JP3522138B2 - Connection structure between dielectric waveguide line and rectangular waveguide - Google Patents

Connection structure between dielectric waveguide line and rectangular waveguide

Info

Publication number
JP3522138B2
JP3522138B2 JP36697398A JP36697398A JP3522138B2 JP 3522138 B2 JP3522138 B2 JP 3522138B2 JP 36697398 A JP36697398 A JP 36697398A JP 36697398 A JP36697398 A JP 36697398A JP 3522138 B2 JP3522138 B2 JP 3522138B2
Authority
JP
Japan
Prior art keywords
dielectric
line
conductor
dielectric waveguide
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36697398A
Other languages
Japanese (ja)
Other versions
JP2000196301A (en
Inventor
健 竹之下
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36697398A priority Critical patent/JP3522138B2/en
Publication of JP2000196301A publication Critical patent/JP2000196301A/en
Application granted granted Critical
Publication of JP3522138B2 publication Critical patent/JP3522138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)
  • Waveguide Connection Structure (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマイクロ波帯やミリ
波帯等の高周波信号を伝達するための誘電体導波管線路
と方形導波管との接続構造に関し、特に直交する誘電体
導波管線路と方形導波管とを低損失に接続することがで
きる誘電体導波管線路と方形導波管との接続構造に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting structure of a dielectric waveguide line and a rectangular waveguide for transmitting a high frequency signal such as a microwave band and a millimeter wave band, and particularly to an orthogonal dielectric waveguide. The present invention relates to a connection structure between a dielectric waveguide line and a rectangular waveguide, which can connect the waveguide line and the rectangular waveguide with low loss.

【0002】[0002]

【従来の技術】近年、マイクロ波帯やミリ波帯等の高周
波信号を用いた移動体通信および車間レーダ等の研究が
盛んに進められている。これらの高周波回路において高
周波信号を伝送するための伝送線路には小型で伝送損失
が小さいことが求められている。特に、高周波回路を構
成する基板上または基板内に形成できると小型化の面で
有利となることから、従来、そのような伝送線路として
ストリップ線路やマイクロストリップ線路・コプレーナ
線路・誘電体導波管線路等が用いられてきた。
2. Description of the Related Art In recent years, research on mobile communication and inter-vehicle radar using high-frequency signals in the microwave band, millimeter wave band, etc. has been actively pursued. In these high frequency circuits, transmission lines for transmitting high frequency signals are required to be small and have low transmission loss. In particular, since it is advantageous in terms of downsizing if it can be formed on or in a substrate that constitutes a high-frequency circuit, strip line, microstrip line, coplanar line, and dielectric waveguide have been conventionally used as such transmission lines. Railroads have been used.

【0003】これらのうちストリップ線路・マイクロス
トリップ線路・コプレーナ線路は誘電体基板と線路導体
層とグランド(接地)導体層とで構成されており、線路
導体層とグランド導体層の周囲の空間および誘電体基板
中を高周波信号の電磁波が伝播するものである。これら
の線路は30GHz帯域までの信号伝送に対しては問題な
いが、30GHz以上では伝送損失が生じやすいという問
題点がある。
Among these, the strip line, microstrip line, and coplanar line are composed of a dielectric substrate, a line conductor layer, and a ground (ground) conductor layer, and the space around the line conductor layer and the ground conductor layer and the dielectric. An electromagnetic wave of a high frequency signal propagates through the body substrate. These lines have no problem for signal transmission up to the 30 GHz band, but have a problem that transmission loss tends to occur at 30 GHz or higher.

【0004】これに対して導波管型の伝送線路は30GH
z以上のミリ波帯域においても伝送損失が小さい点で有
利である。
On the other hand, the waveguide type transmission line is 30 GH
It is advantageous in that the transmission loss is small even in the millimeter wave band of z or more.

【0005】このうち方形導波管は、断面が方形の金属
壁で囲まれた空気中を電磁波が伝搬する構造となってお
り、誘電体による損失がないため30GHz以上のミリ波
帯域においても伝送損失が非常に小さいものである。
Of these, the rectangular waveguide has a structure in which an electromagnetic wave propagates in the air surrounded by a metal wall having a rectangular cross section, and since there is no loss due to a dielectric material, it is transmitted even in the millimeter wave band of 30 GHz or more. The loss is very small.

【0006】しかし、線路断面の長手方向の長さを伝搬
する信号波長の2分の1以上とする必要があるため、寸
法が大きく高密度での配線が困難であるという問題点が
ある。また、金属壁で構成されるため、高精度な加工が
困難であるという問題点もある。
However, since it is necessary to set the length of the cross section of the line in the longitudinal direction to be ½ or more of the signal wavelength to be propagated, there is a problem that the wiring is large in size and high density is difficult. Further, since it is composed of a metal wall, there is a problem that it is difficult to perform highly accurate processing.

【0007】これに対し、導波管の優れた伝送特性を活
かした、誘電体多層基板内に形成可能な伝送線路である
誘電体導波管線路は、導体壁で囲まれた領域の内部に誘
電体が満たされた構造となっているため誘電体による伝
送損失があるものの、損失の小さい誘電体を用いれば伝
送損失を実用上問題ない程度に小さくすることができ、
方形導波管と同じ周波数範囲で信号を伝搬させようとす
ると、誘電体の比誘電率をεr としたときに線路の断面
のサイズを1/√εr と小型にできるメリットがある。
On the other hand, a dielectric waveguide line, which is a transmission line that can be formed in a dielectric multilayer substrate by taking advantage of the excellent transmission characteristics of the waveguide, is provided inside a region surrounded by conductor walls. Although there is a transmission loss due to the dielectric because it has a structure filled with a dielectric, if a dielectric with a small loss is used, the transmission loss can be reduced to such an extent that there is no practical problem.
If a signal is to be propagated in the same frequency range as the rectangular waveguide, there is an advantage that the size of the cross section of the line can be made as small as 1 / √ε r when the relative permittivity of the dielectric is ε r .

【0008】例えば、特開平6−53711 号公報におい
て、誘電体基板を一対の主導体層で挟み、さらに主導体
層間を接続する2列に配設された複数のビアホールによ
って側壁を形成した導波管線路が提案されている。この
導波管線路は誘電体材料の四方を一対の主導体層とビア
ホールによる疑似的な導体壁で囲むことによって導体壁
内の領域を信号伝送用の線路としたものである。このよ
うな構成によれば、構成がいたって簡単となって装置全
体の小型化も図り得るというものである。
For example, in Japanese Unexamined Patent Publication No. 6-53711, a waveguide in which a dielectric substrate is sandwiched between a pair of main conductor layers and side walls are formed by a plurality of via holes arranged in two rows connecting the main conductor layers Pipelines have been proposed. In this waveguide line, a region inside the conductor wall is used as a signal transmission line by surrounding the dielectric material on four sides with a pair of main conductor layers and a pseudo conductor wall composed of via holes. According to such a configuration, the configuration is very simple and the overall size of the device can be reduced.

【0009】さらに、本発明者は特願平8−229925号に
おいて誘電体基板中に形成した多層構造による誘電体導
波管線路を提案した。これは積層型導波管と呼ばれるも
のであり、前述のような誘電体導波管線路を誘電体層と
一対の主導体層と貫通導体群とで形成し、さらに貫通導
体群に加えて副導体層を形成することにより、電気的な
壁としての側壁を強化したものである。前述のような誘
電体導波管線路では導波管内に貫通導体に平行でない電
界が存在すると側壁から電界の漏れが発生するが、この
積層型導波管では副導体層があるためにこのような電界
の漏れが発生しない優れたものとなる。
Further, the present inventor proposed in Japanese Patent Application No. 8-229925 a dielectric waveguide line having a multilayer structure formed in a dielectric substrate. This is called a laminated waveguide, and the dielectric waveguide line as described above is formed by a dielectric layer, a pair of main conductor layers, and a through conductor group, and a sub conductor is added in addition to the through conductor group. By forming the conductor layer, the side wall as an electric wall is reinforced. In the above-mentioned dielectric waveguide line, when an electric field that is not parallel to the through conductor exists in the waveguide, the electric field leaks from the side wall, but this laminated waveguide has a sub-conductor layer. It is excellent in that no electric field leakage occurs.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、誘電体
導波管線路を用いて構成された高周波回路について例え
ば高周波特性を測定・評価するためにネットワークアナ
ライザ等の測定装置へ接続するためには、誘電体導波管
線路を直接接続することが困難であり、方形導波管を介
すると容易に接続することができてより正確な測定が可
能になる。また、MMIC(マイクロ波モノリシック集
積回路)等の能動回路に誘電体導波管線路を接続する場
合にも、方形導波管を介することによって接続が容易と
なり、回路全体の小型化が可能となる。そのため、良好
な伝送特性を有する方形導波管と誘電体導波管線路との
接続構造を構成することが求められていた。
However, in order to connect to a measuring device such as a network analyzer for measuring and evaluating the high frequency characteristics of a high frequency circuit constituted by using a dielectric waveguide line, the dielectric It is difficult to directly connect the body waveguide line, and the rectangular waveguide can be easily connected to enable more accurate measurement. Also, when connecting a dielectric waveguide line to an active circuit such as an MMIC (microwave monolithic integrated circuit), the connection is facilitated by using a rectangular waveguide, and the entire circuit can be downsized. . Therefore, it has been required to construct a connection structure of a rectangular waveguide and a dielectric waveguide line having good transmission characteristics.

【0011】本発明は上記事情に鑑みて案出されたもの
であり、その目的は、接続部での高周波信号の反射を低
減して低損失で接続することができる誘電体導波管線路
と方形導波管との接続構造を提供することにある。
The present invention has been devised in view of the above circumstances, and an object thereof is to provide a dielectric waveguide line capable of reducing reflection of a high frequency signal at a connecting portion and connecting with low loss. It is to provide a connection structure with a rectangular waveguide.

【0012】[0012]

【課題を解決するための手段】本発明の誘電体導波管線
路と方形導波管との接続構造は、誘電体基板を挟持する
一対の導体層と、高周波信号の伝送方向に信号波長の2
分の1未満の繰り返し間隔で、かつ前記伝送方向と直交
する方向に所定の幅で前記導体層間を電気的に接続して
形成された2列の貫通導体群とを具備して成り、前記導
体層および前記貫通導体群で囲まれた伝送領域によって
高周波信号を伝送する誘電体導波管線路と、一方の前記
導体層に設けた結合用窓に高周波信号の伝送方向が直交
するように開口端面を対向させた方形導波管とを、前記
結合用窓を前記開口端面で覆うようにして当接させると
ともに、この当接部における前記一対の導体層の間隔を
(λb/4)×(1/√εr )(ただし、λb:方形導
波管の管内波長、εr :誘電体基板の比誘電率)の長さ
に設定したことを特徴とするものである。
A connection structure of a dielectric waveguide line and a rectangular waveguide according to the present invention has a pair of conductor layers sandwiching a dielectric substrate and a signal wavelength in the transmission direction of a high frequency signal. Two
A conductor having two rows of through conductors formed by electrically connecting the conductor layers with a predetermined width in a direction orthogonal to the transmission direction at a repeating interval of less than one-half. A dielectric waveguide line for transmitting a high frequency signal by a transmission region surrounded by a layer and the through conductor group, and an opening end face so that the transmission direction of the high frequency signal is orthogonal to the coupling window provided on one of the conductor layers. With the rectangular waveguides facing each other so as to cover the coupling window with the opening end face, and the distance between the pair of conductor layers at the contact portion is (λb / 4) × (1 / √ε r ) (where λb is the guide wavelength of the rectangular waveguide, ε r is the relative permittivity of the dielectric substrate).

【0013】また、本発明の誘電体導波管線路と方形導
波管との接続構造は、上記構成において、前記誘電体導
波管線路において前記結合用窓から高周波信号の伝送方
向にλa/4(ただし、λa:誘電体導波管線路の管内
波長)の長さの位置に、前記2列の貫通導体群の幅およ
び/または前記一対の導体層の間隔を変化させた前記伝
送領域の変化部を設けたことを特徴とするものである。
Further, the connection structure of the dielectric waveguide line and the rectangular waveguide of the present invention has the above-mentioned structure, and in the dielectric waveguide line, λa / in the transmission direction of the high frequency signal from the coupling window in the dielectric waveguide line. 4 (where λa is the guide wavelength of the dielectric waveguide line), the width of the penetrating conductor group in the two rows and / or the distance between the pair of conductor layers in the transmission region is changed. It is characterized in that a changing portion is provided.

【0014】[0014]

【発明の実施の形態】以下、本発明の誘電体導波管線路
と方形導波管との接続構造について図面を参照しながら
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A connection structure of a dielectric waveguide line and a rectangular waveguide of the present invention will be described below with reference to the drawings.

【0015】図1は本発明に用いる誘電体導波管線路の
構成例を説明するための概略斜視図である。図1におい
て、1は誘電体基板、2および3は誘電体基板1を挟持
する一対の導体層、4は信号伝送方向に信号波長の2分
の1未満の繰り返し間隔cで、かつ信号伝送方向と直交
する方向に所定の幅bで一対の導体層2・3間を電気的
に接続するように形成された2列の貫通導体群である。
また、5は貫通導体群4の各列を形成する貫通導体同士
を電気的に接続する、導体層2・3と平行に形成された
補助導体層であり、必要に応じて適宜設けられる。6は
これら一対の導体層2・3と貫通導体群4および補助導
体層5により形成される誘電体導波管線路である。この
ように一対の導体層2・3と貫通導体群4とで囲まれた
領域に対してさらに補助導体層5を形成することによ
り、誘電体導波管線路6の内部から見るとその側壁は貫
通導体群4と補助導体層5とによって細かな格子状にな
り、様々な方向の電磁波が遮蔽される。
FIG. 1 is a schematic perspective view for explaining a structural example of a dielectric waveguide line used in the present invention. In FIG. 1, 1 is a dielectric substrate, 2 and 3 are a pair of conductor layers sandwiching the dielectric substrate 1, 4 is a repeating interval c of less than one-half of a signal wavelength in the signal transmission direction, and the signal transmission direction is 2 is a through-conductor group of two rows formed so as to electrically connect the pair of conductor layers 2 and 3 with a predetermined width b in a direction orthogonal to.
Reference numeral 5 denotes an auxiliary conductor layer formed in parallel with the conductor layers 2 and 3, which electrically connects the through conductors forming each row of the through conductor group 4 and is provided as needed. Reference numeral 6 denotes a dielectric waveguide line formed by the pair of conductor layers 2 and 3, the through conductor group 4 and the auxiliary conductor layer 5. By forming the auxiliary conductor layer 5 in the region surrounded by the pair of conductor layers 2 and 3 and the penetrating conductor group 4 as described above, the side wall of the dielectric waveguide line 6 is seen from the inside. The penetrating conductor group 4 and the auxiliary conductor layer 5 form a fine grid shape, and shield electromagnetic waves in various directions.

【0016】図1に示すように、所定の厚みaの誘電体
基板1を挟持する位置に一対の導体層2・3が形成され
ており、導体層2・3は誘電体基板1の少なくとも伝送
線路形成位置を挟む上下面に形成されている。また、導
体層2・3間には導体層2と3とを電気的に接続するス
ルーホール導体やビアホール導体等の貫通導体が多数設
けられ、これら多数の貫通導体により2列の貫通導体群
4を形成している。
As shown in FIG. 1, a pair of conductor layers 2 and 3 are formed at positions where a dielectric substrate 1 having a predetermined thickness a is sandwiched, and the conductor layers 2 and 3 are at least the transmission of the dielectric substrate 1. It is formed on the upper and lower surfaces sandwiching the line formation position. In addition, a large number of through conductors such as through-hole conductors and via-hole conductors that electrically connect the conductor layers 2 and 3 are provided between the conductor layers 2 and 3, and the through conductor groups 4 in two rows are formed by the large number of through conductors. Is formed.

【0017】2列の貫通導体群4は、図示するように、
高周波信号の伝送方向すなわち線路形成方向に信号波長
の2分の1未満の所定の繰り返し間隔cで、かつ伝送方
向と直交する方向に所定の一定の間隔(幅)bをもって
形成されている。これにより、この誘電体導波管線路6
における電気的な側壁を形成している。
The two rows of through conductor groups 4 are, as shown in the drawing,
The high-frequency signal is formed in the transmission direction, that is, in the line formation direction, with a predetermined repeating interval c that is less than one-half of the signal wavelength and a predetermined constant interval (width) b in the direction orthogonal to the transmission direction. As a result, this dielectric waveguide line 6
Forming an electrical side wall at.

【0018】ここで、誘電体基板1の厚みaすなわち一
対の導体層2・3間の間隔に対する制限は特にないが、
シングルモードで用いる場合には間隔bに対して2分の
1程度または2倍程度とすることがよく、図1の例では
誘電体導波管線路6のH面に当たる部分が導体層2・3
で、E面に当たる部分が貫通導体群4および補助導体層
5でそれぞれ形成される。また、間隔bに対して厚みa
を2倍程度とすれば、誘電体導波管線路6のE面に当た
る部分が導体層2・3で、H面に当たる部分が貫通導体
群4および補助導体層5でそれぞれ形成されることとな
る。
There is no particular limitation on the thickness a of the dielectric substrate 1, that is, the distance between the pair of conductor layers 2 and 3,
When used in the single mode, it is preferable to set the distance b to about ½ or twice, and in the example of FIG. 1, the portion corresponding to the H surface of the dielectric waveguide line 6 is the conductor layer 2.3.
Then, the portion corresponding to the E surface is formed by the through conductor group 4 and the auxiliary conductor layer 5, respectively. In addition, the thickness a with respect to the distance b
Is about twice, the portion corresponding to the E surface of the dielectric waveguide line 6 is formed by the conductor layers 2 and 3, and the portion corresponding to the H surface is formed by the through conductor group 4 and the auxiliary conductor layer 5. .

【0019】また、間隔cが信号波長の2分の1未満の
間隔に設定されることで貫通導体群4により電気的な壁
が形成できる。この間隔cは、望ましくは信号波長の4
分の1未満である。
By setting the distance c to be less than half the signal wavelength, the through conductor group 4 can form an electrical wall. This distance c is preferably 4 of the signal wavelength.
It is less than one-third.

【0020】平行に配置された一対の導体層2・3間に
はTEM波が伝播できるため、貫通導体群4の各列にお
ける貫通導体の間隔cが信号波長λの2分の1(λ/
2)よりも大きいと、この誘電体導波管線路6に電磁波
を給電しても電磁波は貫通導体群4の間から漏れてしま
い、ここで作られる疑似的な導波管線路に沿って伝播し
ない。しかし、貫通導体群4の間隔cがλ/2よりも小
さいと、電気的な側壁を形成することとなって電磁波は
誘電体導波管線路6に対して垂直方向に伝播することが
できず、反射しながら誘電体導波管線路6の信号伝送方
向に伝播される。
Since the TEM wave can propagate between the pair of conductor layers 2 and 3 arranged in parallel, the spacing c between the through conductors in each row of the through conductor group 4 is ½ of the signal wavelength λ (λ /
If it is larger than 2), electromagnetic waves will leak from between the penetrating conductor groups 4 even if electromagnetic waves are fed to the dielectric waveguide line 6, and propagate along the pseudo waveguide line made here. do not do. However, if the distance c between the penetrating conductor groups 4 is smaller than λ / 2, an electrical side wall is formed, and electromagnetic waves cannot propagate in the direction perpendicular to the dielectric waveguide line 6. , Is propagated in the signal transmission direction of the dielectric waveguide line 6 while being reflected.

【0021】その結果、図1のような構成によれば、一
対の導体層2・3と2列の貫通導体群4および補助導体
層5とによって囲まれる断面積がa×bのサイズの領域
が誘電体導波管線路6となる。
As a result, according to the structure as shown in FIG. 1, the area surrounded by the pair of conductor layers 2 and 3 and the two rows of through conductor groups 4 and the auxiliary conductor layers 5 has a cross-sectional area of size a × b. Serves as the dielectric waveguide line 6.

【0022】図1に示した態様では貫通導体群4は2列
に形成したが、この貫通導体群4を4列あるいは6列に
配設して、貫通導体群4による疑似的な導体壁を2重・
3重に形成することにより導体壁からの電磁波の漏れを
より効果的に防止することもできる。
In the embodiment shown in FIG. 1, the penetrating conductor groups 4 are formed in two rows, but the penetrating conductor groups 4 are arranged in four rows or six rows to form a pseudo conductor wall by the penetrating conductor groups 4. Double
It is possible to more effectively prevent the electromagnetic wave from leaking from the conductor wall by forming the triple layer.

【0023】このような誘電体導波管線路6によれば、
誘電体導波管による伝送線路となるので、誘電体基板1
の比誘電率をεr とするとその導波管サイズは通常の導
波管の1/√εr の大きさになる。従って、誘電体基板
1を構成する材料の比誘電率εr を大きいものとするほ
ど導波管サイズを小さくすることができて高周波回路の
小型化を図ることができ、高密度に配線が形成される多
層配線基板または半導体素子収納用パッケージあるいは
車間レーダの伝送線路としても利用可能な大きさの誘電
体導波管線路6とすることができる。
According to such a dielectric waveguide line 6,
Since the transmission line is a dielectric waveguide, the dielectric substrate 1
When the relative permittivity of is ε r , the waveguide size is 1 / √ε r of a normal waveguide. Therefore, the larger the relative permittivity ε r of the material forming the dielectric substrate 1 is, the smaller the size of the waveguide can be, and the size of the high frequency circuit can be reduced. It is possible to use the dielectric waveguide line 6 of a size that can be used as a transmission line for a multilayer wiring board, a package for housing semiconductor elements, or an inter-vehicle radar.

【0024】なお、貫通導体群4を構成する貫通導体は
前述のように信号波長の2分の1未満の繰り返し間隔c
で配設されており、この間隔cは良好な伝送特性を実現
するためには一定の繰り返し間隔とすることが望ましい
が、信号波長の2分の1未満の間隔であれば、適宜変化
させたりいくつかの値を組み合わせたりしてもよい。
As described above, the through conductors forming the through conductor group 4 have a repeating interval c of less than half the signal wavelength.
It is desirable that this interval c be a constant repeating interval in order to realize good transmission characteristics, but if it is less than half the signal wavelength, it can be changed as appropriate. You may combine several values.

【0025】このような誘電体導波管線路6を構成する
誘電体基板1としては、誘電体として機能し高周波信号
の伝送を妨げることのない特性を有するものであればと
りわけ限定するものではないが、伝送線路を形成する際
の精度および製造の容易性の点からは、誘電体基板1は
セラミックスから成ることが望ましい。
The dielectric substrate 1 constituting such a dielectric waveguide line 6 is not particularly limited as long as it functions as a dielectric and has characteristics that do not hinder the transmission of high frequency signals. However, it is desirable that the dielectric substrate 1 be made of ceramics from the viewpoint of accuracy and ease of manufacturing when forming the transmission line.

【0026】このようなセラミックスとしてはこれまで
様々な比誘電率を持つセラミックスが知られているが、
本発明に係る誘電体導波管線路によって高周波信号を伝
送するためには常誘電体であることが望ましい。これ
は、一般に強誘電体セラミックスは高周波領域では誘電
損失が大きく伝送損失が大きくなるためである。従っ
て、誘電体基板1の比誘電率εr は4〜100 程度が適当
である。
Ceramics having various relative dielectric constants have been known as such ceramics.
In order to transmit a high frequency signal by the dielectric waveguide line according to the present invention, a paraelectric material is desirable. This is because ferroelectric ceramics generally have large dielectric loss and high transmission loss in the high frequency region. Therefore, it is suitable that the dielectric constant ε r of the dielectric substrate 1 is about 4 to 100.

【0027】また、一般に多層配線基板や半導体素子収
納用パッケージあるいは車間レーダに形成される配線層
の線幅は最大でも1mm程度であることから、比誘電率
が100 の材料を用い、上部がH面すなわち磁界が上側の
面に平行に巻く電磁界分布になるように用いた場合は、
用いることのできる最小の周波数は15GHzと算出さ
れ、マイクロ波帯の領域でも利用可能となる。
In general, the wiring layer formed on the multilayer wiring board, the package for storing semiconductor elements, or the inter-vehicle radar has a maximum line width of about 1 mm. Therefore, a material having a relative permittivity of 100 is used and the upper portion is H. When used so that the surface, that is, the magnetic field, has an electromagnetic field distribution that winds parallel to the upper surface,
The minimum frequency that can be used is calculated as 15 GHz, and it can be used in the microwave band region.

【0028】一方、一般的に誘電体基板1として用いら
れる樹脂からなる誘電体は、比誘電率εr が2程度であ
るため、線幅が1mmの場合は約100 GHz以上でない
と利用することができないものとなる。
On the other hand, since a dielectric made of resin generally used as the dielectric substrate 1 has a relative permittivity ε r of about 2, if the line width is 1 mm, it should be used at about 100 GHz or more. Will not be possible.

【0029】また、このような常誘電体セラミックスの
中にはアルミナやシリカ等のように誘電正接が非常に小
さなものが多いが、全ての常誘電体セラミックスが利用
可能であるわけではない。誘電体導波管線路の場合は導
体による損失はほとんどなく、信号伝送時の損失のほと
んどは誘電体による損失である。その誘電体による損失
α(dB/m)は次のように表わされる。 α=27.3×tanδ/〔λ/{1−(λ/λc )2
1/2 〕 式中、tanδ:誘電体の誘電正接 λ :誘電体中の波長 λc :遮断波長 規格化された矩形導波管(WRJシリーズ)形状に準ず
ると、上式中の{1−(λ/λc )2 1/2 は0.75程度
である。
In addition, many paraelectric ceramics such as alumina and silica have a very small dielectric loss tangent, but not all paraelectric ceramics can be used. In the case of the dielectric waveguide line, there is almost no loss due to the conductor, and most of the loss during signal transmission is due to the dielectric. The loss α (dB / m) due to the dielectric is expressed as follows. α = 27.3 × tan δ / [λ / {1- (λ / λc) 2 }
1/2 ] In the formula, tan δ: dielectric loss tangent of the dielectric λ: wavelength in the dielectric λc: cutoff wavelength According to the standardized rectangular waveguide (WRJ series) shape, {1- ( λ / λc) 2 } 1/2 is about 0.75.

【0030】従って、実用に供し得る伝送損失である−
100 dB/m以下にするには、次の関係が成立するよう
に誘電体を選択することが必要である。 f×εr 1/2 ×tanδ≦0.8 式中、fは使用する高周波信号の周波数(GHz)であ
る。
Therefore, the transmission loss can be put to practical use-
In order to achieve 100 dB / m or less, it is necessary to select a dielectric material so that the following relationship holds. f × ε r 1/2 × tan δ ≦ 0.8 In the formula, f is the frequency (GHz) of the high frequency signal used.

【0031】このような誘電体基板1としては、例えば
アルミナセラミックスや窒化アルミニウムセラミックス
・ガラスセラミックス等がある。これらによる誘電体基
板1は、例えばセラミックス原料粉末に適当な有機溶剤
・溶媒を添加混合して泥漿状になすとともに、これを従
来周知のドクターブレード法やカレンダーロール法等を
採用してシート状となすことによって複数枚のセラミッ
クグリーンシートを得て、しかる後、これらセラミック
グリーンシートの各々に適当な打ち抜き加工を施すとと
もにこれらを積層し、アルミナセラミックスの場合は15
00〜1700℃、ガラスセラミックスの場合は850 〜1000
℃、窒化アルミニウムセラミックスの場合は1600〜1900
℃の温度で焼成することによって製作される。
Examples of such a dielectric substrate 1 include alumina ceramics, aluminum nitride ceramics and glass ceramics. The dielectric substrate 1 made of these is formed into a slurry form by adding and mixing an appropriate organic solvent / solvent to the ceramic raw material powder, and is formed into a sheet form by adopting the conventionally known doctor blade method, calendar roll method, or the like. By doing so, a plurality of ceramic green sheets are obtained, and then each of these ceramic green sheets is appropriately punched and laminated, and in the case of alumina ceramics, 15
00 to 1700 ℃, 850 to 1000 for glass ceramics
° C, 1600 to 1900 for aluminum nitride ceramics
It is manufactured by firing at a temperature of ℃.

【0032】また、一対の導体層2・3は、例えば誘電
体基板1がアルミナセラミックスから成る場合には、タ
ングステン等の金属粉末に適当なアルミナ・シリカ・マ
グネシア等の酸化物や有機溶剤・溶媒等を添加混合して
ペースト状にしたものを用いて厚膜印刷法により少なく
とも伝送線路を完全に覆うようにセラミックグリーンシ
ート上に印刷し、しかる後、約1600℃の高温で焼成し、
厚み10〜15μm以上となるようにして形成する。なお、
金属粉末としては、ガラスセラミックスの場合は銅・金
・銀が、窒化アルミニウムセラミックスの場合はタング
ステン・モリブデンが好適である。また、導体層2・3
の厚みは一般的に5〜50μm程度とされる。
Further, the pair of conductor layers 2 and 3 are, for example, when the dielectric substrate 1 is made of alumina ceramics, an oxide such as alumina, silica, magnesia, or an organic solvent or solvent suitable for metal powder such as tungsten. Using a paste-like mixture prepared by adding, mixing, etc., printing on a ceramic green sheet so as to completely cover at least the transmission line by a thick film printing method, and then baking at a high temperature of about 1600 ° C.,
It is formed to have a thickness of 10 to 15 μm or more. In addition,
As the metal powder, copper / gold / silver is suitable in the case of glass ceramics, and tungsten / molybdenum is suitable in the case of aluminum nitride ceramics. Also, the conductor layers 2 and 3
Is generally about 5 to 50 μm.

【0033】また、貫通導体群4を構成する貫通導体
は、例えばビアホール導体やスルーホール導体等により
形成すればよい。その断面形状は製作が容易な円形の
他、矩形や菱形等の多角形であってもよい。これら貫通
導体は、例えばセラミックグリーンシートに打ち抜き加
工を施して作製した貫通孔に導体層2・3と同様の金属
ペーストを埋め込み、しかる後、誘電体基板1と同時に
焼成して形成する。なお、貫通導体は直径50〜300 μm
が適当である。次に、このような誘電体導波管線路を用
いた、本発明の誘電体導波管線路と方形導波管との接続
構造の実施の形態の一例を図2に示す。
The through conductors forming the through conductor group 4 may be formed of, for example, via hole conductors or through hole conductors. The cross-sectional shape may be a polygon such as a rectangle or a rhombus, as well as a circle which is easy to manufacture. These penetrating conductors are formed by, for example, embedding a metal paste similar to that of the conductor layers 2 and 3 in a penetrating hole formed by punching a ceramic green sheet and then firing the dielectric substrate 1 at the same time. The through conductor has a diameter of 50 to 300 μm.
Is appropriate. Next, FIG. 2 shows an example of an embodiment of a connection structure between a dielectric waveguide line and a rectangular waveguide of the present invention, which uses such a dielectric waveguide line.

【0034】図2は誘電体導波管線路の一対の導体層の
うち上側に位置する導体層の上に高周波信号の伝送方向
が直交するように方形導波管の開口端面を当接させて接
続した状態を示す斜視図であり、理解を容易にするため
に誘電体導波管線路は輪郭で表示している。なお、図1
と同様の箇所には同じ符号を付してあり、誘電体基板は
表示を省略してある。
In FIG. 2, the opening end face of the rectangular waveguide is abutted on the upper conductor layer of the pair of conductor layers of the dielectric waveguide line so that the transmission directions of high frequency signals are orthogonal to each other. FIG. 3 is a perspective view showing a connected state, and the dielectric waveguide line is shown by a contour for easy understanding. Note that FIG.
The same reference numerals are given to the same portions as, and the display of the dielectric substrate is omitted.

【0035】図2において2・3は一対の導体層、4は
2列の貫通導体群、6は誘電体導波管線路である。この
例では、誘電体導波管線路6において導体層2・3がH
面となり、貫通導体群4による疑似的な導体壁がE面と
なる。7は一方の導体層、ここでは上側に位置する導体
層2に対して2列の貫通導体群4の幅の間の部分に高周
波信号の結合用の開口として設けた導体層の非形成部で
ある結合用窓であり、導体層2中に斜線を施して示して
いる。また、8は内部が中空の金属壁で構成された方形
導波管であり、その開口端面9で結合用窓7を覆うよう
にして、高周波信号の伝送方向が直交するように誘電体
導波管線路6の導体層2に当接させて配置されている。
In FIG. 2, 2 and 3 are a pair of conductor layers, 4 is a group of through conductors in two rows, and 6 is a dielectric waveguide line. In this example, in the dielectric waveguide line 6, the conductor layers 2 and 3 are H
Surface, and the pseudo conductor wall formed by the penetrating conductor group 4 becomes the E surface. Reference numeral 7 denotes one conductor layer, here a non-formed portion of the conductor layer provided as an opening for coupling a high frequency signal in a portion between the widths of the two through conductor groups 4 in two rows with respect to the conductor layer 2 located above It is a certain coupling window, and is shown by hatching in the conductor layer 2. Reference numeral 8 is a rectangular waveguide having a hollow metal wall inside, and its opening end face 9 covers the coupling window 7 so that the high-frequency signal transmission directions are orthogonal to each other. It is arranged in contact with the conductor layer 2 of the pipeline 6.

【0036】方形導波管8の開口端面9は誘電体導波管
線路6の結合用窓7を全て覆っており、かつ導体層2に
当接させ、隙間なく密着させることによって電気的に導
通している。これにより、方形導波管8を伝播してきた
電磁波は結合用窓7を介して誘電体導波管線路6に伝播
することとなるが、方形導波管8の内部が比誘電率が1
で誘電体導波管線路6の比誘電率が所定のεr であるた
め、および誘電体導波管線路6において結合用窓7と対
向する下面には導体層3があるため、高周波信号の電磁
波の一部は方形導波管8側に反射され、その他の大部分
は誘電体導波管線路6に伝播する。
The open end surface 9 of the rectangular waveguide 8 covers all the coupling windows 7 of the dielectric waveguide line 6 and is brought into contact with the conductor layer 2 so as to be in close contact with it without any gap, thereby electrically conducting. is doing. As a result, the electromagnetic wave propagating through the rectangular waveguide 8 propagates through the coupling window 7 to the dielectric waveguide line 6, but the relative permittivity inside the rectangular waveguide 8 is 1
Since the relative permittivity of the dielectric waveguide line 6 is a predetermined ε r , and the lower surface of the dielectric waveguide line 6 facing the coupling window 7 has the conductor layer 3, the high frequency signal Part of the electromagnetic wave is reflected to the side of the rectangular waveguide 8, and most of the other part propagates to the dielectric waveguide line 6.

【0037】高周波信号の反射が大きいと接続部におけ
る伝送損失が大きくなるため誘電体導波管線路6を伝播
する割合が小さくなる。ここで、誘電体導波管線路6と
方形導波管8の高周波信号の伝送方向が垂直になるよう
に接続されていれば、両者の比誘電率の差による反射の
影響は小さく導体層における反射の影響が大きなもの
となる。この導体層における反射の影響を低減するた
めには、導体層における反射波と入射波の一部を相殺
すればよい。
The ratio of propagating the dielectric waveguide line 6 for transmission loss is increased in the connecting portion reflecting a large high-frequency signals that a small. Here, if the transmission direction of the high-frequency signal of a dielectric waveguide line 6 and rectangular waveguide 8 is only to be connected to be perpendicular, the influence of reflection due to the difference in the relative dielectric constant of the two smaller conductive layer 3 The influence of the reflection at becomes large. In order to reduce the effect of reflection in the conductive layer 3 may be offset some of the reflected wave and the incident wave in the conductor layer 3.

【0038】従って、誘電体導波管線路6と方形導波管
8との当接部である結合用窓7の部分の一対の導体層2
・3の間隔すなわちこの部分の一対の導体層2・3で挟
持された誘電体基板の厚みを、(λb/4)×(1/√
ε)(ただし、λb:方形導波管の管内波長、ε
誘電体基板の比誘電率)の長さに設定すること、つまり
高周波信号の信号周波数における方形導波管8内の管内
波長λbを誘電体導波管線路6の誘電体基板の比誘電率
εの平方根で割った値と等しくすることにより、入射
波と反射波の位相は導体層上では等しく、結合用窓7
では180度異なるものとなる。その結果、入射波の一部
と反射波とは打ち消しあい、接続部での反射は低減され
ることとなるので、かかる構造を用いることにより、方
形導波管8と誘電体基板中に内蔵可能な誘電体導波管線
路6とを高周波信号の反射を低減して低損失で接続する
ことができるものとなる。
Therefore, the pair of conductor layers 2 in the portion of the coupling window 7 which is the contact portion between the dielectric waveguide 6 and the rectangular waveguide 8.
The interval of 3 or the thickness of the dielectric substrate sandwiched by the pair of conductor layers 2 and 3 in this portion is (λb / 4) × (1 / √
ε r ) (where λb: guide wavelength of rectangular waveguide, ε r :
(Relative permittivity of the dielectric substrate), that is, the in-tube wavelength λb in the rectangular waveguide 8 at the signal frequency of the high frequency signal is set to the relative permittivity ε of the dielectric substrate of the dielectric waveguide line 6. By making the value equal to the value obtained by dividing by the square root of r , the phases of the incident wave and the reflected wave are equal on the conductor layer 3 , and the coupling window 7
Will be different by 180 degrees. As a result, a part of the incident wave and the reflected wave cancel each other out, and the reflection at the connection portion is reduced. By using such a structure, it is possible to incorporate the rectangular waveguide 8 and the dielectric substrate. It is possible to reduce the reflection of high-frequency signals and connect the dielectric waveguide line 6 to the dielectric waveguide line 6 with low loss.

【0039】本発明の誘電体導波管線路6と方形導波管
8との接続構造において結合用窓7を形成する場合、そ
の位置・形状および大きさについては、接続構造に要求
される周波数特性・結合量および反射量が複雑に関与す
る。このため、要求される周波数特性を満足するように
電磁界解析により繰り返し計算することによって、所望
の接続特性を有する結合用窓7の位置・形状および大き
さ等が決定されることとなる。
When the coupling window 7 is formed in the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention, the position, shape and size of the coupling window 7 are the frequencies required for the connection structure. The characteristics / coupling amount and reflection amount are complicatedly involved. Therefore, the position, shape, size, etc. of the coupling window 7 having the desired connection characteristics are determined by repeatedly performing calculations by electromagnetic field analysis so as to satisfy the required frequency characteristics.

【0040】なお、誘電体導波管線路6においてE面を
導体層2・3で形成し、H面を貫通導体群4で形成し
て、結合用窓7を導体層2に設けた場合には、この当接
部の一対の導体層2・3の間隔を(λb/4)×(1/
√εr )としても、当接部における誘電体導波管線路6
の遮断周波数が高くなってしまうために高周波信号が伝
播しなくなる可能性があり、あまり有効ではないものと
なることがある。
When the E surface of the dielectric waveguide 6 is formed by the conductor layers 2 and 3 and the H surface is formed of the penetrating conductor group 4, and the coupling window 7 is provided in the conductor layer 2, Is the distance between the pair of conductor layers 2 and 3 at this contact portion is (λb / 4) × (1 /
√ε r ), the dielectric waveguide line 6 at the contact portion
Since the cut-off frequency becomes high, the high-frequency signal may not propagate and may not be very effective.

【0041】次に、図3に本発明の誘電体導波管線路と
方形導波管との接続構造の実施の形態の他の例を示す。
Next, FIG. 3 shows another example of the embodiment of the connection structure of the dielectric waveguide line and the rectangular waveguide of the present invention.

【0042】図3は図2に示した例と同様の誘電体導波
管線路6と方形導波管8との接続構造を示す斜視図であ
り、同様の箇所には同じ符号を付してある。図3では、
誘電体導波管線路6において結合用窓7から高周波信号
の伝送方向に誘電体導波管線路6の管内波長λaの4分
の1(λa/4)の長さの位置に、2列の貫通導体群4
の幅および/または一対の導体層2・3の間隔すなわち
一対の導体層2・3で挟持された誘電体基板の厚みを変
化させた伝送領域の変化部10を設けた例を示している。
FIG. 3 is a perspective view showing a connection structure between the dielectric waveguide line 6 and the rectangular waveguide 8 similar to the example shown in FIG. 2, and the same portions are designated by the same reference numerals. is there. In Figure 3,
In the dielectric waveguide line 6, two rows are arranged at a position of a quarter (λa / 4) of the guide wavelength λa of the dielectric waveguide line 6 in the transmission direction of the high-frequency signal from the coupling window 7. Through conductor group 4
2 and / or the spacing between the pair of conductor layers 2.3, that is, the thickness of the dielectric substrate sandwiched between the pair of conductor layers 2.3 is varied to provide the transmission region changing portion 10.

【0043】本発明の誘電体導波管線路6と方形導波管
8との接続構造においては、接続部である方形導波管8
の当接部における誘電体導波管線路6の厚みすなわち一
対の導体層2・3の間隔を前述のように調整すると両者
の低損失な接続が可能となるが、このような接続構造を
さらにこの誘電体導波管線路6が形成された誘電体基板
内に実際の高周波回路を形成する場合には、誘電体導波
管線路6と高周波回路とを接続するために誘電体導波管
線路6の信号伝送方向に垂直な断面すなわち高周波信号
の伝送領域のサイズを接続部とは異なるものとする必要
がある場合がある。
In the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention, the rectangular waveguide 8 which is the connecting portion.
By adjusting the thickness of the dielectric waveguide line 6 at the abutting part of, that is, the distance between the pair of conductor layers 2 and 3 as described above, a low loss connection between the two is possible. When an actual high frequency circuit is formed in the dielectric substrate on which the dielectric waveguide line 6 is formed, the dielectric waveguide line 6 is connected to the high frequency circuit. In some cases, it is necessary to make the cross section of No. 6 perpendicular to the signal transmission direction, that is, the size of the high frequency signal transmission region different from the size of the connection portion.

【0044】このような場合、誘電体導波管線路6にお
ける伝送領域のサイズを伝送方向の途中の不特定位置で
変化させると、その部分で特性インピーダンスが変化し
てしまうために高周波信号の反射が起きて伝送損失が生
じることとなる。これに対し、結合用窓7から高周波信
号の伝送方向にλa/4の長さの位置に伝送領域の変化
部10を設けることにより、方形導波管8との接続部と変
化部10との間に1/4波長の長さを持つ整合器を設ける
ことと等価となり、変化部10における高周波信号の反射
を低減することができ、伝送損失を小さくすることがで
きる。
In such a case, when the size of the transmission region in the dielectric waveguide 6 is changed at an unspecified position in the transmission direction, the characteristic impedance changes at that portion, so that the high frequency signal is reflected. Occurs, resulting in transmission loss. On the other hand, by providing the changing portion 10 of the transmission region at a position having a length of λa / 4 in the transmission direction of the high frequency signal from the coupling window 7, the connecting portion with the rectangular waveguide 8 and the changing portion 10 are connected. This is equivalent to providing a matching device having a length of ¼ wavelength between them, and it is possible to reduce the reflection of the high frequency signal at the changing portion 10 and reduce the transmission loss.

【0045】このような変化部10は、図3に示したよう
に誘電体導波管線路6の幅すなわち2列の貫通導体群4
の間隔(幅)を狭くするものの他にも、その間隔(幅)
を広くするものや、誘電体導波管線路6の厚みすなわち
一対の導体層2・3の間隔を狭くするもの、あるいは広
くするもの、さらにそれらを組み合わせて伝送領域のサ
イズを小さくするものや大きくするものであってもよ
く、そのサイズや形状は誘電体導波管線路6と高周波回
路との接続条件に応じて適宜設定すればよい。
As shown in FIG. 3, the changing portion 10 has the width of the dielectric waveguide line 6, that is, the through conductor groups 4 in two rows.
In addition to narrowing the space (width) of, the space (width)
To increase the thickness of the dielectric waveguide line 6, that is, to narrow or widen the distance between the pair of conductor layers 2 and 3, and to further increase the thickness of the dielectric waveguide line 6 to reduce the size of the transmission region. The size and shape may be appropriately set according to the connection conditions between the dielectric waveguide line 6 and the high frequency circuit.

【0046】また、図3においては変化部10として2列
の貫通導体群4の間隔(幅)をそれぞれ段差状に変化さ
せた例を示したが、変化部10は高周波信号の伝送方向に
対して必ずしも垂直である必要はなく、伝送方向に高周
波信号の伝送特性上で適切な長さを持つように連続的に
変化させたものであってもよい。
Further, FIG. 3 shows an example in which the intervals (widths) of the through conductor groups 4 in two rows are changed stepwise as the changing part 10, but the changing part 10 changes in the transmission direction of the high frequency signal. It does not necessarily have to be vertical, and may be continuously changed so as to have an appropriate length in the transmission direction in the transmission characteristics of the high frequency signal.

【0047】[0047]

【実施例】〔例1〕図2に示した構成の本発明の誘電体
導波管線路と方形導波管との接続構造について、以下の
ようにして伝送線路の伝送特性としてSパラメータを求
めた。
EXAMPLE 1 Regarding the connection structure between the dielectric waveguide line and the rectangular waveguide of the present invention having the configuration shown in FIG. 2, the S parameter is obtained as the transmission characteristic of the transmission line as follows. It was

【0048】まず、方形導波管8にはWRJ−95で高周
波信号の伝送方向に垂直な断面の寸法が2.54mm×1.27
mmのものを用いた。誘電体導波管線路6の誘電体基板
1には比誘電率εr が4.9 の銅導体同時焼成ガラスセラ
ミックスを用い、2列の貫通導体群4の間隔(幅)を1.
68mmとし、一対の導体層2・3の間隔を0.70mmとし
た。この導体層2・3の間隔は、方形導波管8中の76.5
GHzにおけるλb/4を誘電体基板1の比誘電率εr
で除した値に相当する。また、導体層2には結合用窓7
として1.27mm×1.68mmの開口を設けた。この結合用
窓7は、方形導波管8の開口端面の短辺方向の長さと誘
電体導波管線路6の高周波信号の伝送領域の長辺方向の
長さ(2列の貫通導体群4の幅)とに等しい寸法の開口
となっている。
First, in the rectangular waveguide 8, a WRJ-95 has a cross-sectional dimension perpendicular to the transmission direction of high frequency signals of 2.54 mm × 1.27.
The thing of mm was used. For the dielectric substrate 1 of the dielectric waveguide line 6, copper conductor co-firing glass ceramics with a relative permittivity ε r of 4.9 is used, and the spacing (width) between the two rows of through conductor groups 4 is 1.
The distance between the pair of conductor layers 2 and 3 was set to 68 mm and 0.70 mm. The distance between the conductor layers 2 and 3 is 76.5 in the rectangular waveguide 8.
Λb / 4 at GHz is defined as the relative permittivity ε r of the dielectric substrate 1.
Corresponds to the value divided by. Further, the coupling window 7 is formed on the conductor layer 2.
As a result, an opening of 1.27 mm × 1.68 mm was provided. The coupling window 7 has a length in the short side direction of the opening end face of the rectangular waveguide 8 and a length in the long side direction of the transmission region of the high-frequency signal of the dielectric waveguide line 6 (two through conductor groups 4 in two rows). Width) and the size of the opening is equal to.

【0049】このような誘電体導波管線路6の結合用窓
7を覆うように方形導波管8の開口端面を導体層2に当
接させ、この接続構造について方形導波管8から誘電体
導波管線路6へ高周波信号を伝送したときの高周波信号
の伝送特性を図4に示す。
The opening end face of the rectangular waveguide 8 is brought into contact with the conductor layer 2 so as to cover the coupling window 7 of the dielectric waveguide line 6 as described above. FIG. 4 shows transmission characteristics of the high frequency signal when the high frequency signal is transmitted to the body waveguide line 6.

【0050】図4はSパラメータのレベルの周波数特性
を示す線図であり、横軸は周波数(GHz)を、縦軸は
SパラメータのうちS11およびS21のレベルの値(d
B)を表わし、図中の特性曲線は各Sパラメータの周波
数特性を示している。
FIG. 4 is a diagram showing the frequency characteristics of the S parameter level, in which the horizontal axis represents frequency (GHz) and the vertical axis represents the S 11 and S 21 level values (d) of the S parameter.
B), and the characteristic curve in the figure shows the frequency characteristic of each S parameter.

【0051】図4に示した結果より、本発明の方形導波
管と誘電体導波管線路との接続構造によれば、反射係数
(S11)が76.5GHz近傍で極小になり、透過係数(S
21)が極大となっていることが分かる。なお、ここには
図示していないが、反射係数(S11)のピークは誘電体
導波管線路6の高周波信号の伝送領域の厚みを薄く、す
なわち導体層2・3の間隔を狭くすると高周波側に移動
し、厚くすると低周波側に移動する。
From the results shown in FIG. 4, according to the connection structure of the rectangular waveguide and the dielectric waveguide line of the present invention, the reflection coefficient (S 11 ) becomes the minimum near 76.5 GHz, and the transmission coefficient. (S
It can be seen that 21 ) is maximal. Although not shown here, the peak of the reflection coefficient (S 11 ) has a high frequency when the transmission region of the high frequency signal of the dielectric waveguide line 6 is thin, that is, when the interval between the conductor layers 2 and 3 is narrowed. It moves to the side, and when it becomes thicker, it moves to the low frequency side.

【0052】以上の結果より、誘電体導波管線路6と方
形導波管8との当接部における伝送領域の厚み、すなわ
ち一対の導体層2・3の間隔を(λb/4)×(1/√
ε)の長さと等しい値とすることにより、接続部にお
ける高周波信号の反射を低減して伝送損失を小さくでき
ることが確認できた。
From the above results, the thickness of the transmission region at the contact portion between the dielectric waveguide 6 and the rectangular waveguide 8, that is, the distance between the pair of conductor layers 2 and 3 is (λb / 4) × ( 1 / √
It was confirmed that the transmission loss can be reduced by reducing the reflection of the high frequency signal at the connection portion by setting the value equal to the length of ε r ).

【0053】〔例2〕次に、図3に示した構成の本発明
の誘電体導波管線路と方形導波管との接続構造につい
て、〔例1〕と同様にして伝送線路の伝送特性としてS
パラメータを求めた。
[Example 2] Next, regarding the connection structure between the dielectric waveguide line and the rectangular waveguide of the present invention having the configuration shown in FIG. 3, the transmission characteristics of the transmission line are the same as in [Example 1]. As S
The parameters were calculated.

【0054】ここで、誘電体導波管線路6の高周波信号
の伝送領域の寸法は、接続部の1.68mm×0.70mmか
ら、結合用窓7からλa/4に相当する0.53mmの位置
において、変化部10により2列の貫通導体群4の間隔
(幅)を狭くすることにより1.50mm×0.70mmに変化
させた。
Here, the dimension of the high frequency signal transmission area of the dielectric waveguide 6 is from 1.68 mm × 0.70 mm at the connection portion to 0.53 mm at a position corresponding to λa / 4 from the coupling window 7. By changing the gap (width) between the two groups of penetrating conductor groups 4 by the changing portion 10, it was changed to 1.50 mm × 0.70 mm.

【0055】このような本発明の誘電体導波管線路6と
方形導波管8との接続構造における高周波信号の伝送特
性を図5に示す。
FIG. 5 shows transmission characteristics of high frequency signals in the connection structure of the dielectric waveguide line 6 and the rectangular waveguide 8 of the present invention.

【0056】図5はSパラメータのレベルの周波数特性
を示す図4と同様の線図であり、横軸は周波数(GH
z)を、縦軸はSパラメータのうちS11およびS21のレ
ベルの値(dB)を表わし、図中の特性曲線は各Sパラ
メータの周波数特性を示している。
FIG. 5 is a diagram similar to FIG. 4 showing the frequency characteristics of the S parameter level, with the horizontal axis representing frequency (GH).
z), the vertical axis represents the level values (dB) of S 11 and S 21 of the S parameters, and the characteristic curve in the figure shows the frequency characteristic of each S parameter.

【0057】図5に示した結果より、本発明の方形導波
管と誘電体導波管線路との接続構造によれば、反射係数
(S11)が80GHz近傍で極小になり、透過係数(S
21)が極大となっていることが分かる。なお、ここに
は図示していないが、変化部10を設けないか、または設
けてもその位置をλa/4に相当する位置から外れたも
のとすると、高周波信号の反射係数(S11)が大きく
なり、透過係数(S21)が小さくなって、伝送特性が
悪化する傾向が見られた。
From the results shown in FIG. 5, according to the connection structure of the rectangular waveguide and the dielectric waveguide line of the present invention, the reflection coefficient (S 11 ) becomes minimum near 80 GHz, and the transmission coefficient. (S
It can be seen that 21 ) is maximized. Although not shown here, if the changing portion 10 is not provided or even if the changing portion 10 is provided and the position is out of the position corresponding to λa / 4, the reflection coefficient (S 11 ) of the high frequency signal is It was found that the transmission characteristics tended to deteriorate as the transmission coefficient (S 21 ) increased with the increase.

【0058】以上の結果より、誘電体導波管線路6の高
周波信号の伝送領域にその寸法が不連続となる変化部10
を設ける場合に、その位置を結合用窓7からλa/4の
位置に設定することにより、不連続部での高周波信号の
反射を低減して伝送損失を小さくできることが確認でき
た。
From the above results, the changing portion 10 in which the dimensions are discontinuous in the high frequency signal transmission region of the dielectric waveguide line 6 is obtained.
It has been confirmed that, by providing the position of λa / 4 from the coupling window 7 when providing, the reflection of the high frequency signal at the discontinuous portion can be reduced and the transmission loss can be reduced.

【0059】なお、本発明は以上の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更・改良を施すことは何ら差し支えない。例
えば、結合用窓から変化部までの断面寸法を、結合部に
おける断面寸法の積層型導波管のインピーダンスと変化
後の断面寸法の積層型導波管のインピーダンスの積の平
方根と等しくなるように選定するようにしてもよい。
The present invention is not limited to the above-described embodiments, and various modifications and improvements may be made without departing from the scope of the present invention. For example, make the cross-sectional dimension from the coupling window to the change portion equal to the square root of the product of the impedance of the laminated waveguide having the cross-sectional dimension at the coupling portion and the impedance of the laminated waveguide having the changed cross-sectional dimension. It may be selected.

【0060】[0060]

【発明の効果】以上詳述した通り、本発明の誘電体導波
管線路と方形導波管との接続構造によれば、誘電体導波
管線路と方形導波管との当接部である結合用窓の部分の
一対の導体層の間隔を(λb/4)×(1/√εr
(ただし、λb:方形導波管の管内波長、εr :誘電体
基板の比誘電率)の長さに設定したことにより、両者の
接続部での反射を低減することができ、方形導波管と誘
電体基板中に内蔵可能な誘電体導波管線路とを高周波信
号の反射を低減して低損失で接続することができた。
As described in detail above, according to the connection structure of the dielectric waveguide line and the rectangular waveguide of the present invention, the contact portion between the dielectric waveguide line and the rectangular waveguide is formed. The distance between a pair of conductor layers in a certain coupling window is (λb / 4) × (1 / √ε r ).
(However, by setting the length of λb: wavelength inside the rectangular waveguide, ε r : relative permittivity of the dielectric substrate), it is possible to reduce reflection at the connecting portion between the two, and thus the rectangular waveguide It was possible to reduce the reflection of high-frequency signals and connect the tube and the dielectric waveguide line that can be built in the dielectric substrate with low loss.

【0061】また、本発明の誘電体導波管線路と方形導
波管との接続構造によれば、誘電体導波管線路において
結合用窓から高周波信号の伝送方向にλa/4の長さの
位置に伝送領域の変化部を設けたことにより、変化部に
おける高周波信号の反射を低減することができ、誘電体
導波管線路の伝送領域の寸法を変化させて異なる伝送領
域の寸法を有する高周波回路と接続するような場合に、
この変化部における高周波信号の伝送損失を小さくする
ことができた。
Further, according to the connection structure of the dielectric waveguide line and the rectangular waveguide of the present invention, the length of λa / 4 from the coupling window in the transmission direction of the high frequency signal in the dielectric waveguide line. By providing the changing portion of the transmission region at the position of 1, the reflection of the high frequency signal at the changing portion can be reduced, and the dimensions of the transmission region of the dielectric waveguide line can be changed to have different transmission region dimensions. When connecting to a high frequency circuit,
It was possible to reduce the transmission loss of the high frequency signal in this changing portion.

【0062】以上により、本発明によれば、従来の多層
化技術によって容易に作製することのできる誘電体導波
管線路と、方形導波管との接続構造について、接続部で
の高周波信号の反射を低減して低損失で接続することが
できる誘電体導波管線路と方形導波管との接続構造を提
供することができた。
As described above, according to the present invention, regarding the connection structure of the dielectric waveguide line and the rectangular waveguide which can be easily manufactured by the conventional multilayering technique, the high frequency signal at the connection portion is It was possible to provide a connection structure between a dielectric waveguide line and a rectangular waveguide, which can reduce reflection and can be connected with low loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる誘電体導波管線路の例を説明す
るための概略斜視図である。
FIG. 1 is a schematic perspective view for explaining an example of a dielectric waveguide line used in the present invention.

【図2】本発明の誘電体導波管線路と方形導波管との接
続構造の実施の形態の一例を示す、誘電体導波管線路を
輪郭で表示した状態の斜視図である。
FIG. 2 is a perspective view showing an example of an embodiment of a connection structure between a dielectric waveguide line and a rectangular waveguide of the present invention, in which the dielectric waveguide line is displayed with a contour.

【図3】本発明の誘電体導波管線路と方形導波管との接
続構造の実施の形態の他の例を示す、誘電体導波管線路
を輪郭で表示した状態の斜視図である。
FIG. 3 is a perspective view showing another example of the embodiment of the connection structure of the dielectric waveguide line and the rectangular waveguide of the present invention in a state in which the dielectric waveguide line is displayed by a contour. .

【図4】本発明の誘電体導波管線路と方形導波管との接
続構造におけるSパラメータのレベルの周波数特性を示
す線図である。
FIG. 4 is a diagram showing frequency characteristics of S parameter levels in a connection structure of a dielectric waveguide line and a rectangular waveguide of the present invention.

【図5】本発明の誘電体導波管線路と方形導波管との接
続構造におけるSパラメータのレベルの周波数特性を示
す線図である。
FIG. 5 is a diagram showing frequency characteristics of S parameter levels in a connection structure of a dielectric waveguide line and a rectangular waveguide of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・誘電体基板 2、3・・・導体層 4・・・・・貫通導体群 6・・・・・誘電体導波管線路 7・・・・・結合用窓 8・・・・・方形導波管 9・・・・・開口端面 10・・・・・伝送領域の変化部 1. Dielectric substrate 2, 3 ... Conductor layer 4 ... Through conductor group 6 ... Dielectric waveguide line 7 ... window for coupling 8: Rectangular waveguide 9: Open end face 10 ・ ・ ・ ・ ・ Transmission area change

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01P 1/04 H01P 3/12 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01P 1/04 H01P 3/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体基板を挟持する一対の導体層と、
高周波信号の伝送方向に信号波長の2分の1未満の繰り
返し間隔で、かつ前記伝送方向と直交する方向に所定の
幅で前記導体層間を電気的に接続して形成された2列の
貫通導体群とを具備して成り、前記導体層および前記貫
通導体群で囲まれた伝送領域によって高周波信号を伝送
する誘電体導波管線路と、一方の前記導体層に設けた結
合用窓に高周波信号の伝送方向が直交するように開口端
面を対向させた方形導波管とを、前記結合用窓を前記開
口端面で覆うようにして当接させるとともに、この当接
部における前記一対の導体層の間隔を(λb/4)×
(1/√εr )(ただし、λb:方形導波管の管内波
長、εr :誘電体基板の比誘電率)の長さに設定したこ
とを特徴とする誘電体導波管線路と方形導波管との接続
構造。
1. A pair of conductor layers sandwiching a dielectric substrate,
Two rows of penetrating conductors formed by electrically connecting the conductor layers at a repeating interval of less than one-half the signal wavelength in the transmission direction of the high-frequency signal and with a predetermined width in the direction orthogonal to the transmission direction. A dielectric waveguide line for transmitting a high frequency signal by a transmission region surrounded by the conductor layer and the through conductor group, and a high frequency signal on a coupling window provided on one of the conductor layers. And a rectangular waveguide whose opening end faces are opposed to each other so that their transmission directions are orthogonal to each other, and are brought into contact with each other so as to cover the coupling window with the opening end face, and at the contact portion, The interval is (λb / 4) ×
(1 / √ε r ) (where λb is the guide wavelength of the rectangular waveguide, ε r is the relative permittivity of the dielectric substrate), and the length is set to the dielectric waveguide line and the rectangular shape. Connection structure with waveguide.
【請求項2】 前記誘電体導波管線路において前記結合
用窓から高周波信号の伝送方向にλa/4(ただし、λ
a:誘電体導波管線路の管内波長)の長さの位置に、前
記2列の貫通導体群の幅および/または前記一対の導体
層の間隔を変化させた前記伝送領域の変化部を設けたこ
とを特徴とする請求項1記載の誘電体導波管線路と方形
導波管との接続構造。
2. In the dielectric waveguide line, λa / 4 (where λ
a: at the length of the guide wavelength of the dielectric waveguide line), a change portion of the transmission region in which the width of the through conductor group in the two rows and / or the distance between the pair of conductor layers is changed is provided. The connection structure between a dielectric waveguide line and a rectangular waveguide according to claim 1, characterized in that.
JP36697398A 1998-12-24 1998-12-24 Connection structure between dielectric waveguide line and rectangular waveguide Expired - Fee Related JP3522138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36697398A JP3522138B2 (en) 1998-12-24 1998-12-24 Connection structure between dielectric waveguide line and rectangular waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36697398A JP3522138B2 (en) 1998-12-24 1998-12-24 Connection structure between dielectric waveguide line and rectangular waveguide

Publications (2)

Publication Number Publication Date
JP2000196301A JP2000196301A (en) 2000-07-14
JP3522138B2 true JP3522138B2 (en) 2004-04-26

Family

ID=18488159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36697398A Expired - Fee Related JP3522138B2 (en) 1998-12-24 1998-12-24 Connection structure between dielectric waveguide line and rectangular waveguide

Country Status (1)

Country Link
JP (1) JP3522138B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617633B2 (en) 2000-10-06 2005-02-09 三菱電機株式会社 Waveguide connection
JP4539000B2 (en) * 2001-08-28 2010-09-08 株式会社村田製作所 Method and apparatus for measuring electrical characteristics of electronic components
JP3695395B2 (en) 2002-01-09 2005-09-14 株式会社村田製作所 Transmission line and transmission / reception device
JP3981346B2 (en) * 2003-06-26 2007-09-26 京セラ株式会社 Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP4863900B2 (en) * 2007-02-08 2012-01-25 セイコーインスツル株式会社 Shield flexible printed circuit board and electronic device
JP5007281B2 (en) * 2008-07-11 2012-08-22 東光株式会社 Dielectric waveguide slot antenna
JP2011254418A (en) * 2010-06-04 2011-12-15 Toko Inc Connection structure of cavity waveguide and dielectric waveguide
JP5300901B2 (en) * 2011-03-18 2013-09-25 株式会社東芝 Waveguide connection structure, antenna device, and radar device
WO2019235120A1 (en) 2018-06-04 2019-12-12 日本電気株式会社 Connection structure for dielectric waveguide line and waveguide

Also Published As

Publication number Publication date
JP2000196301A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US6515562B1 (en) Connection structure for overlapping dielectric waveguide lines
EP1928053A1 (en) Waveguide structure
US6380825B1 (en) Branch tee dielectric waveguide line
JPH11284409A (en) Waveguide-type band pass filter
JP3996879B2 (en) Coupling structure of dielectric waveguide and microstrip line, and filter substrate having this coupling structure
JP3522138B2 (en) Connection structure between dielectric waveguide line and rectangular waveguide
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP4199395B2 (en) Multilayer Magic T
JP3981346B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna device and filter device using the structure
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JP2007274236A (en) Branch structure of waveguide structure and antenna board
JPH11308001A (en) Connection structure for dielectric waveguide line
JP3522120B2 (en) Connection structure of dielectric waveguide line
JPH11308025A (en) Directional coupler
CN113097722B (en) Common-caliber double-frequency transmission line capable of working in microwave/millimeter wave frequency band
JP2005012699A (en) Connection structure between waveguide and dielectric waveguide line having dielectric resonator, and antenna equipment and filter equipment using the same structure
JP3439973B2 (en) Branch structure of dielectric waveguide
JP4058381B2 (en) Connection structure between dielectric waveguide line and waveguide, and antenna substrate and filter substrate using the structure
JP4803869B2 (en) Connection structure of dielectric waveguide line
JP4203404B2 (en) Branch structure of waveguide structure and antenna substrate
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP3517097B2 (en) Branch structure of dielectric waveguide
JP3512626B2 (en) Branch structure of dielectric waveguide
JP4203405B2 (en) Branch structure of waveguide structure and antenna substrate
JPH11355010A (en) Waveguide-type band pass filter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees