JP4053849B2 - Epoxy curing agent composition - Google Patents

Epoxy curing agent composition Download PDF

Info

Publication number
JP4053849B2
JP4053849B2 JP2002261359A JP2002261359A JP4053849B2 JP 4053849 B2 JP4053849 B2 JP 4053849B2 JP 2002261359 A JP2002261359 A JP 2002261359A JP 2002261359 A JP2002261359 A JP 2002261359A JP 4053849 B2 JP4053849 B2 JP 4053849B2
Authority
JP
Japan
Prior art keywords
curing agent
epoxy
agent composition
particles
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002261359A
Other languages
Japanese (ja)
Other versions
JP2004099690A (en
Inventor
俊之 中野
康寿 金指
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002261359A priority Critical patent/JP4053849B2/en
Publication of JP2004099690A publication Critical patent/JP2004099690A/en
Application granted granted Critical
Publication of JP4053849B2 publication Critical patent/JP4053849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧機器の絶縁構造用材料や航空宇宙機器の構造材料として好適なエポキシ化合物を硬化させるために用いられるエポキシ用硬化剤組成物に関するものである。
【0002】
【従来の技術】
電気機器や部品の絶縁材料あるいは構造材料として用いられている樹脂の中で、エポキシ樹脂は、他の熱硬化性あるいは熱可塑性樹脂に比べて優れた絶縁特性、機械的特性を有しており、各種電気絶縁材料として幅広く用いられている。特に、平均エポキシ当量350〜550のビスフェノールAジグリシジルエーテル(DGBA)型のエポキシ樹脂は、強靱で絶縁特性が優れていることから、大型の電気部品や構造物用の注型樹脂として長期の実績がある。
【0003】
しかし、これらの樹脂は室温で固形であるため、硬化剤や充填剤を配合するためには加熱混合する必要があり、混合温度におけるポットライフが短いため、作業性が悪く、注型システムの自動化が困難である。このため、この分野の樹脂には、平均エポキシ当量135〜250の液状エポキシ樹脂の適用が試みられている。
【0004】
このような液状エポキシ樹脂を用いる場合、(1)材料コストを下げる、(2)弾性率を上げて製品の剛性を増やす、(3)機械的強度を改善する、(4)線膨脹係数を下げて成形性を改善する等の目的のため、無機充填剤を充填することが一般的に行われている。
【0005】
【発明が解決しようとする課題】
ところで、エポキシ樹脂用硬化剤としては、可使時間が長くとれることや、硬化反応時の発熱が小さいといった理由から、酸無水物を用いる場合が多いが、一般に酸無水物は低粘度であるため、無機充填剤を一旦均一に分散させたとしても、比較的短時間で沈降してしまうという欠点がある。このため、一般的に無機充填剤の配合は、エポキシ樹脂側のみに行なうことが多い。
【0006】
しかし、無機充填剤をエポキシ樹脂側のみに配合すると、エポキシ樹脂側が高粘度になるため、作業性の面で好ましくなく、その結果、無機充填剤の配合割合を多くできないという問題点があった。さらに、主剤であるエポキシ樹脂側のみに無機充填剤を配合した系では、無機充填剤を含まない硬化剤との粘度差が大きく異なるため、ファイナルミキサーとしてスタティックミキサーを用いるタイプの樹脂自動混合注入装置においては、エポキシ樹脂と硬化剤とを十分に混合することができないという問題点があった。
【0007】
また、エポキシ樹脂中に配合した無機充填剤の沈降防止には、有機ベントナイトや高温火炎加水分解法で製造される球状の二酸化ケイ素の添加が有効であることが知られ、前記の球状の二酸化ケイ素としては、平均一次粒子径が7nmから数10nmのものが“AEROSIL”という商品名で市販されている。また、水、ジメチルスルフォキシド、ジメチルホルムアミドのように極性が強い液体中の沈降防止には、AEROSILと同じ気相法で作られた平均一次粒子径が約10nmの酸化アルミニウムと前記AEROSILとの1:5の混合物が有効とされ、“COK84”の商品名で市販されている。
【0008】
一方、エポキシ樹脂用硬化剤として用いられる酸無水物は、比較的極性の大きい液体であり、この酸無水物中の無機充填剤の沈降防止については報告例はなく、本発明者等の試験では、前記“COK84(商品名)”の添加も有効でないことが明らかになった。
【0009】
以上のように、エポキシ樹脂側に配合した無機充填剤の沈降を防止する技術としては、アエロジル等の無機微粒子の添加が有効であることは公知であるが、酸無水物中の無機充填剤の沈降防止に対する有効な技術は未だ見出されていない。
【0010】
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、酸無水物硬化剤中に配合した無機充填剤の沈降を防止することができるエポキシ用硬化剤組成物を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明者等は、酸無水物硬化剤中に配合した無機充填剤の沈降を防止することができる物質について鋭意検討を重ねた結果、本発明を完成するに至ったものである。
【0012】
(エポキシ用硬化剤組成物)
本発明に係るエポキシ用硬化剤組成物は、少なくとも1分子中に2つ以上のエポキシ基を有するエポキシ化合物を硬化させる酸無水物硬化剤と、主に無機充填剤よりなる第1の粒子と、球状の無機充填剤よりなる第2の粒子から構成されている。以下、エポキシ樹脂用硬化剤である酸無水物硬化剤、第1の粒子及び第2の粒子について詳述する。
【0013】
(エポキシ樹脂用硬化剤)
エポキシ樹脂用硬化剤としては、室温で液状の酸無水物であれば、その種類は限定されるものではなく、これらの酸無水物硬化剤は、単一または混合して用いても良い。このエポキシ樹脂用硬化剤としては、例えば、ポリカルボン酸無水物または無水ナジック酸を用いることが好ましい。特に、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸は硬化物の耐熱性、機械的特性が優れており、また、粘度が小さく、無機充填剤の分散性が優れている点から望ましい。
【0014】
(第1の粒子…無機充填剤)
第1の粒子である無機充填剤としては、石英、溶融シリカのような平均粒子径が10μm以上の注型樹脂用充填剤を、単独で、または2種類以上の混合物として用いることができる。例えば、平均粒子径が15μmを超えない破砕状のシリカを用いることが望ましい。前記シリカの平均粒子径が15μmを超えると、第2の粒子として微粒子球状アルミナを添加しても、有効な沈降防止効果が得られない。
【0015】
また、破砕状シリカと球状アモルファスシリカとの混合物を用いても良い。前記シリカを破砕する過程で生じる平均粒子径が50nmを超えない微粒子シリカと、微粒子球状アルミナの存在により効果的な沈降防止効果が得られ、かつ球状アモルファスシリカの存在により、樹脂組成物の粘度を低減することができ、製造性を向上させることができる。
【0016】
(第2の粒子…アルミナ等)
球状の無機充填剤よりなる第2の粒子としては、平均粒子径が約20nm未満の微粒子球状アルミナを用いることが望ましい。第2の粒子として微粒子球状アルミナを用いた場合の沈降防止の作用機作は、以下の通りであると考えられる。すなわち、本発明のエポキシ用硬化剤組成物では、第1の粒子である無機充填剤として用いる石英、溶融シリカの表面は50nm未満の無数の二酸化ケイ素粒子が付着している。酸無水物中における充填剤の機械的な混合過程で、前記第1の粒子の表面の二酸化ケイ素粒子が負に帯電し、正に帯電した前記第2の粒子であるアルミナとの相互作用で網目構造を形成し、チキソトロピー性が付与されるため、充填剤の沈降が極めて効果的に防止できると考えられる。
【0017】
また、第2の粒子として、トリメチルシリル基で表面処理した微粒子球状アルミナ、あるいはジメチルシリコーンオイルで表面処理した微粒子球状アルミナを用いてもよい。いずれの場合でも、無処理の微粒子球状アルミナよりもより少量の添加で、酸無水物中の充填剤の沈降を効果的に防止できることが分かった。
【0018】
また、第2の粒子として、微粒子球状アルミナとジメチルシリコーンオイルで表面処理した微粒子球状シリカを用いても良い。微粒子球状アルミナと微粒子球状シリカの混合物が酸無水物中の充填剤の沈降を防止する効果は、無処理の微粒子球状シリカを用いた場合は発揮されないが、表面がジメチルシリコーンオイルで処理された微粒子球状シリカを用いると効果的な沈降防止効果が得られることが分かった。
【0019】
なお、上記第2の粒子は、その平均粒子径が上記第1の粒子の平均粒子径の1/500以下であることが好ましい。その理由は、上記第2の粒子の平均粒子径が上記第1の粒子の平均粒子径の1/500より大きいと、負に帯電した第1の粒子と、正に帯電した第2の粒子との相互作用に基づく網目構造の形成が十分に行われないため、充填剤の沈降を防止するために必要なチキソトロピー性を発現させることができないからである。
【0020】
(エポキシ化合物)
本発明のエポキシ用硬化剤組成物を適用するのに適したエポキシ樹脂は、炭素原子2個と酸素原子1個からなる三員環を1分子中に2個以上持った硬化しうる化合物であり、かつ室温で液状のエポキシ樹脂であれば適宜使用可能であり、その種類は特に限定されるものではなく、前記液状エポキシ樹脂は単独または2種以上の混合物として使用される。
【0021】
エポキシ化合物としては、例えば、ビスフェノールA型、ビスフェノールF型、又は脂環式ジグリシジル型等の室温で液状のエポキシ化合物が、電気的特性、耐熱性、機械的特性に優れ、かつ無機充填剤の分散性が優れている点や注型作業性の面から望ましい。なお、これらのエポキシ当量は170〜500である。これらのエポキシ樹脂は、それぞれ単独で、もしくは2種以上併せて用いられる。
【0022】
(効果)
本発明に係るエポキシ用硬化剤組成物を用いた場合には、酸無水物硬化剤に配合した無機充填剤の沈降を完全に防止することができる。その結果、予めエポキシ側のみだけではなく、酸無水物側にも無機充填剤を混合分散させておくことができるので、作業性を阻害することなく、エポキシ/酸無水物樹脂組成物中の無機充填剤を極めて高充填した、機械的、電気的特性に優れたエポキシ樹脂硬化物を得ることができる。
【0023】
さらに、無機充填剤をエポキシ側と酸無水物硬化剤側にそれぞれ配合することにより、エポキシ側と硬化剤側の粘度を任意に調整することができるので、自動樹脂注入装置に適した、製造性が良好な樹脂組成物を得ることが可能になり、その工業的価値は極めて大きい。
【0024】
【実施例】
以下、本発明に係るエポキシ用硬化剤組成物を使用して調製した実施例及び従来技術による比較例を用いて充填剤の沈降の程度を調べ、これらの実施例及び比較例で得られた充填剤沈降量の対照評価により、本発明の作用効果について詳細に説明する。
【0025】
なお、以下に示した実施例及び比較例について行った沈降防止実験は、ガラス製スクリュー管(直径40mm、高さ120mm)に所定の方法で調製したエポキシ用硬化剤組成物200gを入れ、乾燥炉を用いて容器を80℃で3H加熱した。次に、加熱後の容器底部に沈んだ充填剤とエポキシ用硬化剤組成物とを分離し、充填剤量を測定した。沈降した充填剤量の測定結果は、実施例を表1、比較例を表2に記載した。
【0026】
(1)試料の調製
(実施例1)
メチルヘキサヒドロ無水フタル酸(商品名:MH700,新日本理化社製)1000gに対して、平均粒子径が14μmの破砕状アモルファスシリカ(商品名:RD8,龍森社製)2000gと、沈降防止剤として平均粒子径が約13nmの高純度微粒子アルミナ(商品名:アルミニウムC,日本アエロジル社製)4gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0027】
(実施例2)
実施例1と同様の方法で、沈降防止剤のみ種類を変えてエポキシ用硬化剤組成物を得た。沈降防止剤としてトリメチルシリル基で表面処理した平均粒子径が約13nmの高純度微粒子アルミナ3gを用いた。
【0028】
(実施例3)
実施例1と同様の方法で、沈降防止剤のみ種類を変えてエポキシ用硬化剤組成物を得た。沈降防止剤としてジメチルシリコーンオイルで表面処理した平均粒子径が約13nmの高純度微粒子アルミナ3gを用いた。
【0029】
(実施例4)
実施例1と同様の方法で、沈降防止剤のみ種類を変えてエポキシ用硬化剤組成物を得た。沈降防止剤としてジメチルシリコーンオイルで表面処理した平均粒子径が約12nmの高純度微粒子シリカ(商品名:AEROSIL−RY200S,日本アエロジル社製)2gと平均粒子径が約13nmの高純度微粒子アルミナ(商品名:アルミニウムC,日本アエロジル社製)2gを用いた。
【0030】
(実施例5)
メチルテトラヒドロ無水フタル酸(商品名:QH200,日本化薬社製)1000gに対して、平均粒子径が12μmの結晶性シリカ(商品名:クリスタライトA−1,龍森社製)2000gと、沈降防止剤として平均粒子径が約13nmの高純度微粒子アルミナ(商品名:アルミニウムC,日本アエロジル社製)4gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0031】
(実施例6)
メチルヘキサヒドロ無水フタル酸(商品名:MH700,新日本理化社製)1000gに対して、平均粒子径が14μmの球状アモルファスシリカ(商品名:FB48,昭和電工社製)2000gと、沈降防止剤として平均粒子径が約13nmの高純度微粒子アルミナ(商品名:アルミニウムC,日本アエロジル社製)4gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0032】
(実施例7)
メチルヘキサヒドロ無水フタル酸(商品名:MH700,新日本理化社製)1000gに対して、平均粒子径が14μmの破砕状アモルファスシリカ(商品名:RD8,龍森社製)1000gと平均粒子径が14μmの球状アモルファスシリカ(商品名:FB48,昭和電工社製)1000g、これに沈降防止剤として平均粒子径が約13nmの高純度微粒子アルミナ(商品名:アルミニウムC,日本アエロジル社製)4gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0033】
(比較例1)
本比較例は、上記実施例1〜4に対応するものであって、実施例1と同様の方法で、沈降防止剤のみ種類を変えてエポキシ用硬化剤組成物を得た。沈降防止剤としては、平均粒子径が約12nmの高純度微粒子シリカ(商品名:AEROSIL200,日本アエロジル社製)4gを用いた。
【0034】
(比較例2)
本比較例は、上記実施例1〜4に対応するものであって、実施例1と同様の方法で、沈降防止剤のみ種類を変えてエポキシ用硬化剤組成物を得た。沈降防止剤としては、平均粒子径が約12nmの高純度微粒子シリカ(商品名:AEROSIL−COK84,日本アエロジル社製)4gを用いた。なお、AEROSIL−COK84は、二酸化ケイ素とアルミナの5:1(重量比)の混合物である。
【0035】
(比較例3)
本比較例は、上記実施例1〜4に対応するものであって、実施例1と同様の方法で、沈降防止剤のみ種類を変えてエポキシ用硬化剤組成物を得た。沈降防止剤としては、平均粒子径が約12nmの高純度微粒子シリカ(商品名:AEROSIL−RY200S,日本アエロジル社製)4gを用いた。
【0036】
(比較例4)
本比較例は、上記実施例1に対応するものであって、沈降防止剤を添加していない例である。すなわち、メチルヘキサヒドロ無水フタル酸(商品名:MH700,新日本理化社製)1000gに対して、平均粒子径が14μmの破砕状アモルファスシリカ(商品名:RD8,龍森社製)2000gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0037】
(比較例5)
本比較例は、上記実施例6に対応するものであって、沈降防止剤を添加していない例である。すなわち、メチルヘキサヒドロ無水フタル酸(商品名:MH700,新日本理化社製)1000gに対して、平均粒子径が14μmの球状アモルファスシリカ(商品名:FB48,昭和電工社製)2000gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0038】
(比較例6)
本比較例は、上記実施例5に対応するものであって、沈降防止剤を添加していない例である。すなわち、メチルテトラヒドロ無水フタル酸(商品名:QH200,日本化薬社製)1000gに対して、平均粒子径が12μmの結晶性シリカ(商品名:クリスタライトA−1,龍森社製)2000gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0039】
(比較例7)
本比較例は、上記実施例7に対応するものであって、沈降防止剤を添加していない例である。すなわち、メチルヘキサヒドロ無水フタル酸(商品名:MH700,新日本理化社製)1000gに対して、平均粒子径が14μmの破砕状アモルファスシリカ(商品名:RD8,龍森社製)1000gと平均粒子径が14μmの球状アモルファスシリカ(商品名:FB48,昭和電工社製)1000gを添加し、室温にて万能混合機(ダルトン社製)を用いて真空で2H攪拌し、エポキシ用硬化剤組成物を得た。
【0040】
(2)比較結果
沈降した充填剤量の測定結果は、表1及び表2に示す通りである。
【表1】

Figure 0004053849
【表2】
Figure 0004053849
【0041】
すなわち、表1に示したように、アルミナの球状超微粒子を沈降防止剤として用いた実施例1〜7においては、沈降した充填剤はほとんど認められず、エポキシ樹脂用硬化剤である酸無水物中の充填剤の沈降をほぼ完全に防止することができることがわかった。
また、前記アルミナの球状超微粒子は、非常に少量の添加量(全充填剤に対して、重量比で約0.2%)で充填剤の沈降を完全に防止することができ、硬化物の強度、破壊靭性等の機械的特性やエポキシ樹脂との反応性には全く影響しないことも確認された。
【0042】
これに対して、比較例1〜3は、実施例1〜4の沈降防止剤を変更したものであるが、表2に示したように、比較例1〜3では、沈降した充填剤は11〜21gと多かった。
また、比較例4は、実施例1と同様の酸無水物と無機充填剤に沈降防止剤を用いていない例であり、比較例5は、実施例6と同様の酸無水物と無機充填剤に沈降防止剤を用いていない例である。さらに、比較例6は、実施例5と同様の酸無水物と無機充填剤に沈降防止剤を用いていない例であり、比較例7は、実施例7と同様の酸無水物と無機充填剤に沈降防止剤を用いていない例である。表2に示したように、これら比較例4〜7においても、沈降した充填剤は20.5〜25gと多かった。
【0043】
表2に示した比較例のように、従来技術では酸無水物硬化剤中の充填剤の沈降を防止することは困難である。これに対して、アルミナの球状超微粒子を沈降防止剤として用いた各実施例では、エポキシ樹脂用硬化剤である酸無水物中の充填剤の沈降をほぼ完全に防止することができることが示された。また、前記アルミナの球状超微粒子は、非常に少量の添加量(全充填剤に対して重量比で約0.2%)で充填剤の沈降を完全に防止でき、硬化物の強度、破壊靭性等の機械的特性やエポキシ樹脂との反応性には全く影響しない。
【0044】
【発明の効果】
以上説明したように、本発明によれば、酸無水物硬化剤中に配合した無機充填剤の沈降を防止することができるエポキシ用硬化剤組成物を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy curing agent composition used for curing an epoxy compound suitable as an insulating structural material for high-voltage equipment or a structural material for aerospace equipment.
[0002]
[Prior art]
Among the resins used as insulating materials or structural materials for electrical equipment and parts, epoxy resins have superior insulating and mechanical properties compared to other thermosetting or thermoplastic resins. Widely used as various electrical insulating materials. In particular, bisphenol A diglycidyl ether (DGBA) type epoxy resins having an average epoxy equivalent of 350 to 550 are tough and have excellent insulation properties, so they have a long-term track record as casting resins for large electrical components and structures. There is.
[0003]
However, since these resins are solid at room temperature, it is necessary to heat and mix in order to mix curing agents and fillers, and because the pot life at the mixing temperature is short, workability is poor and the casting system is automated. Is difficult. For this reason, application of a liquid epoxy resin having an average epoxy equivalent of 135 to 250 has been attempted for resins in this field.
[0004]
When using such a liquid epoxy resin, (1) lower the material cost, (2) increase the modulus of elasticity to increase the rigidity of the product, (3) improve the mechanical strength, (4) lower the linear expansion coefficient. In general, for the purpose of improving moldability, filling with an inorganic filler is generally performed.
[0005]
[Problems to be solved by the invention]
By the way, as an epoxy resin curing agent, an acid anhydride is often used because it can be used for a long time and heat generation during a curing reaction is small, but generally an acid anhydride has a low viscosity. However, even if the inorganic filler is once uniformly dispersed, there is a drawback that it settles in a relatively short time. For this reason, in general, the inorganic filler is often blended only on the epoxy resin side.
[0006]
However, when the inorganic filler is blended only on the epoxy resin side, the epoxy resin side has a high viscosity, which is not preferable in terms of workability. As a result, there is a problem that the blending ratio of the inorganic filler cannot be increased. Furthermore, in a system where an inorganic filler is blended only on the epoxy resin side, which is the main agent, the difference in viscosity from a curing agent that does not contain an inorganic filler is greatly different, so a resin automatic mixing and injection device of the type that uses a static mixer as the final mixer However, there is a problem in that the epoxy resin and the curing agent cannot be sufficiently mixed.
[0007]
In addition, it is known that addition of spherical silicon dioxide produced by organic bentonite or high-temperature flame hydrolysis method is effective in preventing sedimentation of the inorganic filler compounded in the epoxy resin. Are commercially available under the trade name “AEROSIL” having an average primary particle diameter of 7 nm to several tens of nm. In addition, for prevention of sedimentation in highly polar liquids such as water, dimethyl sulfoxide, and dimethylformamide, an aluminum oxide having an average primary particle diameter of about 10 nm made by the same gas phase method as AEROSIL and the above-mentioned AEROSIL A 1: 5 mixture is valid and is marketed under the trade name “COK84”.
[0008]
On the other hand, acid anhydrides used as curing agents for epoxy resins are relatively polar liquids, and there have been no reports on the prevention of sedimentation of inorganic fillers in these acid anhydrides. It was revealed that the addition of “COK84 (trade name)” is not effective.
[0009]
As described above, as a technique for preventing sedimentation of the inorganic filler compounded on the epoxy resin side, it is known that addition of inorganic fine particles such as aerosil is effective, but the inorganic filler in the acid anhydride is not effective. An effective technique for preventing sedimentation has not yet been found.
[0010]
The present invention has been proposed in order to solve the problems of the prior art as described above, and an object thereof is an epoxy which can prevent sedimentation of an inorganic filler compounded in an acid anhydride curing agent. It is providing the hardening | curing agent composition.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted extensive studies on substances capable of preventing the precipitation of the inorganic filler blended in the acid anhydride curing agent, and as a result, completed the present invention. It is a thing.
[0012]
(Curing agent composition for epoxy)
The curing agent composition for epoxy according to the present invention includes an acid anhydride curing agent that cures an epoxy compound having two or more epoxy groups in at least one molecule, and first particles mainly composed of an inorganic filler, It is comprised from the 2nd particle | grains which consist of a spherical inorganic filler. Hereinafter, the acid anhydride curing agent, the first particles, and the second particles, which are epoxy resin curing agents, will be described in detail.
[0013]
(Curing agent for epoxy resin)
The epoxy resin curing agent is not limited as long as it is an acid anhydride that is liquid at room temperature, and these acid anhydride curing agents may be used alone or in combination. As the curing agent for epoxy resin, for example, polycarboxylic anhydride or nadic anhydride is preferably used. In particular, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyl nadic anhydride have excellent heat resistance and mechanical properties of the cured product, and also have low viscosity and excellent dispersibility of inorganic fillers. Desirable in terms.
[0014]
(First particle: inorganic filler)
As the inorganic filler which is the first particle, a filler for casting resin having an average particle diameter of 10 μm or more such as quartz or fused silica can be used alone or as a mixture of two or more kinds. For example, it is desirable to use crushed silica whose average particle diameter does not exceed 15 μm. When the average particle diameter of the silica exceeds 15 μm, an effective anti-settling effect cannot be obtained even when fine particle spherical alumina is added as the second particles.
[0015]
Further, a mixture of crushed silica and spherical amorphous silica may be used. An effective anti-settling effect is obtained by the presence of fine particle silica having an average particle diameter not exceeding 50 nm generated in the process of crushing the silica and fine particle spherical alumina, and the presence of the spherical amorphous silica increases the viscosity of the resin composition. This can be reduced and the productivity can be improved.
[0016]
(Second particle: alumina, etc.)
As the second particles made of a spherical inorganic filler, it is desirable to use fine particle spherical alumina having an average particle diameter of less than about 20 nm. The mechanism of action for preventing sedimentation when fine spherical alumina is used as the second particles is considered as follows. That is, in the epoxy curing agent composition of the present invention, countless silicon dioxide particles of less than 50 nm adhere to the surfaces of quartz and fused silica used as the inorganic filler as the first particles. During the mechanical mixing process of the filler in the acid anhydride, the silicon dioxide particles on the surface of the first particles are negatively charged and interact with the positively charged alumina as the second particles. Since the structure is formed and thixotropy is imparted, it is considered that sedimentation of the filler can be extremely effectively prevented.
[0017]
Further, fine particle spherical alumina surface-treated with a trimethylsilyl group or fine particle spherical alumina surface-treated with dimethyl silicone oil may be used as the second particle. In any case, it was found that the addition of a smaller amount than that of the untreated fine particle spherical alumina can effectively prevent the settling of the filler in the acid anhydride.
[0018]
Moreover, fine particle spherical silica surface-treated with fine particle spherical alumina and dimethyl silicone oil may be used as the second particle. The effect of the mixture of fine particle spherical alumina and fine particle spherical silica preventing sedimentation of the filler in the acid anhydride is not exhibited when untreated fine particle spherical silica is used, but the surface is treated with dimethyl silicone oil. It has been found that when spherical silica is used, an effective anti-settling effect can be obtained.
[0019]
The second particles preferably have an average particle size of 1/500 or less of the average particle size of the first particles. The reason is that when the average particle size of the second particles is larger than 1/500 of the average particle size of the first particles, the first particles that are negatively charged and the second particles that are positively charged This is because the formation of a network structure based on the interaction of the above is not sufficiently performed, and thus the thixotropy necessary for preventing sedimentation of the filler cannot be expressed.
[0020]
(Epoxy compound)
An epoxy resin suitable for applying the epoxy curing agent composition of the present invention is a curable compound having two or more three-membered rings each consisting of two carbon atoms and one oxygen atom in one molecule. Any epoxy resin that is liquid at room temperature can be used as appropriate. The type of the epoxy resin is not particularly limited, and the liquid epoxy resin is used alone or as a mixture of two or more.
[0021]
As the epoxy compound, for example, an epoxy compound that is liquid at room temperature, such as bisphenol A type, bisphenol F type, or alicyclic diglycidyl type, has excellent electrical characteristics, heat resistance, mechanical characteristics, and dispersion of inorganic fillers. This is desirable from the viewpoint of superiority and casting workability. In addition, these epoxy equivalents are 170-500. These epoxy resins may be used alone or in combination of two or more.
[0022]
(effect)
When the epoxy curing agent composition according to the present invention is used, the settling of the inorganic filler blended in the acid anhydride curing agent can be completely prevented. As a result, since the inorganic filler can be mixed and dispersed not only on the epoxy side but also on the acid anhydride side in advance, the inorganic content in the epoxy / acid anhydride resin composition can be reduced without impairing workability. An epoxy resin cured product excellent in mechanical and electrical characteristics and filled with a very high filler can be obtained.
[0023]
In addition, by blending inorganic fillers on the epoxy side and acid anhydride curing agent side, respectively, the viscosity on the epoxy side and curing agent side can be adjusted arbitrarily, so that it is suitable for automatic resin injection equipment, manufacturability It is possible to obtain a good resin composition, and its industrial value is extremely large.
[0024]
【Example】
Hereinafter, the degree of sedimentation of the filler was investigated using the examples prepared using the epoxy curing agent composition according to the present invention and the comparative examples according to the prior art, and the filling obtained in these examples and comparative examples. The effect of the present invention will be described in detail by means of a comparative evaluation of the amount of agent settling.
[0025]
In addition, the sedimentation prevention experiment performed about the Example and comparative example which were shown below put 200g of epoxy hardening | curing agent compositions prepared by the predetermined method in the glass screw tube (diameter 40mm, height 120mm), and a drying furnace The container was heated at 80 ° C. for 3 H. Next, the filler and the epoxy curing agent composition that had sunk at the bottom of the container after heating were separated, and the amount of filler was measured. The measurement results of the amount of settled filler are shown in Table 1 for the examples and Table 2 for the comparative examples.
[0026]
(1) Preparation of sample (Example 1)
2000 g of crushed amorphous silica (trade name: RD8, manufactured by Tatsumori Co., Ltd.) having an average particle diameter of 14 μm and 1000 g of methylhexahydrophthalic anhydride (trade name: MH700, manufactured by Shin Nippon Chemical Co., Ltd.) 4 g of high-purity fine particle alumina (trade name: Aluminum C, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of about 13 nm was added, and the mixture was stirred at room temperature for 2 hours under vacuum using a universal mixer (Dalton Co.). A curing agent composition was obtained.
[0027]
(Example 2)
In the same manner as in Example 1, only the type of anti-settling agent was changed to obtain an epoxy curing agent composition. As an anti-settling agent, 3 g of high-purity fine particle alumina having an average particle diameter of about 13 nm and surface-treated with a trimethylsilyl group was used.
[0028]
(Example 3)
In the same manner as in Example 1, only the type of anti-settling agent was changed to obtain an epoxy curing agent composition. As an anti-settling agent, 3 g of high-purity fine particle alumina having an average particle diameter of about 13 nm and surface-treated with dimethyl silicone oil was used.
[0029]
Example 4
In the same manner as in Example 1, only the type of anti-settling agent was changed to obtain an epoxy curing agent composition. High purity fine particle silica (trade name: AEROSIL-RY200S, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of about 12 nm and surface treatment with dimethyl silicone oil as an anti-settling agent and high purity fine particle alumina having a mean particle size of about 13 nm (product) Name: Aluminum C, manufactured by Nippon Aerosil Co., Ltd.) 2 g was used.
[0030]
(Example 5)
With respect to 1000 g of methyltetrahydrophthalic anhydride (trade name: QH200, manufactured by Nippon Kayaku Co., Ltd.), 2000 g of crystalline silica (trade name: Crystallite A-1, manufactured by Tatsumori Co., Ltd.) having an average particle size of 12 μm is precipitated. 4 g of high-purity fine particle alumina (trade name: Aluminum C, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of about 13 nm is added as an inhibitor, and the mixture is stirred for 2 hours in a vacuum at room temperature using a universal mixer (Dalton Co.). An epoxy curing agent composition was obtained.
[0031]
(Example 6)
As an anti-settling agent, 2000 g of spherical amorphous silica (trade name: FB48, manufactured by Showa Denko KK) having an average particle diameter of 14 μm is used for 1000 g of methylhexahydrophthalic anhydride (trade name: MH700, manufactured by Shin Nippon Rika Co., Ltd.). 4 g of high-purity fine particle alumina (trade name: Aluminum C, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of about 13 nm was added, and the mixture was stirred at room temperature for 2 hours in a vacuum using a universal mixer (Dalton Co.) for epoxy. A curing agent composition was obtained.
[0032]
(Example 7)
1000 g of crushed amorphous silica (trade name: RD8, manufactured by Tatsumori Co., Ltd.) with an average particle size of 14 μm and an average particle size of 1000 g of methylhexahydrophthalic anhydride (trade name: MH700, manufactured by Shin Nippon Rika Co., Ltd.) 1000 g of 14 μm spherical amorphous silica (trade name: FB48, manufactured by Showa Denko KK) and 4 g of high-purity fine particle alumina (trade name: Aluminum C, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of about 13 nm as an anti-settling agent are added thereto. Then, the mixture was stirred for 2 hours in vacuum using a universal mixer (Dalton) at room temperature to obtain an epoxy curing agent composition.
[0033]
(Comparative Example 1)
This comparative example corresponds to the above-described Examples 1 to 4, and in the same manner as in Example 1, only the type of anti-settling agent was changed to obtain an epoxy curing agent composition. As an anti-settling agent, 4 g of high-purity fine particle silica (trade name: AEROSIL200, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of about 12 nm was used.
[0034]
(Comparative Example 2)
This comparative example corresponds to the above-described Examples 1 to 4, and in the same manner as in Example 1, only the type of anti-settling agent was changed to obtain an epoxy curing agent composition. As an anti-settling agent, 4 g of high-purity fine particle silica (trade name: AEROSIL-COK84, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of about 12 nm was used. AEROSIL-COK84 is a 5: 1 (weight ratio) mixture of silicon dioxide and alumina.
[0035]
(Comparative Example 3)
This comparative example corresponds to the above-described Examples 1 to 4, and in the same manner as in Example 1, only the type of anti-settling agent was changed to obtain an epoxy curing agent composition. As an anti-settling agent, 4 g of high-purity fine particle silica (trade name: AEROSIL-RY200S, manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of about 12 nm was used.
[0036]
(Comparative Example 4)
This comparative example corresponds to Example 1 described above, and is an example in which no settling inhibitor is added. That is, 2000 g of crushed amorphous silica (trade name: RD8, manufactured by Tatsumori Co., Ltd.) having an average particle size of 14 μm was added to 1000 g of methylhexahydrophthalic anhydride (trade name: MH700, manufactured by Shin Nippon Rika Co., Ltd.). Then, the mixture was stirred for 2H in vacuum using a universal mixer (Dalton) at room temperature to obtain a curing agent composition for epoxy.
[0037]
(Comparative Example 5)
This comparative example corresponds to Example 6 above, and is an example in which no settling inhibitor is added. That is, 2000 g of spherical amorphous silica (trade name: FB48, manufactured by Showa Denko KK) having an average particle diameter of 14 μm is added to 1000 g of methylhexahydrophthalic anhydride (trade name: MH700, manufactured by Shin Nippon Rika Co., Ltd.) The mixture was stirred for 2H in vacuum using a universal mixer (Dalton) at room temperature to obtain an epoxy curing agent composition.
[0038]
(Comparative Example 6)
This comparative example corresponds to Example 5 described above, and is an example in which no settling inhibitor is added. That is, with respect to 1000 g of methyltetrahydrophthalic anhydride (trade name: QH200, manufactured by Nippon Kayaku Co., Ltd.), 2000 g of crystalline silica (trade name: Crystallite A-1, manufactured by Tatsumori Co., Ltd.) having an average particle size of 12 μm was used. The mixture was added and stirred at room temperature for 2H in a vacuum using a universal mixer (Dalton) to obtain a curing agent composition for epoxy.
[0039]
(Comparative Example 7)
This comparative example corresponds to Example 7 described above, and is an example in which no settling inhibitor is added. That is, 1000 g of crushed amorphous silica (trade name: RD8, manufactured by Tatsumori Co., Ltd.) with an average particle diameter of 14 μm and average particles for 1000 g of methylhexahydrophthalic anhydride (trade name: MH700, manufactured by Shin Nippon Rika Co., Ltd.) 1000 g of spherical amorphous silica having a diameter of 14 μm (trade name: FB48, manufactured by Showa Denko KK) was added, and the mixture was stirred at room temperature for 2 hours in a vacuum using a universal mixer (manufactured by Dalton) to obtain an epoxy curing agent composition. Obtained.
[0040]
(2) Comparison results The results of measurement of the amount of settled filler are as shown in Tables 1 and 2.
[Table 1]
Figure 0004053849
[Table 2]
Figure 0004053849
[0041]
That is, as shown in Table 1, in Examples 1 to 7 in which spherical spherical ultrafine particles of alumina were used as an anti-settling agent, almost no settling filler was observed, and an acid anhydride which is a curing agent for epoxy resins. It has been found that sedimentation of the filler inside can be almost completely prevented.
In addition, the spherical ultrafine particles of alumina can completely prevent sedimentation of the filler with a very small amount of addition (about 0.2% by weight with respect to the total filler). It was also confirmed that the mechanical properties such as strength and fracture toughness and the reactivity with epoxy resin were not affected at all.
[0042]
In contrast, Comparative Examples 1 to 3 were obtained by changing the anti-settling agents of Examples 1 to 4, but as shown in Table 2, in Comparative Examples 1 to 3, the sedimented filler was 11 It was as much as ~ 21g.
Comparative Example 4 is an example in which no anti-settling agent is used for the acid anhydride and inorganic filler similar to Example 1, and Comparative Example 5 is the same acid anhydride and inorganic filler as Example 6. In this example, no anti-settling agent is used. Further, Comparative Example 6 is an example in which no anti-settling agent is used for the acid anhydride and inorganic filler similar to Example 5, and Comparative Example 7 is the same acid anhydride and inorganic filler as Example 7. In this example, no anti-settling agent is used. As shown in Table 2, also in these Comparative Examples 4 to 7, the amount of the settled filler was 20.5 to 25 g.
[0043]
As in the comparative example shown in Table 2, it is difficult to prevent sedimentation of the filler in the acid anhydride curing agent by the conventional technique. On the other hand, in each Example using spherical ultrafine particles of alumina as an anti-settling agent, it was shown that the settling of the filler in the acid anhydride which is a curing agent for epoxy resin can be almost completely prevented. It was. In addition, the spherical ultrafine particles of alumina can completely prevent sedimentation of the filler with a very small addition amount (about 0.2% by weight with respect to the total filler), and the strength and fracture toughness of the cured product. The mechanical properties such as the above and the reactivity with the epoxy resin are not affected at all.
[0044]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an epoxy curing agent composition capable of preventing sedimentation of the inorganic filler blended in the acid anhydride curing agent.

Claims (7)

エポキシ化合物を硬化させる酸無水物硬化剤と、平均粒子径が10μm以上15μm以下の破砕状のシリカよりなる第1の粒子と、球状の無機充填剤よりなる第2の粒子からなるエポキシ用硬化剤組成物であって、
前記第2の粒子が、その平均粒子径が前記第1の粒子の平均粒子径の1/500以下である球状の無機充填剤よりなることを特徴とするエポキシ用硬化剤組成物。
Curing agent for epoxy comprising an acid anhydride curing agent for curing an epoxy compound, first particles made of crushed silica having an average particle size of 10 μm or more and 15 μm or less, and second particles made of a spherical inorganic filler A composition comprising:
The epoxy curing agent composition, wherein the second particle is composed of a spherical inorganic filler having an average particle diameter of 1/500 or less of the average particle diameter of the first particle.
前記第2の粒子が、微粒子球状アルミナであることを特徴とする請求項1記載のエポキシ用硬化剤組成物。  The epoxy curing agent composition according to claim 1, wherein the second particles are fine-particle spherical alumina. 前記第2の粒子が、トリメチルシリル基で表面処理した微粒子球状アルミナであることを特徴とする請求項1記載のエポキシ用硬化剤組成物。  The epoxy curing agent composition according to claim 1, wherein the second particles are fine-particle spherical alumina surface-treated with a trimethylsilyl group. 前記第2の粒子が、ジメチルシリコーンオイルで表面処理した微粒子球状アルミナであることを特徴とする請求項1記載のエポキシ用硬化剤組成物。  The epoxy curing agent composition according to claim 1, wherein the second particles are fine-particle spherical alumina surface-treated with dimethyl silicone oil. 前記第2の粒子が、微粒子球状アルミナとジメチルシリコーンオイルで表面処理した微粒子球状シリカの混合物であることを特徴とする請求項1記載のエポキシ用硬化剤組成物。  2. The epoxy curing agent composition according to claim 1, wherein the second particles are a mixture of fine particle spherical alumina and fine particle spherical silica surface-treated with dimethyl silicone oil. 前記酸無水物硬化剤が、ポリカルボン酸無水物または無水ナジック酸であることを特徴とする請求項1乃至請求項5のいずれか一に記載のエポキシ用硬化剤組成物。The epoxy acid curing agent composition according to any one of claims 1 to 5 , wherein the acid anhydride curing agent is a polycarboxylic acid anhydride or nadic anhydride. 前記エポキシ化合物が、ビスフェノールA型、又はビスフェノールF型、又は脂環式ジグリシジル型のエポキシ化合物であることを特徴とする請求項1乃至請求項6のいずれか一に記載のエポキシ用硬化剤組成物。The epoxy curing agent composition according to any one of claims 1 to 6 , wherein the epoxy compound is a bisphenol A-type, bisphenol F-type, or alicyclic diglycidyl-type epoxy compound. .
JP2002261359A 2002-09-06 2002-09-06 Epoxy curing agent composition Expired - Fee Related JP4053849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261359A JP4053849B2 (en) 2002-09-06 2002-09-06 Epoxy curing agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261359A JP4053849B2 (en) 2002-09-06 2002-09-06 Epoxy curing agent composition

Publications (2)

Publication Number Publication Date
JP2004099690A JP2004099690A (en) 2004-04-02
JP4053849B2 true JP4053849B2 (en) 2008-02-27

Family

ID=32261758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261359A Expired - Fee Related JP4053849B2 (en) 2002-09-06 2002-09-06 Epoxy curing agent composition

Country Status (1)

Country Link
JP (1) JP4053849B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217143B2 (en) * 2006-10-10 2013-06-19 信越化学工業株式会社 Thixotropic sealing material and lead wire exposure prevention method
JP5129612B2 (en) * 2008-02-29 2013-01-30 京セラケミカル株式会社 Casting epoxy resin composition and high thermal conductive coil
JP5703489B2 (en) * 2009-10-07 2015-04-22 日立化成株式会社 Manufacturing method and adjustment method of liquid resin composition for sealing, and semiconductor device and semiconductor element sealing method using the same
JP2014129466A (en) * 2012-12-28 2014-07-10 Hitachi Industrial Equipment Systems Co Ltd Insulation resin material for high voltage equipment, and high voltage equipment using the same
CN104448717B (en) * 2014-11-28 2016-11-30 桂林电器科学研究院有限公司 A kind of low viscosity heat conduction epoxy encapsulating compound and preparation method thereof
CN106978103A (en) 2017-04-07 2017-07-25 德山化工(浙江)有限公司 Silicone oil processing pyrogenic silica, its preparation method and application

Also Published As

Publication number Publication date
JP2004099690A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP6437966B2 (en) Reinforced curable composition
CN102725802B (en) Electrical insulation system
JP6030126B2 (en) Insulation compound
JP6683485B2 (en) Boron nitride nanotube material and thermosetting material
JP4053849B2 (en) Epoxy curing agent composition
KR20180006553A (en) Manufacturing method of silica particle surface modified haloysite nanotube and epoxy resin composition including the same
WO2013156337A1 (en) Reinforced epoxy resin adhesive
JP6303627B2 (en) Epoxy resin composition and cured product
JP2010084019A (en) Resin composition and cured product
JP2623823B2 (en) Epoxy resin composition
JPH0797434A (en) Epoxy resin composition
JP3385784B2 (en) Inorganic filler anti-settling type casting resin composition and premix composition
WO2001010958A1 (en) Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JP2014040538A (en) Epoxy resin composition of double-liquid type
JPH01198658A (en) Flame-retardant epoxy resin composition
JPS58167657A (en) Epoxy resin powder composition
JP5415380B2 (en) Curing accelerator for epoxy resin and epoxy resin composition containing the same
JPS63317545A (en) Epoxy polymer composition
JPS61127722A (en) Epoxy resin composition
Chang et al. Effects of nano-silica addition and reactive diluent addition on dynamic mechanical properties of epoxy nanocomposites
JP2005048100A (en) Epoxy resin composition for casting and electrical/electronic component apparatus
JPH04225052A (en) Curable composition and its cured body
WO2021193376A1 (en) Epoxy resin composition for casting and electrical/electronic component
JPS63156817A (en) Epoxy resin composition
JPH0711105A (en) Epoxy resin composition with excellent thermal impact property

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees