JP4056276B2 - Component mounting method and apparatus - Google Patents

Component mounting method and apparatus Download PDF

Info

Publication number
JP4056276B2
JP4056276B2 JP2002087596A JP2002087596A JP4056276B2 JP 4056276 B2 JP4056276 B2 JP 4056276B2 JP 2002087596 A JP2002087596 A JP 2002087596A JP 2002087596 A JP2002087596 A JP 2002087596A JP 4056276 B2 JP4056276 B2 JP 4056276B2
Authority
JP
Japan
Prior art keywords
resonator
component
mounting
ultrasonic vibration
working surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002087596A
Other languages
Japanese (ja)
Other versions
JP2003282645A (en
Inventor
昌三 南谷
貴晴 前
康晴 上野
山田  晃
真司 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002087596A priority Critical patent/JP4056276B2/en
Priority to TW092105078A priority patent/TWI230102B/en
Priority to CNB038071347A priority patent/CN100377293C/en
Priority to KR1020047015150A priority patent/KR100934064B1/en
Priority to DE60308340T priority patent/DE60308340T2/en
Priority to KR1020097002605A priority patent/KR100950619B1/en
Priority to PCT/JP2003/003906 priority patent/WO2003081644A2/en
Priority to US10/508,460 priority patent/US7229854B2/en
Priority to EP03745015A priority patent/EP1488449B1/en
Publication of JP2003282645A publication Critical patent/JP2003282645A/en
Priority to US11/731,312 priority patent/US7861908B2/en
Application granted granted Critical
Publication of JP4056276B2 publication Critical patent/JP4056276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、部品を実装対象物に超音波振動にて実装する部品実装方法及び装置に関するものである。
【0002】
【従来の技術】
従来の超音波振動による部品実装装置としては、例えば特開2000−68327号公報に開示されているように、ボイスコイルモータ等の移動手段にて昇降可能に支持された支持ブラケットに水平姿勢で固定支持された超音波振動発生手段の出力端にホーンを結合するとともにそのホーンの先端に部品を吸着保持する吸着ノズルを装着して成る実装ヘッドと、実装ヘッドに部品を供給する手段と、基板などの実装対象物を固定支持する支持台と、実装ヘッドと支持台を水平方向に相対移動させて部品と実装対象物の位置合わせを行う位置決め手段とを備えたものが知られている。
【0003】
この種の部品実装装置は、部品の一面に突設された複数の突起電極を実装対象物に形成された電極に超音波接合して実装する場合に好適に適用され、部品供給手段にて突起電極を下向きにして供給された部品の上面を実装ヘッドの吸着ノズルにて吸着保持し、支持台上に実装対象物を供給して固定支持し、部品が実装対象物の実装位置の上方に位置するように実装ヘッドと支持台を相対移動させて位置決めし、実装ヘッドの移動手段にて部品の突起電極を実装対象物の電極に当接させ、さらに所定の押圧力を作用させた状態で超音波振動発生手段を作動させてホーンを介して吸着ノズルを水平方向に超音波振動させることで、部品と実装対象物の接合面に超音波振動エネルギーを付与して拡散及び溶融によって接合している。
【0004】
【発明が解決しようとする課題】
ところが、近年は電子回路の小型化を図るために、電子回路を構成する電子部品(チップ)の数を少なくすることが求められ、それに伴って各電子部品の高機能化・高集積化が進められる結果、単一の電子部品は逆に大型化・多電極化が進行しつつある。
【0005】
このような電子部品を上記した従来の部品実装装置で実装する場合には、多数の突起電極を実装対象物の電極に一度に超音波接合する必要があるため、吸着ノズルに負荷する押圧荷重を大きくする必要があるとともに、吸着ノズル下面の部品保持面と実装対象物の接合面との平行度を極めて高く保たないと接合面の全体を確実に接合することができない。
【0006】
しかるに、上記のような構成では、支持ブラケットから超音波振動発生手段とホーンの結合箇所近傍に大きな押圧荷重を負荷すると、ホーンの先端に吸着ノズルが固定されているので、吸着ノズル下面の位置と押圧荷重の負荷位置との間に距離があるためホーンに曲げモーメントが作用し、ホーンの押圧荷重による撓みによって吸着ノズル下面の部品保持面が傾斜し、精度の高い平行度を得ることはできず、信頼性の高い接合が確保することができないという問題がある。
【0007】
また、突起電極の数が多い場合には、部品保持面と実装対象物の接合面の平行度をある程度確保しつつ大きな押圧荷重を負荷して超音波振動を付与しても、その超音波振動によって付与できる接合エネルギーが不足し易く、十分に信頼性の高い接合状態を得るのが困難な場合があるという問題がある。
【0008】
部品と実装対象物の間の空間に封止材を充填して硬化させて封止する必要があるが、従来は電子部品を実装した後別工程で封止材の硬化工程を行う必要があり、工数が多く、コスト高になるという問題もあった。
【0009】
本発明は、上記従来の問題点に鑑み、部品と実装対象物間の接合面積が広い場合にも確実に高い信頼性をもって超音波接合することができる部品実装方法及び装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の部品実装方法は、一端面に入力された振動が作用面でその面と略平行な振動となるとともに作用面に対して垂直な軸芯上に共振モードの節が形成されるように構成された共振体の作用面にて部品を保持する工程と、支持台上に実装対象物を配置固定する工程と、部品と実装対象物の位置合わせを行って部品を実装対象物に接触させる工程と、共振体の節の位置から押圧荷重を負荷するとともに共振体の一端面から超音波振動を入力させる工程とを有し、さらに、少なくとも押圧荷重を負荷するとともに超音波振動を入力する工程時に共振体の両側に対向する側から共振体の作用面近傍を非接触にて加熱するものである。
【0011】
このような構成によると、共振体の一端面から超音波振動を印加すると作用面がその面に略平行に超音波振動するとともに、荷重負荷部から押圧荷重を負荷すると作用面に対して垂直方向にその押圧荷重が作用するため、作用面と接合面の平行度を高精度に保持しつつ大きな押圧荷重を作用させた状態で超音波振動を印加して大きな超音波エネルギーを付与できるので、接合面における接合面積が広い場合にも接合面の全面を確実に高い信頼性をもって接合することができる。
【0012】
また、少なくとも押圧荷重を負荷するとともに超音波振動を入力する工程時に共振体の作用面近傍を加熱するので、接合面に超音波エネルギーと同時に熱エネルギーを付与でき、接合面における接合面積が広い場合にも接合面の全面を確実に高い信頼性をもって接合することができ、さらに共振体の両側に対向する側から非接触にて加熱するので超音波振動系に影響を与えずに所望の熱エネルギーを付与することができる。なお、加熱は接合時のみ加熱してもよいが、接合前後を含めて連続的に加熱してもよいことは言うまでもなく、また共振体側からの加熱に限定されるものでもない。
【0013】
また、本発明の部品実装装置は、部品供給手段と、供給された部品を保持して実装対象物に実装する実装ヘッドと、実装対象物を固定支持する支持台と、実装ヘッドと支持台を相対移動させて部品と実装対象物の位置合わせを行う位置決め手段とを備え、実装ヘッドは、超音波振動発生手段と、一端面が超音波振動発生手段と結合され、他端面が作用面となり、一端面に入力された振動が作用面でその面と略平行な振動となるとともに作用面に対して垂直な軸芯上に共振モードの節が形成されるように構成された共振体と、共振体の節部分に押圧荷重を負荷する荷重負荷手段と、共振体の作用面近傍を加熱する加熱手段とを有し、加熱手段は、共振体の節部分を支持する支持ブラケットの共振体の両側に対向する部分に配設したヒータにて構成し、ヒータの熱を共振体に輻射させて加熱するようにしたものである。
【0014】
このような構成によると、上記部品実装方法を実施してその作用・効果を奏することができる。また、共振体の作用面近傍を加熱する加熱手段を設けているので、上記のように作用面近傍を加熱することによる効果を奏することができる。
【0015】
また、加熱手段を、共振体の節部分を支持する支持ブラケットの共振体の両側に対向する部分に配設したヒータにて構成し、ヒータの熱を共振体に輻射させて加熱するようにしているので、加熱手段が共振体と離間して配設され、超音波振動系に影響を与えずに所望の熱エネルギーを付与することができる。
【0016】
また、共振体の側面と支持ブラケットの共振体に対向する面の少なくとも一方に伝熱用フィンを設けると、さらに伝熱効率が高くなり、熱効率良く急速均一加熱することができる。
【0020】
【発明の実施の形態】
以下、本発明の部品実装方法及び装置の一実施形態について、図1〜図6を参照して説明する。
【0021】
まず、本実施形態の部品実装装置における従来例と共通の全体構成について、図1、図2を参照して説明する。1は、ベアICチップからなる部品2を実装対象物の基板3(図6参照)に実装する部品実装装置で、部品2はその一面に複数の突起電極2aが配列されており、基板3の部品実装位置には各突起電極2aを接合する電極が形成されている。
【0022】
部品実装装置1の基台4上の後部には、部品2を保持して基板3に実装する実装ヘッド5をX軸方向に移動可能に支持するX方向テーブル6が配設されている。X方向テーブル6の所定箇所の下部とその前部の間にわたってY軸方向に移動可能なY方向テーブル7が配設され、このY方向テーブル7上に基板3を載置固定する支持台8が設けられている。X方向テーブル6の前部には基板3を基台4の一側からY方向テーブル7まで搬入するローダ9と、Y方向テーブル7から基台4の他側に搬出するアンローダ10が配設されている。ローダ9やアンローダ10は基板3の両側を支持する一対のレールを有し、支持台8の前後両側にはこれら一対のレールに接続可能にかつ昇降可能に部分レール11が設けられて基板3をこの部分レール11上に受けた後、支持台8上に載置固定するように構成されている。
【0023】
基台4の他側のX方向テーブル6より前方位置に、多数の部品2を形成されエキスパンドシート上でダイシングされた半導体ウエハ12を収容した部品マガジン13を設置されて、所望の半導体ウエハ12を所定の供給高さ位置に位置決めするマガジンリフタ14が配設され、マカジンリフタ14とY方向テーブル7との間に、マガジンリフタ14から導入された半導体ウエハ12のエキスパンドシートを拡張させ、各部品2を間隔をあけて分離させるエキスパンド台15が、任意の部品2を所定の第1の部品供給位置に位置決めするXYテーブル16上に設置して配設されている。17は第1の部品供給位置の部品2を認識する認識カメラである。
【0024】
18は、第1の部品供給位置で部品2を吸着し、X方向に移動して第2の部品供給位置まで移載するとともに吸着した部品2を180度上向きに旋回させる部品反転手段で、X方向テーブル6と平行な別のX方向テーブル(図示せず)にて移動可能に構成されている。半導体ウエハ12の状態では、各部品2の突起電極2aは上面に形成されており、部品反転手段18にて各部品2の突起電極2aが形成された面を吸着した後上向きに180度旋回することによって、部品2の突起電極2aが形成された面が下向き、反対側の面が上向きとなり、その状態で第2の部品供給位置で実装ヘッド5に受け渡すように構成されている。以上のマガジンリフタ14、エキスパンド台15、反転手段18にて部品2を実装ヘッド5に供給する部品供給手段20が構成されている。なお、19は基板3の部品2の実装位置又は部品2に封止材を塗布するディスペンサである。
【0025】
実装ヘッド5は、後述の如く、ボイスコイルモータなどの移動手段22にて軸芯方向に昇降駆動可能なスプライン軸23(図3参照)の下部に超音波ヘッド21が取付けられている。超音波ヘッド21は、超音波振動発生手段26と共振体27を支持ブラケット28に取付けて構成され、その共振体27又はそれに取付固定された吸着ノズルにて部品2を保持するように構成されている。
【0026】
以上の全体構成における部品実装動作を説明すると、部品供給手段20にて部品2をその突起電極2aを下向きにした状態で第2の部品供給位置に供給した後、実装ヘッド5の共振体27又はそれに取付固定された吸着ノズルにて部品2を保持し、次いで実装ヘッド5がX方向テーブル6にて基板3における部品2の実装位置のX方向位置まで移動する。一方、ローダ9にて供給された基板3はY方向テーブル7に設けられた部分レール11上に受け渡された後、部分レール11が所定高さ位置まで下降してこの基板3が支持台8上に載置固定され、次いでY方向テーブル7が基板3における部品2の実装位置のY方向位置が実装ヘッド5のY方向位置に一致するように移動する。次に、必要に応じてディスペンサ19にて実装位置に封止材を塗布した後、実装ヘッド5の移動手段22を作動させて部品2を下降させ、その突起電極2aを基板3の実装位置の電極に当接させるとともに、移動手段22にて所定の押圧荷重を負荷しながら超音波振動発生手段26を作動させることで、突起電極2aと基板3の電極の接合面に超音波エネルギーを供給して拡散及び溶融によって接合し、また上記のようにディスペンサ19にて塗布した封止材を基板3と部品2の隙間に充填させ、部品2の基板3に対する実装が終了する。部品2の実装が終了すると、部分レール11が上昇して基板3が部分レール11上に受け渡されるとともに、部分レール11がアンローダ10に接続されてアンローダ10にて搬出される。
【0027】
次に、本実施形態における実装ヘッド5の要部構成について、図3〜図6を参照して説明する。図3において、21は超音波ヘッドで、実装ヘッド本体5aに上下摺動自在に配設され、ボイスコイルモータやシリンダ等の移動手段22にて昇降駆動されるスプライン軸23の下端部に固定手段24及び平行度調整機構25を介して取付けられている。平行度調整機構25は、上部板25aと下部板25bを中央の連結軸25cを介して連結するとともに上部板25aを貫通させて螺合した3本の調整ねじ25dの下端を下部板25bの上面に当接させ、調整ねじ25dのねじ込み調整によって下部板25bの傾きを調整できるように構成されている。
【0028】
超音波ヘッド21は、超音波振動発生手段26と共振体27と支持ブラケット28にて構成され、支持ブラケット28の上端面28aが平行度調整機構25の下面に取付けられている。共振体27は、図6に示すように、基幹部27aと一対の枝部27bを有するY字状でかつその基幹部27aの両側に一対の突出部27cを有する全体形状であり、この共振体27の基幹部27aの基端面29に超音波振動発生手段26が結合されている。そして、一方の枝部27bの先端面が水平状態となって作用面30として機能するように、共振体27及び超音波振動発生手段26は斜め上方に傾斜した姿勢で支持ブラケット28に取付けられている。
【0029】
共振体27の上記形状は、図3、図6に示すように、超音波振動発生手段26にて基端面29に対して矢印aで示すような縦振動の所定周波数の超音波振動を印加することにより、作用面30が矢印bで示すように水平方向に超音波振動し、さらに作用面30に対して垂直な軸線上の上部位置に共振モードの節31が生じるように設計されている。また、この共振体27には、節31の位置で両側面に短い角軸状の荷重負荷部32が突設され、この荷重負荷部32が支持ブラケット28に連結されている。
【0030】
支持ブラケット28は、図3〜図5に示すように、上端部の中央にスプライン軸と同芯の位置決め穴33が形成され、下部には共振体27が挿入配置される溝34とその両側の一対の支持板部35が形成されている。両支持板部35の下端中央に矩形状の切欠38が形成されて荷重負荷部32が下方から挿入配置され、両支持板部35の下端面に固定された蓋36にて固定支持されている。蓋36には、加熱手段としてのカートリッジヒータ39が埋設され、支持板部35の下部を加熱し、その輻射熱にて共振体27の作用面30の近傍を加熱するように構成されている。
【0031】
以上の構成において、図6に示すように、支持台8上に互いに接合すべき基板3を載置固定し、部品2を超音波ヘッド21の共振体27に設けた吸着手段(図示せず)にて保持した状態で、スプライン軸23を下降移動させて超音波ヘッド21を支持台8に向けて下降させ、共振体27の下端の作用面30と支持台8の上面との間で基板3と部品2を挟圧し、さらにスプライン軸23を介して支持ブラケット28に所定の押圧荷重を作用させる。その状態で、超音波振動発生手段26にて共振体27の基端面29に超音波振動を入力し、さらにカートリッジヒータ39を作動させて加熱する。
【0032】
すると、共振体27の作用面30がその面に略平行に超音波振動するとともに、支持ブラケット28から共振体27の共振モードの節31に設けた荷重負荷部32に白抜き矢印の如く垂直に押圧荷重40が負荷され、荷重負荷部32が作用面30の垂直上方に位置しているため、その押圧荷重が作用面30に対して100%垂直方向に作用し、さらにカートリッジヒータ39にて支持板部35の下端部が加熱され、その輻射熱で共振体27の下端部の作用面30の近傍が加熱され、その熱が破線矢印で示すように、部品2に伝熱されて部品2が加熱され、部品2の突起電極2aと基板3の電極の接合面に熱エネルギーが供給される。
【0033】
かくして、作用面30と互いに接合すべき部品2と基板3の接合面の平行度を高精度に保持しつつ大きな押圧荷重を作用させた状態で超音波振動を印加して大きな超音波エネルギーを付与でき、かつそれと同時に熱エネルギーを付与できるので、部品2の突起電極2aの数が多く、そのため総接合面積が大きくても、全ての突起電極2aと基板3の電極を確実に高い信頼性をもって接合することができる。また、それと同時に基板3の部品2の実装位置に塗布され、部品2の実装に伴って部品2と基板3の間の隙間に充填された封止材が熱エネルギーを受けて硬化され、部品2の実装と封止が完了する。
【0034】
また、加熱手段を支持板部35に配設したカートリッジヒータ39にて構成し、カートリッジヒータ39の熱を共振体27に輻射させて加熱するようにしているので、超音波振動系に影響を与えずに所望の熱エネルギーを付与することができるとともに、カートリッジヒータ39を用いているので、加熱手段が安価であり、低コストにて構成することができる。
【0035】
以上の実施形態において、カートリッジヒータ39による共振体27の加熱の影響により超音波振動発生手段26が高温に晒されるのを防止するため、図3に仮想線で示すように、超音波振動発生手段26を冷却する冷却部41又は保温部を設け、また超音波振動発生手段26若しくはその近傍に温度監視部42を設けるのが好ましい。冷却部41としては超音波振動発生手段26の周囲に冷却風を流すように構成したものが振動系に影響を与え難いので好適であり、温度監視部42も振動系に影響を与え難い位置に熱電対を取付けるのが好適である。
【0036】
このように冷却部41にて超音波振動発生手段26の過熱を防止することで、加熱手段にて接合面の加熱を行いながら超音波振動発生手段26が過熱されて所定の特性が得られなくなり、接合不良を生じるのを防止することができ、さらに温度監視部42を設けることで超音波振動発生手段26若しくはその近傍がどの程度の温度であるかを知って未然に対策を講じることができ、超音波振動特性の低下による接合不良の発生を一層確実に防止することができる。
【0037】
なお、図3〜図6に示した例では、支持ブラケット28の支持板部35に固定した蓋36にカートリッジヒータ39を埋設した例を示したが、これに限定されるものではなく、例えば図7(a)に示す第1の変形例のように、支持ブラケット28の本体部に対して少なくとも一方の支持板部35を着脱可能に装着し、この支持板部35に設けた支持穴に断熱材46を介して共振体27の両側に突設された荷重負荷部32を嵌合させて支持するようにし、この支持板部35にカートリッジヒータ39を埋設してもよい。また、図7(b)に示すように、共振体27と支持板部35の対向面の少なくとも一方に伝熱用フィン47を配設することにより、支持板部35から共振体27への輻射による伝熱効率を高めることができる。
【0038】
また、図8(a)に示す第2の変形例のように、カートリッジヒータ39に代えて、面状のセラミックヒータ48を支持板部35の共振体27との対向面に配設しても良く、そうすると所要箇所の全面を効率的に均一加熱することができ、さらに図8(b)に示すように、共振体27とセラミックヒータ48の対向面の少なくとも一方に伝熱用フィン47を配設すると、セラミックヒータ48から共振体27への輻射による伝熱効率を高めることができる。
【0039】
また、図9(a)に示す第3の変形例のように、カートリッジヒータ39やセラミックヒータ48に代えて、熱風吹き出し手段49を支持板部35の共振体27との対向面に配設しても良く、そうすると熱風が共振体27に接触して伝熱されるので、急速に均一加熱することができ、さらに図9(b)に示すように、共振体27の両側面に伝熱用フィン47を配設すると、吹き出した熱風との熱交換率が向上して共振体27への伝熱効率を高めることができる。
【0040】
また、上記各例のように共振体27の両側の支持板部35に加熱手段を配設して間接加熱するものに限らず、図10に示す第4の変形例のように、共振体27に熱媒通路50を形成し、矢印で示すように熱媒供給手段51にてこの熱媒通路50に熱風などの熱媒を供給することで、共振体27を直接加熱するようにすることもでき、そうすると所要箇所の全面をさらに効率的に急速均一加熱することができる。熱媒供給手段51は、作用面30に近い部分に主として配設するのが好適である。
【0041】
また、図11に示す第5の変形例のように、共振体27の作用面30近傍に向けてレーザ光などの熱線を照射する熱線照射手段52(白抜き矢印で示す)を配設しても良く、そうすると共振体27の作用面30近傍を非接触にてかつ効率的に急速加熱することができる。さらに、熱線照射手段52に代えて、共振体27の作用面近傍に向けて電磁波を放射する手段を設けるとともに共振体27を強磁性にて構成し、共振体27の作用面30の近傍を電磁誘導加熱するようにしてもよい。
【0042】
【発明の効果】
本発明の部品実装方法及び装置によれば、一端面に入力された振動が作用面でその面と略平行な振動となるとともに作用面に対して垂直な軸芯上に共振モードの節が形成されるように構成された共振体の作用面にて部品を保持し、支持台上に実装対象物を配置固定し、部品と実装対象物の位置合わせを行って部品を実装対象物に接触させ、共振体の節の位置から押圧荷重を負荷するとともに共振体の一端面から超音波振動を入力させるようにしたので、共振体の一端面から超音波振動を印加すると作用面がその面に略平行に超音波振動するとともに、荷重負荷部から押圧荷重を負荷すると作用面に対して垂直方向にその押圧荷重が作用するため、作用面と接合面の平行度を高精度に保持しつつ大きな押圧荷重を作用させた状態で超音波振動を印加して大きな超音波エネルギーを付与できるので、接合面における接合面積が広い場合にも接合面の全面を確実に高い信頼性をもって接合することができる。
【0043】
また、少なくとも押圧荷重を負荷するとともに超音波振動を入力する工程時に共振体の作用面近傍を加熱するので、接合面に同時に熱エネルギーを付与でき、接合面における接合面積が広い場合にも接合面の全面を確実に高い信頼性をもって接合することができ、さらに共振体の両側に対向する側から非接触にて加熱するので超音波振動系に影響を与えずに所望の熱エネルギーを付与することができる。また接合と同時に予め実装位置に封止材を塗布しておくことによってその封止材の硬化も行うことができ、部品の実装工程数を削減できてコスト低下を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態及び従来例に共通する部品実装装置における全体概略構成を示す斜視図である。
【図2】図1における実装ヘッドの構成を示す斜視図である。
【図3】本発明の一実施形態における実装ヘッドの要部構成を示す正面図である。
【図4】図3のA−A矢視断面図である。
【図5】図3のB−B矢視図である。
【図6】同実施形態における共振体の作用説明図である。
【図7】同実施形態における加熱手段の第1の変形例を示し、(a)は斜視図、(b)は改良例の側面図である。
【図8】同実施形態における加熱手段の第2の変形例を示し、(a)は斜視図、(b)は改良例の側面図である。
【図9】同実施形態における加熱手段の第3の変形例を示し、(a)は側面図、(b)は改良例の側面図である。
【図10】同実施形態における加熱手段の第4の変形例を示す共振体の正面図である。
【図11】同実施形態における加熱手段の第5の変形例を示す斜視図である。
【符号の説明】
1 部品実装装置
2 部品
3 基板(実装対象物)
5 実装ヘッド
6 X方向テーブル
7 Y方向テーブル
8 支持台
20 部品供給手段
22 移動手段(荷重負荷手段)
26 超音波振動発生手段
27 共振体
28 支持ブラケット
29 基端面
30 作用面
31 節
32 荷重負荷部
35 支持板部
39 カートリッジヒータ(加熱手段)
41 冷却部
42 温度監視部
47 伝熱用フィン
48 セラミックヒータ(加熱手段)
50 熱媒通路
51 熱媒供給手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component mounting method and apparatus for mounting a component on a mounting object by ultrasonic vibration.
[0002]
[Prior art]
As a conventional component mounting apparatus using ultrasonic vibration, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-68327, it is fixed in a horizontal posture on a support bracket supported by a moving means such as a voice coil motor. A mounting head comprising a horn coupled to the output end of the supported ultrasonic vibration generating means and a suction nozzle for sucking and holding the component at the tip of the horn, means for supplying the component to the mounting head, a substrate, etc. There is known a support base that fixes and supports the mounting object, and positioning means that aligns the component and the mounting object by relatively moving the mounting head and the support base in the horizontal direction.
[0003]
This type of component mounting apparatus is suitably applied to a case where a plurality of protruding electrodes protruding from one surface of a component are ultrasonically bonded to an electrode formed on an object to be mounted. The upper surface of the component supplied with the electrode facing downward is sucked and held by the suction nozzle of the mounting head, the mounting target is supplied and fixedly supported on the support base, and the component is positioned above the mounting position of the mounting target. The mounting head and the support base are moved relative to each other so that they can be positioned. The mounting head moving means makes the protruding electrode of the component abut the electrode of the mounting target, and a predetermined pressing force is applied. By operating the sonic vibration generating means and ultrasonically vibrating the suction nozzle through the horn in the horizontal direction, ultrasonic vibration energy is applied to the joint surface between the component and the mounting object to join them by diffusion and melting. .
[0004]
[Problems to be solved by the invention]
However, in recent years, in order to reduce the size of electronic circuits, it has been required to reduce the number of electronic components (chips) constituting the electronic circuit, and accordingly, higher functionality and higher integration of each electronic component have been promoted. As a result, a single electronic component is increasing in size and increasing in number.
[0005]
When mounting such an electronic component with the above-described conventional component mounting apparatus, it is necessary to ultrasonically bond a large number of protruding electrodes to the electrode of the mounting object at one time. It is necessary to increase the size, and the entire joining surface cannot be reliably joined unless the parallelism between the component holding surface on the lower surface of the suction nozzle and the joining surface of the mounting object is kept extremely high.
[0006]
However, in the configuration as described above, when a large pressing load is applied from the support bracket to the vicinity of the coupling portion between the ultrasonic vibration generating means and the horn, the suction nozzle is fixed to the tip of the horn. Since there is a distance between the load position of the pressing load, a bending moment acts on the horn, and the component holding surface on the lower surface of the suction nozzle is inclined due to the bending due to the pressing load of the horn, so that a high degree of parallelism cannot be obtained. There is a problem that a highly reliable joint cannot be secured.
[0007]
In addition, when the number of protruding electrodes is large, even if ultrasonic vibration is applied by applying a large pressing load while ensuring a certain degree of parallelism between the component holding surface and the joint surface of the mounting object, the ultrasonic vibration However, there is a problem that it is difficult to obtain a sufficiently reliable bonding state because the bonding energy that can be imparted by this is easily insufficient.
[0008]
It is necessary to fill the space between the component and the mounting object with a sealing material, cure it, and seal it. Conventionally, after mounting the electronic component, it is necessary to perform the sealing material curing process in a separate process There are also problems that man-hours are large and costs are high.
[0009]
An object of the present invention is to provide a component mounting method and apparatus capable of reliably performing ultrasonic bonding with high reliability even when a bonding area between a component and a mounting object is wide in view of the above-described conventional problems. And
[0010]
[Means for Solving the Problems]
In the component mounting method of the present invention, the vibration input to the one end surface becomes a vibration substantially parallel to the action surface, and a resonance mode node is formed on an axis perpendicular to the action surface. The step of holding the component on the working surface of the configured resonator, the step of arranging and fixing the mounting object on the support base, and aligning the component and the mounting target to bring the component into contact with the mounting target It possesses a step, and a step of inputting the ultrasonic vibration from the one end surface of the resonator as well as loading the pressing load from the position of a node of the resonator, further step of inputting ultrasonic vibration as well as load at least pressing load Sometimes the vicinity of the working surface of the resonator is heated in a non-contact manner from the side opposite to both sides of the resonator .
[0011]
According to such a configuration, when ultrasonic vibration is applied from one end surface of the resonator, the working surface is ultrasonically vibrated substantially parallel to the surface, and when a pressing load is applied from the load-loading portion, the working surface is perpendicular to the working surface. Because the pressing load acts on the surface, it is possible to apply ultrasonic vibrations and apply large ultrasonic energy in a state where a large pressing load is applied while maintaining the parallelism between the working surface and the bonding surface with high accuracy. Even when the bonding area on the surface is large, the entire bonding surface can be reliably bonded with high reliability.
[0012]
Further, since heat the working surface near the resonator during a process of inputting ultrasonic vibration as well as load at least the pressing load, ultrasonic energy to the joint surface and can heat energy imparted simultaneously, a wide bonding area on the bonding surface Even in this case, the entire bonding surface can be reliably bonded with high reliability , and further, the desired heat can be obtained without affecting the ultrasonic vibration system because heating is performed in a non-contact manner from the opposite sides of the resonator. Ru it is possible to impart energy. In addition, although heating may be performed only at the time of joining, it cannot be overemphasized that it may heat continuously including before and behind joining, and is not limited to the heating from the resonator side.
[0013]
The component mounting apparatus of the present invention includes a component supply means, a mounting head that holds the supplied component and mounts the mounted component on a mounting target, a support base that fixes and supports the mounting target, a mounting head and a support base. And a positioning means for aligning the component and the mounting object by relative movement, the mounting head has an ultrasonic vibration generating means, one end surface is coupled to the ultrasonic vibration generating means, and the other end surface is an action surface, Resonator configured so that vibration input to one end surface becomes vibration substantially parallel to the surface of the working surface, and a resonance mode node is formed on an axis perpendicular to the working surface. possess a load application means for loading the pressing load to the node portion of the body, and heating means for heating the working face near the resonator, the heating means, both sides of the resonator of the support bracket supporting the node portion of the resonator The heater is installed in the part facing the And, Ru Monodea which is adapted to heat by radiation heat of the heater to the resonator.
[0014]
According to such a structure, the said component mounting method can be implemented and the effect | action and effect can be show | played. Further, since the provided heating means for heating the working face near the resonator, it is possible to obtain the effect of heating the working surface near as above.
[0015]
Further, the heating means is composed of a heater disposed on the opposite side of the resonator of the support bracket that supports the node portion of the resonator, and the heat of the heater is radiated to the resonator to heat it. since it is, the heating means is disposed apart from the resonator, it is possible to impart a desired thermal energy without affecting the ultrasonic vibration system.
[0016]
Further, when heat transfer fins are provided on at least one of the side surface of the resonator and the surface of the support bracket facing the resonator, the heat transfer efficiency is further increased, and rapid and uniform heating can be performed with high heat efficiency.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a component mounting method and apparatus according to the present invention will be described with reference to FIGS.
[0021]
First, an overall configuration common to the conventional example in the component mounting apparatus of the present embodiment will be described with reference to FIGS. 1 and 2. Reference numeral 1 denotes a component mounting apparatus for mounting a component 2 composed of a bare IC chip on a substrate 3 (see FIG. 6) to be mounted. The component 2 has a plurality of protruding electrodes 2a arranged on one surface thereof. Electrodes for joining the protruding electrodes 2a are formed at the component mounting positions.
[0022]
An X-direction table 6 that supports a mounting head 5 that holds the component 2 and mounts it on the substrate 3 so as to be movable in the X-axis direction is disposed on the rear portion of the base 4 of the component mounting apparatus 1. A Y-direction table 7 that is movable in the Y-axis direction is disposed between a lower portion of a predetermined portion of the X-direction table 6 and a front portion thereof, and a support base 8 for mounting and fixing the substrate 3 on the Y-direction table 7 is provided. Is provided. At the front part of the X direction table 6, a loader 9 that carries the substrate 3 from one side of the base 4 to the Y direction table 7 and an unloader 10 that carries the substrate 3 from the Y direction table 7 to the other side of the base 4 are arranged. ing. The loader 9 and the unloader 10 have a pair of rails that support both sides of the substrate 3, and partial rails 11 are provided on both the front and rear sides of the support base 8 so as to be connectable to the pair of rails and move up and down. After being received on the partial rail 11, it is configured to be mounted and fixed on the support base 8.
[0023]
A component magazine 13 containing a semiconductor wafer 12 in which a large number of components 2 are formed and diced on an expanded sheet is placed at a position in front of the X-direction table 6 on the other side of the base 4. A magazine lifter 14 is disposed to be positioned at a predetermined supply height position. The expanded sheet of the semiconductor wafer 12 introduced from the magazine lifter 14 is expanded between the makadin lifter 14 and the Y-direction table 7, and each component 2 is expanded. An expand base 15 that is separated at intervals is disposed on an XY table 16 that positions an arbitrary component 2 at a predetermined first component supply position. A recognition camera 17 recognizes the component 2 at the first component supply position.
[0024]
Reference numeral 18 denotes component reversing means for sucking the component 2 at the first component supply position, moving it in the X direction to transfer it to the second component supply position, and turning the sucked component 2 upward 180 degrees. It is configured to be movable by another X direction table (not shown) parallel to the direction table 6. In the state of the semiconductor wafer 12, the protruding electrode 2a of each component 2 is formed on the upper surface, and the component reversing means 18 sucks the surface on which the protruding electrode 2a of each component 2 is formed and then turns upward 180 degrees. Thus, the surface of the component 2 on which the protruding electrode 2a is formed is directed downward, and the surface on the opposite side is directed upward. In this state, the component 2 is delivered to the mounting head 5 at the second component supply position. The above-described magazine lifter 14, the expanding table 15, and the reversing unit 18 constitute a component supply unit 20 that supplies the component 2 to the mounting head 5. Reference numeral 19 denotes a dispenser for applying a sealing material to the mounting position of the component 2 on the substrate 3 or the component 2.
[0025]
As will be described later, the ultrasonic head 21 is attached to the mounting head 5 below a spline shaft 23 (see FIG. 3) that can be moved up and down in the axial direction by a moving means 22 such as a voice coil motor. The ultrasonic head 21 is configured by attaching an ultrasonic vibration generating means 26 and a resonator 27 to a support bracket 28, and is configured to hold the component 2 by the resonator 27 or a suction nozzle attached and fixed thereto. Yes.
[0026]
The component mounting operation in the overall configuration described above will be described. After supplying the component 2 to the second component supply position with the protruding electrode 2a facing downward by the component supply means 20, the resonator 27 of the mounting head 5 or The component 2 is held by the suction nozzle attached and fixed thereto, and then the mounting head 5 is moved to the X direction position of the mounting position of the component 2 on the substrate 3 by the X direction table 6. On the other hand, the substrate 3 supplied by the loader 9 is transferred onto the partial rail 11 provided on the Y-direction table 7, and then the partial rail 11 is lowered to a predetermined height position so that the substrate 3 is supported by the support base 8. Then, the Y-direction table 7 moves so that the Y-direction position of the mounting position of the component 2 on the substrate 3 coincides with the Y-direction position of the mounting head 5. Next, after applying a sealing material to the mounting position with the dispenser 19 as necessary, the moving means 22 of the mounting head 5 is operated to lower the component 2, and the protruding electrode 2 a is moved to the mounting position of the substrate 3. Ultrasonic energy is supplied to the joint surface between the protruding electrode 2a and the electrode of the substrate 3 by causing the ultrasonic vibration generating means 26 to operate while being in contact with the electrode and applying a predetermined pressing load by the moving means 22. Then, bonding is performed by diffusion and melting, and the sealing material applied by the dispenser 19 as described above is filled in the gap between the substrate 3 and the component 2, and the mounting of the component 2 on the substrate 3 is completed. When the mounting of the component 2 is completed, the partial rail 11 is raised and the board 3 is transferred onto the partial rail 11, and the partial rail 11 is connected to the unloader 10 and is unloaded by the unloader 10.
[0027]
Next, the principal part structure of the mounting head 5 in this embodiment is demonstrated with reference to FIGS. In FIG. 3, reference numeral 21 denotes an ultrasonic head, which is disposed on the mounting head main body 5a so as to be slidable up and down, and is fixed to a lower end portion of a spline shaft 23 which is driven up and down by a moving means 22 such as a voice coil motor or a cylinder. 24 and a parallelism adjusting mechanism 25. The parallelism adjusting mechanism 25 connects the upper plate 25a and the lower plate 25b via a central connecting shaft 25c and connects the lower ends of the three adjusting screws 25d threaded through the upper plate 25a to the upper surface of the lower plate 25b. The inclination of the lower plate 25b can be adjusted by adjusting the screwing of the adjusting screw 25d.
[0028]
The ultrasonic head 21 includes an ultrasonic vibration generating means 26, a resonator 27, and a support bracket 28, and an upper end surface 28 a of the support bracket 28 is attached to the lower surface of the parallelism adjusting mechanism 25. As shown in FIG. 6, the resonator 27 has a Y shape having a trunk portion 27a and a pair of branch portions 27b, and has an overall shape having a pair of projecting portions 27c on both sides of the trunk portion 27a. The ultrasonic vibration generating means 26 is coupled to the base end face 29 of the 27 main portion 27a. The resonator 27 and the ultrasonic vibration generating means 26 are attached to the support bracket 28 in an obliquely upward posture so that the tip surface of the one branch portion 27b becomes horizontal and functions as the action surface 30. Yes.
[0029]
As shown in FIGS. 3 and 6, the above-described shape of the resonator 27 applies ultrasonic vibration having a predetermined frequency of longitudinal vibration as indicated by an arrow a to the base end surface 29 by the ultrasonic vibration generating means 26. Thus, the working surface 30 is designed to ultrasonically vibrate in the horizontal direction as indicated by an arrow b, and further, a resonance mode node 31 is generated at an upper position on the axis perpendicular to the working surface 30. The resonator 27 is provided with short angular load members 32 on both sides at the position of the node 31, and the load member 32 is connected to the support bracket 28.
[0030]
As shown in FIGS. 3 to 5, the support bracket 28 has a positioning hole 33 concentric with the spline shaft at the center of the upper end portion, and a groove 34 into which the resonator 27 is inserted and disposed at the lower portion thereof. A pair of support plate portions 35 is formed. A rectangular notch 38 is formed at the center of the lower ends of both support plate portions 35, the load loading portion 32 is inserted and arranged from below, and is fixedly supported by a lid 36 fixed to the lower end surfaces of both support plate portions 35. . A cartridge heater 39 as a heating means is embedded in the lid 36, and the lower part of the support plate part 35 is heated, and the vicinity of the working surface 30 of the resonator 27 is heated by the radiant heat.
[0031]
In the above configuration, as shown in FIG. 6, suction means (not shown) in which the substrates 3 to be bonded to each other are placed and fixed on the support base 8 and the component 2 is provided on the resonator 27 of the ultrasonic head 21. In this state, the spline shaft 23 is moved downward to lower the ultrasonic head 21 toward the support base 8, and the substrate 3 is placed between the action surface 30 at the lower end of the resonator 27 and the upper surface of the support base 8. The component 2 is clamped and a predetermined pressing load is applied to the support bracket 28 via the spline shaft 23. In this state, ultrasonic vibration is input to the base end face 29 of the resonator 27 by the ultrasonic vibration generating means 26, and the cartridge heater 39 is operated to heat.
[0032]
Then, the working surface 30 of the resonator 27 is ultrasonically vibrated substantially parallel to the surface, and the load loading portion 32 provided at the node 31 of the resonance mode of the resonator 27 from the support bracket 28 is perpendicular to the white arrow. Since the pressing load 40 is applied and the load loading portion 32 is positioned vertically above the working surface 30, the pressing load acts 100% perpendicular to the working surface 30 and is further supported by the cartridge heater 39. The lower end portion of the plate portion 35 is heated, and the vicinity of the working surface 30 at the lower end portion of the resonator 27 is heated by the radiant heat, and the heat is transferred to the component 2 to heat the component 2 as indicated by the broken arrow. Then, thermal energy is supplied to the joint surface between the protruding electrode 2 a of the component 2 and the electrode of the substrate 3.
[0033]
Thus, a large ultrasonic energy is applied by applying ultrasonic vibration in a state where a large pressing load is applied while maintaining the parallelism of the bonding surface of the component 2 and the substrate 3 to be bonded to the working surface 30 with high accuracy. In addition, since the heat energy can be applied at the same time, the number of the protruding electrodes 2a of the component 2 is large, so that even if the total bonding area is large, all the protruding electrodes 2a and the electrodes of the substrate 3 are reliably bonded with high reliability. can do. At the same time, the sealing material applied to the mounting position of the component 2 on the substrate 3 and filled in the gap between the component 2 and the substrate 3 as the component 2 is mounted is cured by receiving thermal energy, and the component 2 Mounting and sealing are completed.
[0034]
Further, since the heating means is constituted by the cartridge heater 39 disposed on the support plate portion 35 and the heat of the cartridge heater 39 is radiated to the resonator 27 to be heated, the ultrasonic vibration system is affected. In addition, since the cartridge heater 39 is used, desired heating energy can be applied, and the heating means is inexpensive and can be configured at low cost.
[0035]
In the above embodiment, in order to prevent the ultrasonic vibration generating means 26 from being exposed to a high temperature due to the influence of the heating of the resonator 27 by the cartridge heater 39, as shown by the phantom line in FIG. It is preferable to provide a cooling unit 41 or a heat retaining unit that cools the temperature sensor 26, and a temperature monitoring unit 42 in the ultrasonic vibration generating means 26 or in the vicinity thereof. The cooling unit 41 is preferably configured to flow cooling air around the ultrasonic vibration generating means 26 because it is difficult to affect the vibration system, and the temperature monitoring unit 42 is also located at a position where it is difficult to affect the vibration system. It is preferable to attach a thermocouple.
[0036]
By preventing the ultrasonic vibration generating means 26 from being overheated in the cooling unit 41 in this way, the ultrasonic vibration generating means 26 is overheated while heating the bonding surface by the heating means, and a predetermined characteristic cannot be obtained. In addition, it is possible to prevent the occurrence of poor bonding, and by providing the temperature monitoring unit 42, it is possible to know the temperature of the ultrasonic vibration generating means 26 or the vicinity thereof and take measures beforehand. Further, it is possible to more reliably prevent the occurrence of poor bonding due to the deterioration of the ultrasonic vibration characteristics.
[0037]
3 to 6 show an example in which the cartridge heater 39 is embedded in the lid 36 fixed to the support plate portion 35 of the support bracket 28. However, the present invention is not limited to this example. 7A, at least one support plate 35 is detachably attached to the main body of the support bracket 28, and the support holes provided in the support plate 35 are thermally insulated. The load load portions 32 protruding from both sides of the resonator 27 via the material 46 may be fitted and supported, and the cartridge heater 39 may be embedded in the support plate portion 35. Further, as shown in FIG. 7B, radiation from the support plate 35 to the resonator 27 is provided by disposing a heat transfer fin 47 on at least one of the opposing surfaces of the resonator 27 and the support plate 35. Heat transfer efficiency can be increased.
[0038]
Further, as in the second modification shown in FIG. 8A, a planar ceramic heater 48 may be provided on the surface of the support plate portion 35 facing the resonator 27 instead of the cartridge heater 39. In this case, the entire surface of the required portion can be efficiently and uniformly heated. Further, as shown in FIG. 8B, a heat transfer fin 47 is arranged on at least one of the opposing surfaces of the resonator 27 and the ceramic heater 48. If provided, the heat transfer efficiency by radiation from the ceramic heater 48 to the resonator 27 can be increased.
[0039]
Further, as in the third modification shown in FIG. 9A, hot air blowing means 49 is provided on the surface of the support plate portion 35 facing the resonator 27 in place of the cartridge heater 39 and the ceramic heater 48. In this case, since the hot air contacts the resonator 27 and is transferred, heat can be rapidly and uniformly heated. Further, as shown in FIG. When 47 is provided, the heat exchange rate with the blown hot air is improved, and the heat transfer efficiency to the resonator 27 can be increased.
[0040]
Further, the present invention is not limited to the indirect heating by providing heating means on the support plate portions 35 on both sides of the resonator 27 as in the above examples, but as in the fourth modification shown in FIG. It is also possible to directly heat the resonator 27 by forming a heat medium passage 50 and supplying a heat medium such as hot air to the heat medium passage 50 by the heat medium supply means 51 as indicated by an arrow. In that case, the entire surface of the required location can be heated more rapidly and uniformly. It is preferable that the heat medium supply means 51 is mainly disposed at a portion close to the working surface 30.
[0041]
Further, as in the fifth modification shown in FIG. 11, a heat ray irradiation means 52 (indicated by a white arrow) for irradiating a heat ray such as laser light toward the vicinity of the working surface 30 of the resonator 27 is provided. In this case, the vicinity of the working surface 30 of the resonator 27 can be rapidly heated in a non-contact and efficient manner. Further, in place of the heat ray irradiating means 52, means for radiating electromagnetic waves toward the vicinity of the working surface of the resonator 27 is provided, the resonator 27 is made of ferromagnetic material, and the vicinity of the working surface 30 of the resonator 27 is electromagnetic. You may make it carry out induction heating.
[0042]
【The invention's effect】
According to the component mounting method and apparatus of the present invention, the vibration input to the one end surface becomes a vibration substantially parallel to the surface at the working surface, and a resonance mode node is formed on the axis perpendicular to the working surface. Hold the component on the working surface of the resonator that is configured to place the mounting target on the support base, align the component with the mounting target, and bring the component into contact with the mounting target. Since a pressing load is applied from the position of the node of the resonator and ultrasonic vibration is input from one end surface of the resonator, when the ultrasonic vibration is applied from one end surface of the resonator, the working surface is substantially on the surface. In addition to ultrasonic vibration in parallel, when a pressing load is applied from the load-loading section, the pressing load acts in a direction perpendicular to the working surface, so a large pressure is maintained while maintaining the parallelism between the working surface and the joint surface with high accuracy. Ultrasonic vibration with load applied Because it imparts a large ultrasonic energy and pressure, it can be joined with a reliably high reliability on the entire surface of the joining surface even if the large bonding area in the joint surface.
[0043]
At least since the pressing load as well as load heat the working surface near the resonator during a process of inputting ultrasonic vibration, can heat energy simultaneously to the bonding surface in applying, bonding even when the bonding area of the bonding surface is wide The entire surface can be reliably bonded with high reliability , and further, the desired thermal energy can be applied without affecting the ultrasonic vibration system because it is heated in a non-contact manner from the opposite sides of the resonator. it is Ru can. Further, by applying the sealing material to the mounting position in advance at the same time as joining, the sealing material can be cured, and the number of parts mounting processes can be reduced, thereby reducing the cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an overall schematic configuration of a component mounting apparatus common to an embodiment of the present invention and a conventional example.
2 is a perspective view showing a configuration of a mounting head in FIG. 1. FIG.
FIG. 3 is a front view illustrating a configuration of a main part of a mounting head according to an embodiment of the present invention.
4 is a cross-sectional view taken along the line AA in FIG. 3;
5 is a BB arrow view of FIG. 3;
FIG. 6 is an operation explanatory diagram of a resonator according to the embodiment.
7A and 7B show a first modification of the heating means in the embodiment, wherein FIG. 7A is a perspective view and FIG. 7B is a side view of an improved example.
8A and 8B show a second modification of the heating means in the embodiment, where FIG. 8A is a perspective view and FIG. 8B is a side view of an improved example.
FIG. 9 shows a third modification of the heating means in the embodiment, (a) is a side view, and (b) is a side view of an improved example.
FIG. 10 is a front view of a resonator showing a fourth modification of the heating means in the embodiment.
FIG. 11 is a perspective view showing a fifth modification of the heating means in the embodiment.
[Explanation of symbols]
1 Component mounting device 2 Component 3 Substrate (object to be mounted)
5 Mounting head 6 X direction table 7 Y direction table 8 Support base 20 Component supply means 22 Moving means (load loading means)
26 Ultrasonic vibration generating means 27 Resonator 28 Support bracket 29 Base end face 30 Working surface 31 Node 32 Load load part 35 Support plate part 39 Cartridge heater (heating means)
41 Cooling unit 42 Temperature monitoring unit 47 Heat transfer fin 48 Ceramic heater (heating means)
50 Heat medium passage 51 Heat medium supply means

Claims (3)

一端面に入力された振動が作用面でその面と略平行な振動となるとともに作用面に対して垂直な軸芯上に共振モードの節が形成されるように構成された共振体の作用面にて部品を保持する工程と、支持台上に実装対象物を配置固定する工程と、部品と実装対象物の位置合わせを行って部品を実装対象物に接触させる工程と、共振体の節の位置から押圧荷重を負荷するとともに共振体の一端面から超音波振動を入力させる工程とを有し、さらに、少なくとも押圧荷重を負荷するとともに超音波振動を入力する工程時に共振体の両側に対向する側から共振体の作用面近傍を非接触にて加熱することを特徴とする部品実装方法。The working surface of the resonator is configured such that the vibration input to the one end surface becomes a vibration substantially parallel to the surface of the working surface, and a node of a resonance mode is formed on an axis perpendicular to the working surface. Holding the component in step, arranging and fixing the mounting object on the support base, aligning the component and the mounting object and bringing the component into contact with the mounting object, position possess a step of inputting the ultrasonic vibration from the one end surface of the resonator as well as loading the pressing load from further opposite sides of the resonator during the step of inputting ultrasonic vibration as well as load at least pressing load A component mounting method comprising heating the vicinity of the working surface of the resonator from the side in a non-contact manner. 部品供給手段と、供給された部品を保持して実装対象物に実装する実装ヘッドと、実装対象物を固定支持する支持台と、実装ヘッドと支持台を相対移動させて部品と実装対象物の位置合わせを行う位置決め手段とを備え、実装ヘッドは、超音波振動発生手段と、一端面が超音波振動発生手段と結合され、他端面が作用面となり、一端面に入力された振動が作用面でその面と略平行な振動となるとともに作用面に対して垂直な軸芯上に共振モードの節が形成されるように構成された共振体と、共振体の節部分に押圧荷重を負荷する荷重負荷手段と、共振体の作用面近傍を加熱する加熱手段とを有し、加熱手段は、共振体の節部分を支持する支持ブラケットの共振体の両側に対向する部分に配設したヒータにて構成し、ヒータの熱を共振体に輻射させて加熱するようにしたことを特徴とする部品実装装置。A component supply means, a mounting head that holds the supplied component and mounts it on the mounting target, a support base that fixes and supports the mounting target, and moves the mounting head and the support base relative to each other to move the component and the mounting target. The mounting head includes an ultrasonic vibration generating means, one end surface of which is coupled to the ultrasonic vibration generating means, the other end surface is a working surface, and vibration input to the one end surface is a working surface. The resonator is configured to form a resonance mode node on an axis that is substantially parallel to the surface and perpendicular to the working surface, and a pressure load is applied to the node portion of the resonator. a load application means, have a heating means for heating the working face near the resonator, the heating means, the heater is disposed in a portion opposed to the opposite sides of the resonator of the support bracket supporting the node portion of the resonator The heater heat is radiated to the resonator. Component mounting apparatus is characterized in that so as to heat by. 共振体の側面と支持ブラケットの共振体に対向する面の少なくとも一方に、伝熱用フィンを設けたことを特徴とする請求項記載の部品実装装置。 3. The component mounting apparatus according to claim 2 , wherein a heat transfer fin is provided on at least one of a side surface of the resonator and a surface of the support bracket facing the resonator.
JP2002087596A 2002-03-27 2002-03-27 Component mounting method and apparatus Expired - Lifetime JP4056276B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002087596A JP4056276B2 (en) 2002-03-27 2002-03-27 Component mounting method and apparatus
TW092105078A TWI230102B (en) 2002-03-27 2003-03-10 Component mounting method, component mounting apparatus, and ultrasonic bonding head
KR1020047015150A KR100934064B1 (en) 2002-03-27 2003-03-27 Component mounting method and component mounting device
DE60308340T DE60308340T2 (en) 2002-03-27 2003-03-27 COMPONENT ATTACHING METHOD, COMPONENT ATTACHMENT DEVICE AND ULTRASOUND BONDING HEAD
KR1020097002605A KR100950619B1 (en) 2002-03-27 2003-03-27 Ultrasonic bonding headand, and component mounting apparatus
PCT/JP2003/003906 WO2003081644A2 (en) 2002-03-27 2003-03-27 Electronic component mounting method and apparatus and ultrasondic bonding head
CNB038071347A CN100377293C (en) 2002-03-27 2003-03-27 Component mounting method, component mounting apparatus, and ultrasonic bonding head
US10/508,460 US7229854B2 (en) 2002-03-27 2003-03-27 Electronic component mounting method and apparatus and ultrasonic bonding head
EP03745015A EP1488449B1 (en) 2002-03-27 2003-03-27 Component mounting method, component mounting apparatus, and ultrasonic bonding head
US11/731,312 US7861908B2 (en) 2002-03-27 2007-03-30 Component mounting method, component mounting apparatus, and ultrasonic bonding head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087596A JP4056276B2 (en) 2002-03-27 2002-03-27 Component mounting method and apparatus

Publications (2)

Publication Number Publication Date
JP2003282645A JP2003282645A (en) 2003-10-03
JP4056276B2 true JP4056276B2 (en) 2008-03-05

Family

ID=29233735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087596A Expired - Lifetime JP4056276B2 (en) 2002-03-27 2002-03-27 Component mounting method and apparatus

Country Status (1)

Country Link
JP (1) JP4056276B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296722B2 (en) * 2009-03-02 2013-09-25 パナソニック株式会社 Bonding tool, electronic component mounting apparatus, and electronic component mounting method
US8056792B2 (en) 2009-05-05 2011-11-15 Branson Ultrasonics Corporation Scalloped horn
JP5568730B2 (en) * 2010-10-20 2014-08-13 株式会社アドウェルズ Joining device
JP2014127365A (en) * 2012-12-26 2014-07-07 Yazaki Corp Ultrasonic bonding device
WO2017000998A1 (en) * 2015-06-30 2017-01-05 Telsonic Holding Ag Device for the welding of components by way of ultrasound by torsional vibrations

Also Published As

Publication number Publication date
JP2003282645A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
US7861908B2 (en) Component mounting method, component mounting apparatus, and ultrasonic bonding head
TWI430727B (en) Bonding tool, electronic component mounting apparatus and electronic component mounting method
JP4056276B2 (en) Component mounting method and apparatus
JP2000294602A (en) Flip chip bonder
JP4109000B2 (en) Electronic component mounting equipment
TW200522238A (en) Bonding method and apparatus
JP4093781B2 (en) Ultrasonic head
JP2006339198A (en) Ultrasonic bonding horn and ultrasonic bonding apparatus using same
JP4210269B2 (en) Ultrasonic flip chip mounting equipment
JP4539678B2 (en) Electronic component mounting method
JP2004071606A (en) Device for bonding electronic part and bonding tool
JP2003297879A (en) Semiconductor chip press-fixing device
JP3409630B2 (en) Apparatus and method for crimping electronic components with bumps
KR100950980B1 (en) Half-wavelength ultrasonic welder of horizontal vibration type, and ultrasonic bonding apparatus having the same
JP3747849B2 (en) Electronic component bonding apparatus and bonding method
JP3533992B2 (en) Bonding device and bonding tool for electronic components
JP2004095810A (en) Bonding apparatus and bonding tool of electronic component
JP3409683B2 (en) Bonding tool and bonding device for bumped electronic components
JP2005230845A (en) Ultrasonic joining apparatus, and method for producing electronic device
JP2006156756A (en) Ultrasonic head
JP3409688B2 (en) Bonding tool and bonding device for electronic components
JP2004356419A (en) Device for manufacturing semiconductor and manufacturing method of semiconductor device
JP2003179102A (en) Bonding tool and bonding unit for electronic component
JP2002334909A (en) Resonator for ultrasonic vibration joint
JP3374855B2 (en) Electronic component bonding tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4056276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term