manufactured by firing at a temperature of 1050 ° C. and in the case of aluminum nitride ceramics at a temperature of 1500-1900 ° C.
[0038]
Further, the pair of conductor layers 2 and 3 are formed of, for example, an oxide such as alumina, silica, magnesia, or an organic solvent suitable for metal powder such as tungsten when the dielectric substrate 1 or the dielectric layer 16 is made of alumina ceramics. Printing is performed on the ceramic green sheet so as to completely cover at least the transmission line portion by thick film printing using a paste formed by adding a solvent or the like. Thereafter, it is formed by firing at a high temperature of about 1600 ° C. together with the green sheet. As the metal powder, copper, gold and silver are suitable for low-temperature fired ceramics, and tungsten and molybdenum are suitable for aluminum nitride ceramics. Moreover, the thickness of the conductor layers 2 and 3 shall be about 5-50 micrometers.
[0039]
The through conductors constituting the through conductor group 4 may be formed of, for example, a via hole conductor or a through hole conductor. The cross-sectional shape may be a polygon that is easy to manufacture, or a polygon such as a rectangle or a rhombus. These through conductors are formed, for example, by embedding a metal paste similar to that of the conductor layers 2 and 3 in a through hole produced by punching a ceramic green sheet, and then firing the same simultaneously with the dielectric substrate 1. The diameter of the through conductor is 50 ~ 300 μm is appropriate.
[0040]
In addition, according to the connection structure of the dielectric waveguide line and the rectangular waveguide of the present invention described in detail above, in particular, the dielectric substrate 1 and the dielectric layer 16 are manufactured using low-temperature fired ceramics. Is desirable. Since the low-temperature fired ceramic has a low firing temperature, copper or silver having high conductivity can be used for the conductor. For this reason, there exists an advantage which can reduce a conductor loss, and since the plating of a connection part is unnecessary, cost can be reduced. In addition, low-temperature fired ceramics have an advantage that the structure can be made compact because the dielectric constant can be adjusted higher than that of a general organic substrate. Furthermore, from the viewpoint of reliability, unlike the organic substrate, the steam resistance is high, so that high reliability can be obtained.
[0041]
For low-temperature fired ceramics, SiO 2 Is an essential component, Al 2 O Three , Alkaline earth oxides (BaO, CaO, SrO, MgO, etc.), alkali metal oxides (Li 2 O, Na 2 O, K 2 O), Fe 2 O Three , B 2 O Three , CuO, an oxide mixed system in which at least one selected from the group of CuO is combined, a glass system prepared by melting a mixture of oxides and then rapidly cooling, or quartz (SiO 2 ), Al 2 O Three , Alkaline earth oxides (BaO, CaO, SrO, MgO, etc.), alkali metal oxides (Li 2 O, Na 2 O, K 2 O), Fe 2 O Three , B 2 O Three And so-called glass ceramics in which at least one ceramic filler selected from the group consisting of two or more kinds of composite oxides, AlN, silicon nitride, and silicon carbide is added and mixed. The glass may be either amorphous glass that remains amorphous after firing, or crystallized glass that crystallizes after firing.
[0042]
FIG. 4 is an exploded perspective view showing another example of the connection structure between the dielectric waveguide line and the waveguide according to the present invention. In this example, a dielectric waveguide line 6 and a rectangular waveguide 8 are joined via a dielectric layer 16 and a dielectric resonator 11.
In FIG. 4, 2 and 3 are a pair of conductor layers, 4 is a through conductor group, 6 is a dielectric waveguide line, and 11 is a dielectric resonator. In this example, in the dielectric waveguide 6, the conductor layers 2 and 3 become the H plane, and the pseudo conductor wall formed by the through conductor group 4 becomes the E plane.
[0043]
The dielectric resonator 11 includes a pair of conductor layers 2 and 3 extending from the conductor layers 2 and 3 and a through conductor group 4 that electrically connects the pair of conductor layers 2 and 3 in the dielectric substrate 1. It is surrounded and formed.
FIG. 5 is a plan view showing the dielectric resonator 11. As shown in FIG. 5, the dielectric resonator 11 has the width b of the through conductor group 4 set to b ′ (b ′> b) over a certain length d near the end of the dielectric waveguide 6. It can be formed by spreading it out and closing the end. The resonance characteristics of the dielectric resonator 11 can be controlled by adjusting the width b ′ and the width d.
[0044]
The upper conductor layer 2 of the dielectric resonator 11 is provided with a coupling window 7 as an opening for coupling a high-frequency signal, as in FIG.
Reference numeral 8 shown in FIG. 4 is a rectangular waveguide having a hollow metal wall inside, and the opening end surface 9 thereof has a dielectric layer 16 interposed therebetween so that the transmission direction of the high-frequency signal is orthogonal. It is disposed in contact with the conductor layer 2 of the dielectric resonator 11.
In this connection structure, the dielectric waveguide in the dielectric waveguide line 6 through the coupling window 7 from the electric field vector parallel to the short direction of the waveguide cross section in the rectangular waveguide 8. When the direction is changed to an electric field vector parallel to the short direction of the cross section of the line 6, resonance occurs in the dielectric resonator 11, and the phase disturbed by the change in the electric field direction is adjusted in the resonator 11. Since the signal can be transmitted to the dielectric waveguide line 6 with a different phase, reflection during direction change is reduced and signal transmission characteristics are improved.
[0045]
Also in this embodiment, the coupling window 7 is formed in the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention. The position, shape and size of the connection window 7 are the same. The frequency characteristics, the coupling amount, and the reflection amount that are required for the above are complicatedly involved. For this reason, the position, shape, size, and the like of the coupling window 7 having the desired connection characteristics are determined by repeatedly calculating by electromagnetic field analysis so as to satisfy the required frequency characteristics.
[0046]
Further, some other embodiments of the connection structure between the dielectric waveguide line and the waveguide according to the present invention will be described.
In the connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention, the reflection generated in the connection structure is a circuit portion connected to the tip of the dielectric waveguide line 6 or a rectangular conductor. There is a possibility of adversely affecting the circuit portion connected to the tip of the wave tube 8. Therefore, in this connection structure, the dielectric waveguide line 6 includes an electromagnetic field matching portion.
[0047]
FIG. 6 is a perspective view showing another connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8, in which the rectangular waveguide 8 and the dielectric layer 16 are omitted in order to simplify the display. Only the resonator 11 and the dielectric waveguide line 6 are shown. The same parts as those in FIG. 4 are denoted by the same reference numerals.
According to this embodiment, the electromagnetic field matching unit 20 is provided on the rear stage side of the resonator 11. A portion where the height of the dielectric waveguide 6 is changed from the height of the dielectric waveguide 6 (in this example, the height is lowered) corresponds to the electromagnetic field matching unit 20. The electromagnetic field matching unit 20 is adapted to an electromagnetic field mode in which the electromagnetic field from the dielectric resonator 11 is further transmitted through the dielectric waveguide line 6, and is a connection part between the dielectric waveguide line and the rectangular waveguide. This is a part that functions to reduce reflection.
[0048]
To change the height of the dielectric waveguide 6, for example, two dielectric substrates are prepared as the dielectric substrate 1 shown in FIG. 1, and the portions other than the electromagnetic field matching unit 20 are two dielectrics. This can be realized by stacking the substrates and forming only the portion where the electromagnetic field matching unit 20 is formed from a single dielectric substrate. The height of the electromagnetic field matching unit 20 can be arbitrarily set by selecting the thickness of the dielectric substrate to be used.
As an example of the electromagnetic field matching part, in addition to the structure in which the height of the dielectric waveguide 6 is changed as shown in FIG. 6, the width of the dielectric waveguide 6 is changed as shown in FIG. The structure of the electromagnetic field matching unit 21 may be adopted. In the example of FIG. 7, the width of the electromagnetic field matching unit 21 is made larger than the width of the dielectric waveguide line 6. The change of the width can be easily realized by changing the formation position of the through hole or via hole of the through conductor 4.
[0049]
Further, as shown in FIG. 8, the portion 22 of the dielectric waveguide 6 may be made of a material having a dielectric constant different from that of the dielectric used in the dielectric waveguide 6. This structure, for example, removes the electromagnetic field matching portion of the dielectric substrate, and instead joins a dielectric having a different dielectric constant, or forms a predetermined hole in the electromagnetic field matching portion of the ceramic green sheet forming the dielectric substrate. It is possible to manufacture by disposing, laminating and laminating dissimilar dielectric paste therein, and co-firing.
[0050]
Further, even when the electromagnetic field matching portion 23 having a structure in which the pin conductor 15 is arranged in the dielectric waveguide line 6 as shown in FIG. 9 is adopted, the electromagnetic field matching effect can be obtained. In FIG. 9, the height of the pin conductor 15 may be the same as that of the dielectric waveguide 6, but is not necessarily the same, for example, the height of the dielectric waveguide 6. It may be half the size. In order to form a pin conductor having a half height, for example, two dielectric substrates are prepared as the dielectric substrate 1 shown in FIG. 1, and through holes and via holes are formed only on one of the dielectric substrates. This is realized by embedding with a metal paste and overlaying a second dielectric substrate from above.
[0051]
Furthermore, a structure in which a plurality of electromagnetic field matching portions having different structures are combined is also effective. For example, as shown in FIG. 10, an electromagnetic field matching portion 20 configured by changing the height of the dielectric waveguide line; A structure having both the electromagnetic field matching portion 23 configured with the pin conductor 15 is also effective in preventing reflection and improving high frequency characteristics.
The pin conductor 15 provided in the dielectric waveguide 6 shown in FIGS. 9 and 10 is generated in a connection structure with the rectangular waveguide 8 when a signal propagates from the dielectric waveguide 6. It is responsible for canceling the reflected wave. That is, the reflected wave is suppressed by generating the reflected wave having a phase difference of 180 degrees from the wave reflected by the connection structure with the rectangular waveguide 8 by the pin conductor 15. Therefore, basically, the pin conductor 15 functions if provided within one wavelength from the center of the coupling window 7. However, the same function can be expected even if it is installed at a location that is an integer multiple of the wavelength from that location, and it is not always necessary to specify the installation location within one wavelength.
[0052]
Since the electromagnetic field matching sections 20, 21, 22, and 23 described above function as passive elements that do not emit radiation, the above-described reflection reduction effect is achieved by electromagnetic waves from the dielectric waveguide line 6 to the rectangular waveguide 8. Not only when propagating to the dielectric waveguide line 6 but also when electromagnetic waves propagate from the rectangular waveguide 8 to the dielectric waveguide line 6.
Next, an application example of the connection structure between the dielectric waveguide line and the waveguide according to the present invention will be described. FIG. 11 shows the connection between the dielectric waveguide line 6 and the rectangular waveguide 8 when the dielectric waveguide line 6 is built in the antenna substrate 1a and power is supplied from the rectangular waveguide 8 to the antenna. It is a see-through | perspective perspective view which shows a structure. With this connection structure, an antenna substrate with high reliability and low reflection loss can be produced. In FIG. 11, the slot antenna 24 is shown in which the notch 24a is provided in the conductor layer on one side of the dielectric waveguide 6. However, there is a problem even if a patch antenna that feeds power through the slot or via conductor is used. There is no dependence on the antenna configuration.
[0053]
FIG. 12 is a perspective view showing an example in which the connection structure of the dielectric waveguide 6 and the rectangular waveguide 8 of the present invention is applied to the filter substrate 1b. Even in this configuration, the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 according to the present invention can provide high reliability and reduce the filter reflection loss. Further, the cost can be reduced because plating of the connecting portion is unnecessary. At this time, the form of the filter 25 formed on the filter substrate 1b is not limited to the one using the dielectric shown in FIG. 12, but may be a filter using a stripline or the like.
[0054]
【Example】
A connection structure between the dielectric waveguide line having the structure shown in FIG. 2 and the waveguide was fabricated, and a reliability test was performed as follows.
The reliability test was performed under the conditions of temperatures of 150 ° C. and −65 ° C., and held for 1000 minutes at 150 ° C. and −65 ° C. for 1000 cycles. Appearance comparison between a dielectric substrate having a connection structure between a dielectric waveguide line of the present invention and a waveguide, and a dielectric substrate having a connection structure with a surface layer conductor portion disclosed in JP-A-12-196301 As a result, there was no change in the appearance after the reliability test in the product of the present invention. However, in the latter substrate, there were those in which the appearance of the metallized surface layer portion was poor such as a stain or discoloration due to corrosion. Thereby, it turns out that the connection structure of the dielectric waveguide line and waveguide of this invention is excellent in reliability.
[0055]
Furthermore, in order to evaluate the high frequency characteristics of the product of the present invention, the S parameter Evaluation Went. The rectangular waveguide 8 was WR-15, that is, a cross-sectional dimension perpendicular to the high-frequency signal transmission direction was 3.76 mm × 1.88 mm. The dielectric substrate 1 for producing the dielectric waveguide 6 has a relative dielectric constant εr. 4.9 Copper conductor co-fired glass ceramics, through conductor is φ0.2 mm Formed with vias. The distance b between the two rows of through conductor groups 4 is 3.0 as the distance between the via centers. mm The distance a between the pair of conductor layers 2 and 3 was 0.6 mm. Also conductor layer 2 Is provided with an opening of 1.12 mm × 1.62 mm as a coupling window 7. A thickness 0.1 to cover the coupling window 7 of such a dielectric waveguide 6. mm The open end face 9 of the rectangular waveguide 8 is brought into contact with the conductor layer 2 through the dielectric layer 16.
[0056]
FIG. 13 shows the transmission characteristics of a high frequency signal when this connection structure is transmitted from the rectangular waveguide 8 to the dielectric waveguide 6.
FIG. 13 is a diagram showing the frequency characteristics of the S parameter, where the horizontal axis represents the frequency (GHz) and the vertical axis represents the S parameter value (dB). The characteristic curve in the figure shows the frequency characteristics of the reflection coefficient (S11) and the transmission coefficient (S21) among the S parameters. The broken line is the reflection coefficient (S11), and the solid line is the transmission coefficient (S21).
[0057]
Next, FIG. 14 shows the result of manufacturing the structure of FIG. 4 in which the rectangular waveguide 8 is connected to the dielectric waveguide 6 through the dielectric layer 16 and the resonator 11, and measuring the S parameter. The size of the resonator 11 was 3.4 mm × 1.59 mm as the distance between the centers of the vias 4 forming the resonator 11. When the frequency characteristics of the S parameter are obtained, the reflection coefficient (S11) becomes minimum near 58.7 GHz and 60.0 GHz, the transmission coefficient (S21) becomes maximum, the reflection decreases compared to FIG. 13, and the transmission coefficient ( It can be seen that the signal transmission characteristics of S21) are improved.
[0058]
Furthermore, FIG. 15 shows the frequency characteristics of the S parameter when the dielectric waveguide line portions having different heights as shown in FIG. 6 are provided as the electromagnetic field matching portions. The length of the electromagnetic wave matching part 20 is 1.11 mm, the distance between the upper and lower conductor layers in the electromagnetic wave matching part 20 is 0.3 mm, and the central position of the electromagnetic wave matching part 20 is 1.545 mm from the central part of the coupling window. As shown in FIG. 15, the electromagnetic wave matching section 20 further reduces the reflection coefficient (S11) and improves the signal transmission characteristics.
[0059]
Further, as shown in FIG. 10, a dielectric waveguide provided with an electromagnetic field matching portion 20 constituted by a pin conductor 15 in addition to an electromagnetic field matching portion 20 constituted by changing the height of the dielectric waveguide line. The line 6 was produced. Here, the height of the pin conductor 15 is 0.3 mm, and two pin conductors 15 are installed at 1.665 mm from the end face of the electromagnetic field matching portion 20 having different heights and 0.365 mm from the through conductor 4. FIG. 16 shows the frequency characteristics of the S parameter in this case. It can be seen that this structure has further improved high-frequency characteristics compared to FIG.
[0060]
Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made without departing from the scope of the present invention. There is no problem.
[0061]
【The invention's effect】
As described above, according to the present invention, the dielectric waveguide line Near the end face Provided on one conductor layer Narrower than the width of the dielectric waveguide Join window And a thickness of half a wavelength or less of a high-frequency signal covering the coupling window and one of the surrounding conductor layers in a range wider than the opening end face of the waveguide. The transmission direction of high-frequency signals is different via the dielectric layer A width wider than the width of the dielectric waveguide By connecting the waveguides whose opening end faces are opposed to each other, it is possible to provide a connection structure between a dielectric waveguide line and a waveguide having a simple structure, high reliability, and low manufacturing cost. Further, a resonator using the through conductor and the pair of conductor layers is fabricated in the dielectric waveguide line, and the coupling window is formed in one conductor layer of the resonator. On the other hand, by connecting the opening end face of the waveguide through the dielectric layer so that the transmission direction of the high-frequency signal is a predetermined direction, it is possible to reduce reflection and provide a connection structure with excellent signal transmission characteristics.
[0062]
In addition, by forming an electromagnetic field matching portion for reducing reflection during transmission of a high-frequency signal in the dielectric waveguide line, a signal transmission loss can be reduced, and a high-frequency transmission characteristic is further improved. Can be realized.
Further, by using the connection structure between the dielectric waveguide line and the waveguide of the present invention for the antenna substrate and the filter substrate, it is possible to provide the antenna substrate and the filter substrate with high reliability and low manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view for explaining an internal structure of a dielectric waveguide line used in the present invention.
FIG. 2 is an exploded perspective view showing an example of a connection structure between a dielectric waveguide line and a waveguide according to the present invention.
FIG. 3 is an XX line side sectional view showing the connection structure (a) and an electric field vector (b).
FIG. 4 is an exploded perspective view showing an example of a connection structure between a dielectric waveguide having a dielectric resonator and a waveguide according to the present invention.
FIG. 5 is a plan view showing a dielectric resonator formed in a dielectric waveguide line.
FIG. 6 is a perspective view showing a connection structure between a dielectric waveguide line in which an electromagnetic field matching portion in which the height of the cross section of the dielectric waveguide line is changed and a waveguide is formed according to the present invention. is there.
FIG. 7 is a perspective view showing a connection structure between a dielectric waveguide line and a waveguide, in which an electromagnetic field matching portion having a changed cross-sectional width of the dielectric waveguide line is formed according to the present invention.
FIG. 8 is a perspective view showing a connection structure between a dielectric waveguide line and a waveguide in which an electromagnetic field matching portion is formed by changing the dielectric material of the dielectric waveguide line according to the present invention.
FIG. 9 is a perspective view showing a connection structure between a dielectric waveguide line and a waveguide, in which an electromagnetic field matching portion in which a pin conductor is arranged in the dielectric waveguide line is formed according to the present invention.
FIG. 10 is a diagram showing an electromagnetic field matching part according to the present invention in which a height of a cross section of a dielectric waveguide line is changed and an electromagnetic field matching part in which a pin conductor is arranged in the dielectric waveguide line. It is a perspective view which shows the connection structure of a body waveguide line and a waveguide.
FIG. 11 is a perspective view showing an example of an antenna substrate incorporating a connection structure between a dielectric waveguide line and a waveguide according to the present invention.
FIG. 12 is a perspective view showing an example of a filter substrate having a built-in connection structure between a dielectric waveguide line and a waveguide according to the present invention.
FIG. 13 is a diagram showing frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide.
FIG. 14 is a diagram showing frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide when a resonator is provided in the dielectric waveguide line.
FIG. 15 is a diagram showing frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide when a resonator and an electromagnetic field matching unit are provided in the dielectric waveguide line. .
FIG. 16 is a line showing frequency characteristics of S parameters in a connection structure between a dielectric waveguide line and a waveguide when a resonator and two types of electromagnetic field matching portions are provided on the dielectric waveguide line; FIG.
[Explanation of symbols]
1 Dielectric substrate
1a Antenna board
1b Filter substrate
2, 3 Conductor layer
4 Through conductor group
5 Auxiliary conductor layer
6 Dielectric waveguide line
7 Connecting window
8 Rectangular waveguide
9 Open end face
11 Dielectric resonator
15 pin conductor
16 Dielectric layer
20-23 Electromagnetic field matching part
24 slot antenna
25 filters

Claims (9)

誘電体導波管線路と導波管とを接続する構造において、
前記誘電体導波管線路は、誘電体基板と、誘電体基板の両面に形成された一対の導体層と、高周波信号の伝送方向に所定の繰り返し間隔で、かつ前記伝送方向と直交する方向に所定の幅で、前記導体層間を電気的に接続して形成された2列の貫通導体群とを具備してなり、
前記一対の導体層のうち、前記誘電体導波管線路の終端面の近くの一方の導体層に前記2列の貫通導体群の幅よりも狭い幅の結合用窓を設け、
この結合用窓及びその周囲の前記一方の導体層を前記導波管の開口端面より広い範囲で前記高周波信号の半波長以下の厚みの誘電体層で覆い、
この誘電体層を介して、前記2列の貫通導体群の幅よりも広い幅の前記開口端面を対向させて前記導波管を接続していること特徴とする誘電体導波管線路と導波管との接続構造。
In the structure connecting the dielectric waveguide and the waveguide,
The dielectric waveguide line includes a dielectric substrate, a pair of conductor layers formed on both surfaces of the dielectric substrate, a predetermined repetition interval in the transmission direction of the high-frequency signal, and a direction orthogonal to the transmission direction. Two rows of through conductor groups formed by electrically connecting the conductor layers with a predetermined width,
Of the pair of conductor layers, a coupling window having a width narrower than the width of the two rows of through conductor groups is provided in one conductor layer near the end face of the dielectric waveguide line ,
Covering the coupling window and the one conductor layer therearound with a dielectric layer having a thickness equal to or less than a half wavelength of the high-frequency signal in a range wider than the opening end face of the waveguide ,
Through the dielectric layer, and the two rows dielectric waveguide line width of the through conductor group are opposed to the opening end surface of the wider width than is characterized by connecting the waveguide to the Connection structure with waveguide.
前記誘電体導波管線路に、前記貫通導体と前記一対の導体層とを用いた共振器が形成され、該共振器の一方の導体層に前記結合用窓が形成されていることを特徴とする請求項1記載の誘電体導波管線路と導波管との接続構造。  A resonator using the through conductor and the pair of conductor layers is formed in the dielectric waveguide line, and the coupling window is formed in one conductor layer of the resonator. The connection structure between a dielectric waveguide line and a waveguide according to claim 1. 前記誘電体導波管線路に、高周波信号の伝送時の反射を低減する電磁界整合部を形成していることを特徴とする請求項1又は請求項2記載の誘電体導波管線路と導波管との接続構造。  3. The dielectric waveguide line according to claim 1, wherein an electromagnetic field matching portion for reducing reflection during transmission of a high-frequency signal is formed in the dielectric waveguide line. Connection structure with wave tube. 前記電磁界整合部が、次の(a)から(d)までのいずれかの構造、又はこれらの構造の2種以上の組合せで形成されていることを特徴とする請求項3記載の誘電体導波管線路と導波管との接続構造。
(a)誘電体導波管線路の断面の高さが異なる構造、
(b)誘電体導波管線路の断面の幅が異なる構造、
(c)誘電体導波管線路とは異なる誘電率材料を含む構造、
(d)誘電体導波管線路内にピン導体を配置した構造。
4. The dielectric according to claim 3, wherein the electromagnetic field matching portion is formed of any one of the following structures (a) to (d), or a combination of two or more of these structures. A connection structure between a waveguide line and a waveguide.
(A) a structure in which the height of the cross section of the dielectric waveguide line is different;
(B) a structure in which the width of the cross section of the dielectric waveguide line is different;
(C) a structure including a dielectric constant material different from that of the dielectric waveguide line;
(D) A structure in which pin conductors are arranged in a dielectric waveguide line.
前記誘電体基板が、低温焼成セラミックスからなることを特徴とする、請求項1〜請求項4のいずれかに記載の誘電体導波管線路と導波管との接続構造。  The connection structure between a dielectric waveguide line and a waveguide according to any one of claims 1 to 4, wherein the dielectric substrate is made of low-temperature fired ceramics. 前記導波管が方形導波管であることを特徴とする、請求項1〜請求項5のいずれかに記載の誘電体導波管線路と導波管との接続構造。  6. The connection structure between a dielectric waveguide line and a waveguide according to claim 1, wherein the waveguide is a rectangular waveguide. 前記誘電体導波管線路と前記導波管との高周波信号の伝送方向が、ほぼ直交していることを特徴とする、請求項1〜請求項6のいずれかに記載の誘電体導波管線路と導波管との接続構造。  The dielectric waveguide according to any one of claims 1 to 6, wherein transmission directions of high-frequency signals between the dielectric waveguide line and the waveguide are substantially orthogonal to each other. Connection structure between line and waveguide. 請求項1〜請求項7のいずれかに記載の誘電体導波管線路と導波管との接続構造を有するアンテナ基板。  An antenna substrate having a connection structure between the dielectric waveguide line according to claim 1 and a waveguide. 請求項1〜請求項7のいずれかに記載の誘電体導波管線路と導波管との接続構造を有するフィルター基板。  A filter substrate having a connection structure between the dielectric waveguide line according to claim 1 and a waveguide.
JP2003153190A 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure Expired - Fee Related JP4058381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153190A JP4058381B2 (en) 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153190A JP4058381B2 (en) 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure

Publications (2)

Publication Number Publication Date
JP2004357042A JP2004357042A (en) 2004-12-16
JP4058381B2 true JP4058381B2 (en) 2008-03-05

Family

ID=34048216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153190A Expired - Fee Related JP4058381B2 (en) 2003-05-29 2003-05-29 Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure

Country Status (1)

Country Link
JP (1) JP4058381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680135A (en) * 2014-10-16 2016-06-15 现代摩比斯株式会社 Transit structure of waveguide and dielectric waveguide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066876A1 (en) * 2005-12-08 2007-06-14 Electronics And Telecommunications Research Institute Transit structure of standard waveguide and dielectric waveguide
KR100714451B1 (en) 2005-12-08 2007-05-04 한국전자통신연구원 Transit structure of standard waveguide and dielectric waveguide
JP5198327B2 (en) * 2009-02-27 2013-05-15 京セラ株式会社 High frequency substrate, transmitter, receiver, transmitter / receiver, and radar device including high frequency substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680135A (en) * 2014-10-16 2016-06-15 现代摩比斯株式会社 Transit structure of waveguide and dielectric waveguide

Also Published As

Publication number Publication date
JP2004357042A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
JPH11284409A (en) Waveguide-type band pass filter
JP2008271295A (en) Body structure connecting microstrip line and layered waveguide line and wiring board with the same
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
EP0898322A2 (en) Dielectric waveguide line and its branch structure
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP4199395B2 (en) Multilayer Magic T
JP3493265B2 (en) Dielectric waveguide line and wiring board
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP3464104B2 (en) Coupling structure of laminated waveguide line
JP3686736B2 (en) Dielectric waveguide line and wiring board
JP4535640B2 (en) Aperture antenna and substrate with aperture antenna
JP4058381B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP2005012699A (en) Connection structure between waveguide and dielectric waveguide line having dielectric resonator, and antenna equipment and filter equipment using the same structure
JPH11308025A (en) Directional coupler
JP3522120B2 (en) Connection structure of dielectric waveguide line
JP3439973B2 (en) Branch structure of dielectric waveguide
JP2011010242A (en) High-frequency substrate and high-frequency module
JP4731520B2 (en) Connection structure of laminated waveguide line and laminated waveguide line and wiring board having the same
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JPH11355010A (en) Waveguide-type band pass filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees