JP4057208B2 - Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength - Google Patents

Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength Download PDF

Info

Publication number
JP4057208B2
JP4057208B2 JP35677899A JP35677899A JP4057208B2 JP 4057208 B2 JP4057208 B2 JP 4057208B2 JP 35677899 A JP35677899 A JP 35677899A JP 35677899 A JP35677899 A JP 35677899A JP 4057208 B2 JP4057208 B2 JP 4057208B2
Authority
JP
Japan
Prior art keywords
less
alloy
temperature strength
cold workability
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35677899A
Other languages
Japanese (ja)
Other versions
JP2001172751A (en
Inventor
進 桂木
光司 佐藤
丈博 大野
克明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Hitachi Metals Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Metals Ltd filed Critical Honda Motor Co Ltd
Priority to JP35677899A priority Critical patent/JP4057208B2/en
Publication of JP2001172751A publication Critical patent/JP2001172751A/en
Application granted granted Critical
Publication of JP4057208B2 publication Critical patent/JP4057208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、冷間加工性が良好で、かつ優れた高温強度を有し、安価な冷間鍛造により作製される排気エンジンバルブ用耐熱合金に関するものである。
【0002】
【従来の技術】
今日、耐熱鋼及び超耐熱合金は多くの用途に用いられているが、代表的な用途の一つに排気エンジンバルブが挙げられる。
【0003】
従来、ガソリンエンジンやディーゼルエンジンの排気バルブ用材料としては高Mn系のγ鋼であるSUH35(Fe-8.5Mn-21Cr-4Ni-0.5C-0.4N)が広く使用されてきた。一部使用温度の高いエンジン及び高負荷となるエンジンには、NCF751(Ni-15.5Cr-1Nb-2.3Ti-1.2Al-7Fe) が使用されるに至ってきた。
【0004】
しかし、NCF751はNiを約70% も含み非常に高価であるために最近ではNCF751よりも省資源でかつNCF751に近い高温強度、組織安定性を有する合金の開発が行われてきた。更に、特に最近では自動車に使用される部品においては長時間使用後の特性劣化の抑制、使用材料の組織安定性が要求されてきている。
【0005】
その要求を満たす提案として、発明者らは、例えば特開平7―109539号には、質量%でC:0.10以下、Si:1.0以下、Mn:3.0以下、Ni:30〜49、Cr:10〜18、Al:1.6〜3.0を含み、IVa属とVa属から選ばれる一種または二種以上の元素を合計で1.5〜6.0%含有し、かつ原子%でAl、Ti、Zr、Hf、V、Nb、Taの関係式及び原子%でCr、Mo、Wの関係式を規定することにより、長時間加熱後の特性劣化の抑制、組織安定性を改善した合金を提案した。
【0006】
【発明が解決しようとする課題】
排気エンジンバルブの成形方法としては熱間アップセット工法、熱間押し出し工法及び冷間鍛造法の種々の工法が存在し、現在は熱間アップセット工法、熱間押し出し工法が主に行われている。
【0007】
しかし、現在行われている熱間成形法では、寸法精度や多工数等の問題があるために、品質向上やコスト低減を目的とした工数削減が求められている。これらの要求を解決するためにエンジンバルブを冷間鍛造で成型することが提案されている。この方法は、単位時間内で多数のエンジンバルブ製造が可能であるために、工数削減によるコスト低減が見込まれる。
【0008】
また、冷間鍛造成型した後に時効硬化処理をすることで、材料を硬化させた状態で使用すれば、従来の熱間成型した場合と比較して、使用時の硬さも従来の場合と比較して大きく上昇させると期待される。
【0009】
しかしながら、エンジンバルブとして使用した場合において、高温に長時間さらされた時に組織が不安定化して、強度が低下する危険性もあるので、対象となる合金選定やその合金の成分調整には、十分な選択と注意が必要である。
【0010】
例えば、この冷間鍛造するエンジンバルブ材に、従来から使用されているSUH35 を用いると、C 量が高いために固溶化処理後の硬さを低減させることが難しく、かつMn量が高いために加工硬化を起こすために冷間鍛造により作製することは困難であった。
【0011】
また、特開平7-109539号に開示されている合金は、エンジンバルブとして必要な性能である高温強度については、十分な特性を有するが、変形抵抗が高いために、エンジンバルブを冷間鍛造することが困難であるという問題があった。
【0012】
本発明の目的は、冷間鍛造が可能で、かつ冷間鍛造後の直接時効処理によって強度の向上が見込まれる耐熱合金として、コストが比較的安価である特開平7-109539号に開示する合金について、高温強度と組織安定性を確保する元素範囲を大きく変えることなく、冷間鍛造性を改善した耐熱合金を提供することである。
【0013】
【課題を解決するための手段】
本発明者等は、特開平7-109539号の合金を基に冷間鍛造性を改善する各合金元素の最適化を行った。
【0014】
本発明者等の検討によれば、高温強度に関しては、特開平7-109539号に記載の合金の発明手法がそのまま利用でき、マトリクスとなるγ相と、析出強化相となるγ' 相の両相の組成の最適化と両相の量比を最適化することにより達成されることを知見した。
【0015】
一方、冷間鍛造性は、析出強化相となるγ' 相を構成する元素を、マトリクスであるγ相中に完全に固溶させた状態、即ち、Feをベースとする高いNi量と高いCr量を含有するγ相中に、種々の元素を基本的にFe原子を置換する形で固溶させた相状態において冷間加工するときの変形抵抗によって良否を判断する必要がある。
【0016】
高温強度と冷間鍛造性は相反する性能であるが、本発明者等は、以上の知見を踏まえ、特開平7-109539号に記載された開示合金に対してNi、Co、Mo、C 、Al、Ti、Nb等の種々の合金元素を最適に制御することで強度と冷間加工性がともに良好で、両者の特性のバランスを保った合金を見出し、本発明に到達した。
【0017】
即ち本発明は、質量%でC:0.08以下、Si:1.0以下、Mn:1.0以下、Ni及び3.0以下(0%を含む)のCoを合計で26.5以上30未満、Cr:10〜18、Al:1.2〜2.5、Ti:1.5〜3.0、Nb:0.2〜2.0、B:0.015以下、Mg:0.02以下およびCa:0.02以下であって、IVa族とVa族から選ばれるTiおよびNbを含んだ二種以上の元素を合計で1.7〜6.0含み、残部は不純物を除きFeからなる良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金である。
【0018】
好ましくは、質量%でC:0.05以下、Si:0.5以下、Mn:0.5以下、Ni及び3.0以下(0%を含む)のCoを合計で26.5〜28.5、Cr:12〜16、Al:1.2〜2.5、Ti:1.5〜3.0、Nb:0.2〜2.0、B:0.015以下、Mg:0.02以下およびCa:0.02以下を含み、残部は不純物を除きFeからなる良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金である。質量%でMo:3以下とW:3以下の一種または二種を含んでいても良い。
【0019】
また、上記合金は原子%でAlの含有量と他元素の含有量下記関係式を満たす必要がある
【0020】
0.52≦[Al]/([Al]+[Ti]+[Zr]+[Hf]+[V]+[Nb]+[Ta])≦0.60
更に、上記合金は、原子%でCrの含有量と他元素の含有量下記関係式を満たす必要がある
【0021】
0.14≦([Cr]+[Mo]+[W])/([Ni]+[Co]+[Fe]+[Cr]+[Mo]+[W])≦0.20
本発明で更に好ましくは、質量%で、0.01以下のYを含む。
【0022】
上記の本発明のFe基耐熱合金は、60%〜80%冷間加工の後に800℃で、400時間加熱後の800℃―245MPaで回転曲げ疲労試験を行った際の破断回数が1.0×10回以上であり、更に、70%冷間加工を行う際に要する真応力1800MPa以下である。
【0023】
【発明の実施の形態】
本発明は、Niを始めとした固溶元素の添加量を高温強度に必要な最小限量にとどめ、各元素量の最適化を図り、強度と冷間加工性がともに良好で、両者の特性のバランスを保ちつつ、特に冷間加工性を向上させたエンジンバルブ用Fe基耐熱合金を提供するものである。
【0024】
以下に本発明で規定する各元素の限定理由を説明する。
先ず、C はTiやNb、Ta等と結びついてMC炭化物を形成し、結晶粒の粗大化を防止する作用があるために少量添加する必要がある。しかし0.08% を超える過度の添加は硬さを上昇させて、冷間加工性を劣化させ、更に長時間加熱時にMCからM23C6 へ分解反応を起こして、常温における粒界の延性を低下させる。
【0025】
更に実際にバルブを冷間鍛造する際にMC炭化物が多いと、バルブ成形時にその炭化物を起点にして割れる危険性がある。よってC は0.08% 以下とする。より好適なC の範囲は0.05% 以下である。
【0026】
SiとMnは本発明合金において脱酸元素として添加されるが、いずれも過度の添加は高温強度の低下を招く。更にMnについては変形抵抗を上昇させて冷間加工性を低下させるために各々1.0%以下と低くした。更に好適な範囲は各々0.5%以下である。
【0027】
Niはマトリクスのγ相を安定化させると共に高温強度も高める。更にγ' 相の構成元素として必須の元素である。
【0028】
また、Coはγマトリクスに固溶してγ相を安定化させるとともに、熱間加工領域ではγ' 相の固溶を促進させて熱間加工性を改善し、更に、実用温度領域ではγ' 相の析出量を増加させ、高温強度を向上させる。
【0029】
このNiとCoは、ともにγ相を安定化させ、高温強度を上昇させる点で同じ働きをするためにCoはNiに置換する形で添加することを可能とするが、CoはNiより高価な元素であるため、添加する場合には3%以下が良い。
【0030】
そして、Ni及び3.0以下(0%を含む)のCoが合計で26.5%未満の場合には、強化に寄与するγ’相の析出量が少なくなるために強度が不十分となる。またマトリクスの組織が不安定化しγ’相そのものの粗大化が起こり高温強度が低下する恐れがある。一方、Ni及び3.0以下(0%を含む)のCoが合計で30%以上添加すると変形抵抗が上昇して冷間加工性が劣化する。
【0031】
従って、Ni及び3.0以下(0%を含む)のCoを合計で26.5%以上30%未満の範囲に限定する。より望ましい範囲は26.5〜28.5%である。
【0032】
Crは合金の耐酸化性を向上させるために必要不可欠な元素であり、最低10% は必要であるが、18% を超えるとCrに富んだシグマ( σ) 相、マルテンサイト( α')相もしくはフェライト( α) 相を析出し、長時間加熱後の組織安定性を劣化させ、また、変形抵抗も上昇して冷間加工性を低下させるために10〜18% とする。より望ましい範囲は12〜16% である。
【0033】
Alは安定なγ' 相を析出させて要求される高温強度を得るために本発明において不可欠な元素でかつ、冷間加工性も向上させる元素である。従って、最低1.2%は必要であり、2.5%を超えると熱間加工性を低下させるので1.2 〜2.5%に限定する。より好適な範囲は1.5 〜2.0%である。
【0034】
TiはNi、Alと共にγ' 相を形成し、γ' 相を強化して高温強度を向上させるので、1.5%以上必要であるが3.0%以上添加すると冷間加工性が低下し、また高温においてγ' 相がイータ( η:Ni3 Ti) 相へ変態し、高温強度を低下させるので1.5 〜3.0%に限定する。より好適な範囲は1.8 〜2.5%である。
【0035】
IVa族、Va族の元素は、本発明合金において、Alと共にNiと結びついてγ’相を形成し、γ’相を強化して高温強度を向上させる作用があり合計で1.7%以上添加する必要がある。しかし、これらの元素が合計で6.0%を越えると、熱間加工性を劣化させ、かつ高温長時間加熱後にγ’相が不安定となってη相やデルタ(δ:NiNb)相へ変態し、組織安定性が低下するので1.7〜6.0%に限定する。より好適な範囲は3.0〜5.0%である。
【0036】
IVa 族の元素においてはTiの添加が好ましい。ZrとHfはγへの固溶度がTiより低く、Tiほど多量には添加できない。V a 族の元素ではNbの添加がもっとも好ましく0.2 〜2.0%添加するのが良い。より好適な範囲は0.3 〜1.2%である。
【0037】
一方、V はNbより固溶強化作用が弱く、耐酸化性も低下させるので過度の添加は好ましくない。TaはNb以上にγ' を固溶強化させるが希少資源で高価であるので多量の添加は好ましくない。
【0038】
MoとWはCrと同様にγマトリクスに固溶強化し、高温疲労強度と高温クリープ破断強度を向上させる効果を有する。そのために必要に応じて一種または二種を3%以下の範囲で添加できる。しかし、Crを含めたこれらの元素添加のマトリクスに対する比が高温長時間加熱後におけるσ相やα’相及びα相の析出に寄与してくるために下記関係式を満たす必要がある。即ち、原子%でB値を
B=([Cr]+[Mo]+[W])/([Ni]+[Co]+[Fe]+[Cr]+[Mo]+[W])として、0.14≦B≦0.20である。
【0039】
本発明合金の特徴である冷間鍛造により製造したバルブにおいて高温長時間加熱後にも特性劣化しないということを達成するには上記の如く、Cr、Mo、W 量の規定の他にNi、Alと共にγ' 相を形成するIVa 族、V a 族についても限定する必要がある。
【0040】
即ち、原子%でA値=[Al]/([Al]+[Ti]+[Zr]+[Hf]+[V]+[Nb]+[Ta])値を高めることによりγ’相の高温での安定性を向上させることが可能となるが、A値が高すぎると長時間高温強度を低下させる。従って、上記A値は0.52〜0.60とする必要がある。A値のより好適な範囲は0.52〜0.58である。
【0041】
B (ホウ素)は本発明において粒界強化作用があり、高温強度及び延性を向上させ、適量添加できるが、多量に添加すると初期溶融温度を低下させて熱間加工性を低下させるために0.015%以下での添加が好ましい。
【0042】
MgとCaは脱酸、脱硫元素として合金の清浄度を高め、高温強度、延性を改善し、一種または二種適量添加できる。しかし、過度の添加は初期溶融温度を低下させて熱間加工性を低下させるために各々0.02% 以下での添加が好ましい。
【0043】
Yは本発明において高温での耐酸化性を高めるのに有効であり、本発明合金に添加できる。しかし、添加量が0.01%を超えると熱間加工性を低下させるために上限は0.01%とするのが好ましい。
【0044】
また、上記以外で下記の元素については以下に示す範囲であれば本発明合金に含まれても良い。
Cu≦0.3%、Ag≦0.2%、P ≦0.04% 、S ≦0.02% 、O ≦0.02% 、N ≦0.05%
より望ましくは
Cu≦0.1%、Ag≦0.1%、P ≦0.02% 、S ≦0.005%、O ≦0.01% 、N ≦0.01%
本発明のFe基耐熱合金をエンジンバルブとする時には、合金の軟化を目的として、900 〜1050℃の範囲の温度で、30〜60分保持の固溶化熱処理を施した後、冷間加工を行う。その際に、大きな冷間歪みが付与され、過剰に歪が加わればη相の析出が促進されるので、冷間加工の加工度は60〜80% の範囲内で行うと良い。この冷間加工後に、エンジンバルブとして必要とされる硬さの付与のために例えば720 〜780 ℃で、3 〜5 時間程度の時効処理を施すことが好ましい。
【0045】
本発明のFe基耐熱合金は、エンジンバルブとして用いる場合には、運転中のエンジン内の雰囲気温度700 〜800 ℃に長時間曝されるため、以下の模擬評価を行うと良い。
【0046】
模擬評価では、上述の60〜80% の冷間加工を施した試料を用いて、700 〜800 ℃の温度域に加熱する。この時、この温度範囲において、使用中に過剰なη相の析出が起こり易く、強度が低下するおそれがある800 ℃近辺での温度において、400 時間加熱する。
【0047】
そのため、模擬評価は、特別に過酷な条件下での高温強度の判断基準として、60% 〜80% 冷間加工の後に800 ℃で、400 時間加熱を施した試料(表3では、「長時間加熱(過時効処理)後」として示している。)を、使用温度を想定した800 ℃で、245MPaの回転曲げ疲労試験に供し、その時の破断回数が1.0 ×106 回以上であれば良好な高温疲労強度特性が得られるものと判断した。
【0048】
また、冷間加工性の判断基準として、固溶化熱処理後の試料で、据え込み圧縮試験を行った際の70%加工に相当する真応力値1800MPa以下とした。
【0049】
【実施例】
表1 、2に試験に供した合金の化学組成を示す。試料は表1 、2の組成の合金を真空誘導溶解によって10kgのインゴットにした後に熱間加工によって33mmφの棒材を作製した。
【0050】
この試料を1030℃×30分保持後油冷の固溶化処理を行ったものについて、常温硬さ測定及び冷間加工性の試験を行った。硬さはロックウェル硬度計によって測定した。冷間加工性の試験は、φ6 ×9mm の試料をアムスラー試験機で圧縮荷重をかけて試料の長さを測定する作業を、荷重を上げていきながら順次繰り返して行い、圧縮加工率と応力の関係を求めた。これらの試験結果の常温硬さと冷間圧縮率70%の時の真応力を表3の「固溶化熱処理後冷間据込圧縮試験」欄に示す。
【0051】
上記の熱間加工した棒材について、以下に示す二種類の熱処理を施した。
先ず、第一の熱処理は、1030℃×30分保持後油冷の固溶化処理を行った後に70% の加工率で冷間引抜きを行い、更に1030℃×30分保持後油冷の固溶化処理、750 ℃×4 時間保持後空冷の時効処理を行った試料を「従来熱処理(固溶化熱処理あり)材」とした。これは、冷間引抜き後に固溶化処理を行って、加工で付与される歪みの影響をなくしたもので、従来の熱間鍛造工程を行った際の特性に近いものが得られることを予想したものである。
【0052】
次に、第二の熱処理としては、冷間鍛造を模擬する工程として、1030℃×30分保持後油冷の固溶化処理を行った後に70% の加工率で冷間引抜きを行い、その後直接750 ℃×4 時間保持後空冷の時効処理を行った工程とし、この試料を「固溶化熱処理なし( 直接時効) 材」とした。これら2種類の熱処理を行ったそれぞれの試料を各試験に供した。
【0053】
2種類の熱処理を行ったそれぞれについて引張試験は常温及び800 ℃において行ない、ASTM法により平行部直径6.35mm、伸び4Dにて測定した。引張強さは、表3の各々「引張強さ(MPa) 」欄に示している。
【0054】
また、長時間加熱処理( 過時効処理) は、従来熱処理材、固溶化熱処理なし材の各々について時効処理後、800 ℃×400 時間後空冷の処理を行った。実際のバルブの性能評価を模擬する試験として、回転曲げ疲労試験を行った。回転曲げ疲労試験は、一定の曲げモーメントを試料に与えた状態で試料を回転させる試験である。試料は、平行部径8mm で行ない、条件は、回転数3500rpm 、R=-1、試験温度800 ℃で245MPaの応力をかけた際の破断回数により、高温強度を評価した。衝撃値については、U ノッチ 形状の試料で行ない、試験温度20℃で3 回測定して平均を求めた。ミクロ観察については、縦断面のD/4 部について行った。また、高温長時間加熱処理後の析出相の面積率測定は、走査型電子顕微鏡(SEM) を用いて2500倍の倍率で三視野観察し、それを写真撮影後、画像解析を行って測定した。
【0055】
【表1】

Figure 0004057208
【0056】
【表2】
Figure 0004057208
【0057】
【表3】
Figure 0004057208
【0058】
表1と2のNo.1〜14は発明合金、ただし表で合金番号に「*」の付いているNo.3、6、9、11〜13は参考合金で、No.15〜18は比較合金で、No.15はNi量が本発明の範囲内から少ない側に外れている合金、No.16はCrならびにB値が本発明の範囲より多い合金、No.17は、A値が小さくTi量が高く本発明の組成範囲から外れている合金、No.18は特開平7―109539号に開示された組成範囲の合金で本発明の合金と比較して、Ni量が高い合金である。また、表2のA値、B値はそれぞれ原子%で表される下記に示される値でる。
【0059】
A 値=[Al]/([Al]+[Ti]+[Zr]+[Hf]+[V]+[Nb]+[Ta])
B 値=([Cr]+[Mo]+[W])/([Ni]+[Co]+[Fe]+[Cr]+[Mo]+[W])
表3に示すように、冷間加工性については、比較合金のNo.16 合金はCr量を、No.17 合金はTiを多く含有するために変形抵抗(70%加工時真応力) が高く冷間加工性が悪い。また、No.18 合金は、特開平7-109539号に開示されているものであるが、Ni量を多く含有するため、本発明合金と比較すると変形抵抗が高く冷間加工性が十分でない。
【0060】
以上のことから、固溶元素を本発明合金の範囲より多量に添加すると、合金の変形抵抗が上昇し、冷間加工性が低下する危険性がある。
【0061】
しかし、その一方で、冷間加工性の向上を目的として、Ni量を減少させると(No.15合金) 、マトリックスの高温強度が低下するため、疲労強度や引張強度が低下する。
【0062】
以上のことから、Niを始めとする添加合金元素の量をいたずらに多すぎても少なすぎても両方の特性を同時に満足することは出来ない。本発明合金(No.1 〜14) は、この点を踏まえて、Niを始めとする合金元素量を最適化し、強度と冷間加工性を両立させたものである。本発明合金は、いずれも良好な冷間加工性、引張強度、疲労強度及び高靭性( 衝撃値) を示している。
【0063】
ただ、発明合金の中でもγ' 相を形成するA 値が高めのNo.9や14合金はγ' 相そのものの強度が高くないために、本発明合金の中では、強度の上昇があまり期待出来ない。A 値は本発明の範囲より小さくても、大きくても、疲労強度を十分に満足することが出来ない。
【0064】
例えば、疲労強度においては、比較合金であるNo.17 合金はA 値が低く、Ti量が高いために、長時間加熱処理後に強度に寄与しないη相が多量に析出するので、他の合金と比較すると、疲労強度の上昇があまり期待出来ない。
【0065】
更に、比較合金であるA 値及びTi量が本発明の範囲から外れる合金No.17 やB 値が成分範囲内から外れるNo.16 は、η相やσ相が析出するために、靭性の指標となる衝撃値が大きく低下する。
【0066】
したがって、上記の元素量の最適化同様に、更に疲労強度や衝撃値に対しては、A 値やB 値によって特性が大きく低下する危険性があるので、A 値、B 値についても厳密に制御する必要がある。
【0067】
また、本発明合金において、固溶化熱処理なし( 直接時効処理) 材は、従来熱処理材と比較して、時効処理後の引張強さが高く、過時効処理後の疲労強度( 疲労寿命) 、衝撃値が若干低下する傾向があるが、いずれの合金も良好な特性を示しており、本発明合金は、固溶化熱処理を省略しても十分な特性を有していることが分かる。
【0068】
以上説明したように、本発明合金は、エンジンバルブの性能として必要である従来合金とほぼ同等の靭性や機械的性質を有しながら、従来合金よりも良好な冷間加工性を具備した合金であることが分かる。
【0069】
【発明の効果】
本発明のエンジンバルブ用Fe基耐熱合金は、固溶化処理後の硬さを低減して冷間加工性を飛躍的に改善することができ、冷間鍛造可能でかつ高温での組織安定性及び高温疲労強度に優れたエンジンバルブ材を製造することが可能となり、エンジンバルブ製造コストを格段に低減させることができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a heat-resistant alloy for an exhaust engine valve that has good cold workability, has excellent high-temperature strength, and is manufactured by inexpensive cold forging.
[0002]
[Prior art]
Today, heat resistant steels and super heat resistant alloys are used in many applications, and one of typical applications is an exhaust engine valve.
[0003]
Conventionally, SUH35 (Fe-8.5Mn-21Cr-4Ni-0.5C-0.4N), which is a high-Mn γ steel, has been widely used as an exhaust valve material for gasoline engines and diesel engines. NCF751 (Ni-15.5Cr-1Nb-2.3Ti-1.2Al-7Fe) has come to be used for engines with some high operating temperatures and high loads.
[0004]
However, since NCF751 contains about 70% of Ni and is very expensive, recently, an alloy having high-temperature strength and structural stability that is more resource-saving than NCF751 and close to NCF751 has been developed. Furthermore, particularly recently, parts used in automobiles have been required to suppress deterioration of characteristics after long-time use and to stabilize the structure of materials used.
[0005]
As proposed to satisfy the request, the inventors have, for example, in Japanese Patent Laid-Open No. 7-109539, C in mass%: 0.1 0 hereinafter, Si: 1. 0 hereinafter, Mn: 3. 0 hereinafter, Ni: 30~4 9, Cr: 10~1 8, Al: 1.6~3. Comprises 0, containing 1.5 to 6.0% of one or more elements selected from the IV a genus and Va genus total, and Al in atomic%, Ti, Zr, Hf, V, Nb, By defining the relational expression of Cr, Mo, and W in relation to the relational expression of Ta and atomic%, an alloy has been proposed in which the deterioration of characteristics after long-time heating is suppressed and the structural stability is improved.
[0006]
[Problems to be solved by the invention]
There are various methods for forming the exhaust engine valve, such as hot upset method, hot extrusion method and cold forging method. Currently, hot upset method and hot extrusion method are mainly used. .
[0007]
However, in the hot forming method currently performed, since there are problems such as dimensional accuracy and multiple man-hours, man-hour reduction for the purpose of quality improvement and cost reduction is required. In order to solve these requirements, it has been proposed to form an engine valve by cold forging. In this method, since a large number of engine valves can be manufactured within a unit time, the cost can be reduced by reducing the number of man-hours.
[0008]
In addition, if it is used in a state where the material has been cured by performing an age hardening treatment after cold forging, the hardness during use is also compared to that of the conventional case, compared to the case of conventional hot forming. Is expected to increase significantly.
[0009]
However, when used as an engine valve, there is a risk that the structure may become unstable when exposed to high temperatures for a long time, resulting in a decrease in strength. Therefore, it is sufficient to select the target alloy and adjust the components of the alloy. Careful selection and attention is required.
[0010]
For example, if the conventionally used SUH35 is used as the engine valve material for cold forging, it is difficult to reduce the hardness after solution treatment because the C content is high, and the Mn content is high. It was difficult to produce by cold forging to cause work hardening.
[0011]
Further, the alloy disclosed in Japanese Patent Application Laid-Open No. 7-109539 has sufficient characteristics with respect to high temperature strength, which is a performance necessary for an engine valve, but because of high deformation resistance, the engine valve is cold forged. There was a problem that it was difficult.
[0012]
An object of the present invention is an alloy disclosed in Japanese Patent Laid-Open No. 7-109539, which is relatively inexpensive as a heat-resistant alloy that can be cold forged and is expected to have improved strength by direct aging treatment after cold forging. Is to provide a heat-resistant alloy with improved cold forgeability without greatly changing the element range for ensuring high-temperature strength and structural stability.
[0013]
[Means for Solving the Problems]
The inventors of the present invention have optimized each alloy element that improves the cold forgeability based on the alloy disclosed in JP-A-7-109539.
[0014]
According to the study by the present inventors, regarding the high temperature strength, the invention method of the alloy described in JP-A-7-109539 can be used as it is, and both the γ phase as a matrix and the γ ′ phase as a precipitation strengthening phase are used. It has been found that this can be achieved by optimizing the composition of the phases and optimizing the quantity ratio of both phases.
[0015]
On the other hand, the cold forgeability is a state in which the elements constituting the γ 'phase that becomes the precipitation strengthening phase are completely dissolved in the matrix γ phase, that is, a high Ni content and a high Cr content based on Fe. It is necessary to judge the quality by deformation resistance when cold working in a phase state in which various elements are basically dissolved in the form of substituting Fe atoms in the γ phase containing the amount.
[0016]
Although high temperature strength and cold forgeability are contradictory performances, the present inventors based on the above knowledge, Ni, Co, Mo, C, to the disclosed alloy described in JP-A-7-109539 By optimally controlling various alloy elements such as Al, Ti, Nb, etc., the inventors have found an alloy that has both good strength and cold workability and maintains a balance between the characteristics of both, and has reached the present invention.
[0017]
That is, according to the present invention, by mass%, C: 0.08 or less, Si: 1.0 or less, Mn: 1.0 or less, Ni and 3.0 or less (including 0%) Co in total 26.5 or more Less than 30, Cr: 10-18, Al: 1.2-2.5, Ti: 1.5-3.0, Nb: 0.2-2.0, B: 0.015 or less, Mg: 0. 02 or less and Ca: 0.02 or less, and a total of 1.7 to 6.0 including two or more elements including Ti and Nb selected from IVa group and Va group, and the balance is Fe except for impurities An Fe-based heat-resistant alloy for engine valves having good cold workability and high-temperature strength.
[0018]
Preferably, C in mass%: 0.05 or less, Si: 0.5 or less, Mn: 0.5 or less, Ni and 3.0 or less of Co (including 0%) in total from 26.5 to 28. 5, Cr: 12-16, Al: 1.2-2.5, Ti: 1.5-3.0, Nb: 0.2-2.0 , B: 0.015 or less, Mg: 0.02 following and Ca: includes 0.02 or less, the balance Ru Fe-base heat-resistant alloy der engine valve provided with the good cold workability and high temperature strength consisting of F e except impurities. By mass% Mo: 3 hereinafter and W: 3 also contain one or two of the following have good.
[0019]
Further, the alloy content of the content and other elements of Al in atomic% is required to meet the following equation.
[0020]
0.52 ≦ [Al] / ([Al] + [Ti] + [Zr] + [Hf] + [V] + [Nb] + [Ta]) ≦ 0.60
Furthermore, the alloy, the content of the content and other elements of Cr in atomic% is required to meet the following equation.
[0021]
0.14 ≦ ([Cr] + [Mo] + [W]) / ([Ni] + [Co] + [Fe] + [Cr] + [Mo] + [W]) ≦ 0.20
In the present invention, Y is preferably 0.01% or less by mass%.
[0022]
The above-mentioned Fe-based heat-resistant alloy of the present invention has a fracture number of 1.0 when the rotary bending fatigue test is performed at 800 ° C. after heating for 60 hours at a temperature of 800 ° C. to 245 MPa after cold working from 60% to 80%. × 10 6 times or more, and the true stress required for 70% cold working is 1800 MPa or less.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the amount of solid solution elements including Ni is limited to the minimum amount necessary for high-temperature strength, the amount of each element is optimized, both strength and cold workability are good, and the characteristics of both The present invention provides an Fe-based heat-resistant alloy for engine valves that is particularly improved in cold workability while maintaining a balance.
[0024]
The reason for limitation of each element prescribed | regulated by this invention below is demonstrated.
First, C 2 is combined with Ti, Nb, Ta, etc. to form MC carbide, and has the effect of preventing the coarsening of crystal grains, so it is necessary to add a small amount. However, excessive addition exceeding 0.08% increases the hardness and deteriorates the cold workability, and further causes a decomposition reaction from MC to M 23 C 6 when heated for a long time, thereby reducing the grain boundary ductility at room temperature. Let
[0025]
In addition, if there is a large amount of MC carbide during actual cold forging of the valve, there is a risk of cracking starting from that carbide during valve molding. Therefore, C is 0.08% or less. A more preferable range of C is 0.05% or less.
[0026]
Si and Mn are added as deoxidizing elements in the alloy of the present invention, but excessive addition of both causes a decrease in high temperature strength. Furthermore, Mn was lowered to 1.0% or less in order to raise the deformation resistance and lower the cold workability. Further preferable ranges are each 0.5% or less.
[0027]
Ni stabilizes the γ phase of the matrix and increases the high temperature strength. Furthermore, it is an essential element as a constituent element of the γ 'phase.
[0028]
In addition, Co dissolves in the γ matrix to stabilize the γ phase, promotes the solid solution of the γ ′ phase in the hot working region to improve hot workability, and further improves the γ ′ in the practical temperature region. Increase the amount of phase precipitation and improve high temperature strength.
[0029]
Both Ni and Co stabilize the γ phase and work at the same point in increasing the high temperature strength, so Co can be added in the form of replacing Ni, but Co is more expensive than Ni Since it is an element, when it is added, 3% or less is preferable.
[0030]
And when Ni and Co of 3.0 or less (including 0%) are less than 26.5% in total, the amount of precipitation of the γ ′ phase that contributes to strengthening decreases, so the strength becomes insufficient. . In addition, the matrix structure may become unstable and the γ ′ phase itself may become coarse, resulting in a decrease in high-temperature strength. On the other hand, when Ni and Co of 3.0 or less (including 0%) are added in total of 30% or more, deformation resistance increases and cold workability deteriorates.
[0031]
Therefore, Ni and Co of 3.0 or less (including 0%) are limited to a total range of 26.5% or more and less than 30%. A more desirable range is 26.5 to 28.5%.
[0032]
Cr is an indispensable element for improving the oxidation resistance of the alloy, and at least 10% is necessary, but if it exceeds 18%, the Cr-rich sigma (σ) phase, martensite (α ') phase Alternatively, the ferrite (α) phase is precipitated, the structure stability after heating for a long time is deteriorated, and the deformation resistance is also increased to decrease the cold workability, so the content is made 10 to 18%. A more desirable range is 12 to 16%.
[0033]
Al is an element indispensable in the present invention in order to obtain a high temperature strength required by precipitating a stable γ 'phase, and is an element that improves cold workability. Therefore, at least 1.2% is necessary, and if it exceeds 2.5%, the hot workability is lowered, so it is limited to 1.2 to 2.5%. A more preferred range is 1.5 to 2.0%.
[0034]
Ti forms a γ 'phase with Ni and Al and strengthens the γ' phase to improve the high-temperature strength, so 1.5% or more is necessary, but if 3.0% or more is added, the cold workability decreases, and at high temperatures Since the γ ′ phase is transformed into an eta (η: Ni 3 Ti) phase and the high-temperature strength is lowered, it is limited to 1.5 to 3.0%. A more preferred range is 1.8 to 2.5%.
[0035]
Group IVa, an element of group Va, in the present invention alloy, in conjunction with Ni 'to form a phase, gamma' gamma with Al to enhance the phase 1.7% by the action there disengaging meter to improve the high temperature strength It is necessary to add more. However, if the total amount of these elements exceeds 6.0%, the hot workability deteriorates, and the γ ′ phase becomes unstable after heating at high temperature for a long time, and the η phase and delta (δ: Ni 3 Nb) Since it transforms into a phase and the structure stability is lowered, it is limited to 1.7 to 6.0%. A more preferable range is 3.0 to 5.0%.
[0036]
In the group IVa element, addition of Ti is preferable. Zr and Hf have lower solid solubility in γ than Ti, and cannot be added as much as Ti. In the group of V a, Nb is most preferably added, and 0.2 to 2.0% is preferably added. A more preferable range is 0.3 to 1.2%.
[0037]
On the other hand, V has a weaker solid solution strengthening effect than Nb and lowers oxidation resistance, so excessive addition is not preferable. Ta strengthens γ 'by solid solution over Nb, but it is a scarce resource and expensive, so adding a large amount is not preferable.
[0038]
Mo and W, like Cr, are solid solution strengthened in the γ matrix and have the effect of improving high temperature fatigue strength and high temperature creep rupture strength. Therefore, 1 type or 2 types can be added in 3% or less of range as needed. However, since the ratio of these element additions including Cr to the matrix contributes to the precipitation of the σ phase, the α ′ phase and the α phase after heating at a high temperature for a long time, the following relational expression must be satisfied. That is, the B value in atomic% is B = ([Cr] + [Mo] + [W]) / ([Ni] + [Co] + [Fe] + [Cr] + [Mo] + [W])) 0.14 ≦ B ≦ 0.20.
[0039]
In order to achieve that the valve manufactured by cold forging, which is a feature of the alloy of the present invention, does not deteriorate in characteristics even after high-temperature and long-time heating, as described above, together with the contents of Cr, Mo, W, together with Ni, Al It is necessary to limit the IVa group and the Va group forming the γ 'phase.
[0040]
That is, by increasing the A value = [Al] / ([Al] + [Ti] + [Zr] + [Hf] + [V] + [Nb] + [Ta]) value in atomic%, Although it becomes possible to improve the stability at high temperature, if the A value is too high, the high temperature strength is lowered for a long time. Therefore, the A value needs to be 0.52 to 0.60. A more preferable range of the A value is 0.52 to 0.58.
[0041]
B (boron) has a grain boundary strengthening action in the present invention, improves high-temperature strength and ductility, and can be added in an appropriate amount, but if added in a large amount, 0.015% in order to lower the initial melting temperature and reduce hot workability. The following addition is preferred.
[0042]
Mg and Ca are deoxidation and desulfurization elements that increase the cleanliness of the alloy, improve high temperature strength and ductility, and can be added in appropriate amounts of one or two. However, excessive addition lowers the initial melting temperature and lowers hot workability, so addition at 0.02% or less is preferable.
[0043]
Y is effective to enhance the oxidation resistance at a high temperature in the present invention, it can be added to warm to the invention alloy. However, if the addition amount exceeds 0.01%, the upper limit is preferably made 0.01% in order to reduce hot workability.
[0044]
In addition to the above, the following elements may be included in the alloy of the present invention within the following ranges.
Cu ≤ 0.3%, Ag ≤ 0.2%, P ≤ 0.04%, S ≤ 0.02%, O ≤ 0.02%, N ≤ 0.05%
More desirably
Cu ≦ 0.1%, Ag ≦ 0.1%, P ≦ 0.02%, S ≦ 0.005%, O ≦ 0.01%, N ≦ 0.01%
When the Fe-base heat-resistant alloy of the present invention is used as an engine valve, for the purpose of softening the alloy, it is subjected to a solution heat treatment for 30 to 60 minutes at a temperature in the range of 900 to 1050 ° C. and then cold-worked. . At that time, a large cold strain is applied, and if excessive strain is applied, precipitation of the η phase is promoted. Therefore, it is preferable that the cold work is performed within a range of 60 to 80%. After the cold working, it is preferable to perform an aging treatment for about 3 to 5 hours at, for example, 720 to 780 ° C. in order to give the hardness required for the engine valve.
[0045]
When the Fe-based heat-resistant alloy of the present invention is used as an engine valve, it is exposed to an ambient temperature of 700 to 800 ° C. in the engine during operation for a long time.
[0046]
In the simulation evaluation, heating is performed in a temperature range of 700 to 800 ° C. using the above-described 60 to 80% cold-worked sample. At this time, in this temperature range, heating is performed for 400 hours at a temperature in the vicinity of 800 ° C. where excessive η phase is likely to precipitate during use and the strength may be reduced.
[0047]
Therefore, the simulation evaluation is based on a sample that was subjected to heating at 800 ° C for 400 hours after cold working as a criterion for determining high-temperature strength under particularly severe conditions (in Table 3, “long time” It is indicated as “after heating (over-aging treatment)”.) Is subjected to a rotating bending fatigue test of 245 MPa at 800 ° C. assuming the operating temperature, and the number of breaks at that time is 1.0 × 10 6 or more. It was judged that high temperature fatigue strength characteristics could be obtained.
[0048]
In addition, as a criterion for determining the cold workability, the true stress value corresponding to 70% processing when the upsetting compression test was performed on the sample after the solution heat treatment was set to 1800 MPa or less.
[0049]
【Example】
Tables 1 and 2 show the chemical compositions of the alloys subjected to the test. Samples were made into alloys of the composition shown in Tables 1 and 2 into a 10 kg ingot by vacuum induction melting, and then a 33 mmφ bar was produced by hot working.
[0050]
This sample was held at 1030 ° C. for 30 minutes and then subjected to oil-cooled solid solution treatment, and normal temperature hardness measurement and cold workability test were performed. Hardness was measured with a Rockwell hardness meter. In the cold workability test, a sample of φ6 × 9 mm was subjected to a compressive load with an Amsler tester and the length of the sample was measured in sequence as the load was increased. Sought a relationship. The true stress at the normal temperature hardness and the cold compression ratio of 70% of these test results are shown in the column of “Cold upset compression test after solution heat treatment” in Table 3.
[0051]
The above-mentioned hot-worked bar was subjected to the following two types of heat treatment.
First, the first heat treatment was held at 1030 ° C for 30 minutes, followed by oil-cooled solid solution treatment, followed by cold drawing at a processing rate of 70%, and further maintained at 1030 ° C for 30 minutes, followed by oil-cooled solid solution treatment The sample subjected to the treatment, aging at 750 ° C. × 4 hours and then air cooling was designated as a “conventional heat treatment (with solution heat treatment) material”. This is a solution treatment after cold drawing, eliminating the effect of strain imparted by processing, and expected to obtain a property close to the characteristics when performing the conventional hot forging process Is.
[0052]
Next, as the second heat treatment, as a process for simulating cold forging, after holding at 1030 ° C for 30 minutes and performing oil-cooled solid solution treatment, cold drawing is performed at a processing rate of 70%, and then directly The sample was treated as an “air-cooled aging treatment after holding at 750 ° C. × 4 hours”, and this sample was designated as “material without solution heat treatment (direct aging)”. Each sample which performed these two types of heat processing was used for each test.
[0053]
Each of the two types of heat treatment was subjected to a tensile test at room temperature and 800 ° C., and measured by the ASTM method with a parallel part diameter of 6.35 mm and an elongation of 4D. The tensile strength is shown in the “Tensile strength (MPa)” column of Table 3.
[0054]
In the long-time heat treatment (over-aging treatment), each of the conventional heat treated material and the material without solution heat treatment was subjected to an air cooling treatment after 800 ° C. × 400 hours after the aging treatment. A rotating bending fatigue test was conducted as a test to simulate actual performance evaluation of the valve. The rotating bending fatigue test is a test in which the sample is rotated in a state where a constant bending moment is applied to the sample. The sample was run with a parallel part diameter of 8 mm. The conditions were evaluated by the number of breaks when a stress of 245 MPa was applied at a rotational speed of 3500 rpm, R = -1, test temperature of 800 ° C., and the high temperature strength was evaluated. The impact value was measured on a U-notch-shaped sample and measured three times at a test temperature of 20 ° C to obtain an average. About micro observation, it carried out about D / 4 part of a longitudinal section. In addition, the area ratio of the precipitated phase after high-temperature and long-time heat treatment was measured by observing three fields of view at a magnification of 2500 times using a scanning electron microscope (SEM), taking a picture, and performing image analysis. .
[0055]
[Table 1]
Figure 0004057208
[0056]
[Table 2]
Figure 0004057208
[0057]
[Table 3]
Figure 0004057208
[0058]
No. in Tables 1 and 2 Nos. 1 to 14 are invention alloys; however, in the table, alloy numbers with “*” are No. Nos. 3 , 6, 9, 11 to 13 are reference alloys . Nos. 15 to 18 are comparative alloys. No. 15 is an alloy in which the amount of Ni deviates from the range of the present invention to the smaller side, No. 15 No. 16 is an alloy having a Cr and B value larger than the range of the present invention. No. 17 is an alloy having a small A value, a high Ti content, and deviating from the composition range of the present invention. No. 18 is an alloy having a composition range disclosed in Japanese Patent Laid-Open No. 7-109539, and has a higher Ni content than the alloy of the present invention. Also, A values in Table 2, B values Ru Ah at values shown below which are expressed in atomic%.
[0059]
A value = [Al] / ([Al] + [Ti] + [Zr] + [Hf] + [V] + [Nb] + [Ta])
B value = ([Cr] + [Mo] + [W]) / ([Ni] + [Co] + [Fe] + [Cr] + [Mo] + [W])
As shown in Table 3, with regard to cold workability, the No. 16 alloy of the comparative alloy has a high Cr and the No. 17 alloy has a high amount of deformation resistance (true stress at 70% processing) due to its high Ti content. Cold workability is poor. The No. 18 alloy is disclosed in Japanese Patent Laid-Open No. 7-109539. However, since it contains a large amount of Ni, its deformation resistance is high and cold workability is not sufficient as compared with the alloy of the present invention.
[0060]
From the above, if a large amount of the solid solution element is added from the range of the alloy of the present invention, there is a risk that the deformation resistance of the alloy increases and the cold workability decreases.
[0061]
However, on the other hand, if the Ni content is decreased for the purpose of improving the cold workability (No. 15 alloy), the high temperature strength of the matrix is lowered, so that the fatigue strength and the tensile strength are lowered.
[0062]
From the above, it is impossible to satisfy both characteristics at the same time if the amount of additive alloy elements including Ni is too much or too little. Based on this point, the alloys of the present invention (Nos. 1 to 14) optimize the amount of alloy elements including Ni and achieve both strength and cold workability. The alloys of the present invention all exhibit good cold workability, tensile strength, fatigue strength, and high toughness (impact value).
[0063]
However, among the invention alloys, No. 9 and 14 alloys with high A value forming γ 'phase are not high in strength of γ' phase itself. Absent. Even if the A value is smaller or larger than the range of the present invention, the fatigue strength cannot be sufficiently satisfied.
[0064]
For example, in terms of fatigue strength, the No. 17 alloy, which is a comparative alloy, has a low A value and a high Ti content, so a large amount of η phase that does not contribute to strength is precipitated after heat treatment for a long time. In comparison, an increase in fatigue strength cannot be expected so much.
[0065]
Further, the alloy No. 17 whose A value and Ti amount are out of the range of the present invention and No. 16 whose B value is out of the component range are comparative alloys, and the η phase and σ phase are precipitated. The impact value is greatly reduced.
[0066]
Therefore, as with the optimization of the amount of elements described above, there is a risk that the characteristics of the fatigue strength and impact value will be greatly reduced by the A and B values, so the A and B values will be strictly controlled. There is a need to.
[0067]
In the alloy of the present invention, the material without solution heat treatment (direct aging treatment) has higher tensile strength after aging treatment than conventional heat treatment material, fatigue strength after fatigue treatment (fatigue life), impact Although the values tend to decrease slightly, all the alloys show good characteristics, and it can be seen that the alloys of the present invention have sufficient characteristics even when the solution heat treatment is omitted.
[0068]
As described above, the alloy of the present invention is an alloy having better cold workability than the conventional alloy while having toughness and mechanical properties almost equal to those of the conventional alloy required for engine valve performance. I understand that there is.
[0069]
【The invention's effect】
The Fe-base heat-resistant alloy for engine valves of the present invention can drastically improve the cold workability by reducing the hardness after solution treatment, can be cold forged, and has a high structural stability at high temperatures. An engine valve material excellent in high-temperature fatigue strength can be manufactured, and the engine valve manufacturing cost can be significantly reduced.

Claims (6)

質量%でC:0.08以下、Si:1.0以下、Mn:1.0以下、Ni及び3.0以下(0%を含む)のCoを合計で26.5以上30未満、Cr:10〜18、Al:1.2〜2.5、Ti:1.5〜3.0、Nb:0.2〜2.0、B:0.015以下、Mg:0.02以下およびCa:0.02以下であって、IVa族とVa族から選ばれるTiおよびNbを含んだ二種以上の元素を合計で1.7〜6.0含み、残部は不純物を除きFeからなり、かつ原子%で下記関係式を満足することを特徴とする良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金。
0.52≦[Al]/([Al]+[Ti]+[Zr]+[Hf]+[V]+[Nb]+[Ta])≦0.60
0.14≦([Cr]+[Mo]+[W])/([Ni]+[Co]+[Fe]+[Cr]+[Mo]+[W])≦0.20
In total, C: 0.08 or less, Si: 1.0 or less, Mn: 1.0 or less, Ni and 3.0 or less (including 0%) Co in total of 26.5 to less than 30, Cr: 10-18, Al: 1.2-2.5, Ti: 1.5-3.0, Nb: 0.2-2.0, B: 0.015 or less, Mg: 0.02 or less, and Ca: 0.02 or less, including a total of 1.7 to 6.0 of two or more elements including Ti and Nb selected from IVa group and Va group, with the balance being Fe except for impurities, and atoms % Fe-base heat-resistant alloy for engine valves having good cold workability and high-temperature strength, characterized by satisfying the following relational expression:
0.52 ≦ [Al] / ([Al] + [Ti] + [Zr] + [Hf] + [V] + [Nb] + [Ta]) ≦ 0.60
0.14 ≦ ([Cr] + [Mo] + [W]) / ([Ni] + [Co] + [Fe] + [Cr] + [Mo] + [W]) ≦ 0.20
質量%でC:0.05以下、Si:0.5以下、Mn:0.5以下、Ni及び3.0以下(0%を含む)のCoを合計で26.5〜28.5、Cr:12〜16、Al:1.2〜2.5、Ti:1.5〜3.0、Nb:0.2〜2.0、B:0.015以下、Mg:0.02以下およびCa:0.02以下を含み、残部は不純物を除きFeからなる請求項1に記載の良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金。  C: 0.05 or less, Si: 0.5 or less, Mn: 0.5 or less, Ni and 3.0 or less (including 0%) Co in mass% in total 26.5 to 28.5, Cr : 12-16, Al: 1.2-2.5, Ti: 1.5-3.0, Nb: 0.2-2.0, B: 0.015 or less, Mg: 0.02 or less and Ca The Fe-based heat-resistant alloy for engine valves having good cold workability and high-temperature strength according to claim 1, comprising 0.02 or less and the balance being made of Fe except impurities. 質量%でMo:3以下とW:3以下の一種または二種を含む請求項1または2に記載の良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金。  The Fe-based heat-resistant alloy for engine valves having good cold workability and high-temperature strength according to claim 1 or 2, comprising one or two of Mo: 3 or less and W: 3 or less in mass%. 質量%で、0.01以下のYを含む請求項1乃至3の何れかに記載の良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金。The Fe-based heat-resistant alloy for engine valves having good cold workability and high-temperature strength according to any one of claims 1 to 3, wherein Y contains 0.01% or less by mass%. 60%〜80%冷間加工の後に800℃で、400時間加熱後の800℃―245MPaで回転曲げ疲労試験を行った際の破断回数が1.0×10回以上である請求項1乃至4の何れかに記載の良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金。The number of breaks when a rotational bending fatigue test is performed at 800 ° C after heating for 60% to 80% at 800 ° C and after 800 hours at 800 ° C to 245 MPa is 1.0 × 10 6 or more. 4. An Fe-based heat-resistant alloy for engine valves having good cold workability and high-temperature strength as described in any one of 4 above. 70%冷間加工を行う際に要する真応力が1800MPa以下であることを特徴とする請求項1乃至5の何れかに記載の良好な冷間加工性及び高温強度を具備したエンジンバルブ用Fe基耐熱合金。  The true stress required for 70% cold working is 1800 MPa or less, and the Fe base for engine valves having good cold workability and high temperature strength according to any one of claims 1 to 5 Heat resistant alloy.
JP35677899A 1999-12-16 1999-12-16 Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength Expired - Fee Related JP4057208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35677899A JP4057208B2 (en) 1999-12-16 1999-12-16 Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35677899A JP4057208B2 (en) 1999-12-16 1999-12-16 Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength

Publications (2)

Publication Number Publication Date
JP2001172751A JP2001172751A (en) 2001-06-26
JP4057208B2 true JP4057208B2 (en) 2008-03-05

Family

ID=18450728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35677899A Expired - Fee Related JP4057208B2 (en) 1999-12-16 1999-12-16 Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength

Country Status (1)

Country Link
JP (1) JP4057208B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651575B2 (en) 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
JP6173822B2 (en) * 2013-08-01 2017-08-02 株式会社東芝 Austenitic heat resistant steel and turbine parts
JP6173956B2 (en) * 2014-03-25 2017-08-02 株式会社東芝 Austenitic heat resistant steel and turbine parts
JP2021052176A (en) 2019-09-20 2021-04-01 日立金属株式会社 Nut type fcc magnet and method for manufacturing the same
CN116904724A (en) * 2023-07-12 2023-10-20 舟山市7412工厂 Bolt and heat treatment process thereof

Also Published As

Publication number Publication date
JP2001172751A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
US6918972B2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
JP3058794B2 (en) Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP3308090B2 (en) Fe-based super heat-resistant alloy
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP2022037155A (en) High temperature titanium alloys
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
US4767597A (en) Heat-resistant alloy
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP3412234B2 (en) Alloy for exhaust valve
JP3977847B2 (en) Heat resistant alloy for engine valves
EP2503012A1 (en) Precipitation hardened heat-resistant steel
JP4180753B2 (en) Fe-base heat-resistant alloy with excellent cold workability and high-temperature heat stability
JPH11199987A (en) Heat resistant alloy suitable for cold working
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JPH0734204A (en) Ferritic heat resistant cast steel and its production
JPS644578B2 (en)
JP2001158943A (en) Heat resistant bolt
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JP6960083B2 (en) Heat resistant plate material
JPH07113139B2 (en) Exhaust manifold and automobile turbine housing with excellent castability and heat fatigue resistance
JPH0112827B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees