JP4055433B2 - Silyl (meth) acrylate compound having bulky substituent and method for producing the same - Google Patents

Silyl (meth) acrylate compound having bulky substituent and method for producing the same Download PDF

Info

Publication number
JP4055433B2
JP4055433B2 JP2002051110A JP2002051110A JP4055433B2 JP 4055433 B2 JP4055433 B2 JP 4055433B2 JP 2002051110 A JP2002051110 A JP 2002051110A JP 2002051110 A JP2002051110 A JP 2002051110A JP 4055433 B2 JP4055433 B2 JP 4055433B2
Authority
JP
Japan
Prior art keywords
tert
silane
methacryloxy
acryloxy
texyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002051110A
Other languages
Japanese (ja)
Other versions
JP2002332289A (en
Inventor
洋一 殿村
透 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002051110A priority Critical patent/JP4055433B2/en
Publication of JP2002332289A publication Critical patent/JP2002332289A/en
Application granted granted Critical
Publication of JP4055433B2 publication Critical patent/JP4055433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な嵩高い置換基を有するシリル(メタ)アクリレート化合物及びその製造方法に関する。この新規化合物は、船底塗料などの加水分解性自己研磨型ポリマーの原料として有用である。
【0002】
【従来の技術及び発明が解決しようとする課題】
船底塗料などに含まれている加水分解性自己研磨型ポリマーとしては、これまで、トリブチルスズメタクリレートとメチルメタクリレート等との共重合体が用いられてきた。この共重合体は、水中で加水分解され、ビストリブチルスズオキシドを放出し、加水分解されたポリマー部がカルボン酸になるため水溶性となり、水中に溶解し、常に活性な表面を保つことができる。
【0003】
しかしながら、加水分解の際に放出するビストリブチルスズオキシドは毒性が強いため、水中を汚染し、生態系への悪影響が懸念されている。
【0004】
そのため、スズを含有しないポリマーの開発が求められており、そのようなポリマーの例としては、特許第3053081号公報、米国特許第4593055号公報に記載のトリブチルスズメタクリレートの代わりにトリブチルシリルメタクリレート、トリイソプロピルシリルアクリレート等のトリアルキルシリル(メタ)アクリレートを用い、アルキルメタクリレートと共重合させたものが挙げられる。
【0005】
しかしながら、上記公報記載のトリアルキルシリル(メタ)アクリレートのうち、最も嵩高く、加水分解に対して安定なトリイソプロピルシリルアクリレートを用いても、加水分解性速度が速く、ポリマーが急激に溶出してしまい、未だ満足のいく結果が得られていない。そのため、加水分解に対して更に安定なシリル(メタ)アクリレート化合物が求められてきた。
【0006】
本発明は上記事情に鑑みなされたもので、より加水分解に対して安定なシリル(メタ)アクリレート化合物及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、後述する方法で得られる非常に嵩高い3級の炭化水素基1つと、α位又はβ位に炭化水素基を有する分岐状炭化水素基又は環状炭化水素基2つをケイ素原子上に有するシリルメタクリレートが、上述のシリル(メタ)アクリレートに比べ、加水分解に対して更に安定であることを知見し、本発明を完成するに至ったものである。
【0008】
従って、本発明は、下記一般式(1)
【化2】

Figure 0004055433
(式中、R1、R2は、同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基、R4は、水素原子又はメチル基を示す。)
で示される嵩高い置換基を有するシリル(メタ)アクリレート化合物、及び、下記一般式(2)
123SiCl (2)
(式中、R1、R2は、同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基を示す。)
で示されるクロロシラン化合物と、アクリル酸又はメタクリル酸とを、塩基性化合物の存在下に反応させることにより、下記一般式(1)
【化3】
Figure 0004055433
(式中、R1、R2は、同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基、R4は、水素原子又はメチル基を示す。)
で示される嵩高い置換基を有するシリル(メタ)アクリレート化合物の製造方法を提供するものである。
【0009】
以下、本発明につき更に詳しく説明する。
本発明の嵩高い置換基を有するシリル(メタ)アクリレート化合物は、下記一般式(1)で示される化合物である。
【0010】
【化4】
Figure 0004055433
(式中、R1、R2は、同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基、R4は、水素原子又はメチル基を示す。)
【0011】
ここで、R1、R2の炭素数3〜10の分岐状炭化水素基及び環状炭化水素基としては、分岐状のアルキル基又はシクロアルキル基が好ましく、具体的にはイソプロピル基、イソブチル基、sec−ブチル基、1−メチルブチル基、1−エチルプロピル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基等が例示され、特にイソプロピル基、イソブチル基が好適である。R3の炭素数4〜10の3級炭化水素基としては、具体的にtert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1,1,2−トリメチルプロピル基(テキシル基)、1−メチルシクロペンチル基、1−メチルシクロヘキシル基等が例示され、特にtert−ブチル基、1,1,2−トリメチルプロピル基が好適である。
【0012】
上記一般式(1)で示される嵩高い置換基を有するシリル(メタ)アクリレート化合物の具体例としては、メタクリロキシテキシルジイソプロピルシラン、アクリロキシテキシルジイソプロピルシラン、メタクリロキシテキシルジイソブチルシラン、アクリロキシテキシルジイソブチルシラン、メタクリロキシテキシルジsec−ブチルシラン、アクリロキシテキシルジsec−ブチルシラン、メタクリロキシテキシルジ(1−メチルブチル)シラン、アクリロキシテキシルジ(1−メチルブチル)シラン、メタクリロキシテキシルジ(1−エチルプロピル)シラン、アクリロキシテキシルジ(1−エチルプロピル)シラン、メタクリロキシテキシルジ(2−エチルヘキシル)シラン、アクリロキシテキシルジ(2−エチルヘキシル)シラン、メタクリロキシテキシルジシクロペンチルシラン、アクリロキシテキシルジシクロペンチルシラン、メタクリロキシテキシルジシクロヘキシルシラン、アクリロキシテキシルジシクロヘキシルシラン、メタクリロキシテキシルイソプロピルイソブチルシラン、アクリロキシテキシルイソプロピルイソブチルシラン、メタクリロキシテキシルイソプロピルsec−ブチルシラン、アクリロキシテキシルイソプロピルsec−ブチルシラン、メタクリロキシtert−ブチルジイソプロピルシラン、アクリロキシtert−ブチルジイソプロピルシラン、メタクリロキシtert−ブチルジイソブチルシラン、アクリロキシtert−ブチルジイソブチルシラン、メタクリロキシtert−ブチルジsec−ブチルシラン、アクリロキシtert−ブチルジsec−ブチルシラン、メタクリロキシtert−ブチルジ(1−メチルブチル)シラン、アクリロキシtert−ブチルジ(1−メチルブチル)シラン、メタクリロキシtert−ブチルジ(1−エチルプロピル)シラン、アクリロキシtert−ブチルジ(1−エチルプロピル)シラン、メタクリロキシtert−ブチルジ(2−エチルヘキシル)シラン、アクリロキシtert−ブチルジ(2−エチルヘキシル)シラン、メタクリロキシtert−ブチルジシクロペンチルシラン、アクリロキシtert−ブチルジシクロペンチルシラン、メタクリロキシtert−ブチルジシクロヘキシルシラン、アクリロキシtert−ブチルジシクロヘキシルシラン、メタクリロキシtert−ブチルイソプロピルイソブチルシラン、アクリロキシtert−ブチルイソプロピルイソブチルシラン、メタクリロキシtert−ブチルイソプロピルsec−ブチルシラン、アクリロキシtert−ブチルイソプロピルsec−ブチルシラン、メタクリロキシtert−アミルジイソプロピルシラン、アクリロキシtert−アミルジイソプロピルシラン、メタクリロキシtert−アミルジイソブチルシラン、アクリロキシtert−アミルジイソブチルシラン、メタクリロキシtert−アミルジsec−ブチルシラン、アクリロキシtert−アミルジsec−ブチルシラン、メタクリロキシtert−アミルジ(1−メチルブチル)シラン、アクリロキシtert−アミルジ(1−メチルブチル)シラン、メタクリロキシtert−アミルジ(1−エチルプロピル)シラン、アクリロキシtert−アミルジ(1−エチルプロピル)シラン、メタクリロキシtert−アミルジ(2−エチルヘキシル)シラン、アクリロキシtert−アミルジ(2−エチルヘキシル)シラン、メタクリロキシtert−アミルジシクロペンチルシラン、アクリロキシtert−アミルジシクロペンチルシラン、メタクリロキシtert−アミルジシクロヘキシルシラン、アクリロキシtert−アミルジシクロヘキシルシラン、メタクリロキシtert−アミルイソプロピルイソブチルシラン、アクリロキシtert−アミルイソプロピルイソブチルシラン、メタクリロキシtert−アミルイソプロピルsec−ブチルシラン、アクリロキシtert−アミルイソプロピルsec−ブチルシラン等が例示され、生成物の有用性、製造の容易性の点から、メタクリロキシテキシルジイソプロピルシラン、アクリロキシテキシルジイソプロピルシラン、メタクリロキシテキシルジイソブチルシラン、アクリロキシテキシルジイソブチルシラン、メタクリロキシtert−ブチルジイソプロピルシラン、アクリロキシtert−ブチルジイソプロピルシラン、メタクリロキシtert−ブチルジイソブチルシラン、アクリロキシtert−ブチルジイソブチルシランがより好ましい。
【0013】
また、本発明における上記一般式(1)で示される嵩高い置換基を有するシリル(メタ)アクリレート化合物の製造方法は、例えば、下記一般式(2)
123SiCl (2)
(式中、R1、R2は、互いに同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基を示す。)
で示される嵩高い置換基を有するクロロシラン化合物と、アクリル酸又はメタクリル酸とを、塩基性化合物の存在下に反応させて製造する方法が挙げられる。
【0014】
上記一般式(2)におけるR1、R2の炭素数3〜10の分岐状炭化水素基及び環状炭化水素基としては、分岐状のアルキル基又はシクロアルキル基が好ましく、具体的にはイソプロピル基、イソブチル基、sec−ブチル基、1−メチルブチル基、1−エチルプロピル基、2−エチルヘキシル基、シクロペンチル基、シクロヘキシル基等が例示され、中でもイソプロピル基、イソブチル基が好ましい。R3の炭素数4〜10の3級炭化水素基としては、具体的にtert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1,1,2−トリメチルプロピル基(テキシル基)、1−メチルシクロペンチル基、1−メチルシクロヘキシル基等が例示され、中でもtert−ブチル基、1,1,2−トリメチルプロピル基が好ましい。
【0015】
また、上記一般式(2)で示されるクロロシラン化合物の具体例としては、テキシルジイソプロピルクロロシラン、テキシルジイソブチルクロロシラン、テキシルジsec−ブチルクロロシラン、テキシルジ(1−メチルブチル)クロロシラン、テキシルジ(1−エチルプロピル)クロロシラン、テキシルジ(2−エチルヘキシル)クロロシラン、テキシルジシクロペンチルクロロシラン、テキシルジシクロヘキシルクロロシラン、テキシルイソプロピルイソブチルクロロシラン、テキシルイソプロピルsec−ブチルクロロシラン、tert−ブチルジイソプロピルクロロシラン、tert−ブチルジイソブチルクロロシラン、tert−ブチルジsec−ブチルクロロシラン、tert−ブチルジ(1−メチルブチル)クロロシラン、tert−ブチルジ(1−エチルプロピル)クロロシラン、tert−ブチルジ(2−エチルヘキシル)クロロシラン、tert−ブチルジシクロペンチルクロロシラン、tert−ブチルジシクロヘキシルクロロシラン、tert−ブチルイソプロピルイソブチルクロロシラン、tert−ブチルイソプロピルsec−ブチルクロロシラン、tert−アミルジイソプロピルクロロシラン、tert−アミルジイソブチルクロロシラン、tert−アミルジsec−ブチルクロロシラン、tert−アミルジ(1−メチルブチル)クロロシラン、tert−アミルジ(1−エチルプロピル)クロロシラン、tert−アミルジ(2−エチルヘキシル)クロロシラン、tert−アミルジシクロペンチルクロロシラン、tert−アミルジシクロヘキシルクロロシラン、tert−アミルイソプロピルイソブチルクロロシラン、tert−アミルイソプロピルsec−ブチルクロロシラン等が例示される。
【0016】
アクリル酸又はメタクリル酸と上記一般式(2)で示されるクロロシラン化合物の配合比は特に限定されないが、反応性、生産性の点から、アクリル酸又はメタクリル酸1モルに対し、クロロシラン化合物0.5〜2.0モル、特に0.8〜1.2モルの範囲が好ましい。
【0017】
上記反応では、反応中に生じる塩酸を塩基性化合物を用いて脱塩酸するものである。塩基性化合物としては、トリエチルアミン、ジエチルアミン、トリプロピルアミン、ジプロピルアミン、ジイソプロピルアミン、ジイソプロピルメチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、アニリン、N,N−ジメチルアニリン、N,N−ジメチルアミノピリジン等のアミン化合物、アンモニア、イミダゾール、ピリジン、炭酸水素ナトリウム、炭酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド等が例示される。
【0018】
塩基性化合物の添加量は特に限定されないが、反応性及び生産性の点から、アクリル酸又はメタクリル酸1モルに対し、0.5〜2.0モル、特に1.0〜1.5モルの範囲が好ましい。塩基性化合物が0.5モル未満だと充分に脱塩酸が行われず反応が未達になる可能性があり、2.0モルを超えると、塩基性化合物の量に見合うだけの反応促進効果がみられない可能性がある。
【0019】
また、反応温度は特に限定されないが、常圧又は加圧下で−20℃〜200℃、特に0℃〜150℃が好ましい。
【0020】
なお、反応は無溶媒でも進行するが、脱塩酸の際に生じる塩酸塩のため撹拌が困難になるので、溶媒を用いた方がよい。用いられる溶媒としては、例えばペンタン、ヘキサン、シクロヘキサン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、アセトニトリル、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N−メチルピロリドン、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒、ジクロロメタン、クロロホルム等の塩素化炭化水素溶媒等が例示される。これらの溶媒は単独で用いてもよく、2種類以上を混合して用いてもよい。
【0021】
上記の反応は、塩基性化合物、アクリル酸又はメタクリル酸、溶媒の混合液にクロロシラン化合物を加える方法、塩基性化合物、クロロシラン化合物、溶媒の混合液にアクリル酸又はメタクリル酸を加える方法、塩基性化合物、溶媒の混合液に、アクリル酸又はメタクリル酸とクロロシラン化合物の両方を加える方法のいずれの方法を採用してもよい。
【0022】
また、上記の反応において、重合を防止するために、ヒドロキノン、p−メトキシフェノール、2,6−ジ−tert−ブチルフェノール、2,6−ジ−tert−ブチル−4−メチルフェノール等の重合禁止剤を添加してもよい。
【0023】
反応終了後には塩基性化合物の塩酸塩が生じるが、これは反応液を濾過することにより除去できる。以上のようにして塩を除去した反応液からは、通常の方法で目的物を回収することができる。
【0024】
なお、上記一般式(2)で示される嵩高い置換基を有するクロロシラン化合物の製造方法としては、例えば、2,3−ジメチル−2−ブテン等の下記一般式(3)で示される炭素数6〜10の分岐状アルケニル化合物と下記一般式(4)で示されるハイドロジェンクロロシラン化合物とを、塩化アルミニウム触媒の存在下に反応させ、製造する方法が挙げられる。
【0025】
【化5】
Figure 0004055433
(式中、R5、R6、R7、R8は同一もしくは異種の炭素数1〜5の炭化水素基であり、R5、R6、R7、R8のいずれか2つが環を形成してもよく、また、全体の炭素数が6〜10である。)
HSiR12Cl (4)
(式中、R1、R2は上記と同じ。)
【0026】
ここで、上記一般式(4)で示される化合物としては、具体的にはジイソプロピルクロロシラン、ジイソブチルクロロシラン、ジsec−ブチルクロロシラン、ジ(1−メチルブチル)クロロシラン、ジ(1−エチルプロピル)クロロシラン、ジ(2−エチルヘキシル)クロロシラン、ジシクロペンチルクロロシラン、ジシクロヘキシルクロロシラン、イソプロピルイソブチルクロロシラン、イソプロピルsec−ブチルクロロシラン等が例示される。
【0027】
上記一般式(3)で示される分岐状アルケニル化合物と上記一般式(4)で示されるハイドロジェンクロロシラン化合物の配合比は特に限定されないが、反応性、生産性の点から、分岐状アルケニル化合物1モルに対し、ハイドロジェンクロロシラン化合物0.5〜2.0モル、特に0.8〜1.2モルの範囲が好ましい。
【0028】
上記反応で触媒として用いられる塩化アルミニウムの添加量は特に限定されないが、反応性及び生産性の点から、2,3−ジメチル−2−ブテン等の分岐状アルケニル化合物1モルに対し、0.001〜0.5モル、特に0.01〜0.2モルの範囲が好ましい。触媒が0.001モル未満だと触媒の充分な効果が発現しない可能性があり、0.5モルを超えると、触媒の量に見合うだけの反応促進効果がみられない可能性がある。
【0029】
また、反応温度は特に限定されないが、常圧、又は加圧下で−20℃〜150℃、特に0℃〜100℃が好ましい。
【0030】
なお、反応は無溶媒でも進行するが、溶媒を用いることもできる。用いられる溶媒としては、例えばペンタン、ヘキサン、イソオクタン、シクロヘキサン等の脂肪族炭化水素系溶媒、アセトニトリル等の非プロトン性極性溶媒、ジクロロメタン、クロロホルム等の塩素化炭化水素溶媒等が挙げられる。
【0031】
上記の反応は、2,3−ジメチル−2−ブテン等の分岐状アルケニル化合物、ハイドロジェンクロロシラン化合物の混合液に塩化アルミニウムを加える方法、2,3−ジメチル−2−ブテン等の分岐状アルケニル化合物、塩化アルミニウムの混合液にハイドロジェンクロロシラン化合物を加える方法、ハイドロジェンクロロシラン化合物、塩化アルミニウムの混合液に2,3−ジメチル−2−ブテン等の分岐状アルケニル化合物を加える方法、塩化アルミニウムと溶媒の混合液に2,3−ジメチル−2−ブテン等の分岐状アルケニル化合物とハイドロジェンクロロシラン化合物の両方を加える方法のいずれの方法を採用してもよい。反応終了後は、通常の方法で目的物を回収することができる。
【0032】
また、上記一般式(2)で示される嵩高い置換基を有するクロロシラン化合物の別な製造方法としては、例えば、下記一般式(5)
3MgX1 (5)
(式中、R3は上記と同じであり、X1はハロゲン原子を示す。)
で示されるグリニア試薬と、下記一般式(6)
HR12SiX2 (6)
(式中、R1、R2は上記と同じ、X2はX1と同一又は異なるハロゲン原子を示す。)
で示される化合物とを銅化合物の存在下に反応させ、下記一般式(7)
123SiH (7)
(式中、R1、R2、R3は上記と同じ。)
で示される嵩高い置換基を有するハイドロジェンシランとした後、水素原子をクロル化する方法が挙げられる。
【0033】
上記反応では、下記一般式(5)で示されるグリニア試薬が用いられる。
3MgX1 (5)
(式中、R3は上記と同じ炭素数4〜10の1価の3級炭化水素基であり、X1はCl、Br等のハロゲン原子を示す。)
【0034】
このようなグリニア試薬としては、具体的には、tert−ブチルマグネシウムクロライド、tert−ブチルマグネシウムブロマイド、tert−アミルマグネシウムクロライド、tert−アミルマグネシウムブロマイド、1,1−ジエチルプロピルマグネシウムクロライド、1−メチルシクロペンチルマグネシウムクロライド、1−メチルシクロヘキシルマグネシウムクロライド等が例示される。
【0035】
上記反応で用いられる下記一般式(6)で示されるシラン化合物は、具体的にはジイソプロピルクロロシラン、ジイソブチルクロロシラン、ジsec−ブチルクロロシラン、ジ(1−メチルブチル)クロロシラン、ジ(1−エチルプロピル)クロロシラン、ジ(2−エチルヘキシル)クロロシラン、ジシクロペンチルクロロシラン、ジシクロヘキシルクロロシラン、イソプロピルイソブチルクロロシラン、イソプロピルsec−ブチルクロロシラン等が例示される。
【0036】
上記一般式(6)で示されるシラン化合物は、精製したものを用いてもよく、精製を行っていないもの、つまり調製した反応液をそのまま用いてもよい。
【0037】
上記一般式(5)で示されるグリニア試薬と上記一般式(6)で示されるシラン化合物の配合比は特に限定されないが、反応性、生産性の点から、上記一般式(6)で示されるシラン化合物1モルに対し、上記一般式(5)で示されるグリニア試薬0.5〜2.0モル、特に0.8〜1.5モルの範囲が好ましい。
【0038】
上記反応では、触媒として銅化合物を用いる。用いられる銅化合物としては、具体的には塩化銅(I)、塩化銅(II)、臭化銅(I)、臭化銅(II)、ヨウ化銅(I)、シアン化銅(I)等が例示される。
【0039】
上記銅化合物の使用量は特に限定されないが、反応性及び生産性の点から、上記一般式(5)で示されるグリニア試薬1モルに対し、0.001〜0.1モル、特に0.01〜0.05モルの範囲が好ましい。触媒が0.001モル未満だと触媒の十分な効果が発現しない可能性があり、0.1モルを超えると、触媒の量に見合うだけの反応促進効果がみられない可能性がある。
【0040】
上記反応は、非プロトン性の有機溶媒中で行うことが好ましい。用いられる溶媒としては、例えばジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、ペンタン、ヘキサン、イソオクタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒などが例示される。これらの溶媒は単独で用いてもよく、2種類以上を混合して用いてもよい。
【0041】
また、反応温度は特に限定されないが、常圧、又は加圧下で0〜150℃、特に10〜100℃が好ましい。また、反応は窒素やアルゴン等の不活性ガス雰囲気下で行うのが好ましい。反応系に酸素が存在すると、グリニア試薬が酸素と反応し、収率低下の原因となるおそれがある。
【0042】
また、クロル化反応は、クロル化剤を用いて行う。クロル化剤としては、塩素、塩化チオニル、塩化アリル−パラジウム触媒、塩化メタリル−パラジウム触媒等が例示され、塩化メタリル−パラジウム触媒が好ましい。
【0043】
上記反応で用いられる塩化メタリルの使用量は特に限定されないが、一般式(7)で示されるシラン化合物1モルに対して0.5〜2.0モルの範囲が好ましい。
【0044】
また、パラジウム触媒としては、塩化パラジウム、酢酸パラジウム等のパラジウム塩、ジクロロビストリフェニルホスフィンパラジウム等のパラジウム錯体、パラジウム−炭素等が例示される。これらのパラジウム触媒の使用量は特に限定されないが、一般式(7)で示されるシラン化合物1モルに対して0.0001〜0.05モルの範囲が好ましい。
【0045】
【実施例】
以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0046】
[実施例1] メタクリロキシテキシルジイソプロピルシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、メタクリル酸(17.2g、0.2mol)、トルエン(120ml)、2,6−ジ−tert−ブチル−4−メチルフェノール0.06gを仕込み、室温にてトリエチルアミン(22.3g、0.22mol)を1時間かけて滴下した。滴下終了後、80℃に加熱し、内温が安定した後、テキシルジイソプロピルクロロシラン(47.0g、0.20mol)を2時間かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。その後反応液を室温まで冷却し、生じた塩酸塩を濾過により除去した後蒸留した。沸点92−97℃/0.13kPaの留分を43.2g得た。
【0047】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 241,199,69,41
1H−NMRスペクトル(重クロロホルム溶媒)
図1にチャートで示す。
IRスペクトル
図2にチャートで示す。
以上の結果より、得られた化合物はメタクリロキシテキシルジイソプロピルシランであることが確認された。
【0048】
[実施例2] アクリロキシテキシルジイソプロピルシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、アクリル酸(14.4g、0.2mol)、トルエン(120ml)、2,6−ジ−tert−ブチル−4−メチルフェノール0.06gを仕込み、室温にてトリエチルアミン(22.3g、0.22mol)を1時間かけて滴下した。滴下終了後、80℃に加熱し、内温が安定した後、テキシルジイソプロピルクロロシラン(47.0g、0.20mol)を2時間かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。その後反応液を室温まで冷却し、生じた塩酸塩を濾過により除去した後蒸留した。沸点87−92℃/0.13kPaの留分を38.6g得た。
【0049】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 227,185,55
1H−NMRスペクトル(重クロロホルム溶媒)
図3にチャートで示す。
IRスペクトル
図4にチャートで示す。
以上の結果より、得られた化合物はアクリロキシテキシルジイソプロピルシランであることが確認された。
【0050】
[実施例3] メタクリロキシテキシルジイソブチルシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、メタクリル酸(17.2g、0.2mol)、トルエン(120ml)、2,6−ジ−tert−ブチル−4−メチルフェノール0.06gを仕込み、室温にてトリエチルアミン(22.3g、0.22mol)を1時間かけて滴下した。滴下終了後、80℃に加熱し、内温が安定した後、テキシルジイソブチルクロロシラン(52.6g、0.20mol)を2時間かけて滴下した。滴下終了後、反応液を80℃で5時間撹拌した。その後反応液を室温まで冷却し、生じた塩酸塩を濾過により除去した後蒸留した。沸点104−110℃/0.13kPaの留分を46.3g得た。
【0051】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 255,227,69,41
1H−NMRスペクトル(重クロロホルム溶媒)
図5にチャートで示す。
IRスペクトル
図6にチャートで示す。
以上の結果より、得られた化合物はメタクリロキシテキシルジイソブチルシランであることが確認された。
【0052】
[実施例4] メタクリロキシtert−ブチルジイソプロピルシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、tert−ブチルジイソプロピルクロロシラン(41.4g、0.20mol)、トルエン(60ml)、2,6−ジ−tert−ブチル−4−メチルフェノール0.06gを仕込み、室温にてトリエチルアミン(22.3g、0.22mol)を1時間かけて滴下した。滴下終了後、80℃に加熱し、内温が安定した後、メタクリル酸(18.9g、0.22mol)を1時間かけて滴下した。滴下終了後、反応液を80℃で2時間撹拌した。その後反応液を室温まで冷却し、生じた塩酸塩を濾過により除去した後蒸留した。沸点93−95℃/0.27kPaの留分を45.4g得た。
【0053】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 213,199,69,41
1H−NMRスペクトル(重クロロホルム溶媒)
図7にチャートで示す。
IRスペクトル
図8にチャートで示す。
以上の結果より、得られた化合物はメタクリロキシtert−ブチルジイソプロピルシランであることが確認された。
【0054】
[実施例5] アクリロキシtert−ブチルジイソプロピルシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、tert−ブチルジイソプロピルクロロシラン(41.4g、0.20mol)、トルエン(60ml)、2,6−ジ−tert−ブチル−4−メチルフェノール0.06gを仕込み、室温にてトリエチルアミン(22.3g、0.22mol)を1時間かけて滴下した。滴下終了後、80℃に加熱し、内温が安定した後、アクリル酸(15.9g、0.22mol)を1時間かけて滴下した。滴下終了後、反応液を80℃で2時間撹拌した。その後反応液を室温まで冷却し、生じた塩酸塩を濾過により除去した後蒸留した。沸点80−83℃/0.27kPaの留分を42.9g得た。
【0055】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 199,185,55
1H−NMRスペクトル(重クロロホルム溶媒)
図9にチャートで示す。
IRスペクトル
図10にチャートで示す。
以上の結果より、得られた化合物はアクリロキシtert−ブチルジイソプロピルシランであることが確認された。
【0056】
[実験例1] メタクリロキシテキシルジイソプロピルシランとメタクリロキシトリイソプロピルシランとの加水分解性比較
撹拌機、還流冷却器及び温度計を備えたフラスコに、1%塩化水素95%エタノール水溶液20g、メタクリロキシテキシルジイソプロピルシラン1.0g、メタクリロキシトリイソプロピルシラン1.0g、内標としてキシレン0.5gを仕込み、室温で撹拌した。30分後、ガスクロマトグラフィーで分析すると、メタクリロキシテキシルジイソプロピルシランは全く加水分解されていなかったが、メタクリロキシトリイソプロピルシランはすべて加水分解され、トリイソプロピルシラノールに変化していた。
【0057】
[実験例2] メタクリロキシテキシルジイソブチルシランとメタクリロキシトリイソプロピルシランとの加水分解性比較
撹拌機、還流冷却器及び温度計を備えたフラスコに、1%塩化水素95%エタノール水溶液20g、メタクリロキシテキシルジイソブチルシラン1.0g、メタクリロキシトリイソプロピルシラン1.0g、内標としてキシレン0.5gを仕込み、室温で撹拌した。30分後、ガスクロマトグラフィーで分析すると、メタクリロキシテキシルジイソブチルシランは2%加水分解されているにすぎなかったが、メタクリロキシトリイソプロピルシランはすべて加水分解され、トリイソプロピルシラノールに変化していた。
【0058】
[参考例1] テキシルジイソプロピルクロロシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、ジイソプロピルクロロシラン(30.1g、0.2mol)、塩化アルミニウム(2.7g、0.02mol)を仕込み、50℃に加熱した。内温が安定した後、2,3−ジメチル−2−ブテン(16.8g、0.2mol)を1時間かけて滴下した。滴下終了後、反応液を50℃で1時間撹拌した。塩化アルミニウムをアニソール(4.3g、0.04mol)を加えて失活させた後、反応液を蒸留し、沸点79℃/0.13kPaの留分を28.3g得た。
【0059】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 234(M+),149,121,93,84,43
以上の結果より、得られた化合物はテキシルジイソプロピルクロロシランであることが確認された(収率60%)。
【0060】
[参考例2] テキシルジイソブチルクロロシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、ジイソブチルクロロシラン(35.8g、0.20mol)、塩化アルミニウム(2.7g、0.02mol)を仕込み、50℃に加熱した。内温が安定した後、2,3−ジメチル−2−ブテン(16.8g、0.2mol)を1時間かけて滴下した。滴下終了後、反応液を50℃で2時間撹拌した。その後アルミニウムをアニソール(4.3g、0.04mol)を加えて失活させた後、反応液を蒸留し、沸点83℃/0.13kPaの留分を32.5g得た。
【0061】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 262(M+),177,135,95,84,43
以上の結果より、得られた化合物はテキシルジイソブチルクロロシランであることが確認された(収率62%)。
【0062】
[参考例3] tert−ブチルジイソプロピルクロロシラン
撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、金属マグネシウム24.3g(1.0mol)、テトラヒドロフラン300mlを仕込み、窒素ガス雰囲気下でtert−ブチルクロライド92.6g(1.0mol)を内温40〜50℃で1時間かけて滴下し、更に60℃で1時間撹拌した。グリニア試薬としてのtert−ブチルマグネシウムクロライド液が得られた。
【0063】
次に、このグリニア試薬に臭化銅1.4g(0.01mol)を添加した後、室温にてジイソプロピルクロロシラン150.7g(1.0mol)を1時間かけて滴下し、更に70℃で6時間撹拌した。得られた反応液をガスクロマトグラフィーで分析したところ、転化率は86%であった。この反応液に5%塩酸250gを加え、塩を溶解し、有機層を分液した。有機層を蒸留し、沸点79℃/2.7kPaの留分を105.2g得た。
【0064】
得られた留分の質量スペクトル、1H−NMRスペクトル、IRスペクトルを測定した。
質量スペクトル
m/z 172(M+),115,87,73,59
以上の結果より、得られた化合物はtert−ブチルジイソプロピルシランであることが確認された(収率61%)。
【0065】
次に、撹拌機、還流冷却器、滴下ロート及び温度計を備えたフラスコに、塩化メタリル45.3g(0.5mol)、酢酸パラジウム0.56g(0.0025mol)を仕込み、70℃に加熱した。内温が安定した後、上で得られたtert−ブチルジイソプロピルシラン86.2g(0.5mol)を2時間かけて滴下した。滴下終了後、反応液を100℃で3時間撹拌した。反応液を蒸留し、tert−ブチルジイソプロピルクロロシランを沸点81℃/1.3kPaの留分として90.4g得た(収率87%)。
【0066】
【発明の効果】
本発明により提供される嵩高い置換基を有するシリル(メタ)アクリレート化合物は、加水分解速度が遅いため、船底塗料などの加水分解性自己研磨型ポリマーの原料として有用である。
【図面の簡単な説明】
【図1】実施例1のメタクリロキシテキシルジイソプロピルシランの1H−NMRスペクトルである。
【図2】実施例1のメタクリロキシテキシルジイソプロピルシランのIRスペクトルである。
【図3】実施例2のアクリロキシテキシルジイソプロピルシランの1H−NMRスペクトルである。
【図4】実施例2のアクリロキシテキシルジイソプロピルシランのIRスペクトルである。
【図5】実施例3のメタクリロキシテキシルジイソブチルシランの1H−NMRスペクトルである。
【図6】実施例3のメタクリロキシテキシルジイソブチルシランのIRスペクトルである。
【図7】実施例4のメタクリロキシtert−ブチルジイソプロピルシランの1H−NMRスペクトルである。
【図8】実施例4のメタクリロキシtert−ブチルジイソプロピルシランのIRスペクトルである。
【図9】実施例5のアクリロキシtert−ブチルジイソプロピルシランの1H−NMRスペクトルである。
【図10】実施例5のアクリロキシtert−ブチルジイソプロピルシランのIRスペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel silyl (meth) acrylate compound having a bulky substituent and a method for producing the same. This novel compound is useful as a raw material for hydrolyzable self-polishing polymers such as ship bottom paints.
[0002]
[Prior art and problems to be solved by the invention]
As a hydrolyzable self-polishing polymer contained in ship bottom paints and the like, a copolymer of tributyltin methacrylate and methyl methacrylate has been used so far. This copolymer is hydrolyzed in water to release bistributyltin oxide, and the hydrolyzed polymer portion becomes carboxylic acid, so that it becomes water-soluble, dissolves in water, and always maintains an active surface.
[0003]
However, since bistributyltin oxide released during hydrolysis is highly toxic, it pollutes water, and there is concern about adverse effects on the ecosystem.
[0004]
Therefore, development of a polymer containing no tin is required. Examples of such polymers include tributylsilyl methacrylate and triisopropyl instead of tributyltin methacrylate described in Japanese Patent No. 3053081 and US Pat. No. 4,593,055. The thing copolymerized with the alkyl methacrylate using trialkyl silyl (meth) acrylates, such as silyl acrylate, is mentioned.
[0005]
However, among the trialkylsilyl (meth) acrylates described in the above publication, even if triisopropylsilyl acrylate, which is bulky and stable to hydrolysis, is used, the hydrolysis rate is fast and the polymer is eluted rapidly. As a result, satisfactory results have not yet been obtained. Therefore, a silyl (meth) acrylate compound that is more stable against hydrolysis has been demanded.
[0006]
This invention is made | formed in view of the said situation, and it aims at providing the silyl (meth) acrylate compound more stable with respect to a hydrolysis, and its manufacturing method.
[0007]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor has obtained a very bulky tertiary hydrocarbon group obtained by the method described later and a branched group having a hydrocarbon group at the α-position or β-position. To find out that silyl methacrylate having two hydrocarbon groups or two cyclic hydrocarbon groups on a silicon atom is more stable to hydrolysis than the above-mentioned silyl (meth) acrylate, and to complete the present invention. It has come.
[0008]
Accordingly, the present invention provides the following general formula (1)
[Chemical 2]
Figure 0004055433
(Wherein R 1 , R 2 Is a monovalent branched hydrocarbon group having 3 to 10 carbon atoms or a monovalent cyclic hydrocarbon group having 3 to 10 carbon atoms having a hydrocarbon group at the same or different α-position or β-position, R Three Is a tertiary hydrocarbon group having 4 to 10 carbon atoms, R Four Represents a hydrogen atom or a methyl group. )
And a silyl (meth) acrylate compound having a bulky substituent represented by the following general formula (2):
R 1 R 2 R Three SiCl (2)
(Wherein R 1 , R 2 Is a monovalent branched hydrocarbon group having 3 to 10 carbon atoms or a monovalent cyclic hydrocarbon group having 3 to 10 carbon atoms having a hydrocarbon group at the same or different α-position or β-position, R Three Represents a tertiary hydrocarbon group having 4 to 10 carbon atoms. )
Is reacted with acrylic acid or methacrylic acid in the presence of a basic compound to give the following general formula (1):
[Chemical 3]
Figure 0004055433
(Wherein R 1 , R 2 Is a monovalent branched hydrocarbon group having 3 to 10 carbon atoms or a monovalent cyclic hydrocarbon group having 3 to 10 carbon atoms having a hydrocarbon group at the same or different α-position or β-position, R Three Is a tertiary hydrocarbon group having 4 to 10 carbon atoms, R Four Represents a hydrogen atom or a methyl group. )
The manufacturing method of the silyl (meth) acrylate compound which has a bulky substituent shown by this is provided.
[0009]
Hereinafter, the present invention will be described in more detail.
The silyl (meth) acrylate compound having a bulky substituent of the present invention is a compound represented by the following general formula (1).
[0010]
[Formula 4]
Figure 0004055433
(Wherein R 1 , R 2 Is a monovalent branched hydrocarbon group having 3 to 10 carbon atoms or a monovalent cyclic hydrocarbon group having 3 to 10 carbon atoms having a hydrocarbon group at the same or different α-position or β-position, R Three Is a tertiary hydrocarbon group having 4 to 10 carbon atoms, R Four Represents a hydrogen atom or a methyl group. )
[0011]
Where R 1 , R 2 As the branched hydrocarbon group having 3 to 10 carbon atoms and the cyclic hydrocarbon group, a branched alkyl group or a cycloalkyl group is preferable, and specifically, an isopropyl group, an isobutyl group, a sec-butyl group, and 1-methylbutyl. Group, 1-ethylpropyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and the like are exemplified, and isopropyl group and isobutyl group are particularly preferable. R Three As the tertiary hydrocarbon group having 4 to 10 carbon atoms, specifically, tert-butyl group, tert-amyl group, 1,1-diethylpropyl group, 1,1,2-trimethylpropyl group (texyl group), Examples include 1-methylcyclopentyl group, 1-methylcyclohexyl group and the like, and tert-butyl group and 1,1,2-trimethylpropyl group are particularly preferable.
[0012]
Specific examples of the silyl (meth) acrylate compound having a bulky substituent represented by the general formula (1) include methacryloxy texyl diisopropyl silane, acryloxy texyl diisopropyl silane, methacryloxy texyl diisobutyl silane, acryloxy Texyl diisobutyl silane, methacryloxy texyl di sec-butyl silane, acryloxy texyl di sec-butyl silane, methacryloxy texyl di (1-methylbutyl) silane, acryloxy texyl di (1-methylbutyl) silane, methacryloxy texyl di (1- Ethylpropyl) silane, acryloxy texyldi (1-ethylpropyl) silane, methacryloxy texyl di (2-ethylhexyl) silane, acryloxy texyl di (2-ethylhexyl) silane Methacryloxy hexyl dicyclopentyl silane, acryloxy texyl dicyclopentyl silane, methacryloxy texyl dicyclohexyl silane, acryloxy texyl dicyclohexyl silane, methacryloxy texyl isopropyl isobutyl silane, acryloxy texyl isopropyl isobutyl silane, methacryloxy texyl isopropyl sec -Butyl silane, acryloxy texyl isopropyl sec-butyl silane, methacryloxy tert-butyl diisopropyl silane, acryloxy tert-butyl diisopropyl silane, methacryloxy tert-butyl diisobutyl silane, acryloxy tert-butyl diisobutyl silane, methacryloxy tert-butyl di sec-butyl silane, acryloxy ter -Butyldisec-butylsilane, methacryloxy tert-butyldi (1-methylbutyl) silane, acryloxy tert-butyldi (1-methylbutyl) silane, methacryloxy tert-butyldi (1-ethylpropyl) silane, acryloxy tert-butyldi (1-ethylpropyl) Silane, methacryloxy tert-butyldi (2-ethylhexyl) silane, acryloxy tert-butyldi (2-ethylhexyl) silane, methacryloxy tert-butyldicyclopentylsilane, acryloxy tert-butyldicyclopentylsilane, methacryloxy tert-butyldicyclohexylsilane, acryloxy tert- Butyl dicyclohexylsilane, methacryloxy tert-butylisopropylisobutylsilane, Acryloxy tert-butyl isopropyl isobutyl silane, methacryloxy tert-butyl isopropyl sec-butyl silane, acryloxy tert-butyl isopropyl sec-butyl silane, methacryloxy tert-amyl diisopropyl silane, acryloxy tert-amyl diisopropyl silane, methacryloxy tert-amyl diisobutyl silane, acryloxy tert- Amyldiisobutylsilane, methacryloxy tert-amyldi-sec-butylsilane, acryloxy tert-amyldisec-butylsilane, methacryloxy tert-amyldi (1-methylbutyl) silane, acryloxy tert-amyldi (1-methylbutyl) silane, methacryloxy tert-amyldi (1-ethyl) Propyl) sila , Acryloxy tert-amyldi (1-ethylpropyl) silane, methacryloxy tert-amyldi (2-ethylhexyl) silane, acryloxy tert-amyldi (2-ethylhexyl) silane, methacryloxy tert-amyldicyclopentylsilane, acryloxy tert-amyldicyclopentylsilane Methacryloxy tert-amyl dicyclohexyl silane, acryloxy tert-amyl dicyclohexyl silane, methacryloxy tert-amyl isopropyl isobutyl silane, acryloxy tert-amyl isopropyl isobutyl silane, methacryloxy tert-amyl isopropyl sec-butyl silane, acryloxy tert-amyl isopropyl sec-butyl silane, etc. Illustrated and useful for the product From the viewpoint of ease of production, methacryloxy texyl diisopropyl silane, acryloxy texyl diisopropyl silane, methacryloxy texyl diisobutyl silane, acryloxy texyl diisobutyl silane, methacryloxy tert-butyl diisopropyl silane, acryloxy tert-butyl diisopropyl silane More preferred are methacryloxy tert-butyldiisobutylsilane and acryloxy tert-butyldiisobutylsilane.
[0013]
Moreover, the manufacturing method of the silyl (meth) acrylate compound which has a bulky substituent shown by the said General formula (1) in this invention is the following General formula (2), for example.
R 1 R 2 R Three SiCl (2)
(Wherein R 1 , R 2 Is a monovalent branched hydrocarbon group having 3 to 10 carbon atoms or a monovalent cyclic hydrocarbon group having 3 to 10 carbon atoms having a hydrocarbon group at the same or different α-position or β-position, R Three Represents a tertiary hydrocarbon group having 4 to 10 carbon atoms. )
And a method in which a chlorosilane compound having a bulky substituent represented by the formula (1) is reacted with acrylic acid or methacrylic acid in the presence of a basic compound.
[0014]
R in the general formula (2) 1 , R 2 As the branched hydrocarbon group having 3 to 10 carbon atoms and the cyclic hydrocarbon group, a branched alkyl group or a cycloalkyl group is preferable, and specifically, an isopropyl group, an isobutyl group, a sec-butyl group, and 1-methylbutyl. Group, 1-ethylpropyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and the like are exemplified, among which isopropyl group and isobutyl group are preferable. R Three As the tertiary hydrocarbon group having 4 to 10 carbon atoms, specifically, tert-butyl group, tert-amyl group, 1,1-diethylpropyl group, 1,1,2-trimethylpropyl group (texyl group), Examples include 1-methylcyclopentyl group, 1-methylcyclohexyl group, etc. Among them, tert-butyl group and 1,1,2-trimethylpropyl group are preferable.
[0015]
Specific examples of the chlorosilane compound represented by the general formula (2) include texyldiisopropylchlorosilane, texyldiisobutylchlorosilane, texyldisec-butylchlorosilane, texyldi (1-methylbutyl) chlorosilane, and texyldi (1-ethylpropyl). Chlorosilane, Texyldi (2-ethylhexyl) chlorosilane, Texyldicyclopentylchlorosilane, Texyldicyclohexylchlorosilane, Texylisopropylisobutylchlorosilane, Texylisopropyl sec-butylchlorosilane, tert-butyldiisopropylchlorosilane, tert-butyldiisobutylchlorosilane, tert-butyldisec -Butylchlorosilane, tert-butyldi (1-methylbutyl) chlorosilane, t rt-butyldi (1-ethylpropyl) chlorosilane, tert-butyldi (2-ethylhexyl) chlorosilane, tert-butyldicyclopentylchlorosilane, tert-butyldicyclohexylchlorosilane, tert-butylisopropylisobutylchlorosilane, tert-butylisopropyl sec-butylchlorosilane, tert-amyldiisopropylchlorosilane, tert-amyldiisobutylchlorosilane, tert-amyldisec-butylchlorosilane, tert-amyldi (1-methylbutyl) chlorosilane, tert-amyldi (1-ethylpropyl) chlorosilane, tert-amyldi (2-ethylhexyl) chlorosilane , Tert-amyldicyclopentylchlorosilane, tert-amyldicyclo Hexyl chlorosilane, tert- amyl isopropyl isobutyl chlorosilane, tert- amyl isopropyl sec- butyl chlorosilane, and the like.
[0016]
Although the compounding ratio of acrylic acid or methacrylic acid and the chlorosilane compound represented by the general formula (2) is not particularly limited, from the viewpoint of reactivity and productivity, chlorosilane compound 0.5 mol per mol of acrylic acid or methacrylic acid. The range of ˜2.0 mol, particularly 0.8 to 1.2 mol is preferred.
[0017]
In the above reaction, hydrochloric acid generated during the reaction is dehydrochlorinated using a basic compound. Basic compounds include amines such as triethylamine, diethylamine, tripropylamine, dipropylamine, diisopropylamine, diisopropylmethylamine, diisopropylethylamine, tributylamine, aniline, N, N-dimethylaniline, N, N-dimethylaminopyridine Examples include compounds, ammonia, imidazole, pyridine, sodium bicarbonate, sodium carbonate, sodium methoxide, sodium ethoxide and the like.
[0018]
Although the addition amount of a basic compound is not specifically limited, From the point of reactivity and productivity, it is 0.5-2.0 mol with respect to 1 mol of acrylic acid or methacrylic acid, especially 1.0-1.5 mol. A range is preferred. If the basic compound is less than 0.5 mol, dehydrochlorination may not be performed sufficiently and the reaction may not be achieved. If it exceeds 2.0 mol, the reaction promoting effect corresponding to the amount of the basic compound is achieved. It may not be seen.
[0019]
The reaction temperature is not particularly limited, but is preferably −20 ° C. to 200 ° C., particularly 0 ° C. to 150 ° C. under normal pressure or pressure.
[0020]
Although the reaction proceeds even without solvent, it is better to use a solvent because stirring is difficult due to the hydrochloride generated during dehydrochlorination. Examples of the solvent used include hydrocarbon solvents such as pentane, hexane, cyclohexane, isooctane, benzene, toluene and xylene, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, ester solvents such as ethyl acetate and butyl acetate, Examples include aprotic polar solvents such as acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric triamide, and chlorinated hydrocarbon solvents such as dichloromethane and chloroform. These solvents may be used alone or in combination of two or more.
[0021]
The above reaction is a method of adding a chlorosilane compound to a mixed solution of a basic compound, acrylic acid or methacrylic acid, a solvent, a method of adding acrylic acid or methacrylic acid to a mixed solution of a basic compound, a chlorosilane compound, or a solvent, a basic compound Any method of adding both acrylic acid or methacrylic acid and a chlorosilane compound to the solvent mixture may be employed.
[0022]
In the above reaction, polymerization inhibitors such as hydroquinone, p-methoxyphenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol are used to prevent polymerization. May be added.
[0023]
After completion of the reaction, a hydrochloride of a basic compound is produced, which can be removed by filtering the reaction solution. From the reaction solution from which the salt has been removed as described above, the target product can be recovered by an ordinary method.
[0024]
In addition, as a manufacturing method of the chlorosilane compound which has a bulky substituent shown by the said General formula (2), carbon number 6 shown by following General formula (3), such as 2, 3- dimethyl- 2-butene, is mentioned, for example. 10 to 10 branched alkenyl compounds and a hydrogen chlorosilane compound represented by the following general formula (4) are reacted in the presence of an aluminum chloride catalyst.
[0025]
[Chemical formula 5]
Figure 0004055433
(Wherein R Five , R 6 , R 7 , R 8 Are the same or different hydrocarbon groups having 1 to 5 carbon atoms, R Five , R 6 , R 7 , R 8 Any two of these may form a ring, and the total number of carbon atoms is 6-10. )
HSiR 1 R 2 Cl (4)
(Wherein R 1 , R 2 Is the same as above. )
[0026]
Here, as the compound represented by the general formula (4), specifically, diisopropylchlorosilane, diisobutylchlorosilane, disec-butylchlorosilane, di (1-methylbutyl) chlorosilane, di (1-ethylpropyl) chlorosilane, di Examples include (2-ethylhexyl) chlorosilane, dicyclopentylchlorosilane, dicyclohexylchlorosilane, isopropylisobutylchlorosilane, isopropyl sec-butylchlorosilane and the like.
[0027]
The compounding ratio of the branched alkenyl compound represented by the general formula (3) and the hydrogen chlorosilane compound represented by the general formula (4) is not particularly limited. However, from the viewpoint of reactivity and productivity, the branched alkenyl compound 1 The range of 0.5 to 2.0 mol, particularly 0.8 to 1.2 mol of the hydrogen chlorosilane compound is preferable with respect to mol.
[0028]
The amount of aluminum chloride used as a catalyst in the above reaction is not particularly limited, but is 0.001 with respect to 1 mol of a branched alkenyl compound such as 2,3-dimethyl-2-butene from the viewpoint of reactivity and productivity. The range of ˜0.5 mol, particularly 0.01 to 0.2 mol is preferred. When the catalyst is less than 0.001 mol, there is a possibility that a sufficient effect of the catalyst is not exhibited, and when it exceeds 0.5 mol, there is a possibility that the reaction promoting effect corresponding to the amount of the catalyst is not observed.
[0029]
The reaction temperature is not particularly limited, but is preferably −20 ° C. to 150 ° C., particularly 0 ° C. to 100 ° C. under normal pressure or under pressure.
[0030]
The reaction proceeds even without solvent, but a solvent can also be used. Examples of the solvent used include aliphatic hydrocarbon solvents such as pentane, hexane, isooctane and cyclohexane, aprotic polar solvents such as acetonitrile, and chlorinated hydrocarbon solvents such as dichloromethane and chloroform.
[0031]
The above reaction is carried out by adding a branched alkenyl compound such as 2,3-dimethyl-2-butene, a method of adding aluminum chloride to a mixed solution of a hydrogenchlorosilane compound, a branched alkenyl compound such as 2,3-dimethyl-2-butene, etc. , A method of adding a hydrogen chlorosilane compound to a mixed solution of aluminum chloride, a method of adding a branched alkenyl compound such as 2,3-dimethyl-2-butene to a mixed solution of hydrogen chlorosilane compound and aluminum chloride, a method of adding aluminum chloride and a solvent Any method of adding both the branched alkenyl compound such as 2,3-dimethyl-2-butene and the hydrogen chlorosilane compound to the mixed solution may be adopted. After completion of the reaction, the target product can be recovered by a usual method.
[0032]
Moreover, as another manufacturing method of the chlorosilane compound which has a bulky substituent shown by the said General formula (2), for example, following General formula (5)
R Three MgX 1 (5)
(Wherein R Three Is the same as above, X 1 Represents a halogen atom. )
And the following general formula (6)
HR 1 R 2 SiX 2 (6)
(Wherein R 1 , R 2 Is the same as above, X 2 Is X 1 Represents the same or different halogen atom. )
And a compound represented by the following general formula (7):
R 1 R 2 R Three SiH (7)
(Wherein R 1 , R 2 , R Three Is the same as above. )
And hydrogen silane having a bulky substituent represented by the following formula, followed by chlorination of hydrogen atoms.
[0033]
In the above reaction, a Grineer reagent represented by the following general formula (5) is used.
R Three MgX 1 (5)
(Wherein R Three Is the same monovalent tertiary hydrocarbon group having 4 to 10 carbon atoms as above, 1 Represents a halogen atom such as Cl or Br. )
[0034]
Specific examples of such a Grineer reagent include tert-butylmagnesium chloride, tert-butylmagnesium bromide, tert-amylmagnesium chloride, tert-amylmagnesium bromide, 1,1-diethylpropylmagnesium chloride, 1-methylcyclopentyl. Examples thereof include magnesium chloride and 1-methylcyclohexyl magnesium chloride.
[0035]
Specific examples of the silane compound represented by the following general formula (6) used in the above reaction include diisopropylchlorosilane, diisobutylchlorosilane, disec-butylchlorosilane, di (1-methylbutyl) chlorosilane, and di (1-ethylpropyl) chlorosilane. And di (2-ethylhexyl) chlorosilane, dicyclopentylchlorosilane, dicyclohexylchlorosilane, isopropylisobutylchlorosilane, isopropyl sec-butylchlorosilane, and the like.
[0036]
As the silane compound represented by the general formula (6), a purified silane compound may be used, or an unpurified silane compound, that is, a prepared reaction solution may be used as it is.
[0037]
The mixing ratio of the Grineer reagent represented by the general formula (5) and the silane compound represented by the general formula (6) is not particularly limited, but is represented by the general formula (6) from the viewpoint of reactivity and productivity. The range of 0.5 to 2.0 moles, particularly 0.8 to 1.5 moles of the Grineer reagent represented by the general formula (5) is preferable with respect to 1 mole of the silane compound.
[0038]
In the above reaction, a copper compound is used as a catalyst. Specific examples of the copper compound used include copper (I) chloride, copper (II) chloride, copper bromide (I), copper bromide (II), copper (I) iodide, and copper (I) cyanide. Etc. are exemplified.
[0039]
Although the usage-amount of the said copper compound is not specifically limited, From the point of reactivity and productivity, 0.001-0.1 mol with respect to 1 mol of Grineer reagents shown by the said General formula (5), Especially 0.01 A range of ˜0.05 mol is preferred. If the catalyst is less than 0.001 mol, there is a possibility that a sufficient effect of the catalyst is not exhibited, and if it exceeds 0.1 mol, there is a possibility that a reaction promoting effect corresponding to the amount of the catalyst is not observed.
[0040]
The above reaction is preferably performed in an aprotic organic solvent. Examples of the solvent used include ether solvents such as diethyl ether and tetrahydrofuran, and hydrocarbon solvents such as pentane, hexane, isooctane, cyclohexane, benzene, toluene and xylene. These solvents may be used alone or in combination of two or more.
[0041]
Moreover, although reaction temperature is not specifically limited, 0-150 degreeC under a normal pressure or pressurization, especially 10-100 degreeC are preferable. The reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. If oxygen is present in the reaction system, the Grineer reagent may react with oxygen, causing a decrease in yield.
[0042]
The chlorination reaction is performed using a chlorinating agent. Examples of the chlorinating agent include chlorine, thionyl chloride, allyl chloride-palladium catalyst, methallyl chloride-palladium catalyst, and methallyl chloride-palladium catalyst is preferred.
[0043]
Although the usage-amount of the methallyl chloride used by the said reaction is not specifically limited, The range of 0.5-2.0 mol is preferable with respect to 1 mol of silane compounds shown by General formula (7).
[0044]
Examples of the palladium catalyst include palladium salts such as palladium chloride and palladium acetate, palladium complexes such as dichlorobistriphenylphosphine palladium, and palladium-carbon. Although the usage-amount of these palladium catalysts is not specifically limited, The range of 0.0001-0.05 mol is preferable with respect to 1 mol of silane compounds shown by General formula (7).
[0045]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0046]
[Example 1] Methacryloxytexyl diisopropylsilane
In a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, methacrylic acid (17.2 g, 0.2 mol), toluene (120 ml), 2,6-di-tert-butyl-4-methylphenol 0 0.06 g was added, and triethylamine (22.3 g, 0.22 mol) was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to 80 ° C. and the internal temperature was stabilized, and then texyldiisopropylchlorosilane (47.0 g, 0.20 mol) was added dropwise over 2 hours. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting hydrochloride was removed by filtration and distilled. 43.2 g of a fraction having a boiling point of 92-97 ° C./0.13 kPa was obtained.
[0047]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 241, 199, 69, 41
1 H-NMR spectrum (deuterated chloroform solvent)
A chart is shown in FIG.
IR spectrum
FIG. 2 is a chart.
From the above results, it was confirmed that the obtained compound was methacryloxy texyl diisopropylsilane.
[0048]
Example 2 Acryloxytexyl diisopropylsilane
In a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, acrylic acid (14.4 g, 0.2 mol), toluene (120 ml), 2,6-di-tert-butyl-4-methylphenol 0 0.06 g was added, and triethylamine (22.3 g, 0.22 mol) was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to 80 ° C. and the internal temperature was stabilized, and then texyldiisopropylchlorosilane (47.0 g, 0.20 mol) was added dropwise over 2 hours. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting hydrochloride was removed by filtration and distilled. 38.6 g of a fraction having a boiling point of 87-92 ° C./0.13 kPa was obtained.
[0049]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 227, 185, 55
1 H-NMR spectrum (deuterated chloroform solvent)
FIG. 3 shows a chart.
IR spectrum
FIG. 4 shows a chart.
From the above results, it was confirmed that the obtained compound was acryloxy texyl diisopropylsilane.
[0050]
Example 3 Methacryloxy texyl diisobutyl silane
In a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, methacrylic acid (17.2 g, 0.2 mol), toluene (120 ml), 2,6-di-tert-butyl-4-methylphenol 0 0.06 g was added, and triethylamine (22.3 g, 0.22 mol) was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to 80 ° C. and the internal temperature was stabilized, and then texyldiisobutylchlorosilane (52.6 g, 0.20 mol) was added dropwise over 2 hours. After completion of dropping, the reaction solution was stirred at 80 ° C. for 5 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting hydrochloride was removed by filtration and distilled. 46.3 g of a fraction having a boiling point of 104-110 ° C./0.13 kPa was obtained.
[0051]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 255, 227, 69, 41
1 H-NMR spectrum (deuterated chloroform solvent)
FIG. 5 shows a chart.
IR spectrum
FIG. 6 is a chart.
From the above results, it was confirmed that the obtained compound was methacryloxy texyl diisobutyl silane.
[0052]
Example 4 Methacryloxy tert-butyldiisopropylsilane
In a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, tert-butyldiisopropylchlorosilane (41.4 g, 0.20 mol), toluene (60 ml), 2,6-di-tert-butyl-4- 0.06 g of methylphenol was charged, and triethylamine (22.3 g, 0.22 mol) was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to 80 ° C. and the internal temperature was stabilized, and then methacrylic acid (18.9 g, 0.22 mol) was added dropwise over 1 hour. After completion of dropping, the reaction solution was stirred at 80 ° C. for 2 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting hydrochloride was removed by filtration and distilled. 45.4 g of a fraction having a boiling point of 93-95 ° C./0.27 kPa was obtained.
[0053]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 213, 199, 69, 41
1 H-NMR spectrum (deuterated chloroform solvent)
FIG. 7 shows a chart.
IR spectrum
FIG. 8 shows a chart.
From the above results, it was confirmed that the obtained compound was methacryloxy tert-butyldiisopropylsilane.
[0054]
Example 5 Acryloxy tert-butyldiisopropylsilane
In a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, tert-butyldiisopropylchlorosilane (41.4 g, 0.20 mol), toluene (60 ml), 2,6-di-tert-butyl-4- 0.06 g of methylphenol was charged, and triethylamine (22.3 g, 0.22 mol) was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to 80 ° C. and the internal temperature was stabilized, and then acrylic acid (15.9 g, 0.22 mol) was added dropwise over 1 hour. After completion of dropping, the reaction solution was stirred at 80 ° C. for 2 hours. Thereafter, the reaction solution was cooled to room temperature, and the resulting hydrochloride was removed by filtration and distilled. 42.9 g of a fraction having a boiling point of 80-83 ° C./0.27 kPa was obtained.
[0055]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 199, 185, 55
1 H-NMR spectrum (deuterated chloroform solvent)
FIG. 9 is a chart.
IR spectrum
A chart is shown in FIG.
From the above results, it was confirmed that the obtained compound was acryloxy tert-butyldiisopropylsilane.
[0056]
[Experimental Example 1] Comparison of hydrolyzability between methacryloxy texyl diisopropyl silane and methacryloxy triisopropyl silane
In a flask equipped with a stirrer, a reflux condenser and a thermometer, 20 g of 1% hydrogen chloride 95% ethanol aqueous solution, 1.0 g of methacryloxy texyl diisopropyl silane, 1.0 g of methacryloxy triisopropyl silane, 5 g was charged and stirred at room temperature. After 30 minutes, when analyzed by gas chromatography, methacryloxy texyl diisopropylsilane was not hydrolyzed at all, but all methacryloxy triisopropylsilane was hydrolyzed and changed to triisopropylsilanol.
[0057]
[Experimental Example 2] Comparison of hydrolyzability between methacryloxy texyl diisobutyl silane and methacryloxy triisopropyl silane
In a flask equipped with a stirrer, a reflux condenser and a thermometer, 20 g of 1% hydrogen chloride 95% ethanol aqueous solution, 1.0 g of methacryloxy texyl diisobutyl silane, 1.0 g of methacryloxy triisopropyl silane, xylene as an internal standard 5 g was charged and stirred at room temperature. After 30 minutes, when analyzed by gas chromatography, methacryloxy texyl diisobutyl silane was only 2% hydrolyzed, but all methacryloxy triisopropyl silane was hydrolyzed and changed to triisopropylsilanol. .
[0058]
[Reference Example 1] Texyldiisopropylchlorosilane
Diisopropylchlorosilane (30.1 g, 0.2 mol) and aluminum chloride (2.7 g, 0.02 mol) were charged into a flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, and heated to 50 ° C. After the internal temperature was stabilized, 2,3-dimethyl-2-butene (16.8 g, 0.2 mol) was added dropwise over 1 hour. After completion of dropping, the reaction solution was stirred at 50 ° C. for 1 hour. Aluminum chloride was inactivated by adding anisole (4.3 g, 0.04 mol), and then the reaction solution was distilled to obtain 28.3 g of a fraction having a boiling point of 79 ° C./0.13 kPa.
[0059]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 234 (M + ), 149, 121, 93, 84, 43
From the above results, it was confirmed that the obtained compound was texyldiisopropylchlorosilane (yield 60%).
[0060]
[Reference Example 2] Texyldiisobutylchlorosilane
A flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with diisobutylchlorosilane (35.8 g, 0.20 mol) and aluminum chloride (2.7 g, 0.02 mol) and heated to 50 ° C. After the internal temperature was stabilized, 2,3-dimethyl-2-butene (16.8 g, 0.2 mol) was added dropwise over 1 hour. After completion of dropping, the reaction solution was stirred at 50 ° C. for 2 hours. Thereafter, aluminum was inactivated by adding anisole (4.3 g, 0.04 mol), and then the reaction solution was distilled to obtain 32.5 g of a fraction having a boiling point of 83 ° C./0.13 kPa.
[0061]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 262 (M + ), 177, 135, 95, 84, 43
From the above results, it was confirmed that the obtained compound was texyldiisobutylchlorosilane (yield 62%).
[0062]
[Reference Example 3] tert-Butyldiisopropylchlorosilane
A flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 24.3 g (1.0 mol) of magnesium metal and 300 ml of tetrahydrofuran, and 92.6 g (1.0 mol) of tert-butyl chloride in a nitrogen gas atmosphere. ) Was added dropwise at an internal temperature of 40 to 50 ° C. over 1 hour, and further stirred at 60 ° C. for 1 hour. A tert-butylmagnesium chloride solution as a Grineer reagent was obtained.
[0063]
Next, after adding 1.4 g (0.01 mol) of copper bromide to this Grineer reagent, 150.7 g (1.0 mol) of diisopropylchlorosilane was added dropwise at room temperature over 1 hour, and further at 70 ° C. for 6 hours. Stir. When the obtained reaction liquid was analyzed by gas chromatography, the conversion rate was 86%. To this reaction solution, 250 g of 5% hydrochloric acid was added to dissolve the salt, and the organic layer was separated. The organic layer was distilled to obtain 105.2 g of a fraction having a boiling point of 79 ° C./2.7 kPa.
[0064]
Mass spectrum of the obtained fraction, 1 H-NMR spectrum and IR spectrum were measured.
Mass spectrum
m / z 172 (M + ), 115, 87, 73, 59
From the above results, it was confirmed that the obtained compound was tert-butyldiisopropylsilane (yield 61%).
[0065]
Next, 45.3 g (0.5 mol) of methallyl chloride and 0.56 g (0.0025 mol) of palladium acetate were charged into a flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, and heated to 70 ° C. . After the internal temperature was stabilized, 86.2 g (0.5 mol) of tert-butyldiisopropylsilane obtained above was added dropwise over 2 hours. After completion of dropping, the reaction solution was stirred at 100 ° C. for 3 hours. The reaction solution was distilled to obtain 90.4 g of tert-butyldiisopropylchlorosilane as a fraction having a boiling point of 81 ° C./1.3 kPa (yield 87%).
[0066]
【The invention's effect】
Since the silyl (meth) acrylate compound having a bulky substituent provided by the present invention has a slow hydrolysis rate, it is useful as a raw material for hydrolyzable self-polishing polymers such as ship bottom paints.
[Brief description of the drawings]
FIG. 1 shows the methacryloxy texyl diisopropylsilane of Example 1. 1 It is a 1 H-NMR spectrum.
2 is an IR spectrum of methacryloxy texyl diisopropylsilane in Example 1. FIG.
FIG. 3 shows the acryloxy texyl diisopropylsilane of Example 2 1 It is a 1 H-NMR spectrum.
4 is an IR spectrum of acryloxy texyl diisopropylsilane of Example 2. FIG.
FIG. 5 shows the methacryloxy texyl diisobutyl silane of Example 3. 1 It is a 1 H-NMR spectrum.
6 is an IR spectrum of methacryloxy texyl diisobutyl silane of Example 3. FIG.
7 is a graph of methacryloxy tert-butyldiisopropylsilane of Example 4. FIG. 1 It is a 1 H-NMR spectrum.
8 is an IR spectrum of methacryloxy tert-butyldiisopropylsilane of Example 4. FIG.
9 is a graph of acryloxy tert-butyldiisopropylsilane of Example 5. FIG. 1 It is a 1 H-NMR spectrum.
10 is an IR spectrum of acryloxy tert-butyldiisopropylsilane in Example 5. FIG.

Claims (3)

下記一般式(1)で示される嵩高い置換基を有するシリル(メタ)アクリレート化合物。
Figure 0004055433
(式中、R1、R2は、同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基、R4は、水素原子又はメチル基を示す。)
A silyl (meth) acrylate compound having a bulky substituent represented by the following general formula (1).
Figure 0004055433
Wherein R 1 and R 2 are monovalent branched hydrocarbon groups having 3 to 10 carbon atoms or hydrocarbon groups having the same or different α-positions or β-positions or monovalent cyclic groups having 3 to 10 carbon atoms. (The hydrocarbon group, R 3 represents a tertiary hydrocarbon group having 4 to 10 carbon atoms, and R 4 represents a hydrogen atom or a methyl group.)
上記一般式(1)で示される化合物が、メタクリロキシテキシルジイソプロピルシラン、アクリロキシテキシルジイソプロピルシラン、メタクリロキシテキシルジイソブチルシラン、アクリロキシテキシルジイソブチルシラン、メタクリロキシtert−ブチルジイソプロピルシラン、アクリロキシtert−ブチルジイソプロピルシラン、メタクリロキシtert−ブチルジイソブチルシラン、又はアクリロキシtert−ブチルジイソブチルシランである請求項1記載の嵩高い置換基を有するシリル(メタ)アクリレート化合物。The compound represented by the general formula (1) is methacryloxy texyl diisopropyl silane, acryloxy texyl diisopropyl silane, methacryloxy texyl diisobutyl silane, acryloxy texyl diisobutyl silane, methacryloxy tert-butyl diisopropyl silane, acryloxy tert- The silyl (meth) acrylate compound having a bulky substituent according to claim 1, which is butyldiisopropylsilane, methacryloxy tert-butyldiisobutylsilane, or acryloxy tert-butyldiisobutylsilane. 下記一般式(2)
123SiCl (2)
(式中、R1、R2は、同一又は異なるα位又はβ位に炭化水素基を有する炭素数3〜10の1価の分岐状炭化水素基又は炭素数3〜10の1価の環状炭化水素基、R3は、炭素数4〜10の3級炭化水素基を示す。)
で示されるクロロシラン化合物と、アクリル酸又はメタクリル酸とを、塩基性化合物の存在下に反応させることを特徴とする請求項1記載の一般式(1)で示される嵩高い置換基を有するシリル(メタ)アクリレート化合物の製造方法。
The following general formula (2)
R 1 R 2 R 3 SiCl (2)
Wherein R 1 and R 2 are monovalent branched hydrocarbon groups having 3 to 10 carbon atoms or hydrocarbon groups having the same or different α-positions or β-positions or monovalent cyclic groups having 3 to 10 carbon atoms. (The hydrocarbon group, R 3 represents a tertiary hydrocarbon group having 4 to 10 carbon atoms.)
The silyl having a bulky substituent represented by the general formula (1) according to claim 1, wherein the chlorosilane compound represented by formula (2) is reacted with acrylic acid or methacrylic acid in the presence of a basic compound. A method for producing a (meth) acrylate compound.
JP2002051110A 2001-03-06 2002-02-27 Silyl (meth) acrylate compound having bulky substituent and method for producing the same Expired - Fee Related JP4055433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051110A JP4055433B2 (en) 2001-03-06 2002-02-27 Silyl (meth) acrylate compound having bulky substituent and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001061293 2001-03-06
JP2001-61293 2001-03-06
JP2002051110A JP4055433B2 (en) 2001-03-06 2002-02-27 Silyl (meth) acrylate compound having bulky substituent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002332289A JP2002332289A (en) 2002-11-22
JP4055433B2 true JP4055433B2 (en) 2008-03-05

Family

ID=26610668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051110A Expired - Fee Related JP4055433B2 (en) 2001-03-06 2002-02-27 Silyl (meth) acrylate compound having bulky substituent and method for producing the same

Country Status (1)

Country Link
JP (1) JP4055433B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278040B2 (en) * 2009-02-27 2013-09-04 信越化学工業株式会社 Siloxy group-containing silyl (meth) acrylate compound having bulky substituent and method for producing the same
JP2016501951A (en) * 2012-12-19 2016-01-21 ヨトゥン アーエス Silyl ester copolymer
JP6844106B2 (en) * 2015-04-21 2021-03-17 三菱ケミカル株式会社 Distillation method of unsaturated carboxylic acid silyl ester

Also Published As

Publication number Publication date
JP2002332289A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP2801330B2 (en) Method for producing organosilane containing methacryloxy or acryloxy group
JPH04288089A (en) Process for producing organosilane containing methacryloxy group or acryloxy group
JP4055433B2 (en) Silyl (meth) acrylate compound having bulky substituent and method for producing the same
US6498264B2 (en) Silyl (meth)acrylates having bulky substituent group and preparation thereof
JPH10182667A (en) Preparation of acyloxysilane
EP2182000B1 (en) Silyl (meth)acrylate compound containing a siloxy group having a bulky substituent and its production method
KR20020089197A (en) Process for the preparation of trialkylsilylated carboxylate monomers, the obtained trialkylsilylated carboxylate monomers and their use in anti-fouling coatings
JP4178369B2 (en) Method for producing silyl (meth) acrylate compound
US6156918A (en) Process for the preparation of silanes, with a tertiary hydrocarbon group in the a-position relative to the silicon atom
JPH0517487A (en) New silane compound and its production
JP4022713B2 (en) Silane compound and method for producing the same
JP5278040B2 (en) Siloxy group-containing silyl (meth) acrylate compound having bulky substituent and method for producing the same
JP2007517881A (en) Grignard method with increasing content of diphenylchlorosilane
JP5294537B2 (en) Method for producing tri (secondary alkyl) silane compound
JP2907046B2 (en) Hydrocarbonation of chlorosilanes
JP2938726B2 (en) Method for producing tertiary butylcycloalkyldialkoxysilane compound
US7847116B2 (en) Method of manufacturing an aminoaryl-containing organosilicon compound and method of manufacturing an intermediate product of the aforementioned compound
JP3874073B2 (en) Method for producing chlorosilane compound having texyl group
JP2989109B2 (en) Method for producing dialkyldialkoxysilane compound
JP4081571B2 (en) Method for producing triorganosilylcarboxylate compound
JP2864985B2 (en) Method for producing tri (secondary alkyl) silane compound
JP3111859B2 (en) Method for producing dialkyldialkoxysilane compound
JP3192565B2 (en) Co-production method of dimethylsilane and triorganochlorosilane
JP2002047293A (en) Method of preparing 2-trialkylsilyl 2,2-difluoroacetate
JP3091992B2 (en) Method for producing (tertiary alkyl) alkyl dialkoxysilane compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Ref document number: 4055433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees