JP4055024B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4055024B2
JP4055024B2 JP00669598A JP669598A JP4055024B2 JP 4055024 B2 JP4055024 B2 JP 4055024B2 JP 00669598 A JP00669598 A JP 00669598A JP 669598 A JP669598 A JP 669598A JP 4055024 B2 JP4055024 B2 JP 4055024B2
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
lithium secondary
mixture
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00669598A
Other languages
Japanese (ja)
Other versions
JPH11204098A (en
Inventor
謙一郎 加美
啓史 上嶋
徳一 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00669598A priority Critical patent/JP4055024B2/en
Publication of JPH11204098A publication Critical patent/JPH11204098A/en
Application granted granted Critical
Publication of JP4055024B2 publication Critical patent/JP4055024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、ノート型コンピューターや小型携帯機器などの電子機器や自動車のバッテリーに利用できるリチウム二次電池に関する。
【0002】
【従来の技術】
近年、ノート型コンピューターや小型携帯機器などの電子機器、あるいは自動車のクリーンなエネルギー源として利用できる高性能な二次電池の開発が盛んである。こうした二次電池には、小型、軽量でありながら大容量・高出力をもつ、すなわち高エネルギー密度・高出力密度をもつ二次電池が求められている。こうした性能が得られる二次電池として、リチウム二次電池が特に注目されている。
【0003】
リチウム二次電池は、リチウムイオンを放出できる正極と、該正極活物質から放出された該リチウムイオンを吸蔵および放出できる負極と、該正極と該負極との間で該リチウムイオンを移動させる電解質と、を備える電池である。
従来より、その正極の多くは、LiMn24など粉末状の正極活物質がポリビニリデンフロライド(PVDF)やポリテロラフルオロエチレンなどの結着剤とともにN−メチル−2−ピロリドン(NMP)などの溶剤に混合されて調製された合剤より成形されている。
【0004】
一方、負極の多くは、黒鉛など粉末状の炭素質の負極活物質がPVDFなどの結着剤とともにNMPなどの溶剤に混合されて調製された合剤より成形されている。
しかしながら、PVDFのように溶媒に対して溶解性をもつ結着剤は、活物質の表面を被覆してしまい、電極のリチウムイオンの放出及び吸蔵を阻害してしまう。それゆえ、電池の負荷特性や出力密度特性を低下させてしまう問題があった。
【0005】
一方、ポリテロラフルオロエチレンは、微粒子の形態でディスパージョン状、あるいはエマルジョン状、ラテックス状の結着剤とされて用いられる。このようなフッ素樹脂などと無反応性の官能基をもつ微粒子状ポリマー樹脂を含む結着剤は、先の溶媒に対して溶解性をもつ結着剤のように活物質の表面を被覆してしまうことはないが、十分な結着性が得られない。そこで結着性を向上させるため、その結着の使用量を増加すると、電極にもたせることのできる活物質の量、すなわち電池内に収容できる活物質量が低減するとともに、電池の容量が低減するという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は上記実情に鑑みてなされたものであり、負荷特性及び出力密度特性に優れた高容量なリチウム二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決する本発明のリチウム二次電池は、リチウムイオンを放出できる正極と、該正極から放出された該リチウムイオンを吸蔵および放出できる負極と、該正極と該負極との間で該リチウムイオンを移動させる電解質と、を備えるリチウム二次電池において、粉末状の正極活物質と、アルコキシシリル基をもつ微粒子状の水性シラン系ポリマー樹脂が水性液中に分散してなる水性シラン系エマルジョンと、が混合されてなる合剤より成形された該正極、並びに粉末状の負極活物質と該水性シラン系エマルジョンとが混合されてなる合剤より成形された該負極の少なくとも一方を備え、該水性シラン系エマルジョンは、該水性シラン系ポリマー樹脂とともにフッ素系ディスパージョン、SBRラテックス及びNBRラテックスの少なくとも一種を含むことを特徴とする。
【0008】
この水性シラン系エマルジョンでは、水性シラン系ポリマー樹脂がアルコキシシリル基を官能基としてもっている。この水性シラン系ポリマー樹脂のアルコキシシリル基は、正極用の合剤あるいは負極用の合剤の調製過程において加水分解され、シラノール基が形成される。こうしたシラノール基は、正極用の合剤あるいは負極用の合剤が集電体に塗布されて乾燥される過程で互いに架橋し合う。この架橋し合ったシラノール基は、合剤中に含まれる活物質の表面に存在する水酸基と結合する。それゆえ、活物質どうしの結着性において、結着剤の含有量が少なくても優れた結着性を得ることができる。結着剤の含有量を少なくすれば、電池の容量を増加させることができる。
【0009】
また、微粒子状の水性シラン系ポリマー樹脂は水性シラン系エマルジョン中に点在した状態で存在するため、活物質表面を被覆することがなく、かつリチウムイオンの移動を妨げることがない。それゆえ、リチウム二次電池の負荷特性及び出力密度特性が向上する。
【0010】
【発明の実施の形態】
前記水性シラン系ポリマー樹脂は、架橋性アルコキシシランを含むポリマーの少なくとも一種であることが好ましい。架橋性アルコキシシランを含むポリマーは強い接着性をもつため、活物質どうしの結着性を向上させることができる。
前記水性液は、水、アルコール及びグリコールの少なくとも一種であることが好ましい。これらの水性液は、水性シラン系ポリマー樹脂を分散性良く分散させることができる。
【0011】
特に、前記グリコールはプロピレングリコール及びエチレングリコールの少なくとも一種であることが好ましい。プロピレングリコールは揮発性に優れるため、電極体の成形時において、比較的低い温度の加熱により合剤から容易に除去することができる。
前記水性シラン系ポリマー樹脂は1μm以下の粒径をもつことが好ましい。このような水性シラン系ポリマー樹脂は、十分に小さな粒径をもつため、水性シラン系エマルジョン中の水性シラン系ポリマー樹脂の分散性が向上する。その結果、リチウムイオンの移動性がさらに向上する。
【0012】
また、前記水性シラン系エマルジョンは、水性シラン系ポリマー樹脂とともにフッ素系ディスパージョン、SBRラテックス及びNBRラテックスの少なくとも一種を含むことが好ましい。このような添加剤は、活物質の膨張・収縮を吸収することができ、シート状電極の可撓性を向上させることができる。
このとき、前記フッ素系ディスパージョンは、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体の少なくとも一種であることが好ましい。これらの物質は、電極の耐薬品性及び耐熱性を向上させることができる。
【0013】
一方、前記正極用合剤及び前記負極用合剤の少なくとも一方は、分散媒が添加されてなることが好ましい。この分散媒により正極活物質あるいはまた負極活物質がさらに合剤中に分散される。このとき、正極用合剤では、前記正極活物質と前記水性シラン系エマルジョンとを分散媒中で混合することができる。また、負極用合剤では、前記負極活物質と前記水性シラン系エマルジョンとを分散媒中で混合することができる。
【0014】
前記正極用合剤及び前記負極用合剤の少なくとも一方は、増粘剤、消泡剤、分散剤、表面調製剤、界面活性剤の少なくとも一種を含むことが好ましい。これらの添加剤により、均一な合剤の塗布面を得ることができる。これらの添加剤としては特に、活物質及び水性シラン系エマルジョンなどと反応性が低く、かつ少ない添加量でも効果のあるフッ素系化合物及びシリコン系化合物などを用いることが好ましい。
【0015】
前記正極用合剤は、前記水性シラン系エマルジョンが合剤全体に対して0.5〜5重量%混合されてなることが好ましい。このように混合量を限定することにより、優れた結着性と高い電池容量とを得ることができる。このとき、水性シラン系エマルジョンの混合量が0.5%未満であると優れた結着性が容易に得られず、5%を超えると高い放電容量が容易に得られなくなる。
【0016】
一方、前記負極用合剤は、前記水性シラン系エマルジョンが合剤全体に対して1〜10重量%混合されてなることが好ましい。このように混合量を限定することにより、前記正極用合剤と同様に優れた結着性と高い電池容量とを得ることができる。
前記正極活物質は、導電材とともに水性シラン系エマルジョンと混合されることが好ましい。この導電材により、正極活物質の電子授受の効率を向上させることができ、電池の放電効率を向上させることができる。この導電材としては黒鉛材料などを用いることができる。水性シラン系エマルジョン中の水性シラン系ポリマー樹脂に形成されたシラノール基は、導電材の表面に存在する水酸基とも結合する。その結果、活物質と導電材との結着性において、結着剤の含有量が少なくても優れた結着性を得ることができる。
【0017】
前記負極活物質は炭素材料よりなることが好ましい。このような負極活物質からなる負極を用いることにより、電池の寿命を長くすることができるとともに、電池の安全性を向上させることができる。
この炭素材料には、公知の粉末性の炭素材料を用いることができるが、結晶性の高い天然黒鉛や人造黒鉛などからなるものを用いることが好ましい。このような結晶性の高い炭素材料を用いることにより、負極のリチウムイオンの授受効率を向上させることができる。このとき、炭素材料の粒子形状については特に限定されるものではなく、球状、鱗片状及び繊維状などの形状をもつものを用いることができる。また、炭素材料の粒度分布についても特に限定されるものではない。この炭素材料には、例えば、黒鉛結晶構造の結晶性の高い球状の炭素粒子であるメソフェーズマイクロビーズ(MCMB)を用いることができる。
【0018】
ところで、本発明のリチウム二次電池では、活物質及び水性シラン系エマルジョンなどの混合方法については特に限定されるものではなく、超音波分散、ホモジナイザー、プラネタリーミキサー、ボールミル、ニーダ、インペラーミル及び乳鉢などを用いることができる。
また、本発明のリチウム二次電池では、正極及び負極の成形方法は特に限定されるものではないが、前記正極用合剤及び前記負極用合剤の少なくとも一方は、導電性をもつ集電体に塗布されて電極体を成すことが好ましい。この集電体により、活物質で生じた電気エネルギー(電流)を電池外部へ効率良く流すことができる。正極の集電体の材料には、アルミニウムなどを用いることができる。負極の集電体の材料には、銅などを用いることができる。水性シラン系エマルジョン中の水性シラン系ポリマー樹脂に形成されたシラノール基は、集電体の表面に存在する水酸基とも結合する。その結果、活物質と集電体との結着性において、結着剤の含有量が少なくても優れた結着性を得ることができる。
【0019】
例えば、合剤を板状の集電体に塗布して電極体を成す場合、次のようにして電極体を成形することができる。
先ず、ブレードコーター、ロールコーター、ナイフコーター及びダイコーターなどの塗布方法を用いて合剤を集電体に塗布する。続いて、恒温槽、熱風乾燥機及び真空乾燥機などを用いて合剤中の水分など液体成分を除去し、合剤を固化する。こうして電極体を得ることができるが、ロールプレス及び平板プレスなどのプレス成形をさらに施せば、所定の電極膜厚及び合剤密度を正確に得ることができる。
【0020】
一方、前記電解質は、有機溶媒にリチウム塩を溶解してなることが好ましい。このような電解質を用いることにより、電極間のリチウムイオンの移動性を向上させることができる。それゆえ、電池の放電効率を向上させることができる。このとき、有機溶媒にはエチレンカーボネートなどのカーボネート系の有機溶媒を用いることができる。また、リチウム塩には、LiPF6、LiBF4、LiClO4及びLiAsF6などを用いることができる。
【0021】
本発明のリチウム二次電池は、公知のコイン型電池、ボタン型電池、円筒型電池及び角型電池等の電池と同じ構造形態をもつことができる。
【0022】
【実施例】
以下、実施例により本発明を具体的に説明する。
参考例
参考例のリチウム二次電池は、図1に模式的に示すように、リチウムイオンを放出できる正極1と、正極1から放出されたリチウムイオンを吸蔵及び放出できる炭素材料よりなる負極2と、電解液3、3とを備えるコイン型のリチウムイオン二次電池である。この電池では、正極1、負極2及び非水電解液3がステンレスよりそれぞれなる正極ケース4および負極ケース5内にポリプロピレンよりなるガスケット6、6を介して密封されている。正極1と負極2との間にはポリエチレン製のフィルムよりなるセパレータ7が介在している。
【0023】
正極1は、アルミニウムよりなる正極集電体1aの表面上にLiMn24を正極活物質としてもつものである。正極1は次のようにして形成した。
先ず、LiMn24粉末、鱗片状黒鉛粉末、及び架橋性アルコキシシランを含むポリマー(PC−100、東亜合成(株)製)をそれぞれ89重量部、10重量部及び1重量部の割合で所定量用意した。この水性シラン系ポリマー樹脂を所定量のプロピレングリコールに懸濁して水性シラン系エマルジョンを得た。これらLiMn24粉末、鱗片状黒鉛粉末及び水性シラン系エマルジョンを混合してペースト状の正極用合剤を得た。
【0024】
次いで、この正極用合剤をアルミニウム箔にブレードコーターを用いて塗布した。続いて、この塗布した正極用合剤を80℃の高温槽で乾燥して合剤中のプロピレングリコールを揮発させて除去し、これを固化させた。最後に、正極合剤密度が2.7g/ccとなるように、この固化させた正極用合剤をロールプレスによりプレス成形して正極1を得た。
【0025】
負極2は、銅よりなる負極集電体2aの表面上に炭素材料を負極活物質としてもつものである。負極2は次のようにして形成した。
先ず、MCMB粉末及び架橋性アルコキシシランを含むポリマー(PC−100、東亜合成(株)製)をそれぞれ95重量部及び5重量部の割合で所定量用意した。この水性シラン系ポリマー樹脂を所定量のプロピレングリコールに懸濁して水性シラン系エマルジョンを得た。これらMCMB粉末及び水性シラン系エマルジョンを混合してペースト状の負極用合剤を得た。
【0026】
次いで、この負極用合剤を銅箔にブレードコーターを用いて塗布した。続いて、この塗布した負極用合剤を80℃の高温槽で乾燥して合剤中のプロピレングリコールを揮発させて除去し、これを固化させた。最後に、負極合剤密度が1.4g/ccとなるように、この固化させた負極用合剤をプレス成形して負極2を得た。
【0027】
非水電解液3は、エチレンカーボネート、プロピレンカーボネート及びリン酸トリエチルをそれぞれ50体積%、25体積%、及び25体積%の割合で混合して得た溶媒に、電解質としてLiPF6を1モル/リットルの濃度で溶解して調製した。
以上のようにして得られた正極1、負極2及び非水電解液3を用い、本参考例のリチウム二次電池を次のようにして作製した。
【0028】
先ず、正極1及び負極2をそれぞれ正極ケース4および負極ケース5に溶接し、これらの溶接体の間にセパレータ7を挟んで重ね合わせた。続いて非水電解液3、3を所定場所に注入した後、ガスケット6、6で密封して本参考例のリチウム二次電池を完成した。
実施例1
本実施例のリチウム二次電池は、次のようにして成形された正極が使用されている他は、参考例のリチウム二次電池と同じ電池である。
【0029】
先ず、LiMn24粉末、鱗片状黒鉛粉末、架橋性アルコキシシランを含むポリマー(PC−100、東亜合成(株)製)及びポリテトラフルオロエチレンををそれぞれ88重量部、10重量部、1重量部及び1重量部の割合で所定量用意した。この水性シラン系ポリマー樹脂を所定量のプロピレングリコールに懸濁して水性シラン系エマルジョンを得た。これらLiMn24粉末、鱗片状黒鉛粉末、水性シラン系エマルジョン及びポリテトラフルオロエチレンを混合してペースト状の正極用合剤を得た。
【0030】
次いで、この正極用合剤をアルミニウム箔にブレードコーターを用いて塗布した。続いて、この塗布した正極用合剤を80℃の高温槽で乾燥して合剤中のプロピレングリコールを揮発させて除去し、これを固化させた。最後に、正極合剤密度が2.7g/ccとなるように、この固化させた正極用合剤をプレス成形して正極を得た。
実施例2
本実施例のリチウム二次電池は、次のようにして成形された正極が使用されている他は、参考例のリチウム二次電池と同じ電池である。
【0031】
先ず、LiMn24粉末、鱗片状黒鉛粉末、架橋性アルコキシシランを含むポリマー(PC−100、東亜合成(株)製)及びポリテトラフルオロエチレンををそれぞれ88重量部、10重量部、0.5重量部及び1.5重量部の割合で所定量用意した。この水性シラン系ポリマー樹脂を所定量のプロピレングリコールに懸濁して水性シラン系エマルジョンを得た。これらLiMn24粉末、鱗片状黒鉛粉末、水性シラン系エマルジョン及びポリテトラフルオロエチレンを混合してペースト状の正極用合剤を得た。
【0032】
次いで、この正極用合剤をアルミニウム箔にブレードコーターを用いて塗布した。続いて、この塗布した正極用合剤を80℃の高温槽で乾燥して合剤中のプロピレングリコールを揮発させて除去し、これを固化させた。最後に、正極合剤密度が2.7g/ccとなるように、この固化させた正極用合剤をプレス成形して正極を得た。
(比較例1)
本比較例のリチウム二次電池は、次のようにして成形された正極が使用されている他は、参考例のリチウム二次電池と同じ電池である。
【0033】
先ず、LiMn24粉末、鱗片状黒鉛粉末及びPVDFをそれぞれ87重量部、10重量部、3重量部の割合で所定量用意し、これらを所定量のNMPとともに良く混合してペースト状の正極用合剤を得た。次いで、この正極用合剤をアルミニウム箔にブレードコーターを用いて塗布した。続いて、この塗布した正極用合剤を80℃の高温槽中に放置し、合剤中のNMPを揮発させて除去し、これを固化させた。最後に、正極合剤密度が2.7g/ccとなるように、この固化させた正極用合剤をプレス成形して正極を得た。
[負荷特性の評価]
参考例、実施例1〜2及び比較例1の各リチウム二次電池について、次のようにして負荷特性試験を行った。
【0034】
1mA/cm2 の定電流、4.2Vの定電圧で4時間充電した後、0.25〜4mA/cm2 の定電流で終止電圧を3.0Vとする放電を行った。このとき、所定の放電電流密度に対する放電容量を測定し、放電電流密度が0.5mA/cm2のときの放電容量を1として所定の放電電流密度に対する放電容量比を求めた。各電池について、放電電流密度と放電容量比との関係を図2に示す。
【0035】
図2からわかるように、いずれの電池も放電電流密度が増加するにつれて放電容量比が低下しているが、参考例及び実施例1〜2の電池では比較例1の電池より放電容量比の低下の度合いが小さくなっている。
[出力密度特性の評価]
参考例、実施例1〜2及び比較例1の各リチウム二次電池について、次のようにして出力密度特性試験を行った。
【0036】
0.2mA/cm2 の定電流で充電し、最大充電量に対して30%の充電量とした。続いて、0.25〜4mA/cm2 の定電流で終止電圧を3.0Vとする放電を行った。このとき、所定の放電時間に対する放電出力を測定し、合剤1kg当たりの出力密度を求めた。各電池について、放電時間と出力密度との関係を図3に示す。
【0037】
図3からわかるように、参考例、実施例1〜2の電池では、初期の放電出力密度が比較例1の電池のものより極めて高く、かつ放電時間が経過しても放電出力密度は比較例1の電池のものより高くなっている。
【0038】
【効果】
本発明のリチウム二次電池は、負荷特性及び出力密度特性に優れた高容量なリチウム二次電池である。このリチウム二次電池をノート型コンピューターや小型携帯機器などの電子機器に利用すれば、電子機器をさらに性能良くかつ機能性良く作動させることができるようになる。あるいは、自動車のクリーンなエネルギー源として利用すれば、自動車を性能良く駆動させることができるようになる。
【図面の簡単な説明】
【図1】この図は、参考例のリチウム二次電池の縦断面図である。
【図2】この図は、参考例、実施例1〜2及び比較例1のリチウム二次電池について、各電池の放電電流密度と放電容量比との関係を示すグラフである。
【図3】この図は、参考例、実施例1〜2及び比較例1のリチウム二次電池について、各電池の放電時間と出力密度との関係を示すグラフである。
【符号の説明】
1:正極 2:負極 3:非水電解液 4:正極ケース 5:負極ケース 6:ガスケット 7:セパレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery that can be used for electronic devices such as notebook computers and small portable devices and automobile batteries.
[0002]
[Prior art]
In recent years, development of high-performance secondary batteries that can be used as electronic devices such as notebook computers and small portable devices, or as a clean energy source for automobiles has been active. Such a secondary battery is required to be a secondary battery having a large capacity and a high output while being small and light, that is, a high energy density and a high output density. Lithium secondary batteries are particularly attracting attention as secondary batteries that can achieve such performance.
[0003]
A lithium secondary battery includes a positive electrode capable of releasing lithium ions, a negative electrode capable of inserting and extracting the lithium ions released from the positive electrode active material, and an electrolyte that moves the lithium ions between the positive electrode and the negative electrode. A battery comprising:
Conventionally, in many of the positive electrodes, a powdered positive electrode active material such as LiMn 2 O 4 is made of N-methyl-2-pyrrolidone (NMP) or the like together with a binder such as polyvinylidene fluoride (PVDF) or polyterafluoroethylene. It is molded from a mixture prepared by mixing in a solvent.
[0004]
On the other hand, many negative electrodes are formed from a mixture prepared by mixing a powdery carbonaceous negative electrode active material such as graphite with a binder such as PVDF in a solvent such as NMP.
However, a binder having solubility in a solvent such as PVDF covers the surface of the active material and inhibits the release and occlusion of lithium ions from the electrode. Therefore, there is a problem that the load characteristics and output density characteristics of the battery are deteriorated.
[0005]
On the other hand, polyterolafluoroethylene is used in the form of fine particles in the form of a dispersion, emulsion or latex. The binder containing the fine particle polymer resin having a functional group that is non-reactive with such a fluororesin is coated with the surface of the active material like a binder having solubility in the above solvent. However, sufficient binding cannot be obtained. Therefore, in order to improve the binding property, increasing the amount of binding used reduces the amount of active material that can be applied to the electrode, that is, the amount of active material that can be accommodated in the battery, and the capacity of the battery. There was a problem.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-capacity lithium secondary battery excellent in load characteristics and output density characteristics.
[0007]
[Means for Solving the Problems]
The lithium secondary battery of the present invention that solves the above problems includes a positive electrode capable of releasing lithium ions, a negative electrode capable of inserting and extracting the lithium ions released from the positive electrode, and the lithium between the positive electrode and the negative electrode. In a lithium secondary battery comprising an electrolyte that moves ions, a powdered positive electrode active material, and an aqueous silane emulsion in which an aqueous silane polymer resin in the form of fine particles having an alkoxysilyl group is dispersed in an aqueous liquid, comprises at least one of the positive electrode which is formed from the material mixture formed by mixing, as well as powdered negative electrode active material and the aqueous silane-based negative electrode which emulsion and is formed from material mixture formed by mixing, the aqueous Silane-based emulsions contain a small amount of fluorine dispersion, SBR latex, and NBR latex together with the aqueous silane polymer resin. Characterized in that it also comprises one.
[0008]
In this aqueous silane emulsion, the aqueous silane polymer resin has an alkoxysilyl group as a functional group. The alkoxysilyl group of the aqueous silane-based polymer resin is hydrolyzed in the process of preparing the positive electrode mixture or the negative electrode mixture to form silanol groups. Such silanol groups cross-link each other in the process in which the positive electrode mixture or the negative electrode mixture is applied to the current collector and dried. This cross-linked silanol group is bonded to a hydroxyl group present on the surface of the active material contained in the mixture. Therefore, in the binding property between the active materials, excellent binding property can be obtained even if the content of the binder is small. If the content of the binder is reduced, the capacity of the battery can be increased.
[0009]
Further, since the particulate aqueous silane-based polymer resin exists in a state of being scattered in the aqueous silane-based emulsion, it does not cover the active material surface and does not hinder the movement of lithium ions. Therefore, load characteristics and output density characteristics of the lithium secondary battery are improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The aqueous silane polymer resin is preferably at least one polymer containing a crosslinkable alkoxysilane. Since the polymer containing a crosslinkable alkoxysilane has strong adhesiveness, the binding property between the active materials can be improved.
The aqueous liquid is preferably at least one of water, alcohol and glycol. These aqueous liquids can disperse the aqueous silane polymer resin with good dispersibility.
[0011]
In particular, the glycol is preferably at least one of propylene glycol and ethylene glycol. Since propylene glycol is excellent in volatility, it can be easily removed from the mixture by heating at a relatively low temperature when the electrode body is molded.
The aqueous silane polymer resin preferably has a particle size of 1 μm or less. Since such an aqueous silane polymer resin has a sufficiently small particle size, the dispersibility of the aqueous silane polymer resin in the aqueous silane emulsion is improved. As a result, the mobility of lithium ions is further improved.
[0012]
The aqueous silane emulsion preferably contains at least one of fluorine dispersion, SBR latex, and NBR latex together with the aqueous silane polymer resin. Such an additive can absorb the expansion and contraction of the active material, and can improve the flexibility of the sheet-like electrode.
At this time, the fluorine-based dispersion is preferably at least one of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. These substances can improve the chemical resistance and heat resistance of the electrode.
[0013]
On the other hand, it is preferable that a dispersion medium is added to at least one of the positive electrode mixture and the negative electrode mixture. With this dispersion medium, the positive electrode active material or the negative electrode active material is further dispersed in the mixture. At this time, in the positive electrode mixture, the positive electrode active material and the aqueous silane emulsion can be mixed in a dispersion medium. In the negative electrode mixture, the negative electrode active material and the aqueous silane emulsion can be mixed in a dispersion medium.
[0014]
At least one of the positive electrode mixture and the negative electrode mixture preferably contains at least one of a thickener, an antifoaming agent, a dispersant, a surface preparation agent, and a surfactant. With these additives, a uniform coated surface of the mixture can be obtained. As these additives, it is particularly preferable to use fluorine-based compounds and silicon-based compounds that are low in reactivity with active materials and aqueous silane-based emulsions and that are effective even with a small addition amount.
[0015]
The positive electrode mixture is preferably formed by mixing the aqueous silane-based emulsion in an amount of 0.5 to 5% by weight based on the entire mixture. Thus, by limiting the mixing amount, excellent binding properties and high battery capacity can be obtained. At this time, if the mixing amount of the aqueous silane-based emulsion is less than 0.5%, excellent binding properties cannot be easily obtained, and if it exceeds 5%, a high discharge capacity cannot be easily obtained.
[0016]
On the other hand, the negative electrode mixture is preferably formed by mixing the aqueous silane emulsion in an amount of 1 to 10% by weight with respect to the total mixture. By limiting the mixing amount in this way, excellent binding properties and high battery capacity can be obtained in the same manner as the positive electrode mixture.
It is preferable that the positive electrode active material is mixed with an aqueous silane-based emulsion together with a conductive material. With this conductive material, the efficiency of electron transfer of the positive electrode active material can be improved, and the discharge efficiency of the battery can be improved. As this conductive material, a graphite material or the like can be used. The silanol groups formed in the aqueous silane polymer resin in the aqueous silane emulsion are also bonded to the hydroxyl groups present on the surface of the conductive material. As a result, in the binding property between the active material and the conductive material, excellent binding property can be obtained even if the binder content is small.
[0017]
The negative electrode active material is preferably made of a carbon material. By using a negative electrode made of such a negative electrode active material, the life of the battery can be extended and the safety of the battery can be improved.
As the carbon material, a known powdery carbon material can be used, but it is preferable to use a material made of natural graphite or artificial graphite having high crystallinity. By using such a highly crystalline carbon material, it is possible to improve the transfer efficiency of lithium ions of the negative electrode. At this time, the particle shape of the carbon material is not particularly limited, and a carbon material having a spherical shape, a scale shape, a fiber shape, or the like can be used. Further, the particle size distribution of the carbon material is not particularly limited. As this carbon material, for example, mesophase micro beads (MCMB) which are spherical carbon particles having a high crystallinity with a graphite crystal structure can be used.
[0018]
By the way, in the lithium secondary battery of the present invention, the mixing method of the active material and the aqueous silane emulsion is not particularly limited, and ultrasonic dispersion, homogenizer, planetary mixer, ball mill, kneader, impeller mill and mortar Etc. can be used.
In the lithium secondary battery of the present invention, the method for forming the positive electrode and the negative electrode is not particularly limited, but at least one of the positive electrode mixture and the negative electrode mixture is a conductive current collector. It is preferable that the electrode body is formed by coating. With this current collector, electrical energy (current) generated in the active material can be efficiently flowed to the outside of the battery. Aluminum or the like can be used as a material for the current collector of the positive electrode. Copper or the like can be used as a material for the current collector of the negative electrode. Silanol groups formed in the aqueous silane polymer resin in the aqueous silane emulsion are also bonded to hydroxyl groups present on the surface of the current collector. As a result, in the binding property between the active material and the current collector, excellent binding property can be obtained even if the binder content is small.
[0019]
For example, when a mixture is applied to a plate-like current collector to form an electrode body, the electrode body can be formed as follows.
First, the mixture is applied to the current collector using an application method such as a blade coater, a roll coater, a knife coater, or a die coater. Subsequently, liquid components such as moisture in the mixture are removed using a thermostatic bath, a hot air dryer, a vacuum dryer, and the like, and the mixture is solidified. Although an electrode body can be obtained in this way, a predetermined electrode film thickness and mixture density can be accurately obtained by further press forming such as a roll press and a flat plate press.
[0020]
On the other hand, the electrolyte is preferably formed by dissolving a lithium salt in an organic solvent. By using such an electrolyte, the mobility of lithium ions between electrodes can be improved. Therefore, the discharge efficiency of the battery can be improved. At this time, a carbonate-based organic solvent such as ethylene carbonate can be used as the organic solvent. Further, the lithium salt, and the like can be used LiPF 6, LiBF 4, LiClO 4 and LiAsF 6.
[0021]
The lithium secondary battery of the present invention can have the same structural form as a battery such as a known coin-type battery, button-type battery, cylindrical battery, and prismatic battery.
[0022]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
( Reference example )
As schematically shown in FIG. 1, the lithium secondary battery of this reference example includes a positive electrode 1 capable of releasing lithium ions, a negative electrode 2 made of a carbon material capable of inserting and extracting lithium ions released from the positive electrode 1, A coin-type lithium ion secondary battery including the electrolytic solutions 3 and 3. In this battery, a positive electrode 1, a negative electrode 2, and a non-aqueous electrolyte 3 are sealed in a positive electrode case 4 and a negative electrode case 5 made of stainless steel via gaskets 6 and 6 made of polypropylene, respectively. A separator 7 made of a polyethylene film is interposed between the positive electrode 1 and the negative electrode 2.
[0023]
The positive electrode 1 has LiMn 2 O 4 as a positive electrode active material on the surface of a positive electrode current collector 1a made of aluminum. The positive electrode 1 was formed as follows.
First, a polymer (PC-100, manufactured by Toa Gosei Co., Ltd.) containing LiMn 2 O 4 powder, scaly graphite powder, and crosslinkable alkoxysilane at a ratio of 89 parts by weight, 10 parts by weight, and 1 part by weight, respectively. A fixed amount was prepared. The aqueous silane polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane emulsion. These LiMn 2 O 4 powder, scaly graphite powder and aqueous silane emulsion were mixed to obtain a paste-like positive electrode mixture.
[0024]
Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied positive electrode mixture was dried in a high-temperature bath at 80 ° C., and propylene glycol in the mixture was volatilized and removed to solidify it. Finally, the solidified positive electrode mixture was press-molded by a roll press so that the positive electrode mixture density was 2.7 g / cc to obtain the positive electrode 1.
[0025]
The negative electrode 2 has a carbon material as a negative electrode active material on the surface of a negative electrode current collector 2a made of copper. The negative electrode 2 was formed as follows.
First, a predetermined amount of a polymer containing MCMB powder and a crosslinkable alkoxysilane (PC-100, manufactured by Toagosei Co., Ltd.) was prepared at a ratio of 95 parts by weight and 5 parts by weight, respectively. The aqueous silane polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane emulsion. These MCMB powder and aqueous silane emulsion were mixed to obtain a paste-like negative electrode mixture.
[0026]
Next, this negative electrode mixture was applied to a copper foil using a blade coater. Subsequently, the applied negative electrode mixture was dried in a high-temperature bath at 80 ° C., and propylene glycol in the mixture was volatilized and removed to solidify it. Finally, this solidified negative electrode mixture was press-molded so that the negative electrode mixture density was 1.4 g / cc, and negative electrode 2 was obtained.
[0027]
Non-aqueous electrolyte 3 was prepared by mixing LiPF 6 as an electrolyte at 1 mol / liter in a solvent obtained by mixing ethylene carbonate, propylene carbonate, and triethyl phosphate at a ratio of 50% by volume, 25% by volume, and 25% by volume, respectively. It was prepared by dissolving at a concentration of.
Using the positive electrode 1, the negative electrode 2 and the non-aqueous electrolyte 3 obtained as described above, a lithium secondary battery of this reference example was produced as follows.
[0028]
First, the positive electrode 1 and the negative electrode 2 were welded to the positive electrode case 4 and the negative electrode case 5, respectively, and the separators 7 were sandwiched between these welded bodies and overlapped. Subsequently, the non-aqueous electrolytes 3 and 3 were poured into predetermined locations, and then sealed with gaskets 6 and 6 to complete the lithium secondary battery of this reference example .
( Example 1 )
The lithium secondary battery of the present example is the same battery as the lithium secondary battery of the reference example , except that a positive electrode formed as follows is used.
[0029]
First, 88 parts by weight, 10 parts by weight and 1 part by weight of LiMn 2 O 4 powder, scaly graphite powder, polymer containing crosslinkable alkoxysilane (PC-100, manufactured by Toagosei Co., Ltd.) and polytetrafluoroethylene, respectively. A predetermined amount was prepared at a ratio of 1 part by weight and 1 part by weight. The aqueous silane polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane emulsion. These LiMn 2 O 4 powder, scaly graphite powder, aqueous silane emulsion and polytetrafluoroethylene were mixed to obtain a paste-like positive electrode mixture.
[0030]
Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied positive electrode mixture was dried in a high-temperature bath at 80 ° C., and propylene glycol in the mixture was volatilized and removed to solidify it. Finally, the solidified positive electrode mixture was press-molded so that the positive electrode mixture density was 2.7 g / cc to obtain a positive electrode.
( Example 2 )
The lithium secondary battery of the present example is the same battery as the lithium secondary battery of the reference example , except that a positive electrode formed as follows is used.
[0031]
First, 88 parts by weight, 10 parts by weight, and 0.2 parts of LiMn 2 O 4 powder, scaly graphite powder, polymer containing crosslinkable alkoxysilane (PC-100, manufactured by Toa Gosei Co., Ltd.) and polytetrafluoroethylene, respectively. A predetermined amount was prepared at a ratio of 5 parts by weight and 1.5 parts by weight. The aqueous silane polymer resin was suspended in a predetermined amount of propylene glycol to obtain an aqueous silane emulsion. These LiMn 2 O 4 powder was obtained scaly graphite powder, are mixed with the aqueous silane emulsions and polytetrafluoroethylene paste-like positive electrode mixture.
[0032]
Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied positive electrode mixture was dried in a high-temperature bath at 80 ° C., and propylene glycol in the mixture was volatilized and removed to solidify it. Finally, the solidified positive electrode mixture was press-molded so that the positive electrode mixture density was 2.7 g / cc to obtain a positive electrode.
(Comparative Example 1)
The lithium secondary battery of this comparative example is the same battery as the lithium secondary battery of the reference example , except that a positive electrode molded as follows is used.
[0033]
First, a predetermined amount of LiMn 2 O 4 powder, scaly graphite powder and PVDF were prepared in a ratio of 87 parts by weight, 10 parts by weight and 3 parts by weight, respectively, and these were mixed well with a predetermined amount of NMP to obtain a paste-like positive electrode A mixture was obtained. Next, this positive electrode mixture was applied to an aluminum foil using a blade coater. Subsequently, the applied positive electrode mixture was left in a high-temperature bath at 80 ° C., and NMP in the mixture was volatilized and removed to solidify it. Finally, the solidified positive electrode mixture was press-molded so that the positive electrode mixture density was 2.7 g / cc to obtain a positive electrode.
[Evaluation of load characteristics]
About each lithium secondary battery of a reference example, Examples 1-2, and the comparative example 1, the load characteristic test was done as follows.
[0034]
Constant current of 1 mA / cm 2, were charged 4 hours at a constant voltage of 4.2 V, was discharged to a final voltage and 3.0V at a constant current of 0.25~4mA / cm 2. At this time, the discharge capacity with respect to a predetermined discharge current density was measured, and the discharge capacity ratio with respect to the predetermined discharge current density was determined with 1 being the discharge capacity when the discharge current density was 0.5 mA / cm 2 . FIG. 2 shows the relationship between the discharge current density and the discharge capacity ratio for each battery.
[0035]
As can be seen from FIG. 2, the discharge capacity ratio decreases as the discharge current density increases in all the batteries, but the discharge capacity ratio is lower in the batteries of the reference example and Examples 1 and 2 than in the battery of Comparative Example 1. The degree of is getting smaller.
[Evaluation of output density characteristics]
About each lithium secondary battery of the reference example, Examples 1-2, and the comparative example 1, the output density characteristic test was done as follows.
[0036]
Was charged at a constant current of 0.2 mA / cm 2, it was 30% of the charged amount relative to the maximum charge amount. Subsequently, discharging was performed with a constant current of 0.25 to 4 mA / cm 2 and a final voltage of 3.0V. At this time, the discharge output for a predetermined discharge time was measured, and the output density per 1 kg of the mixture was determined. FIG. 3 shows the relationship between the discharge time and the power density for each battery.
[0037]
As can be seen from FIG. 3, in the batteries of Reference Example and Examples 1-2 , the initial discharge output density is much higher than that of the battery of Comparative Example 1, and the discharge output density is comparative even when the discharge time has elapsed. It is higher than that of 1 battery.
[0038]
【effect】
The lithium secondary battery of the present invention is a high-capacity lithium secondary battery excellent in load characteristics and output density characteristics. If this lithium secondary battery is used in electronic devices such as notebook computers and small portable devices, the electronic devices can be operated with better performance and functionality. Or if it uses as a clean energy source of a car, it will become possible to drive a car with good performance.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a lithium secondary battery of a reference example .
FIG. 2 is a graph showing the relationship between the discharge current density and the discharge capacity ratio of each of the lithium secondary batteries of Reference Examples, Examples 1 and 2 and Comparative Example 1;
FIG. 3 is a graph showing the relationship between the discharge time and the output density of each battery for the lithium secondary batteries of Reference Example, Examples 1-2 and Comparative Example 1.
[Explanation of symbols]
1: Positive electrode 2: Negative electrode 3: Non-aqueous electrolyte 4: Positive electrode case 5: Negative electrode case 6: Gasket 7: Separator

Claims (14)

リチウムイオンを放出できる正極と、該正極から放出された該リチウムイオンを吸蔵および放出できる負極と、該正極と該負極との間で該リチウムイオンを移動させる電解質と、を備えるリチウム二次電池において、
粉末状の正極活物質と、アルコキシシリル基をもつ微粒子状の水性シラン系ポリマー樹脂が水性液中に分散してなる水性シラン系エマルジョンと、が混合されてなる正極用合剤より成形された該正極、並びに粉末状の負極活物質と、該水性シラン系エマルジョンと、が混合されてなる負極用合剤より成形された該負極の少なくとも一方を備え、該水性シラン系エマルジョンは、該水性シラン系ポリマー樹脂とともにフッ素系ディスパージョン、SBRラテックス及びNBRラテックスの少なくとも一種を含むことを特徴とするリチウム二次電池。
In a lithium secondary battery comprising: a positive electrode capable of releasing lithium ions; a negative electrode capable of inserting and extracting the lithium ions released from the positive electrode; and an electrolyte that moves the lithium ions between the positive electrode and the negative electrode. ,
Molded from a positive electrode mixture formed by mixing a powdery positive electrode active material and an aqueous silane emulsion in which a fine particle aqueous silane polymer resin having an alkoxysilyl group is dispersed in an aqueous liquid. A negative electrode formed by mixing a positive electrode and a powdered negative electrode active material and the aqueous silane emulsion; and the aqueous silane emulsion comprises the aqueous silane emulsion. A lithium secondary battery comprising at least one of fluorine dispersion, SBR latex, and NBR latex together with a polymer resin.
前記水性シラン系ポリマー樹脂は、架橋性アルコキシシランを含むポリマーの少なくとも一種である請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the aqueous silane-based polymer resin is at least one polymer containing a crosslinkable alkoxysilane. 前記水性液は、水、アルコール及びグリコールの少なくとも一種である請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the aqueous liquid is at least one of water, alcohol, and glycol. 前記グリコールは、プロピレングリコール及びエチレングリコールの少なくとも一種である請求項3に記載のリチウム二次電池。  The lithium secondary battery according to claim 3, wherein the glycol is at least one of propylene glycol and ethylene glycol. 前記シラン系ポリマー樹脂は1μm以下の粒径をもつ請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the silane polymer resin has a particle size of 1 μm or less. 前記フッ素系ディスパージョンは、テトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの少なくとも一種である請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the fluorine-based dispersion is at least one of tetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene, and tetrafluoroethylene-perfluoroalkyl vinyl ether. 前記正極用合剤は、前記正極活物質、前記水性シラン系エマルジョン及び分散媒が混合されてなり、前記負極用合剤は、前記負極活物質、前記水性シラン系エマルジョン及び分散媒が混合されてなる請求項1に記載のリチウム二次電池。  The positive electrode mixture is a mixture of the positive electrode active material, the aqueous silane-based emulsion, and a dispersion medium. The negative electrode mixture is a mixture of the negative electrode active material, the aqueous silane-based emulsion, and a dispersion medium. The lithium secondary battery according to claim 1. 前記正極用合剤及び前記負極用合剤の少なくとも一方は、増粘剤、消泡剤、分散剤、表面調製剤、界面活性剤の少なくとも一種を含む請求項1に記載のリチウム二次電池。  2. The lithium secondary battery according to claim 1, wherein at least one of the positive electrode mixture and the negative electrode mixture includes at least one of a thickener, an antifoaming agent, a dispersant, a surface preparation agent, and a surfactant. 前記正極用合剤は、前記水性シラン系エマルジョンが合剤全体に対して0.5〜5重量%混合されてなる請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the positive electrode mixture is a mixture of the aqueous silane-based emulsion in an amount of 0.5 to 5 wt% with respect to the total mixture. 前記負極用合剤は、前記水性シラン系エマルジョンが合剤全体に対して1〜10重量%混合されてなる請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the negative electrode mixture is a mixture of the aqueous silane-based emulsion in an amount of 1 to 10 wt% with respect to the total mixture. 前記正極活物質は、導電材とともに前記水性シラン系エマルジョンと混合される請求項1に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the positive electrode active material is mixed with the aqueous silane emulsion together with a conductive material. 前記負極活物質は炭素材料よりなる請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the negative electrode active material is made of a carbon material. 前記正極用合剤及び前記負極用合剤の少なくとも一方は導電性をもつ集電体に塗布されて電極体を成す請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein at least one of the positive electrode mixture and the negative electrode mixture is applied to a conductive current collector to form an electrode body. 前記電解質は有機溶媒にリチウム塩を溶解してなる請求項1に記載のリチウム二次電池。  The lithium secondary battery according to claim 1, wherein the electrolyte is obtained by dissolving a lithium salt in an organic solvent.
JP00669598A 1998-01-16 1998-01-16 Lithium secondary battery Expired - Fee Related JP4055024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00669598A JP4055024B2 (en) 1998-01-16 1998-01-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00669598A JP4055024B2 (en) 1998-01-16 1998-01-16 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11204098A JPH11204098A (en) 1999-07-30
JP4055024B2 true JP4055024B2 (en) 2008-03-05

Family

ID=11645486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00669598A Expired - Fee Related JP4055024B2 (en) 1998-01-16 1998-01-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4055024B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542184B1 (en) 2001-07-19 2006-01-10 삼성에스디아이 주식회사 An active material for a battery and a method of preparing the same
KR20090125268A (en) * 2007-03-27 2009-12-04 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for producing positive electrode material for secondary battery
KR101125610B1 (en) 2007-12-17 2012-03-27 주식회사 엘지화학 Negative electrode slurry and lithium secondary battery prepared therewith
CN102439769B (en) * 2009-04-03 2014-10-08 东洋油墨Sc控股株式会社 Binder composition for non-aqueous secondary battery electrode
JP5549739B2 (en) * 2010-10-07 2014-07-16 日本ゼオン株式会社 Secondary battery porous membrane slurry, secondary battery porous membrane, secondary battery electrode, secondary battery separator and secondary battery

Also Published As

Publication number Publication date
JPH11204098A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US10923704B2 (en) Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
JP2000348730A (en) Nonaqueous electrolyte secondary battery
JP5375975B2 (en) Battery electrode, battery including the battery electrode, and method for manufacturing the battery electrode
CN109755494B (en) Method for producing negative electrode, and lithium ion secondary battery
CN102148364A (en) Production method for electrode for battery, electrode produced by production method, and battery including electrode
KR20200030518A (en) Method for manufacturing battery
KR100600632B1 (en) Electrode for nonaqueous electrolyte battery
JP7356232B2 (en) Negative electrode for lithium ion batteries and lithium ion batteries
KR20220128292A (en) Electrode for secondary battery and secondary battery including same
KR101578223B1 (en) 2 2 electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4055024B2 (en) Lithium secondary battery
JP7267131B2 (en) Positive electrode active material slurry for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5578370B2 (en) Secondary battery electrode and manufacturing method thereof
JP4325002B2 (en) Lithium battery
US20210273290A1 (en) Method for producing a polymer composite material for an electrochemical cell by means of a swollen polymer
JPWO2019022063A1 (en) Electrode, storage element, and method for manufacturing electrode
JP2019212464A (en) Manufacturing method of lithium ion battery
KR20220132947A (en) Black phosphorus-carbon nanotube composite synthesized using surfactant and method of manufacturing the same and lithium secondary battery including the same
JP7130541B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP2014013727A (en) Lithium ion secondary battery
US20220271267A1 (en) Method for producing secondary battery electrodes
KR20150045833A (en) Method for fabricating positive electrode material absorbed with binder, positive electrode material absorbed with binder and positive electrode comprising the same
CN104396057A (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP7258064B2 (en) SECONDARY BATTERY ELECTRODE AND METHOD FOR MANUFACTURING SAME ELECTRODE
US20220294020A1 (en) Method for producing electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees