JP4053451B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP4053451B2
JP4053451B2 JP2003088638A JP2003088638A JP4053451B2 JP 4053451 B2 JP4053451 B2 JP 4053451B2 JP 2003088638 A JP2003088638 A JP 2003088638A JP 2003088638 A JP2003088638 A JP 2003088638A JP 4053451 B2 JP4053451 B2 JP 4053451B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
pipe
mixing valve
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003088638A
Other languages
Japanese (ja)
Other versions
JP2004293971A (en
Inventor
誠 本間
成樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2003088638A priority Critical patent/JP4053451B2/en
Publication of JP2004293971A publication Critical patent/JP2004293971A/en
Application granted granted Critical
Publication of JP4053451B2 publication Critical patent/JP4053451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は貯湯タンクの中間部から取り出した湯水を用いて給湯する貯湯式給湯装置に関するものである。
【0002】
【従来の技術】
従来よりこの種のものにおいては、本願出願人により開発中のもので図11に示すように貯湯タンク101内に貯湯された高温水を取り出して暖房や風呂の追焚きの熱源として用い、熱交換によって温度低下した中温水が貯湯タンク101内に戻されると共に、貯湯タンク101の中間部から中間出湯管102を介してこの中温水を取り出して給湯に用いるものがあった。
【0003】
そして、この中温水は中間混合弁103によって貯湯タンク上部の出湯管104からの高温水と給湯設定温度以上の温度に混合され、給湯混合弁105によって給水バイパス管106からの給水と給湯設定温度に混合されて給湯されるものがあった。
【0004】
また、別に本願出願人が提案するものでは、図12に示すように中温水を中間混合弁103によって給水バイパス管106からの給水と給湯設定温度以下の温度に混合し、給湯混合弁105によって出湯管104からの湯水と給湯設定温度に混合されて給湯されるものがあった。
【0005】
なお、このような従来の貯湯式給湯装置にかかる公知の刊行物を本願出願人は発見することができないが、貯湯タンク内に貯湯された高温水を熱源として暖房を行うものとして例えば特許文献1が挙げられる。
【0006】
【特許文献1】
特許2663637号
【0007】
【発明が解決しようとする課題】
これら従来のものでは、貯湯タンク101の外周に複数設けられた貯湯温度センサのうちの1つ(107)によって中温水の温度を検出し、これを用いて中間混合弁103の開度の制御を行っていたが、貯湯温度センサ107の取付位置と中間出湯管102の取付位置の高さのズレから、検出する中温水の温度と実際の中温水の温度が一致しない状況が発生し、中間混合弁103からの出湯温度が目標とする温度から離れ、最終的な給湯温度がオーバーシュートまたはアンダーシュートしてしまう。
【0008】
特に、図11に示したもののように、中間混合弁103で給湯設定温度より高い温度に混合する場合、検出する中温水の温度が実際の中温水の温度よりも高い温度であると中間混合弁103から給湯設定温度以下の湯水が出湯され、給湯混合弁105では給水バイパス管106からの水が混合されるため最終的な給湯温度が必ずアンダーシュートしてしまい、また、図12で示したもののように、中間混合弁103で給湯設定温度より低い温度に混合する場合、検出する中温水の温度が実際の中温水の温度よりも低い温度であると中間混合弁から給湯設定温度以上の湯水が出湯され、給湯混合弁105では出湯管104からの高温水が混合されるため最終的な給湯温度が必ずオーバーシュートしてしまうという課題があった。
【0009】
【課題を解決する為の手段】
そこで、本発明では上記課題を解決するため、請求項1では、湯水を貯湯する貯湯タンクと、この貯湯タンク外周の上下に複数設けられた貯湯温度センサと、前記貯湯タンク内の湯水を加熱する加熱手段と、前記貯湯タンク上部に接続された出湯管と、前記貯湯タンク下部に接続された給水管と、この給水管から分岐された給水バイパス管と、前記貯湯タンク中間部に接続された中間出湯管と、前記出湯管途中に設けられた出湯管を流れる湯水に前記中間出湯管からの湯水を混合する電動ミキシング弁より構成された中間混合弁と、この中間混合弁からの湯水と前記給水バイパス管からの湯水とを混合する給湯混合弁と、給湯設定温度を設定する給湯温度設定手段と、前記中間混合弁で給湯設定温度より所定温度高い温度に混合し、この混合された湯水を前記給湯混合弁で給湯設定温度に混合して給湯するようにした制御手段とを備えたものにおいて、前記制御手段は、前記中間混合弁の開度を前記出湯管から供給される湯水の温度と前記中間出湯管より低い位置にある前記貯湯温度センサで検出する温度とに基づいて制御するようにした。
【0010】
これにより、中間出湯管が接続されている部位付近の貯湯温水が給湯によって押し出されて貯湯タンク下部の低温水と入れ替わって温度低下したとしても、中間出湯管が接続されている部位よりも低い位置に設けられている貯湯温度センサで温度検出しているため、実際に中間出湯管で出湯される湯水の温度よりも低い温度を検出することとなる。そのため中間混合弁では出湯管側の高温水が多く混合され中間混合弁からは必ず給湯設定温度より高い温度の湯水が出湯され、給湯混合弁にて給水バイパス管からの水が混合されて給湯設定温度の湯水が給湯されるので最終的な給湯温度がオーバーシュートしてしまうことがなくなる。
【0011】
また、請求項2では、湯水を貯湯する貯湯タンクと、この貯湯タンク外周の上下に複数設けられた貯湯温度センサと、前記貯湯タンク内の湯水を加熱する加熱手段と、前記貯湯タンク上部に接続された出湯管と、前記貯湯タンク下部に接続された給水管と、この給水管から分岐された給水バイパス管と、前記貯湯タンク中間部に接続された中間出湯管と、前記給水バイパス管途中に設けられた給水バイパス管を流れる湯水に前記中間出湯管からの湯水を混合する中間混合弁と、この中間混合弁からの湯水と前記出湯管からの湯水とを混合する給湯混合弁と、給湯設定温度を設定する給湯温度設定手段と、前記中間混合弁で給湯設定温度より所定温度低い温度に混合し、この混合された湯水を前記給湯混合弁で給湯設定温度に混合して給湯するようにした制御手段とを備えたものにおいて、前記制御手段は、前記中間混合弁の開度を前記出湯管から供給される湯水の温度と前記中間出湯管より高い位置にある前記貯湯温度センサで検出する温度とに基づいて制御するようにしたものである。
【0012】
これにより、中間出湯管が接続されている部位付近の貯湯温水が給湯によって押し出されて貯湯タンク下部の低温水と入れ替わって温度低下したとしても、中間出湯管が接続されている部位よりも高い位置に設けられている貯湯温度センサで温度検出しているため、実際に中間出湯管で出湯される湯水の温度よりも高い温度を検出することとなる。そのため中間混合弁では給水バイパス管側の水が多く混合され中間混合弁からは必ず給湯設定温度より低い温度の湯水が出湯され、給湯混合弁にて出湯管からの高温水が混合されて給湯設定温度の湯水が給湯されるので最終的な給湯温度がアンダーシュートしてしまうことがなくなる。
【0013】
【発明の実施の形態】
次に、本発明の一実施形態を図1〜6に基づいて説明する。なお、図中の貯湯タンク内にハッチングした斜線は低温水、二重斜線は中温水、三重斜線は高温水を示し、矢印は湯水の流れ方向を示すものである。
【0014】
この貯湯式給湯装置は、時間帯別契約電力の電力単価が安価な深夜時間帯に湯水を沸き上げて貯湯し、この貯湯した湯水を給湯に用いるもので、1は湯水を貯湯する貯湯タンク2を備えた貯湯タンクユニット、3は貯湯タンク内の湯水を加熱する加熱手段としてのヒートポンプユニット、4は台所や洗面所等に設けられた給湯栓、5はこの給湯栓4の近傍に設けられた給湯リモコン、6は貯湯タンク1内の高温水を熱源とする床暖房パネル等の暖房端末である。
【0015】
前記貯湯タンクユニット1の貯湯タンク2は、上端に出湯管7と、下端に給水管8とが接続され、さらに、下部にヒーポン循環回路を構成するヒーポン往き管9と、上部にヒーポン循環回路を構成するヒーポン戻り管10とが接続され、前記ヒートポンプユニット3によってヒーポン往き管9から取り出した貯湯タンク2内の湯水を沸き上げてヒーポン戻り管10から貯湯タンク2内に戻して貯湯され、給水管8からの給水により貯湯タンク2内の湯水が押し上げられて貯湯タンク2内上部の高温水が出湯管7から押し出されて給湯されるものである。
【0016】
前記ヒートポンプユニット3は、圧縮機11と凝縮器としての冷媒−水熱交換器12と電子膨張弁13と強制空冷式の蒸発器14で構成されたヒートポンプ回路15と、貯湯タンク2内の湯水を前記ヒーポン往き管9およびヒーポン戻り管10を介して冷媒−水熱交換器12に循環させるヒーポン循環ポンプ16と、それらの駆動を制御するヒーポン制御部17とを備えており、ヒートポンプ回路15内には冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。なお、冷媒に二酸化炭素を用いているので、低温水を電熱ヒータなしで約90℃の高温まで沸き上げることが可能なものである。
【0017】
ここで、前記冷媒−水熱交換器12は冷媒と被加熱水たる貯湯タンク2内の湯水とが対向して流れる対向流方式を採用しており、超臨界ヒートポンプサイクルでは熱交換時において冷媒は超臨界状態のまま凝縮されるため効率良く高温まで被加熱水を加熱することができ、被加熱水の冷媒−水熱交換器12入口温度と冷媒の出口温度との温度差が一定になるように前記電子膨張弁13または圧縮機11を制御することで、被加熱水の冷媒−水熱交換器12の入口温度が5〜20℃程度の低い温度であるとCOP(エネルギー消費効率)がとても良い状態で被加熱水を加熱することが可能なものである。
【0018】
18は前記暖房端末6の湯水を加熱するための熱交換器で、その一次側には貯湯タンク2上部に接続された高温水往き管19と貯湯タンク2下部に接続された中温水戻り管20とが接続されて熱交循環回路21を構成し、中温水戻り管20途中に設けられた熱交循環ポンプ22の作動により貯湯タンク2から取り出した高温水を熱交換器18に循環させ、熱交換により温度低下した中温水を再び貯湯タンク2内に戻すものである。
【0019】
前記熱交換器18の二次側には、暖房端末6の循環水を循環可能に暖房往き管23と暖房戻り管24より構成される暖房循環回路25が接続され、暖房戻り管24途中に設けられた暖房循環ポンプ26の作動により暖房端末6の循環水が熱交換器18に循環されて、一次側の高温水により加熱されて暖房が行われるものである。
【0020】
次に、27は貯湯タンク2の前記中温水戻り管20より高く前記出湯管7より低い中間位置に接続された中間出湯管で、前記熱交換器18で二次側と熱交換して温度低下した中温水などの貯湯タンク2の中間位置に貯められている湯水を貯湯タンク2から出湯するものである。
【0021】
28は、前記出湯管7途中で前記中間出湯管27の下流に設けられた電動ミキシング弁より構成された中間混合弁、29はこの中間混合弁28下流に設けた中間混合温度センサで、貯湯タンク2中間位置付近の中温水と貯湯タンク2上端に接続された出湯管7からの高温水とを給湯リモコン5でユーザーが設定した給湯設定温度より所定温度高い温度になるように混合比率が制御されるものである。
【0022】
次に、30は中間混合弁28からの湯水と給水管8から分岐された給水バイパス管31からの低温水を混合する電動ミキシング弁より構成された給湯混合弁であり、その下流の給湯管32に設けた給湯温度センサ33で検出した湯温が給湯リモコン5でユーザーが設定した給湯設定温度になるように混合比率を制御するものである。
【0023】
次に、34は貯湯タンク2の上下方向に複数個配置された貯湯温度センサで、この実施形態では5つの貯湯温度センサが配置され上から34a、34b、34c、34d、34eと呼び、この貯湯温度センサ34が検出する温度情報によって、貯湯タンク2内にどれだけの熱量が残っているかを検知し、そして貯湯タンク2内の上下方向の温度分布を検知するものである。
【0024】
前記給湯リモコン5には、給湯設定温度を設定する給湯温度設定スイッチ35が設けられ、給湯温度設定手段を構成しているものである。
【0025】
36は貯湯タンクユニット1内の各センサの入力を受け各アクチュエータの駆動を制御するマイコンを有した給湯制御部である。この給湯制御部35に前記給湯リモコン5が無線または有線により接続されユーザーが任意の給湯設定温度およびふろ設定温度を設定できるようにしているものである。
【0026】
前記給湯制御部36は、中間出湯管27の直ぐ下方の高さに設けられている貯湯温度センサ34dの検出する温度と出湯管7の下方の高さに設けられている貯湯温度センサ34aの検出する温度とに基づいて給湯設定温度より所定温度高い温度に混合するよう中間混合弁28の開度をフィードフォワード制御すると同時に、中間混合温度センサ29で検出する温度が給湯設定温度より所定温度高い温度になるよう中間混合弁28の開度をフィードバック制御するようにしているものであると共に、中間混合温度センサ29の検出する温度と給水管8途中に設けられた給水温度センサ37の検出する温度とに基づいて給湯設定温度に混合するよう給湯混合弁30の開度をフィードフォワード制御すると同時に、給湯温度センサ33の検出する温度が給湯設定温度になるように給湯混合弁30の開度をフィードバック制御するようにしているものである。
【0027】
次に、この一実施形態の作動を説明する。
まず、図2に示す沸き上げ運転について説明すると、深夜電力時間帯になって貯湯温度センサ34が貯湯タンク2内に翌日に必要な熱量が残っていないことを検出すると、給湯制御部36はヒーポン制御部17に対して沸き上げ開始指令を発する。指令を受けたヒーポン制御部17は圧縮機11を起動した後にヒーポン循環ポンプ16を駆動開始し、貯湯タンク2下部に接続されたヒーポン往き管9から取り出した5〜20℃程度の低温水を冷媒−水熱交換器12で70〜90℃程度の高温に加熱し、貯湯タンク2上部に接続されたヒーポン戻り管10から貯湯タンク2内に戻し、貯湯タンク2の上部から順次積層して高温水を貯湯していく。貯湯温度センサ34が必要な熱量が貯湯されたことを検出すると、給湯制御部36はヒーポン制御部17に対して沸き上げ停止指令を発し、ヒーポン制御部17は圧縮機11を停止すると共にヒーポン循環ポンプ16も停止して沸き上げ動作を終了するものである。
【0028】
次に、図3に示す給湯運転について説明すると、給湯栓4を開くと、給水管8からの給水が貯湯タンク2内に流れ込む。そして中間出湯管27を介して中間混合弁28へ高温水が押し出される。なお、貯湯タンク2内には上部に高温水、下部に低温水が貯められているが、その温度差により比重差が発生し、温度境界層を形成して比重の軽い高温水が上部に、比重の重い低温水が下部に位置するので、互いに混じり合うことはないものである。
【0029】
ここで、給湯制御部36は中間出湯管27からの湯水と出湯管7からの湯水を混合して中間混合弁28にて給湯リモコン5で設定された給湯設定温度より所定温度高い温度となるように中間混合弁28を適当な比率に調整する。なお、ここでは、中間出湯管27から流入する湯が高温で給湯設定温度より高いため、中間混合弁28の出湯管7側が閉じられることとなる。
【0030】
そして、中間混合弁28から流出した湯は給湯混合弁30へ流入し、給水バイパス管31からの低温水と混合され、給湯制御部36が給湯混合弁30の混合比率を調整し給湯設定温度の湯が給湯栓4から給湯される。そして、給湯栓4の閉止によって給湯が終了するものである。
【0031】
このとき、前記中間混合弁28は給湯設定温度よりも所定温度高い温度の湯を供給するようにしているので、中間出湯管27が接続されている部位付近の温度が給湯設定温度よりも低い場合は、給湯制御部36により中間混合弁28の混合比率が調整されて出湯管7からの高温水を用いて給湯設定温度よりも所定温度高い温度の湯を供給するようにし、貯湯タンク2の中間位置からの出湯を優先し、貯湯タンク2の上部に貯められている高温水の使用を最小限に留め、熱源となる高温水をより多く確保することが可能となる。
【0032】
次に、図4に示す暖房運転について説明すると、暖房運転指示が入力されると給湯制御部36は熱交循環ポンプ22および暖房循環ポンプ26を駆動し、高温水往き管19から取り出した高温水を熱交換器18に流入させ、二次側の循環水と熱交換させ暖房運転を行う。そして、熱交換により温度低下した中温水が中温水戻り管20を介して貯湯タンク2下部に戻り、高温水と入れ替わる形で高温水と中温水の境界面を押し上げるようにして中温水が貯湯されるものである。なお、貯湯タンク2内には上部に高温水、中間部に中温水、下部に低温水が貯められているが、その温度差が20℃程度あれば比重差が発生し、温度境界層を形成して比重の軽い高温水が上部に、中間の中間水が中間部に、比重の重い低温水が下部に位置するので、互いに混じり合うことはないものである。
【0033】
そして、二次側では、熱交換器18にて加熱された循環水が暖房端末6へ戻って暖房を行う。そして、暖房停止の指示が入力されると給湯制御部36は熱交循環ポンプ22および暖房循環ポンプ26の駆動を停止し、暖房運転を終了するものである。
【0034】
このように、暖房運転を行うと熱交換によって温度低下した中温水が多量に貯湯タンク2内に貯められることとなる。この中温水は暖房の熱源として用いることができないと共に、ヒートポンプ回路15で沸き上げるにも効率が悪い。そこで、この中温水を優先的に給湯に用いることが求められる。
【0035】
そこで、貯湯タンク2内に中温水が貯められた後の給湯運転について説明する。図5に示すように、給湯栓4の開栓により、給水管8からの給水が貯湯タンク2内に流れ込むと同時に、中間出湯管27から中温水が押し出されて中間混合弁28へ流入する。ここで中間出湯管27から押し出される中温水の温度が給湯設定温度よりも高い場合は、中間混合弁28は出湯管7側が閉じられて中温水がそのまま給湯混合弁30へ供給され、この給湯混合弁30で給水バイパス管31からの給水と混合されて給湯設定温度の湯水が給湯される。
【0036】
ここで、中間出湯管27から押し出される中温水の温度が給湯設定温度よりも低い場合は、中間混合弁28の混合比率が調整されて貯湯タンク2上端部の出湯管7からの高温水と混合されて給湯設定温度より所定温度高い温度の湯が給湯混合弁30に供給され、給水バイパス管31からの低温水と混合され、給湯制御部36が給湯混合弁30の混合比率を調整し給湯設定温度の湯が給湯栓4から給湯される。そして、給湯栓4の閉止によって給湯が終了するものである。
【0037】
このようにして、高温水と比べて容量当たりの保有熱量が少ない中温水を高温水よりも優先的に給湯に用いることができるので、ヒートポンプ回路で効率の良い沸き上げを行うことができCOP(エネルギー消費効率)を向上することができる。
【0038】
そして、前記中間混合弁28での混合動作は、中間出湯管27の直ぐ下方の高さ位置に設けられている貯湯温度センサ34dの検出する温度と出湯管7の下方の高さ位置に設けられている貯湯温度センサ34aの検出する温度とに基づいて給湯制御部36が給湯設定温度より所定温度高い温度になるようにフィードフォワード制御されるので、図6に示すように貯湯温度センサ34dが検出する温度と実際に中間出湯管27から押し出される中温水の温度とが一致しない場合であっても、中間混合弁28では出湯管7側の高温水が多く混合され中間混合弁28からは必ず給湯設定温度より高い温度の湯水が出湯され、給湯混合弁30にて給水バイパス管31からの水が混合されて給湯設定温度の湯水が給湯されるので最終的な給湯温度がオーバーシュートしてしまうことがなくなる。
【0039】
そのため、中間出湯管27から押し出される湯水の温度が給湯に伴って高温水から中温水(低温水)、中温水から低温水へと変化する過渡期にあっても安定した湯温の給湯を行うことができるものである。
【0040】
次に、本発明の他の一実施形態について図7〜10に基づいて説明する。なお、先の一実施形態と同じ構成については同一の符号を付してその説明を省略する。
【0041】
この一実施形態においては、中間混合弁28が給水バイパス管31途中に設けられ、中間出湯管27からの湯水と給水バイパス管31からの給水とを給湯設定温度より所定温度低い温度になるように混合比率が制御されるものである。
【0042】
前記給湯制御部36は、中間出湯管27の直ぐ上方の高さ位置に設けられている貯湯温度センサ34cの検出する温度と給水管8の給水温度センサ37の検出する温度とに基づいて給湯設定温度より所定温度低い温度に混合するよう中間混合弁28の開度をフィードフォワード制御すると同時に、中間混合温度センサ29で検出する温度が給湯設定温度より所定温度低い温度になるよう中間混合弁28の開度をフィードバック制御するようにしているものであると共に、中間混合温度センサ29の検出する温度と出湯管7の下方の高さ位置に設けられている貯湯温度センサ34aの検出する温度とに基づいて給湯設定温度に混合するよう給湯混合弁30の開度をフィードフォワード制御すると同時に、給湯温度センサ33の検出する温度が給湯設定温度になるように給湯混合弁30の開度をフィードバック制御するようにしているものである。
【0043】
次に、図8に示す給湯運転について説明すると、給湯栓4を開くと、給水管8からの給水が貯湯タンク2内に流れ込む。そして中間出湯管27を介して中間混合弁28へ高温水が押し出される。なお、貯湯タンク2内には上部に高温水、下部に低温水が貯められているが、その温度差により比重差が発生し、温度境界層を形成して比重の軽い高温水が上部に、比重の重い低温水が下部に位置するので、互いに混じり合うことはないものである。
【0044】
ここで、給湯制御部36は中間出湯管27からの湯水と給水バイパス管31からの給水を混合して中間混合弁28にて給湯リモコン5で設定された給湯設定温度より所定温度低い温度となるように中間混合弁28を適当な比率に調整する。
【0045】
そして、中間混合弁28から流出した湯は給湯混合弁30へ流入し、出湯管7からの湯水と混合され、給湯制御部36が給湯混合弁30の混合比率を調整し給湯設定温度の湯が給湯栓4から給湯される。そして、給湯栓4の閉止によって給湯が終了するものである。
【0046】
このとき、前記中間混合弁28は給湯設定温度よりも所定温度低い温度の湯を供給するようにしているので、中間出湯管27が接続されている部位付近の温度が給湯設定温度よりも高い場合は、給湯制御部36により中間混合弁28の混合比率が調整されて給水バイパス管31からの給水を用いて給湯設定温度よりも所定温度低い温度の湯を供給するようにし、貯湯タンク2の中間位置からの出湯を優先し、貯湯タンク2の上部に貯められている高温水の使用を最小限に留め、熱源となる高温水をより多く確保することが可能となる。
【0047】
そして、給湯を多く行い中間出湯管27から押し出される湯水が低温水となった場合は、図9に示すように、中間混合弁28では給水バイパス管31側が閉じられて、給湯混合弁30にて中間出湯管27から押し出される低温水と出湯管7からの高温水が混合されて給湯設定温度の湯水が給湯されることとなるものである。
【0048】
そして、貯湯タンク2内に中温水が貯められた後の給湯運転について説明する。図10に示すように、給湯栓4の開栓により、給水管8からの給水が貯湯タンク2内に流れ込むと同時に、中間出湯管27から中温水が押し出されて中間混合弁28へ流入する。ここで中間出湯管27から押し出される中温水の温度が給湯設定温度よりも高い場合は、中間混合弁28にて給水バイパス管31からの給水が混合されて給湯設定温度より所定温度低い温度に調整されて給湯混合弁30へ供給され、この給湯混合弁30で出湯管7からの高温水と混合されて給湯設定温度の湯水が給湯される。
【0049】
また、中間出湯管27から押し出される中温水の温度が給湯設定温度よりも低い場合は、中間混合弁28では給水バイパス管31側の弁が閉じられ、給湯混合弁30で出湯管7からの高温水と混合されて給湯設定温度の湯が給湯栓4から給湯される。そして、給湯栓4の閉止によって給湯が終了するものである。
【0050】
このようにして、高温水と比べて容量当たりの保有熱量が少ない中温水を高温水よりも優先的に給湯に用いることができるので、ヒートポンプ回路で効率の良い沸き上げを行うことができCOP(エネルギー消費効率)を向上することができる。
【0051】
ところで、中間混合弁28での混合動作は、中間出湯管27の直ぐ上方の高さ位置に設けられている貯湯温度センサ34cの検出する温度と給水バイパス管31からの給水の温度とに基づいて給湯制御部36が給湯設定温度より所定温度低い温度になるようにフィードフォワード制御されるので、貯湯温度センサ34cが検出する温度と実際に中間出湯管27から押し出される中温水の温度とが一致しない場合であっても、中間混合弁28では給水バイパス管31側の給水が多く混合され中間混合弁28からは必ず給湯設定温度より低い温度の湯水が出湯され、給湯混合弁30にて出湯管7からの高温水が混合されて給湯設定温度の湯水が給湯されるので最終的な給湯温度がアンダーシュートしてしまうことがなくなる。
【0052】
そのため、中間出湯管27から押し出される湯水の温度が給湯に伴って高温水から中温水(低温水)、中温水から低温水へと変化する過渡期にあっても安定した湯温の給湯を行うことができるものである。
【0053】
なお、これらの一実施形態では、熱交換器18と熱交循環ポンプ22と暖房循環ポンプ26とを貯湯タンクユニット1内に設けているが、貯湯タンクユニット1とは別体のユニット体に設けるようにしても良く、本発明の要旨を変更しない範囲での実施形態の変更をすることを妨げるものではない。
【0054】
また、これらの一実施形態では、熱交換器19の二次側に暖房回路を設けているが、これに限られずフロの循環回路を設けても良く、要は貯湯タンク16内の高温水の熱を熱交換器18で熱交換して利用する熱機器であれば何でも良いものである。また、暖房端末6としては床暖房パネルや温水式温風暖房器や温水式パネルコンベクタ、温水式パネルラジエータ等を用いることができる。
【0055】
さらに、貯湯タンク2内の湯水を加熱する手段としてヒートポンプ回路15を備えたヒートポンプユニット3を例示しているが、これに限られず、貯湯タンク2内に直接配置した電熱ヒータや、貯湯タンク2内の湯水を循環させて電熱ヒータで加熱するようにしても良いものである。
【0056】
【発明の効果】
以上のように、本発明の請求項1によれば、中間混合弁からは必ず給湯設定温度より高い温度の湯水が出湯され、給湯混合弁にて給水バイパス管からの水が混合されて給湯設定温度の湯水が給湯されるので最終的な給湯温度がオーバーシュートあるいはアンダーシュートしてしまうことがなくなるという優れた効果を有するものである。
【0057】
また、請求項2によれば、中間混合弁からは必ず給湯設定温度より低い温度の湯水が出湯され、給湯混合弁にて出湯管からの高温水が混合されて給湯設定温度の湯水が給湯されるので最終的な給湯温度がアンダーシュートしてしまうことがなくなるという優れた効果を有するものである。
【図面の簡単な説明】
【図1】本発明の一実施形態の概略構成図。
【図2】同一実施形態の沸き上げ運転の作動を説明する図。
【図3】同一実施形態の給湯運転の作動を説明する図。
【図4】同一実施形態の暖房運転の作動を説明する図。
【図5】同一実施形態の貯湯タンク内に中温水が存在する場合の給湯運転の作動を説明する図。
【図6】同一実施形態の貯湯タンク内に中温水が存在する場合の給湯運転の作動を説明する図。
【図7】本発明の他の一実施形態の概略構成図。
【図8】同一実施形態の給湯運転の作動を説明する図。
【図9】同一実施形態の給湯運転の作動を説明する図。
【図10】同一実施形態の貯湯タンク内に中温水が存在する場合の給湯運転の作動を説明する図。
【図11】従来の貯湯式給湯装置の概略構成図。
【図12】従来の貯湯式給湯装置の概略構成図。
【符号の説明】
2 貯湯タンク
3 ヒートポンプユニット(加熱手段)
7 出湯管
8 給水管
27 中間出湯管
28 中間混合弁
30 給湯混合弁
31 給水バイパス管
34 貯湯温度センサ
35 給湯温度設定スイッチ(給湯温度設定手段)
36 給湯制御部(制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water storage type hot water supply apparatus that supplies hot water using hot water taken out from an intermediate portion of a hot water storage tank.
[0002]
[Prior art]
Conventionally, this kind of thing is under development by the applicant of the present application, and as shown in FIG. 11, hot water stored in the hot water storage tank 101 is taken out and used as a heat source for heating or bathing, heat exchange. In some cases, the medium-temperature water whose temperature has been lowered is returned to the hot water storage tank 101 and the intermediate-temperature water is taken out from the intermediate portion of the hot water storage tank 101 via the intermediate hot water discharge pipe 102 and used for hot water supply.
[0003]
This intermediate temperature water is mixed by the intermediate mixing valve 103 with hot water from the hot water discharge pipe 104 at the upper part of the hot water storage tank and at a temperature higher than the hot water supply set temperature, and by the hot water supply mixing valve 105 to the hot water supply and hot water supply set temperature from the water supply bypass pipe 106. Some were mixed and hot water supplied.
[0004]
In addition, as proposed by the applicant of the present application, as shown in FIG. 12, intermediate temperature water is mixed with the water supplied from the water supply bypass pipe 106 to a temperature not higher than the hot water supply set temperature by the intermediate mixing valve 103, and the hot water supply valve 105 is used to mix the hot water. Some hot water was mixed with hot water from the pipe 104 and hot water supply set temperature to be supplied.
[0005]
Although the applicant of the present application cannot find a known publication related to such a conventional hot water storage type hot water supply apparatus, it is assumed that heating is performed using high-temperature water stored in a hot water storage tank as a heat source. Is mentioned.
[0006]
[Patent Document 1]
Japanese Patent No. 2666337
[0007]
[Problems to be solved by the invention]
In these conventional ones, the temperature of the intermediate hot water is detected by one of the hot water storage temperature sensors (107) provided on the outer periphery of the hot water storage tank 101, and the opening degree of the intermediate mixing valve 103 is controlled using this. However, due to the difference in height between the mounting position of the hot water storage temperature sensor 107 and the mounting position of the intermediate hot water discharge pipe 102, a situation occurs in which the temperature of the medium temperature water to be detected does not coincide with the actual temperature of the medium temperature water. The temperature of the hot water discharged from the valve 103 deviates from the target temperature, and the final hot water supply temperature overshoots or undershoots.
[0008]
In particular, as shown in FIG. 11, when mixing is performed at a temperature higher than the hot water supply set temperature by the intermediate mixing valve 103, the intermediate mixing valve indicates that the detected temperature of the intermediate warm water is higher than the actual temperature of the intermediate warm water. Hot water having a temperature equal to or lower than the hot water supply set temperature is discharged from 103 and water from the water supply bypass pipe 106 is mixed in the hot water supply mixing valve 105, so that the final hot water supply temperature always undershoots, as shown in FIG. As described above, when mixing at a temperature lower than the hot water supply set temperature by the intermediate mixing valve 103, if the detected temperature of the intermediate warm water is lower than the actual temperature of the intermediate warm water, hot water having a temperature higher than the hot water supply set temperature is received from the intermediate mixing valve. There is a problem that the final hot water supply temperature always overshoots because hot water is discharged and high temperature water from the hot water discharge pipe 104 is mixed in the hot water supply mixing valve 105.
[0009]
[Means for solving the problems]
Therefore, in order to solve the above-described problems, the present invention provides a hot water storage tank for storing hot water, a plurality of hot water temperature sensors provided above and below the outer periphery of the hot water tank, and hot water in the hot water storage tank. A heating means, a hot water pipe connected to the upper part of the hot water storage tank, a water supply pipe connected to the lower part of the hot water storage tank, a water supply bypass pipe branched from the water supply pipe, and an intermediate part connected to the intermediate part of the hot water storage tank The hot water from the intermediate hot water pipe is mixed with the hot water flowing through the hot water pipe and the hot water pipe provided in the middle of the hot water pipe. Consists of electric mixing valve An intermediate mixing valve, a hot water mixing valve for mixing hot water from the intermediate mixing valve and hot water from the water supply bypass pipe, hot water temperature setting means for setting a hot water setting temperature, and hot water setting temperature at the intermediate mixing valve And a control means for mixing the hot and cold water to a hot water supply set temperature with the hot water supply mixing valve to supply hot water, and the control means includes the intermediate mixing valve. The opening degree is controlled based on the temperature of hot water supplied from the hot water discharge pipe and the temperature detected by the hot water storage temperature sensor located at a position lower than the intermediate hot water discharge pipe.
[0010]
As a result, even if the hot water stored near the part where the intermediate hot water pipe is connected is pushed out by the hot water supply and replaced with the low temperature water at the bottom of the hot water tank, the temperature drops and the position is lower than the part where the intermediate hot water pipe is connected. Since the temperature is detected by the hot water storage temperature sensor provided in the hot water, a temperature lower than the temperature of hot water actually discharged from the intermediate hot water pipe is detected. Therefore, in the intermediate mixing valve, a lot of hot water on the outlet pipe side is mixed, and hot water at a temperature higher than the hot water supply set temperature is always discharged from the intermediate mixing valve, and water from the water supply bypass pipe is mixed in the hot water supply mixing valve. Since hot water of a temperature is supplied, the final hot water supply temperature does not overshoot.
[0011]
Further, in claim 2, a hot water storage tank for storing hot water, a plurality of hot water temperature sensors provided above and below the outer periphery of the hot water tank, heating means for heating the hot water in the hot water storage tank, and an upper part of the hot water storage tank are connected. A hot water supply pipe, a water supply pipe connected to the lower part of the hot water storage tank, a water supply bypass pipe branched from the water supply pipe, an intermediate hot water supply pipe connected to the intermediate part of the hot water storage tank, and the water supply bypass pipe An intermediate mixing valve that mixes hot water from the intermediate hot water pipe into hot water flowing through the provided water supply bypass pipe, a hot water mixing valve that mixes hot water from the intermediate mixing valve and hot water from the hot water pipe, and hot water setting The hot water temperature setting means for setting the temperature and the intermediate mixing valve are mixed to a temperature lower than the hot water setting temperature by a predetermined temperature, and the mixed hot water is mixed to the hot water setting temperature by the hot water mixing valve to supply hot water. The control means detects the opening of the intermediate mixing valve with the hot water storage temperature sensor located at a position higher than the temperature of the hot water supplied from the hot water pipe and the intermediate hot water pipe. The temperature is controlled based on the temperature to be operated.
[0012]
As a result, even if the hot water stored near the part where the intermediate hot water pipe is connected is pushed out by hot water supply and replaced with the low temperature water at the bottom of the hot water tank, the temperature drops and the position is higher than the part where the intermediate hot water pipe is connected. Since the temperature is detected by the hot water storage temperature sensor provided in the hot water, a temperature higher than the temperature of the hot water actually discharged from the intermediate hot water pipe is detected. Therefore, a lot of water on the water supply bypass pipe side is mixed in the intermediate mixing valve, and hot water at a temperature lower than the hot water supply set temperature is always discharged from the intermediate mixing valve, and hot water from the outlet pipe is mixed in the hot water supply mixing valve to set hot water supply. Since hot water of a temperature is supplied, the final hot water supply temperature does not undershoot.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIGS. In the figure, hatched hatched lines in the hot water storage tank indicate low temperature water, double hatched lines indicate medium hot water, triple hatched lines indicate hot water, and arrows indicate the flow direction of hot water.
[0014]
This hot water storage type hot water supply device boils and stores hot water in the midnight hours when the unit price of contracted power by time is low, and uses the hot water stored for hot water supply. 1 is a hot water storage tank 2 for storing hot water. 3 is a heat pump unit as a heating means for heating the hot water in the hot water storage tank, 4 is a hot water tap provided in a kitchen or a washroom, and 5 is provided in the vicinity of the hot water tap 4 A hot water supply remote controller 6 is a heating terminal such as a floor heating panel using the hot water in the hot water storage tank 1 as a heat source.
[0015]
The hot water storage tank 2 of the hot water storage tank unit 1 has a hot water discharge pipe 7 connected to the upper end, a water supply pipe 8 connected to the lower end, a heat pump forward pipe 9 constituting a heat pump circulation circuit in the lower part, and a heat pump circulation circuit in the upper part. The heat pump return pipe 10 is connected, the hot water in the hot water storage tank 2 taken out from the heat pump forward pipe 9 is boiled by the heat pump unit 3 and returned to the hot water storage tank 2 from the heat pump return pipe 10 to be stored in the hot water supply pipe. The hot water in the hot water storage tank 2 is pushed up by the water supply from 8, and the hot water in the upper part of the hot water storage tank 2 is pushed out from the hot water discharge pipe 7 to supply hot water.
[0016]
The heat pump unit 3 includes a compressor 11, a refrigerant-water heat exchanger 12 as a condenser, an electronic expansion valve 13, a forced air-cooled evaporator 14, and hot water in the hot water storage tank 2. A heat pump circulation pump 16 that circulates to the refrigerant-water heat exchanger 12 through the heat pump forward pipe 9 and the heat pump return pipe 10 and a heat pump control unit 17 that controls driving thereof are provided in the heat pump circuit 15. Is one in which carbon dioxide is used as a refrigerant to constitute a supercritical heat pump cycle. Since carbon dioxide is used as the refrigerant, low-temperature water can be boiled up to a high temperature of about 90 ° C. without an electric heater.
[0017]
Here, the refrigerant-water heat exchanger 12 employs a counter flow system in which the refrigerant and hot water in the hot water storage tank 2 that is heated water are opposed to each other. In the supercritical heat pump cycle, the refrigerant is exchanged during heat exchange. Since it is condensed in the supercritical state, the heated water can be efficiently heated to a high temperature so that the temperature difference between the refrigerant-water heat exchanger 12 inlet temperature and the refrigerant outlet temperature is constant. By controlling the electronic expansion valve 13 or the compressor 11, the COP (energy consumption efficiency) is very high when the inlet temperature of the refrigerant-water heat exchanger 12 of the water to be heated is a low temperature of about 5 to 20 ° C. It is possible to heat the water to be heated in a good state.
[0018]
Reference numeral 18 denotes a heat exchanger for heating the hot water of the heating terminal 6, and on the primary side thereof, a hot water outlet pipe 19 connected to the upper part of the hot water storage tank 2 and an intermediate hot water return pipe 20 connected to the lower part of the hot water storage tank 2. Are connected to each other to constitute a heat exchange circuit 21, and hot water taken out from the hot water storage tank 2 is circulated to the heat exchanger 18 by the operation of the heat exchange circulation pump 22 provided in the middle hot water return pipe 20. The medium temperature water whose temperature has been lowered by the replacement is returned to the hot water storage tank 2 again.
[0019]
On the secondary side of the heat exchanger 18, a heating circulation circuit 25 composed of a heating forward pipe 23 and a heating return pipe 24 is connected to be able to circulate the circulating water of the heating terminal 6, and is provided in the middle of the heating return pipe 24. By the operation of the heating circulation pump 26, the circulating water of the heating terminal 6 is circulated to the heat exchanger 18 and heated by the high temperature water on the primary side.
[0020]
Next, 27 is an intermediate hot water pipe connected to an intermediate position higher than the intermediate hot water return pipe 20 of the hot water storage tank 2 and lower than the hot water pipe 7, and the heat exchanger 18 exchanges heat with the secondary side to lower the temperature. The hot water stored in the intermediate position of the hot water storage tank 2 such as medium hot water is discharged from the hot water storage tank 2.
[0021]
28 is an intermediate mixing valve constituted by an electric mixing valve provided in the middle of the hot water discharge pipe 7 and downstream of the intermediate hot water supply pipe 27, 29 is an intermediate mixing temperature sensor provided downstream of the intermediate mixing valve 28, and a hot water storage tank 2 The mixing ratio is controlled so that the hot water from the hot water supply pipe 7 connected to the upper end of the hot water storage tank 2 is heated at a predetermined temperature higher than the hot water set temperature set by the user with the hot water remote controller 5. Is.
[0022]
Next, reference numeral 30 denotes a hot water mixing valve composed of an electric mixing valve that mixes hot water from the intermediate mixing valve 28 and low temperature water from the water supply bypass pipe 31 branched from the water supply pipe 8, and a hot water supply pipe 32 downstream thereof. The mixing ratio is controlled such that the hot water temperature detected by the hot water temperature sensor 33 provided in the hot water supply becomes the hot water supply set temperature set by the user with the hot water remote controller 5.
[0023]
Next, a plurality of hot water storage temperature sensors 34 are arranged in the vertical direction of the hot water storage tank 2. In this embodiment, five hot water storage temperature sensors are arranged and are called 34a, 34b, 34c, 34d, and 34e from the top. The amount of heat remaining in the hot water storage tank 2 is detected by the temperature information detected by the temperature sensor 34, and the temperature distribution in the vertical direction in the hot water storage tank 2 is detected.
[0024]
The hot water supply remote controller 5 is provided with a hot water supply temperature setting switch 35 for setting a hot water supply set temperature, and constitutes a hot water supply temperature setting means.
[0025]
Reference numeral 36 denotes a hot water supply control unit having a microcomputer that receives the input of each sensor in the hot water storage tank unit 1 and controls the drive of each actuator. The hot water remote controller 5 is connected to the hot water controller 35 by radio or wire so that the user can set an arbitrary hot water set temperature and bath set temperature.
[0026]
The hot water supply control unit 36 detects the temperature detected by the hot water storage temperature sensor 34 d provided at a height immediately below the intermediate hot water discharge pipe 27 and the hot water storage temperature sensor 34 a provided at a height below the hot water discharge pipe 7. The opening of the intermediate mixing valve 28 is feedforward controlled so that the temperature is mixed at a predetermined temperature higher than the hot water supply set temperature based on the temperature at which the hot water is set. The opening of the intermediate mixing valve 28 is feedback-controlled so that the temperature of the intermediate mixing valve 28 is detected, the temperature detected by the intermediate mixing temperature sensor 29, and the temperature detected by the feed water temperature sensor 37 provided in the middle of the feed water pipe 8. The feed opening control of the hot water mixing valve 30 so that the hot water mixing valve 30 is mixed to the hot water set temperature based on the There are those that are adapted to feedback controls the opening of the hot water supply mixing valve 30 so that the hot water set temperature.
[0027]
Next, the operation of this embodiment will be described.
First, the boiling operation shown in FIG. 2 will be described. When the hot water storage temperature sensor 34 detects that the required amount of heat does not remain in the hot water storage tank 2 in the midnight power time zone, the hot water supply control unit 36 A boiling start command is issued to the control unit 17. Upon receiving the command, the heat pump control unit 17 starts driving the heat pump after starting the compressor 11, and cools the low temperature water of about 5 to 20 ° C. taken out from the heat pump forward pipe 9 connected to the lower part of the hot water storage tank 2 as a refrigerant. -Heated to a high temperature of about 70 to 90 ° C by the water heat exchanger 12, returned to the hot water tank 2 from the heat pump return pipe 10 connected to the upper part of the hot water tank 2, and stacked in order from the upper part of the hot water tank 2 Store hot water. When the hot water storage temperature sensor 34 detects that the necessary amount of heat has been stored, the hot water supply control unit 36 issues a boiling stop command to the heat pump control unit 17, and the heat pump control unit 17 stops the compressor 11 and heat pump circulation. The pump 16 is also stopped to end the boiling operation.
[0028]
Next, the hot water supply operation shown in FIG. 3 will be described. When the hot water tap 4 is opened, the water supplied from the water supply pipe 8 flows into the hot water storage tank 2. Then, high-temperature water is pushed out to the intermediate mixing valve 28 via the intermediate tap pipe 27. In the hot water storage tank 2, high temperature water is stored in the upper part and low temperature water is stored in the lower part. However, a specific gravity difference is generated due to the temperature difference, and a high temperature water having a low specific gravity is formed on the upper part by forming a temperature boundary layer. Since low-temperature water with a high specific gravity is located at the lower part, they do not mix with each other.
[0029]
Here, the hot water supply control unit 36 mixes the hot water from the intermediate hot water outlet pipe 27 and the hot water from the hot water outlet pipe 7 so as to reach a temperature higher by a predetermined temperature than the hot water supply set temperature set by the hot water remote controller 5 at the intermediate mixing valve 28. The intermediate mixing valve 28 is adjusted to an appropriate ratio. Here, since the hot water flowing in from the intermediate hot water pipe 27 is hot and higher than the hot water supply set temperature, the hot water pipe 7 side of the intermediate mixing valve 28 is closed.
[0030]
The hot water flowing out from the intermediate mixing valve 28 flows into the hot water supply mixing valve 30 and is mixed with the low temperature water from the water supply bypass pipe 31, and the hot water supply control unit 36 adjusts the mixing ratio of the hot water supply mixing valve 30 to the hot water supply set temperature. Hot water is supplied from the hot water tap 4. Then, the hot water supply is completed by closing the hot water tap 4.
[0031]
At this time, the intermediate mixing valve 28 supplies hot water having a predetermined temperature higher than the hot water supply set temperature, so that the temperature in the vicinity of the portion to which the intermediate hot water discharge pipe 27 is connected is lower than the hot water supply set temperature. The hot water supply control unit 36 adjusts the mixing ratio of the intermediate mixing valve 28 to supply hot water having a predetermined temperature higher than the hot water supply set temperature using the high temperature water from the hot water discharge pipe 7. It is possible to prioritize the hot water from the position, minimize the use of the high temperature water stored in the upper part of the hot water storage tank 2, and secure more hot water as a heat source.
[0032]
Next, the heating operation shown in FIG. 4 will be described. When a heating operation instruction is input, the hot water supply control unit 36 drives the heat exchange circulation pump 22 and the heating circulation pump 26 to extract the high-temperature water taken out from the high-temperature water discharge pipe 19. Is introduced into the heat exchanger 18 to exchange heat with the circulating water on the secondary side to perform the heating operation. Then, the intermediate temperature water whose temperature has decreased due to the heat exchange returns to the lower part of the hot water storage tank 2 via the intermediate temperature water return pipe 20, and the intermediate temperature water is stored so as to push up the boundary surface between the high temperature water and the intermediate temperature water in such a manner that it is replaced with the high temperature water. Is. In the hot water storage tank 2, high temperature water is stored in the upper part, medium temperature water is stored in the middle part, and low temperature water is stored in the lower part. If the temperature difference is about 20 ° C, a specific gravity difference occurs and a temperature boundary layer is formed. Since the high-temperature water having a low specific gravity is located at the upper part, the intermediate intermediate water is located at the intermediate part, and the low-temperature water having a high specific gravity is located at the lower part, they are not mixed with each other.
[0033]
On the secondary side, the circulating water heated by the heat exchanger 18 returns to the heating terminal 6 to perform heating. And when the instruction | indication of a heating stop is input, the hot-water supply control part 36 stops the drive of the heat exchange circulation pump 22 and the heating circulation pump 26, and complete | finishes heating operation.
[0034]
As described above, when the heating operation is performed, a large amount of medium-temperature water whose temperature has been reduced by heat exchange is stored in the hot water storage tank 2. This medium temperature water cannot be used as a heat source for heating and is also inefficient in boiling by the heat pump circuit 15. Therefore, it is required to use this medium temperature water preferentially for hot water supply.
[0035]
Therefore, a hot water supply operation after the medium temperature water is stored in the hot water storage tank 2 will be described. As shown in FIG. 5, when the hot-water tap 4 is opened, water supplied from the water supply pipe 8 flows into the hot water storage tank 2, and at the same time, intermediate hot water is pushed out from the intermediate hot-water pipe 27 and flows into the intermediate mixing valve 28. Here, when the temperature of the intermediate hot water pushed out from the intermediate hot water supply pipe 27 is higher than the hot water supply set temperature, the intermediate mixing valve 28 is closed on the side of the hot water supply pipe 7 and the intermediate hot water is supplied to the hot water supply mixing valve 30 as it is. Hot water at a hot water supply set temperature is mixed with the water supplied from the water supply bypass pipe 31 by the valve 30.
[0036]
Here, when the temperature of the medium hot water pushed out from the intermediate hot water discharge pipe 27 is lower than the hot water supply set temperature, the mixing ratio of the intermediate mixing valve 28 is adjusted and mixed with the high temperature water from the hot water discharge pipe 7 at the upper end of the hot water storage tank 2. The hot water having a predetermined temperature higher than the hot water supply set temperature is supplied to the hot water supply mixing valve 30 and mixed with the low temperature water from the water supply bypass pipe 31, and the hot water supply control unit 36 adjusts the mixing ratio of the hot water supply mixing valve 30 to set the hot water supply. Hot water of temperature is supplied from the hot water tap 4. Then, the hot water supply is completed by closing the hot water tap 4.
[0037]
In this way, since medium-temperature water having a smaller amount of heat per volume than high-temperature water can be used for hot water supply preferentially over high-temperature water, efficient boiling can be performed in the heat pump circuit, and COP ( Energy consumption efficiency) can be improved.
[0038]
The mixing operation at the intermediate mixing valve 28 is provided at a temperature detected by the hot water storage temperature sensor 34 d provided at a height position just below the intermediate hot water outlet pipe 27 and at a height position below the hot water outlet pipe 7. Based on the temperature detected by the hot water storage temperature sensor 34a, the hot water supply control unit 36 is feedforward controlled so as to reach a predetermined temperature higher than the hot water supply set temperature, so that the hot water storage temperature sensor 34d detects as shown in FIG. Even when the temperature of the hot water actually pushed out from the intermediate hot water outlet pipe 27 does not coincide with the temperature of the intermediate hot water pipe 27, a large amount of hot water on the side of the hot water outlet pipe 7 is mixed in the intermediate mixing valve 28 and hot water is always supplied from the intermediate mixing valve 28. Hot water having a temperature higher than the set temperature is discharged, and water from the water supply bypass pipe 31 is mixed by the hot water supply mixing valve 30 to supply hot water having the hot water supply set temperature. It is no longer result in over shoot.
[0039]
Therefore, even in a transition period in which the temperature of hot water pushed out from the intermediate hot water pipe 27 changes from high temperature water to medium temperature water (low temperature water) and from medium temperature water to low temperature water with hot water supply, stable hot water supply is performed. It is something that can be done.
[0040]
Next, another embodiment of the present invention will be described with reference to FIGS. In addition, about the same structure as previous one Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0041]
In this embodiment, the intermediate mixing valve 28 is provided in the middle of the feed water bypass pipe 31 so that the hot water from the intermediate tap pipe 27 and the feed water from the feed water bypass pipe 31 are at a temperature lower than the set hot water temperature by a predetermined temperature. The mixing ratio is controlled.
[0042]
The hot water supply control unit 36 sets hot water supply based on the temperature detected by the hot water storage temperature sensor 34 c provided at the height position just above the intermediate tap pipe 27 and the temperature detected by the water supply temperature sensor 37 of the water supply pipe 8. The opening of the intermediate mixing valve 28 is feedforward controlled so as to be mixed at a temperature lower than the predetermined temperature, and at the same time, the temperature of the intermediate mixing valve 28 is set so that the temperature detected by the intermediate mixing temperature sensor 29 is lower than the preset hot water supply temperature. The opening degree is feedback-controlled, and is based on the temperature detected by the intermediate mixing temperature sensor 29 and the temperature detected by the hot water storage temperature sensor 34a provided at a height position below the hot water discharge pipe 7. The feed opening control of the opening of the hot water mixing valve 30 is performed so as to mix with the set hot water temperature, and at the same time the temperature detected by the hot water temperature sensor 33 is In which so that feedback control of the opening degree of the hot water supply mixing valve 30 so that the set temperature.
[0043]
Next, the hot water supply operation shown in FIG. 8 will be described. When the hot water tap 4 is opened, the water supplied from the water supply pipe 8 flows into the hot water storage tank 2. Then, high-temperature water is pushed out to the intermediate mixing valve 28 via the intermediate tap pipe 27. In the hot water storage tank 2, high temperature water is stored in the upper part and low temperature water is stored in the lower part. However, a specific gravity difference is generated due to the temperature difference, and a high temperature water having a low specific gravity is formed on the upper part by forming a temperature boundary layer. Since low-temperature water with a high specific gravity is located at the lower part, they do not mix with each other.
[0044]
Here, the hot water supply control unit 36 mixes the hot water from the intermediate hot water outlet pipe 27 and the hot water from the water supply bypass pipe 31 to a predetermined temperature lower than the hot water supply set temperature set by the hot water remote controller 5 at the intermediate mixing valve 28. Thus, the intermediate mixing valve 28 is adjusted to an appropriate ratio.
[0045]
Then, the hot water flowing out from the intermediate mixing valve 28 flows into the hot water supply mixing valve 30 and is mixed with hot water from the hot water outlet pipe 7, and the hot water supply control unit 36 adjusts the mixing ratio of the hot water supply mixing valve 30, so Hot water is supplied from the hot water tap 4. Then, the hot water supply is completed by closing the hot water tap 4.
[0046]
At this time, since the intermediate mixing valve 28 supplies hot water having a temperature lower than the preset hot water supply temperature by a predetermined temperature, the temperature in the vicinity of the portion to which the intermediate hot water discharge pipe 27 is connected is higher than the preset hot water supply temperature. The hot water supply control unit 36 adjusts the mixing ratio of the intermediate mixing valve 28 to supply hot water having a predetermined temperature lower than the hot water supply set temperature using the water supplied from the water supply bypass pipe 31. It is possible to prioritize the hot water from the position, minimize the use of the high temperature water stored in the upper part of the hot water storage tank 2, and secure more hot water as a heat source.
[0047]
Then, when hot water is increased and the hot water pushed out from the intermediate hot water discharge pipe 27 becomes low-temperature water, the intermediate water supply bypass pipe 31 side is closed in the intermediate mixing valve 28 as shown in FIG. The low temperature water pushed out from the intermediate hot water pipe 27 and the high temperature water from the hot water pipe 7 are mixed to supply hot water at a hot water supply set temperature.
[0048]
Then, a hot water supply operation after the medium temperature water is stored in the hot water storage tank 2 will be described. As shown in FIG. 10, when the hot-water tap 4 is opened, water supplied from the water supply pipe 8 flows into the hot water storage tank 2, and at the same time, intermediate hot water is pushed out from the intermediate hot-water pipe 27 and flows into the intermediate mixing valve 28. Here, when the temperature of the medium-temperature water pushed out from the intermediate hot water supply pipe 27 is higher than the hot water supply set temperature, the intermediate water supply water from the water supply bypass pipe 31 is mixed by the intermediate mixing valve 28 and adjusted to a temperature lower than the hot water supply set temperature by a predetermined temperature. Then, it is supplied to the hot water supply mixing valve 30, and is mixed with high-temperature water from the hot water discharge pipe 7 by this hot water supply mixing valve 30 to supply hot water at a hot water supply set temperature.
[0049]
When the temperature of the medium-temperature water pushed out from the intermediate hot water outlet pipe 27 is lower than the hot water supply set temperature, the intermediate mixing valve 28 closes the valve on the side of the water supply bypass pipe 31, and the hot water supply mixing valve 30 closes the high temperature from the hot water outlet pipe 7. Hot water having a hot water supply set temperature mixed with water is supplied from the hot water tap 4. Then, the hot water supply is completed by closing the hot water tap 4.
[0050]
In this way, since medium-temperature water having a smaller amount of heat per volume than high-temperature water can be used for hot water supply preferentially over high-temperature water, efficient boiling can be performed in the heat pump circuit, and COP ( Energy consumption efficiency) can be improved.
[0051]
By the way, the mixing operation in the intermediate mixing valve 28 is based on the temperature detected by the hot water storage temperature sensor 34 c provided at the height position just above the intermediate hot water outlet pipe 27 and the temperature of the water supplied from the water supply bypass pipe 31. Since the hot water supply control unit 36 is feedforward controlled so as to be a predetermined temperature lower than the hot water supply set temperature, the temperature detected by the hot water storage temperature sensor 34c does not coincide with the temperature of the medium hot water actually pushed out from the intermediate hot water discharge pipe 27. Even in this case, the intermediate mixing valve 28 mixes a large amount of water supply on the side of the water supply bypass pipe 31, and hot water having a temperature lower than the hot water supply set temperature is always discharged from the intermediate mixing valve 28. Since hot water from the hot water is mixed and hot water at the hot water supply set temperature is supplied, the final hot water supply temperature does not undershoot.
[0052]
Therefore, even in a transition period in which the temperature of hot water pushed out from the intermediate hot water pipe 27 changes from high temperature water to medium temperature water (low temperature water) and from medium temperature water to low temperature water with hot water supply, stable hot water supply is performed. It is something that can be done.
[0053]
In these embodiments, the heat exchanger 18, the heat exchange circulation pump 22, and the heating circulation pump 26 are provided in the hot water storage tank unit 1, but are provided in a separate unit body from the hot water storage tank unit 1. However, it does not preclude changing the embodiment without changing the gist of the present invention.
[0054]
Moreover, in these one embodiment, although the heating circuit is provided in the secondary side of the heat exchanger 19, it is not restricted to this, You may provide the circulation circuit of a flow, and the point is the hot water in the hot water storage tank 16 in summary. Any heat device that exchanges heat with the heat exchanger 18 and uses it can be used. As the heating terminal 6, a floor heating panel, a hot water hot air heater, a hot water panel convector, a hot water panel radiator, or the like can be used.
[0055]
Furthermore, although the heat pump unit 3 provided with the heat pump circuit 15 is illustrated as a means for heating the hot water in the hot water storage tank 2, the heat pump unit 3 is not limited to this, and an electric heater directly disposed in the hot water storage tank 2, The hot water may be circulated and heated by an electric heater.
[0056]
【The invention's effect】
As described above, according to claim 1 of the present invention, hot water having a temperature higher than the hot water supply set temperature is always discharged from the intermediate mixing valve, and water from the water supply bypass pipe is mixed by the hot water supply mixing valve to set the hot water supply. Since the hot water of the temperature is supplied, the final hot water supply temperature overshoots Or undershoot It has the outstanding effect that it will not be carried out.
[0057]
According to claim 2, hot water having a temperature lower than the hot water supply set temperature is always discharged from the intermediate mixing valve, and hot water from the hot water discharge pipe is mixed by the hot water supply mixing valve to supply hot water having the hot water supply set temperature. Therefore, it has the outstanding effect that the final hot water supply temperature does not undershoot.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of a boiling operation according to the same embodiment.
FIG. 3 is a view for explaining the operation of a hot water supply operation according to the same embodiment.
FIG. 4 is a view for explaining the operation of the heating operation of the same embodiment.
FIG. 5 is a diagram for explaining the operation of a hot water supply operation when medium temperature water exists in the hot water storage tank of the same embodiment.
FIG. 6 is a diagram for explaining the operation of a hot water supply operation when medium temperature water is present in the hot water storage tank of the same embodiment.
FIG. 7 is a schematic configuration diagram of another embodiment of the present invention.
FIG. 8 is a view for explaining the operation of the hot water supply operation of the same embodiment.
FIG. 9 is a view for explaining the operation of the hot water supply operation of the same embodiment.
FIG. 10 is a view for explaining an operation of a hot water supply operation when medium temperature water exists in the hot water storage tank of the same embodiment.
FIG. 11 is a schematic configuration diagram of a conventional hot water storage type hot water supply apparatus.
FIG. 12 is a schematic configuration diagram of a conventional hot water storage type hot water supply apparatus.
[Explanation of symbols]
2 Hot water storage tank
3 Heat pump unit (heating means)
7 Hot water pipe
8 Water supply pipe
27 Intermediate tap
28 Intermediate mixing valve
30 Hot water mixing valve
31 Water supply bypass pipe
34 Hot water storage temperature sensor
35 Hot water temperature setting switch (hot water temperature setting means)
36 Hot water supply control unit (control means)

Claims (2)

湯水を貯湯する貯湯タンクと、この貯湯タンク外周の上下に複数設けられた貯湯温度センサと、前記貯湯タンク内の湯水を加熱する加熱手段と、前記貯湯タンク上部に接続された出湯管と、前記貯湯タンク下部に接続された給水管と、この給水管から分岐された給水バイパス管と、前記貯湯タンク中間部に接続された中間出湯管と、前記出湯管途中に設けられた出湯管を流れる湯水に前記中間出湯管からの湯水を混合する電動ミキシング弁より構成された中間混合弁と、この中間混合弁からの湯水と前記給水バイパス管からの湯水とを混合する給湯混合弁と、給湯設定温度を設定する給湯温度設定手段と、前記中間混合弁で給湯設定温度より所定温度高い温度に混合し、この混合された湯水を前記給湯混合弁で給湯設定温度に混合して給湯するようにした制御手段とを備えたものにおいて、前記制御手段は、前記中間混合弁の開度を前記出湯管から供給される湯水の温度と前記中間出湯管より低い位置にある前記貯湯温度センサで検出する温度とに基づいて制御するようにしたことを特徴とする貯湯式給湯装置。A hot water storage tank for storing hot water, a plurality of hot water temperature sensors provided above and below the outer periphery of the hot water tank, heating means for heating the hot water in the hot water tank, a hot water pipe connected to the upper part of the hot water tank, A hot water flowing through a hot water pipe connected to the lower part of the hot water storage tank, a hot water bypass pipe branched from the hot water supply pipe, an intermediate hot water pipe connected to the intermediate part of the hot water tank, and a hot water pipe provided in the middle of the hot water pipe An intermediate mixing valve composed of an electric mixing valve for mixing hot water from the intermediate outlet pipe, a hot water mixing valve for mixing hot water from the intermediate mixing valve and hot water from the water supply bypass pipe, and a hot water supply set temperature The hot water temperature setting means for setting the temperature and the intermediate mixing valve are mixed to a temperature higher than the hot water set temperature by a predetermined temperature, and the mixed hot water is mixed to the hot water set temperature by the hot water mixing valve to supply hot water The control means includes the hot water storage temperature sensor in which the opening degree of the intermediate mixing valve is lower than the temperature of the hot water supplied from the hot water discharge pipe and the intermediate hot water discharge pipe. A hot water storage type hot water supply apparatus that is controlled based on the temperature to be detected. 湯水を貯湯する貯湯タンクと、この貯湯タンク外周の上下に複数設けられた貯湯温度センサと、前記貯湯タンク内の湯水を加熱する加熱手段と、前記貯湯タンク上部に接続された出湯管と、前記貯湯タンク下部に接続された給水管と、この給水管から分岐された給水バイパス管と、前記貯湯タンク中間部に接続された中間出湯管と、前記給水バイパス管途中に設けられた給水バイパス管を流れる湯水に前記中間出湯管からの湯水を混合する中間混合弁と、この中間混合弁からの湯水と前記出湯管からの湯水とを混合する給湯混合弁と、給湯設定温度を設定する給湯温度設定手段と、前記中間混合弁で給湯設定温度より所定温度低い温度に混合し、この混合された湯水を前記給湯混合弁で給湯設定温度に混合して給湯するようにした制御手段とを備えたものにおいて、前記制御手段は、前記中間混合弁の開度を前記出湯管から供給される湯水の温度と前記中間出湯管より高い位置にある前記貯湯温度センサで検出する温度とに基づいて制御するようにしたことを特徴とする貯湯式給湯装置。  A hot water storage tank for storing hot water, a plurality of hot water temperature sensors provided above and below the outer periphery of the hot water tank, heating means for heating the hot water in the hot water storage tank, a hot water pipe connected to the upper part of the hot water storage tank, A water supply pipe connected to the lower part of the hot water storage tank, a water supply bypass pipe branched from the water supply pipe, an intermediate hot water supply pipe connected to the intermediate part of the hot water storage tank, and a water supply bypass pipe provided in the middle of the water supply bypass pipe An intermediate mixing valve that mixes hot water from the intermediate hot water pipe into the flowing hot water, a hot water mixing valve that mixes hot water from the intermediate mixing valve and hot water from the hot water pipe, and a hot water temperature setting that sets a hot water set temperature And control means for mixing at a predetermined temperature lower than the hot water supply set temperature by the intermediate mixing valve and supplying the mixed hot water to the hot water set temperature by the hot water mixing valve to supply hot water. The control means is provided on the basis of the temperature of the hot water supplied from the tapping pipe and the temperature detected by the hot water storage temperature sensor at a position higher than the intermediate tapping pipe. A hot water storage type hot water supply device characterized by being controlled.
JP2003088638A 2003-03-27 2003-03-27 Hot water storage water heater Expired - Fee Related JP4053451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088638A JP4053451B2 (en) 2003-03-27 2003-03-27 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088638A JP4053451B2 (en) 2003-03-27 2003-03-27 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2004293971A JP2004293971A (en) 2004-10-21
JP4053451B2 true JP4053451B2 (en) 2008-02-27

Family

ID=33402717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088638A Expired - Fee Related JP4053451B2 (en) 2003-03-27 2003-03-27 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP4053451B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214658A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Heat pump hot-water supply device
JP4711290B2 (en) * 2005-06-10 2011-06-29 株式会社長府製作所 Hot water system
JP4654845B2 (en) * 2005-09-05 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP4654844B2 (en) * 2005-09-05 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP4654846B2 (en) * 2005-09-05 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP4654851B2 (en) * 2005-09-12 2011-03-23 パナソニック株式会社 Hot water storage water heater
JP2007139201A (en) * 2005-11-14 2007-06-07 Corona Corp Hot water storage type water heater
JP4778299B2 (en) * 2005-11-21 2011-09-21 株式会社コロナ Hot water storage type hot water supply device and method for changing standby opening of hot water mixing valve
GB0713475D0 (en) * 2007-07-11 2007-08-22 Ec Power As Heat storage
JP2009250542A (en) * 2008-04-08 2009-10-29 Hitachi Appliances Inc Water heater
JP5316439B2 (en) * 2010-01-29 2013-10-16 ダイキン工業株式会社 Water heater
JP5662192B2 (en) * 2011-02-16 2015-01-28 株式会社コロナ Hot water storage water heater
JP5646363B2 (en) * 2011-02-16 2014-12-24 株式会社コロナ Hot water storage water heater

Also Published As

Publication number Publication date
JP2004293971A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP3977382B2 (en) Hot water storage water heater
JP4053451B2 (en) Hot water storage water heater
JP3854169B2 (en) Heat pump type water heater
JP3977241B2 (en) Hot water storage water heater
JP2004286307A (en) Storage type water heater
JP4114930B2 (en) Heat pump water heater / heater
JP2004333000A (en) Hot water storage type water heater
JP3950031B2 (en) Hot water storage water heater
JP4226533B2 (en) Hot water storage water heater
JP3778115B2 (en) Heat pump water heater
JP4351967B2 (en) Hot water storage water heater
JP4354389B2 (en) Hot water storage water heater
JP2006308124A (en) Storage type water heater
JP3908768B2 (en) Heat pump type water heater
JP3950032B2 (en) Hot water storage water heater
JP3935103B2 (en) Hot water storage water heater
JP2009068818A (en) Hot water storage type water heater
JP2006308123A (en) Storage water heater
JP2004293837A (en) Hot-water storage type hot-water supply device
JP4102781B2 (en) Hot water storage heater
JP4764280B2 (en) Hot water storage water heater
JP2007333335A (en) Hot water storage type hot water supply heating apparatus
JP4157074B2 (en) Heating control device
JP2008032282A (en) Storage type hot water supply device
JP2006046801A (en) Hot water storage type heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4053451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees