JP3778115B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3778115B2
JP3778115B2 JP2002087836A JP2002087836A JP3778115B2 JP 3778115 B2 JP3778115 B2 JP 3778115B2 JP 2002087836 A JP2002087836 A JP 2002087836A JP 2002087836 A JP2002087836 A JP 2002087836A JP 3778115 B2 JP3778115 B2 JP 3778115B2
Authority
JP
Japan
Prior art keywords
hot water
tank
temperature
water supply
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002087836A
Other languages
Japanese (ja)
Other versions
JP2003287278A (en
Inventor
龍太 近藤
竹司 渡辺
敏 今林
啓次郎 國本
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002087836A priority Critical patent/JP3778115B2/en
Publication of JP2003287278A publication Critical patent/JP2003287278A/en
Application granted granted Critical
Publication of JP3778115B2 publication Critical patent/JP3778115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、貯湯用のタンクを備えるヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来より、R22などの冷媒を使用するヒートポンプ給湯機が公知である。この種のヒートポンプ給湯機としては、図6に示すように、給湯用水を貯留するタンク1、給湯用水の加熱手段であるヒートポンプ熱源2、タンク1とヒートポンプ熱源2とを接続する流水配管3、この流水配管3に給湯用水を循環させるポンプ4等より構成される。
【0003】
ヒートポンプ熱源2は、圧縮機5、給湯用熱交換器6、膨張弁7、室外熱交換器8、アキュムレータ9を順次冷媒配管10により接続して構成され、冷媒が充填されている。給湯用熱交換器6は、圧縮機5より吐出された高圧のガス冷媒と給湯用水とを熱交換するもので、冷媒が流れる冷媒通路6aと、給湯用水が流れる給湯用水通路6bとを有している。膨張弁7は、給湯用熱交換器6から流出する冷媒を弁開度に応じて減圧する減圧装置で、室外熱交換器8は、膨張弁7で減圧された冷媒をファン11によって送風される外気との熱交換によって蒸発させる。アキュムレータ9は、室外熱交換器8で蒸発した冷媒を気液分離して液冷媒を貯留し、気相冷媒のみを圧縮機5に吸引させ、サイクル中の余剰冷媒を蓄えている。流水配管3は、給湯用熱交換器6の給湯用水通路6bに接続される冷水管3aと温水管3bとで構成され、冷水管3aの上流端がタンク1の底面に接続され、温水管3bの下流端がタンク1の天面に接続されている。ポンプ4は、冷水管3a(温水管3bでも良い)に設けられ、通電されて回転することにより、タンク1内の給湯用水を流水配管3に流通させる。なお、給湯用水の流通方向は、図に矢印で示すように、タンク1内の下部→冷水管3a→給湯用熱交換器6の給湯用水通路6bと流れ、ここでヒートポンプ熱源2により加熱されて温水となり、給湯用水通路6b→温水管3b→タンク1内の上部へと流れる。また、タンク1の底面には、タンク1内に給水するための給水配管12が接続され、タンク1の天面には、タンク1内に蓄えられた給湯用水(温水)を使用者に供給するための給湯配管13が接続されている。
【0004】
一般に、このような貯湯式の給湯機では、タンクに蓄えられた温水を直接給湯用として使用する場合、衛生面上から温水の温度(貯湯温度)を60℃以上としたり、タンクを小型化するために冷媒の特性上可能な限り高温(R22では65℃、二酸化炭素冷媒では例えば90℃)に加熱してタンク1に貯湯する。そして、ヒートポンプ熱源2は電力料金の安い深夜時刻帯に運転されてタンク1内をすべて温水に加熱し、翌朝から夜にかけて給湯使用される運転方法が主になっており、タンク内に深夜貯湯した熱量を給湯負荷が上回りタンク1内の温水が不足することがないように、その加熱温度とタンク1の容量が設定されている。なお、給湯負荷とは、給湯使用に必要な温水を得るために要する熱量のことであり、例えば、同一の温水温度及び温水量を得るためには、供給水温が低いほど、必要熱量は増大する。
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来のヒートポンプ給湯機は、給湯使用時にタンク内の温水不足が発生しないように常にタンク1内に温水を残しているため、一日の給湯使用が終了した深夜加熱直前にもタンク1内に残湯がある。この残湯はタンクからの放熱により設定加熱温度よりも温度低下しているので、残湯も合わせて深夜時刻帯にタンク内すべてを加熱する際に、温度低下した残湯が流水配管3aを通ってヒートポンプ熱源2に供給されると、ヒートポンプで設定温度まで昇温する時の運転効率は非常に悪くなるという課題を有していた。図7に示すように、水温が上昇するとヒートポンプの運転効率COPは非常に悪化する。特に、二酸化炭素を冷媒としたヒートポンプ熱源は顕著に低下する。
【0006】
本発明は、前記従来の課題を解決するもので、タンク内に残る中温から高温の湯をなくして高効率にヒートポンプ貯湯運転をおこない、給湯にかかる光熱費を低減したヒートポンプ給湯機を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、貯湯用のタンクと、圧縮機、放熱器、減圧手段、蒸発器を有し前記タンク内の水を加熱するヒートポンプ熱源と、第一のポンプを有して前記ヒートポンプ熱源で加熱された水を前記タンク内の上部へ戻す加熱通路と、第二のポンプを有して前記タンク内の下部と上部を連通し水を循環攪拌する攪拌流路と、使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手段とを備え、深夜時間帯になると前記第二のポンプを駆動することにより前記攪拌流路を通じて攪拌運転を実行するヒートポンプ給湯機とする。
【0008】
また、貯湯用のタンクと、圧縮機、放熱器、減圧手段、蒸発器を有し前記タンク内の水を加熱するヒートポンプ熱源と、第一のポンプを有して前記ヒートポンプ熱源で加熱された水を前記タンク内の上部へ戻す加熱通路と、使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手段とを備え、
ヒートポンプ熱源を動作させずに前記第一のポンプを駆動することにより前記加熱流路を通じて攪拌運転を実行するヒートポンプ給湯機とする
【0009】
これによって、昼間に給湯使用した後の残湯が、深夜の加熱前にタンク内に残っていても、これを高温のまま再加熱せずに、攪拌流路の搬送手段Aの運転により残湯をタンク下方の低温の給水と攪拌混合し十分に温度低下させた後にタンク全量を沸かすことができるので、ヒートポンプ熱源で加熱する際の供給温度が低くなり、加熱運転の効率が向上する。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、貯湯用のタンクと、圧縮機、放熱器、減圧手段、蒸発器を有し前記タンク内の水を加熱するヒートポンプ熱源と、第一のポンプを有して前記ヒートポンプ熱源で加熱された水を前記タンク内の上部へ戻す加熱通路と、第二のポンプを有して前記タンク内の下部と上部を連通し水を循環攪拌する攪拌流路と、使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手 段とを備え、深夜時間帯になると前記第二のポンプを駆動することにより前記攪拌流路を通じて攪拌運転を実行するヒートポンプ給湯機とすることにより、昼間給湯使用した後の残湯が、深夜の加熱前にタンク内に残っていても、これを高温のまま再加熱せずに、攪拌流路の搬送手段Aの運転により残湯をタンク下方の低温の給水と混合し、十分に温度低下させた後にタンク全量を沸かすことができるので、ヒートポンプ熱源で加熱する際の供給温度が低くなるので運転効率が向上し運転の省電力化が図れ、給湯にかかる光熱費を低減することができる。
【0011】
請求項2に記載の発明は、貯湯用のタンクと、圧縮機、放熱器、減圧手段、蒸発器を有し前記タンク内の水を加熱するヒートポンプ熱源と、第一のポンプを有して前記ヒートポンプ熱源で加熱された水を前記タンク内の上部へ戻す加熱通路と、使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手段とを備え、ヒートポンプ熱源を動作させずに前記第一のポンプを駆動することにより前記加熱流路を通じて攪拌運転を実行するヒートポンプ給湯機とすることにより、この場合は、ヒートポンプ熱源で加熱する際の供給温度が低くなるので運転効率が向上し運転の省電力化が図れ、給湯にかかる光熱費を低減することができることに加え、機器コストを下げることができる。
【0012】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0013】
(実施例1)
図1は、本発明の第1の実施例におけるヒートポンプ給湯機の構成の模式図を示すもので、図2は同実施例のヒートポンプ給湯機における流入水の水温とそれを加熱したときの運転効率(COP)特性を示すものである。
【0014】
図1において、31は給湯用水を貯留するタンク、32は給湯用水の加熱手段となる熱源であるヒートポンプユニットであり、33はタンク31とヒートポンプユニット32とを接続する流水配管、34は給湯用水を循環させる第一のポンプである。ヒートポンプユニット32は、圧縮機35、給湯用熱交換器36、膨張弁37、室外熱交換器38を順次冷媒配管39により接続して構成され冷媒が充填されたヒートポンプ回路とファン40を備えている。ここで本実施例においては、冷媒に二酸化炭素冷媒を使用した。給湯用熱交換器36は、圧縮機35より吐出された高圧のガス冷媒と給湯用水とを熱交換する放熱器で、冷媒が流れる冷媒通路36aと、給湯用水が流れる給湯用水通路36bとを有している。膨張弁37は、給湯用熱交換器36から流出する冷媒を弁開度に応じて減圧する減圧手段で、室外熱交換器38は、膨張弁37で減圧された冷媒をファン40によって送風される外気との熱交換によって蒸発させる。
【0015】
流水配管33は、給湯用熱交換器36の給湯用水通路36bに接続される流入管33aと流出管33bとで構成され、流入管33aの上流端がタンク31の底面に接続され、流出管33bの下流端がタンク31の天面に接続されている。第一のポンプ34は、ヒートポンプユニット32内の流入管33a(流出管33bでも良い)に設けられ、通電されて回転することにより、タンク31内の給湯用水を流水配管33に流通させる。なお、給湯用水の流通方向は、図に矢印で示すように、タンク31内の下部→流入管33a→給湯用熱交換器36の給湯用水通路36bと流れ、ここでヒートポンプユニット32により加熱されて温水となり、給湯用水通路36b→流出管33b→タンク31内の上部へと流れ、タンク31に温水が貯められていく。また、タンク31の底面には、給水圧を加えながらタンク31に市水を供給するための給水配管41が接続され、タンク31の天面には、タンク31内に貯えられた給湯用水(温水)を使用者に供給するための給湯配管42が接続され、その先端には台所、洗面、浴室などの複数の蛇口43が設けられている。
【0016】
タンク31の壁面には、温度検知手段である3個のサーミスタ44、45、46がそれぞれ異なる高さに配置されている。具体的には、第1サーミスタ44、第2サーミスタ45、第3サーミスタ46の順に、図における上部から下部に向かって所定の間隔を置いて配置されている。また、流出管33bの給湯用熱交換器36の出口近傍には出口サーミスタ47が、流入管33aの給湯用熱交換器36の入口側には入口サーミスタ48が設けられ、各サーミスタ44、45、46および47、48の検出信号は、CPU、メモリ、入出力インターフェース等を有するマイクロコンピュータ(図示せず)を用いて構成された制御手段49にそれぞれ入力されるよう構成されている。50はヒートポンプ給湯機の遠隔操作を行うリモコンであり、リモコン50は信号用のケーブル51で制御手段49と有線接続されている。
【0017】
上記構成のヒートポンプ給湯機の運転動作のうちの湯沸かし運転について説明する。まず、制御手段49が電気的に接続された冷媒回路中の圧縮機35を駆動し、給湯用熱交換器36を放熱器として機能させると共に、室外熱交換器38を蒸発器として機能させる。次に、水系統回路における第一のポンプ34を作動させる。すると、タンク31の底部から貯留水が流出し、前述した水の流れの通り、これが流入管33aを介して給湯用熱交換器36の水通路36bを流通する。そのときこの水は放熱器として機能している給湯用熱交換器36によって加熱され流出管33bを通って再びタンク31内の上部へと返流される。そしてこのような動作を継続して行うことによって、タンク31の上端側から下端側へと高温湯が次第に貯留されるように構成されている。この湯沸かし運転においては、出口サーミスタ47が給湯用熱交換器36で加熱された高温湯の温度を検出し、電気的に接続された制御手段49が高温湯の温度を決定した所定値(例えば二酸化炭素冷媒では加熱温度85℃に設定)になるように、この検出信号に基づき運転制御する。そして入口サーミスタ48がタンク31から流入する水の温度を検出し、タンクからの流入温度が所定の加熱終了温度(例えば、設定加熱温度85℃から10度引いた75℃)より高温になると、その信号に基づき制御手段49はタンク31全量が高温湯となったと判断し、湯沸かし運転を停止する。この湯沸かし運転は、通常は深夜電気料金制度を利用して電気料金の安い深夜時刻帯に行い、日中の給湯量を賄うように湯を沸かして貯めることで給湯コストを低減するようにしている。
【0018】
以上のように構成されたヒートポンプ給湯機において、前述したような湯沸かし運転によりタンク31の全量(例えば、300リットルタンクであれば300リットル)が高温湯となって貯められた状態から、給湯使用により湯量が減少してくる。給湯使用する際は、使用者が最寄りのリモコン50を操作して給湯を要求する。すると、この給湯要求信号はケーブル51を経て制御手段49に伝わる。蛇口からの出湯の場合、蛇口43を開栓すると給水配管41を流れる水の給水圧によってタンク31内に貯留された約85℃の高温湯が押し上げられ、給湯配管42を通って使用する蛇口43に供給される。給湯使用後のタンク31内は、水温による比重差によって、タンク内上部は高温湯の高温層W1、下部は給水が加熱されず低温のままの低温層W3、高温層W1と低温層W3の間に挟まれた薄い層をなす中間温度の中温層W2に自然に分離されており、上から高温層W1、中温層W2、低温層W3の3層構造となる。
【0019】
ところで、上記に示したようにタンク31には3個のサーミスタ44、45、46がそれぞれ異なる高さ位置に配置されており、タンク31内を3つに区分して湯温を検出できるようになっている。すなわち、図における上方部から下方部に向かって、第1サーミスタ44は最小残湯量を、第2サーミスタ45は大出湯を、第3サーミスタ46は最大貯湯量をそれぞれ検知するよう設けられ、各位置の湯温を検出している。また、各サーミスタ44、45、46および47の検出信号は、制御手段49にそれぞれ入力されるよう構成されており、制御手段49は所定時間内に入力される各検出信号の温度変化から適切な給湯運転制御を選択して、運転指令を発する機能を有している。そして、残湯量が所定の最小湯量(例えば、前記300リットルタンクであれば100リットル)以下になると、ヒートポンプユニット32を運転して沸き増しを行う。具体的には、タンク31の第1サーミスタ44で検知される湯温twが、基準温度ts0(例えば、50℃)よりも低くなると、その検出信号を受けて制御手段49は沸き増し運転開始の判定を行う。そして、制御手段49はヒートポンプユニット32の運転を要求し、第一のポンプ34と圧縮機35を駆動し沸き増し運転を行う。そして、第1サーミスタ44で検知される湯温twが設定加熱温度(例えば、85℃)に達すれば、運転を停止するというような制御を繰り返し行うことによって、上記一定の残湯量を維持するよう制御される。
【0020】
次に、本発明の実施例の特徴的なタンク内の攪拌流路とその制御について説明する。52は攪拌流路であり、上流端がタンク31の底面に接続され、途中に設けた第二のポンプ53を経て、下流端がタンク31の天面に接続され、タンク内の下部と上部が連通されている。この攪拌流路52は、給水配管41から流入しタンク31の下部に貯留している低温の水を、第二のポンプ53を駆動してタンク31の上部に搬送し、タンク上部の高温湯を冷却しながら攪拌することができるものである。制御手段49には現在時刻を出力するクロック54が設けられており、またリモコン50には使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手段である給湯終了スイッチ55が設けられている。
【0021】
そして使用者が、一日の給湯使用が終了してリモコン50の給湯終了スイッチ55を押すと、制御手段49は攪拌運転の待機モードに入り、クロック54の出力が深夜時刻帯になるまで待機する。一日の給湯使用が終了した夜の時点では、上記のように沸き増し運転が行われることにより、最小残湯量以上の湯量がタンク31内に残されている。深夜の湯沸かし運転開始直前には、この残湯はタンクからの放熱により温度低下しており、特に沸き増し運転で使用される第1サーミスタ44が設けられている位置の下部には、前日深夜に沸かされて約一日放熱していた湯があり、設定加熱温度(例えば、85℃)よりもいくらか温度低下している。そこで、時間が経過して深夜時刻帯に入ると、制御手段49は、タンク31内の湯温検出手段である第2サーミスタ45の検出温度tmが所定の温度ts0(例えば、設定加熱温度85℃から10度引いた75℃)より低温であるtm<ts0の場合に、給湯負荷を賄うために再加熱が必要なので攪拌運転を許可し、第二のポンプ53を駆動して攪拌流路の運転を開始する。この攪拌流路の運転により、給水配管41から流入したタンク31内の下部にある低温の水がタンク上部へ搬送され、水流によりタンク上部の比較的高温の残湯と混合されて温度は略均一化が進みタンク上部の湯温が低下する。例えば、第2サーミスタ45の検出温度tmが50℃で、タンク上半分の平均温度が65℃、下半分の温度が給水温度とほぼ等しい5℃であったとすると、攪拌運転によりタンク31内全量が均一化すると35℃になる。本実施例におけるヒートポンプユニット32の運転効率COPが、入口サーミスタ48の水温に対して図2に示すようなCOP値をとる場合、攪拌後の湯沸かし運転は300リットルをCOP1.5で運転することとなり、消費電力量は(湯沸かし水量×(設定加熱温度ー水温)÷COP÷860)で計算されるので、300×(85−35)÷1.5÷860=11.6キロワット時となる。一方、攪拌せずに湯沸かし運転をした場合は、タンク下半分をCOP2.5で沸かして5.6キロワット時、タンク上半分をCOP0.5で沸かして7.0キロワット時となり、合計すると12.6キロワット時と、9%程度余計に電力を消費することとなる。別の例として、タンク31の上50リットルが65℃で、下250リットルが5℃であった場合は、攪拌実施による差がさらに顕著となり、30%弱ほどの消費電力の差が生じる。このように、タンク31内の下部と上部の間で水を循環させることによりタンク31内の水を攪拌しタンク内の温度を略均一化する攪拌流路52を備え、昼間給湯使用した後の残湯が深夜の加熱前にタンク内に残っていても、これを高温のまま湯沸かし運転で再加熱せずに、攪拌流路52の第二のポンプ53の運転により残湯をタンク下方の低温の給水と混合し、十分に温度低下させた後にタンク全量を沸かすことができるので、ヒートポンプユニット32で加熱する際の供給温度が低くなって運転効率が向上し運転の省電力化が図れ、給湯にかかる光熱費を低減することができる。
【0022】
攪拌流路の運転中は、前述のW1、W2、W3の3層構造において、タンク上部で低温水と攪拌混合された混合湯はW3領域の水温よりもいくらか高温であるので、混合湯は比重の大きいW3領域に下降せず、およそW1からW2までの領域で攪拌流路52の運転による攪拌が生じる。一方、3層構造のうちの低温であるW3領域の水をタンク上部に搬送するので、低温層W3が減少する。攪拌のために低温層W3領域の水をすべてタンク上部に搬送し終えると、タンク31の下部に設けた第3サーミスタ46の位置で低温水がなくなって混合湯に変わるので、第3サーミスタ46の検出温度t1が上昇する。t1が所定の温度ts1(例えば、30℃)を超えたt1>ts1になった場合に制御手段49は攪拌運転を終了し、第二のポンプ53を停止する。このように、高温層W1、中温層W2、低温層W3ができているとき、低温水より高温の混合湯は比重の大きいW3領域に下降せずW1からW2までの領域で攪拌流路52の運転による攪拌が生じるので、攪拌のために低温層W3領域の水をタンク上部に攪拌流路52で搬送し終え攪拌が完了したことをタンク下部温度により検出し、搬送手段である第二のポンプ53の駆動を停止できるので、必要以上に攪拌流路52の運転を継続することなく搬送手段の駆動動力を節約して給湯機の運転を効率化し、給湯のための運転費を節約できる。
【0023】
攪拌運転が終了すると、深夜の湯沸かし運転を開始する。流水配管33がタンク31内の下部から水を取り出してヒートポンプユニット32へ供給し、この水をヒートポンプユニット32で加熱してタンク内の上部へ戻す加熱通路構成となっているので、攪拌運転によりタンク内全域の湯を温度低下させた後の湯沸かし運転の過程において、水をタンク内の下部から取り出してヒートポンプ熱源で加熱しタンク内の上部へ戻すことで、タンク内に高温の上部層と低温の下部層に分かれる温度成層を形成することができるので、一度ヒートポンプ熱源を通って加熱された湯を再び加熱することなく、低温度水だけの加熱を確実に行い運転効率が向上して給湯にかかる光熱費を低減することができる。
【0024】
そして、ヒートポンプ回路に封入する冷媒を二酸化炭素とすることによって、高温湯を高効率に沸上げタンクに貯湯することができる。また、加熱前の給湯用熱交換器36への供給水温が高温の場合二酸化炭素冷媒では運転効率の低下が顕著であるため、タンク内の攪拌により温度低下させることで運転効率の向上効果が大きくなり、給湯にかかる光熱費を低減することができる。
【0025】
なお本実施例では、タンク内下部の水温である検出温度t1が、所定の温度ts1を超えたt1>ts1の場合に攪拌流路52の攪拌運転を終了する制御方法を説明したが、攪拌後の湯沸かし運転の必要加熱時間を制御手段49が算出し、深夜時刻帯に湯沸かし運転が終了するように必要加熱時間を優先して攪拌運転を終了する、すなわち必要加熱時間が十分に短い場合はタンク内下部の水温に基づき攪拌流路52の運転を終了し、必要加熱時間が長い場合は攪拌運転が不十分であっても終了し優先的に湯沸かし運転が深夜時刻帯内に終了するように運転してもよい。
【0026】
また、本実施例ではこの攪拌流路52を、給水配管41から流入しタンク31の下部に貯留している低温の水を、第二のポンプ53を駆動してタンク31の上部に搬送し、タンク上部の高温湯を冷却しながら攪拌することができるものとしたが、逆にタンク上部から水を取り出してタンク下部に戻すように第二のポンプ53を設けて駆動しても、タンク内を攪拌混合することができる。
【0027】
また、攪拌流路52と、その搬送手段Aである第2のポンプの53の代わりに、加熱通路である流水配管33と、その搬送手段Bである第1のポンプ34でヒートポンプユニット32を運転せずに駆動することで、タンク31内を攪拌してもよく、この場合は、機器コストを下げることができる。
【0028】
(実施例2)
図3は、本発明の第2の実施例における給湯機であるヒートポンプ給湯機の構成の模式図を示すもので、図4は同実施例のヒートポンプ給湯機における動作を説明する制御フローチャートを示すものである。
【0029】
図3において、図1と同符号のものは相当する構成要素であり、詳細な説明は省略する。図において、ヒートポンプ熱源での加熱通路とタンク31の攪拌流路を兼ねる流水配管56は、給湯用熱交換器36の給湯用水通路36bに接続される流入管56aと流出管56bとで構成され、流入管56aの上流端がタンク31の底面に接続され、流出管56bの下流端がタンク31の天面に接続されている。第三のポンプ57は、ヒートポンプユニット32内の流入管56a(流出管56bでも良い)に設けられ、通電されて回転することにより、タンク31内の給湯用水を流水配管56に流通させる。58はタンク31内の上部に設けた風呂熱交換器であり、浴槽59に接続された往き管60と戻り管61および風呂ポンプ62とで循環路を構成し、風呂ポンプ62を駆動することで浴槽59内の湯とタンク31内上部の高温湯とが熱交換できるようになっている。63は風呂追焚き運転Aであり、浴槽59の湯を風呂ポンプ62を介して風呂熱交換器58へ流して追焚き運転する。64は風呂追焚き運転Bであり、貯湯槽31上部の高温湯を給湯配管42、電磁開閉弁65を介して浴槽59へ出湯する。66はリモコン50に設けられた追焚き運転の指令手段である。
【0030】
以上のように構成されたヒートポンプ給湯機において、以下その動作、作用のうち浴槽の湯温を上昇させる追焚き運転について説明する。使用者が入浴に際して指令手段66を操作して制御手段49が追焚き指令を検出したとき、残湯量検出手段である第1サーミスタ44と第2サーミスタ45とによりタンク31の所定位置のそれぞれの検出温度から残湯量を求め、この残湯量に基づき風呂追焚き運転A63か風呂追焚き運転B64かを選択する。具体的には、第1サーミスタ44の検出温度と第2サーミスタ45の検出温度が共に高温(例えば共に85℃前後)である場合は、残湯量が設定湯量よりも十分に多いので風呂追焚き運転Bを選択し、電磁開閉弁65を開弁してタンク31の高温湯を給湯配管42、電磁開閉弁65を介して浴槽59へ注湯することで追焚き運転する。一方、第1サーミスタ44の検出温度は高温であるが、第2サーミスタ45の検出温度が低温(例えば40℃)である場合は、残湯量が設定湯量よりも少ないので風呂追焚き運転Aを選択する。そして、風呂ポンプ62を運転し浴槽59の湯を風呂熱交換器58へ流してタンク31の高温湯と熱交換し、高温にして浴槽59に戻して追焚き運転する。この風呂追焚き運転Aを行ったときは、熱交換したタンク31内の湯温は低下する。1日の給湯使用量が少ない場合、あるいは前日の低温となった浴槽水を再度沸上げて利用する場合にはタンク31に多量の残湯がある。特に、前日の低温となった浴槽水を再度沸上げて利用する場合には、タンク31から浴槽59へ出湯しないため多量の残湯がある。これらの場合に風呂追焚き運転Aを行うと、追焚き後に多量の中間温度の湯がタンク31に残るため、ヒートポンプ熱源であるヒートポンプユニット33で湯沸かし運転する際に効率が非常に悪くなる。しかし、本発明では、高温の湯が設定湯量より多量にある場合、先ずタンク31の残湯を浴槽59へ注湯して追焚きに利用しタンク31内の残湯量を少なくする。そして、家族の入浴とともにこの追焚き運転Bを繰り返すことによって、タンク31の残湯量が少なくなって残湯量が設定湯量以下に達すると、その後、浴槽59の追焚き運転の指令を検出した時、風呂追焚き運転Aを行うので、湯沸かし運転前にタンク31に残った中間温度の湯量が少なくなる。このように、一日の給湯使用量が少なく多量の高温残湯があるときに浴槽の追焚き指令があった場合、先ず浴槽59へタンク内の高温湯(例えば85℃)を出湯して浴槽水を昇温する。そして、風呂追焚き運転Aおよび風呂追焚き運転Bをしながら、残湯を減らし、風呂熱交換器58を用いた風呂追焚き運転Aによる中間温度の湯がタンク内に多量に残らないようにできるので、攪拌流路の第三のポンプ57の運転による温度低下の効果が大きくなり、より低温の水を再加熱する結果となるので運転効率が向上し、給湯にかかる光熱費を低減することができる。
【0031】
また、浴槽加熱用の風呂熱交換器58を設けているので、深夜電力を利用してヒートポンプ熱源により加熱しタンク31内に貯めた湯の熱を利用して浴槽の追焚きも可能となり、深夜電力の料金も安く加熱の運転効率も高いので、浴槽追焚きにかかる光熱費も低減できる。そして、給湯使用後の深夜にタンク31内を再加熱する湯沸かし運転の際に、浴槽59の湯との熱交換により高温から中間温度に放熱したタンク31内の残湯を攪拌流路の運転により温度低下させることができるので、中間温度の湯を再加熱するよりも運転効率が向上し、給湯にかかる光熱費をさらに低減することができる。
【0032】
前述の風呂追焚き運転も含めて一日の給湯使用が終了すると、使用者が給湯終了スイッチ55を押し、制御手段49はクロック54の出力が深夜時刻帯になるまで攪拌運転の待機モードに入る。そして深夜の湯沸かし運転前になると、制御手段49は、タンク31内の湯温検出手段である第1サーミスタ44の湯沸かし前検出温度t2が所定の温度ts2(例えば、設定加熱温度45℃)より高温であるt2>ts2の場合に攪拌運転を許可し、第三のポンプ57を駆動して攪拌流路の運転を開始する。タンク31内の残湯は、前述の風呂追焚き運転Aが行われていると中間温度まで温度低下しており、このときの残湯の温度と量が例えば50℃で150Lであり、タンク下半分の温度が給水温度とほぼ等しい5℃であったとすると、攪拌運転によりタンク31内全量の温度が均一化すると27.5℃になる。本実施例におけるヒートポンプユニット32の運転効率COPが、入口サーミスタ48の水温に対して図2に示すようなCOP値をとる場合、攪拌後の湯沸かし運転を消費電力量11.5キロワット時で行うこととなる。一方、攪拌せずに湯沸かし運転をした場合は、タンク下半分をCOP2.5で沸かして5.6キロワット時、タンク上半分をCOP1.0で沸かして6.1キロワット時となり、合計すると11.7キロワット時と、少し余計に電力を消費することとなる。残湯の温度がこの例よりも高温であれば、攪拌実施による消費電力の低減効果がさらに顕著となる。このように、タンク31内の残湯が所定値であるts2より低い比較的低温水のときは、ヒートポンプ熱源で再加熱するときの運転効率COPの悪化も僅少なので、タンク下部の給水を高COPで加熱した分と残湯を再加熱した分との平均COPは、攪拌して加熱運転した場合よりも高効率になる。一方、タンク内の残湯が所定値であるts2より高温のt2>ts2の場合は攪拌流路の運転による温度低下の効果により加熱運転の効率が向上し、運転の省電力化が図れ給湯のための運転費を節約できる。
【0033】
そして、攪拌流路は加熱通路と兼用の流水配管56であるので、攪拌手段として新たに部材を設けることなくヒートポンプ熱源の加熱用回路構成をそのまま兼用でき、機器価格が高くならずに光熱費が低減できる経済性の優れたヒートポンプ給湯機を提供できる。
【0034】
なお本実施例では、残湯量検出手段として第1サーミスタ44と第2サーミスタ45とによりタンク31の所定位置のそれぞれの検出温度から残湯量を求めるものを説明したが、多数の温度検出手段の設置間隔を密にしたものや、流量センサーを設けて検出するものなどでもよく、種々のものが考えられる。
【0035】
(実施例3)
図5は、本発明の第3の実施例における給湯機であるヒートポンプ給湯機の要部構成図を示すものである。
【0036】
図5において、図1および図3と同符号のものは相当する構成要素であり、詳細な説明は省略する。図において、67はタンク31の外部に設けた風呂熱交換器であり、タンク側とは第四のポンプ68を設けた配管69と接続されてタンク上部と循環路を形成している。一方、浴槽側は浴槽59に接続された往き管60と戻り管61および風呂ポンプ62とで循環路を構成し、風呂ポンプ62を駆動することで浴槽59内の湯とタンク31内上部の高温湯とが熱交換できるようになっている。
【0037】
以上のように構成されたヒートポンプ給湯機において、以下その動作、作用について説明する。使用者が入浴に際して指令手段66を操作して制御手段49が追焚き指令を検出したとき、制御手段49は残湯量に基づき風呂追焚き運転A63か風呂追焚き運転B64かを選択する。風呂追焚き運転Bを選択した場合は、電磁開閉弁65を開弁してタンク31の高温湯を浴槽59へ注湯することで追焚き運転する。一方、風呂追焚き運転Aを選択した場合は、第四のポンプ68および風呂ポンプ62を運転し、タンク31上部の高温湯と浴槽59の湯を風呂熱交換器67へ流して熱交換し、浴槽59の湯を高温にして浴槽59に戻して追焚き運転する。この風呂追焚き運転Aを行ったときは、熱交換したタンク31内の湯温は風呂熱交換器67で放熱して温度低下しタンク内に戻されるので、タンク31内の湯が中間温度に低下する。しかし、本発明では、一日の給湯使用量が少なく多量の高温残湯があるときに浴槽の追焚き指令があった場合、先ず浴槽59へタンク内の高温湯(例えば85℃)を出湯する追焚き運転Bにより浴槽水を昇温する。そして、風呂追焚き運転Aおよび風呂追焚き運転Bをしながら残湯を減らし、風呂熱交換器67を用いた風呂追焚き運転Aによる中間温度の湯がタンク内に多量に残らないようにできるので、攪拌流路の運転による温度低下の効果が大きくなるので運転効率が向上し、給湯にかかる光熱費を低減することができる。
【0038】
また、浴槽加熱用の風呂熱交換器67を設けているので、深夜電力を利用した湯の熱を利用して浴槽の追焚きも可能となり、浴槽追焚きにかかる光熱費も低減できる。そして、給湯使用後の深夜の湯沸かし運転の際に、中間温度に放熱したタンク31内の残湯を攪拌流路の運転により温度低下させることができるので運転効率が向上し、給湯にかかる光熱費をさらに低減することができる。
【0039】
【発明の効果】
以上のように、発明によれば、昼間給湯使用した後の残湯が、深夜の加熱前にタンク内に残っていても、攪拌流路により残湯を高温のまま再加熱せずに、タンク下方の低温の給水と攪拌混合し十分に温度低下させた後にタンク全量を沸かすことができるので、ヒートポンプ熱源で加熱する際の供給温度が低くなり、効率化による運転の省電力化が図れ、給湯にかかる光熱費を低減することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1のヒートポンプ給湯機の構成図
【図2】 本発明の実施例1のヒートポンプ給湯機の運転効率特性図
【図3】 本発明の実施例2のヒートポンプ給湯機の構成図
【図4】 本発明の実施例2のヒートポンプ給湯機の動作を説明するフローチャート
【図5】 本発明の実施例3のヒートポンプ給湯機の要部構成図
【図6】 従来のヒートポンプ給湯機の構成図
【図7】 従来のヒートポンプ給湯機の運転効率特性図
【符号の説明】
31 タンク
32 ヒートポンプユニット(ヒートポンプ熱源)
33 流水配管(加熱通路)
33a 流入管
33b 流出管
34 第一のポンプ(攪拌手段B)
35 圧縮機
36 給湯用熱交換器(放熱器)
37 膨張弁(減圧手段)
38 室外熱交換器(蒸発器)
44 第1サーミスタ(湯温検出手段、残湯量検出手段)
45 第2サーミスタ(残湯量検出手段)
46 第3サーミスタ(水温検出手段)
49 制御手段
52 攪拌流路
53 第二のポンプ(搬送手段A)
56 流水配管(加熱通路、攪拌流路)
57 第三のポンプ(搬送手段B)
58 風呂熱交換器
59 浴槽
60 往き管
61 戻り管
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat pump water heater having a hot water storage tank.
[0002]
[Prior art]
  Conventionally, a heat pump water heater using a refrigerant such as R22 is known. As shown in FIG. 6, this type of heat pump water heater includes a tank 1 that stores hot water, a heat pump heat source 2 that is a heating means for hot water, a flowing water pipe 3 that connects the tank 1 and the heat pump heat source 2, and It is comprised from the pump 4 etc. which circulate the water for hot water supply in the flowing water piping 3. FIG.
[0003]
  The heat pump heat source 2 is configured by sequentially connecting a compressor 5, a hot water supply heat exchanger 6, an expansion valve 7, an outdoor heat exchanger 8, and an accumulator 9 by a refrigerant pipe 10, and is filled with a refrigerant. The hot water supply heat exchanger 6 exchanges heat between the high-pressure gas refrigerant discharged from the compressor 5 and hot water supply water, and has a refrigerant passage 6a through which the refrigerant flows and a hot water supply water passage 6b through which the hot water supply flows. ing. The expansion valve 7 is a decompression device that decompresses the refrigerant flowing out of the hot water supply heat exchanger 6 according to the valve opening degree, and the outdoor heat exchanger 8 is blown by the fan 11 with the refrigerant decompressed by the expansion valve 7. Evaporate by heat exchange with outside air. The accumulator 9 gas-liquid separates the refrigerant evaporated in the outdoor heat exchanger 8 and stores the liquid refrigerant, causes the compressor 5 to suck only the gas-phase refrigerant, and stores the excess refrigerant in the cycle. The running water pipe 3 is composed of a cold water pipe 3a and a hot water pipe 3b connected to the hot water supply water passage 6b of the hot water supply heat exchanger 6, and the upstream end of the cold water pipe 3a is connected to the bottom surface of the tank 1, and the hot water pipe 3b. Is connected to the top surface of the tank 1. The pump 4 is provided in the cold water pipe 3 a (or may be the hot water pipe 3 b), and is energized to rotate to circulate hot water supply water in the tank 1 through the flowing water pipe 3. The flow direction of the hot water supply water flows from the lower part of the tank 1 to the cold water pipe 3a → the hot water supply water passage 6b of the hot water supply heat exchanger 6, as shown by the arrows in the figure, where it is heated by the heat pump heat source 2. It becomes hot water and flows from the hot water supply passage 6b to the hot water pipe 3b to the upper part of the tank 1. A water supply pipe 12 for supplying water into the tank 1 is connected to the bottom surface of the tank 1, and hot water stored in the tank 1 (hot water) is supplied to the user on the top surface of the tank 1. For this purpose, a hot water supply pipe 13 is connected.
[0004]
  Generally, in such a hot water storage type hot water heater, when using hot water stored in a tank for direct hot water supply, the temperature of hot water (hot water storage temperature) is set to 60 ° C. or more from the viewpoint of hygiene, or the tank is downsized. Therefore, it is heated to as high a temperature as possible (65 ° C. for R22 and 90 ° C. for a carbon dioxide refrigerant) as much as possible due to the characteristics of the refrigerant and stored in the tank 1. The heat pump heat source 2 is operated at a midnight time zone where the electricity rate is low and heats the entire tank 1 to hot water, and the main method is to use hot water from the next morning to the night. The hot water is stored in the tank at midnight. The heating temperature and the capacity of the tank 1 are set so that the hot water supply load exceeds the amount of heat and the hot water in the tank 1 does not become insufficient. The hot water supply load is the amount of heat required to obtain hot water necessary for hot water use. For example, in order to obtain the same hot water temperature and amount of hot water, the required amount of heat increases as the supply water temperature decreases. .
[0005]
[Problems to be solved by the invention]
  However, since the conventional heat pump water heater always keeps hot water in the tank 1 so that a shortage of hot water in the tank does not occur when hot water is used, the tank 1 immediately before the midnight heating after the end of the day of hot water use. There is a remaining hot water inside. Since the remaining hot water has a temperature lower than the set heating temperature due to heat radiation from the tank, when the entire hot water is heated in the midnight time zone together with the remaining hot water, the remaining hot water whose temperature has decreased passes through the flowing water pipe 3a. When the heat pump heat source 2 is supplied, the operation efficiency when the temperature is raised to the set temperature by the heat pump is extremely deteriorated. As shown in FIG. 7, when the water temperature rises, the operating efficiency COP of the heat pump is very deteriorated. In particular, a heat pump heat source using carbon dioxide as a refrigerant significantly decreases.
[0006]
  The present invention solves the above-described conventional problems, and provides a heat pump water heater that eliminates medium to high temperature hot water remaining in a tank and performs heat pump hot water storage operation with high efficiency, and reduces light and heat costs for hot water supply. With the goal.
[0007]
[Means for Solving the Problems]
  In order to solve the conventional problem, the heat pump water heater of the present invention isA tank for hot water storage, a heat pump heat source that heats the water in the tank having a compressor, a radiator, a decompression means, an evaporator, and water heated by the heat pump heat source having a first pump A heating passage for returning to the upper part of the tank, a stirring passage for circulating and stirring the water through the lower part and the upper part of the tank with a second pump, and hot water supply when the user finishes using the hot water for one day A hot water supply end setting means for confirming the end of use and setting the stirring permission in the tank, and when the midnight time zone is reached, the heat pump hot water supply that performs the stirring operation through the stirring channel by driving the second pump A machine.
[0008]
  In addition, a hot water storage tank, a heat pump heat source for heating the water in the tank having a compressor, a radiator, a decompression means, and an evaporator, and water heated by the heat pump heat source having a first pump A heating passage for returning the upper part of the tank to the upper part of the tank, and a hot water supply end setting means for confirming the end of the use of the hot water supply and setting the stirring permission in the tank when the user finishes using the hot water supply for a day,
A heat pump water heater that performs a stirring operation through the heating flow path by driving the first pump without operating a heat pump heat source..
[0009]
  As a result, even if the remaining hot water after the hot water supply is used in the daytime remains in the tank before heating at midnight, the remaining hot water is not reheated at a high temperature by the operation of the conveying means A in the stirring channel. Can be boiled after the temperature is sufficiently lowered by stirring and mixing with the low-temperature water supply below the tank, the supply temperature when heating with the heat pump heat source is lowered, and the efficiency of the heating operation is improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  Invention of Claim 1 has a heat pump heat source which has a tank for hot water storage, a compressor, a radiator, a decompression means, an evaporator, and heats water in the tank,A heating passage for returning water heated by the heat pump heat source to the upper part in the tank having a first pump, and a second pumpStirring channel that circulates and stirs water through the lower and upper partsWhen the user finishes using the hot water supply for the day, the end of the hot water supply is set and the end of the hot water use is confirmed and the stirring permission in the tank is set. A heat pump water heater that performs a stirring operation through the stirring flow path by driving the second pump at midnight time zoneTherefore, even if the remaining hot water after using the hot water supply in the daytime is left in the tank before heating at midnight, the remaining hot water is not reheated at a high temperature by operating the conveying means A of the stirring channel. The tank can be boiled after it is mixed with the low temperature water supply below the tank and the temperature is sufficiently lowered, so the supply temperature when heating with a heat pump heat source is lowered, improving operating efficiency and saving power As a result, the utility cost for hot water supply can be reduced.
[0011]
    The invention described in claim 2A tank for hot water storage, a heat pump heat source that heats the water in the tank having a compressor, a radiator, a decompression means, an evaporator, and water heated by the heat pump heat source having a first pump A heating passage for returning to the upper part of the tank, and a hot water supply end setting means for confirming the end of use of the hot water supply and setting agitation permission in the tank when the user finishes using the hot water supply for the day.WithThe stirring operation is executed through the heating flow path by driving the first pump without operating the heat pump heat source.By using a heat pump water heater,In this case, the supply temperature at the time of heating with the heat pump heat source is lowered, so that the operation efficiency is improved, the power consumption of the operation can be reduced, and the utility cost for hot water supply can be reduced, and the equipment cost can be reduced. it can.
[0012]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0013]
  (Example 1)
  FIG. 1 shows a schematic diagram of the configuration of the heat pump water heater in the first embodiment of the present invention, and FIG. 2 shows the temperature of the influent water in the heat pump water heater of the embodiment and the operating efficiency when it is heated. It shows (COP) characteristics.
[0014]
  In FIG. 1, 31 is a tank for storing hot water supply water, 32 is a heat pump unit which is a heat source serving as heating means for hot water supply water, 33 is a flowing water pipe connecting the tank 31 and the heat pump unit 32, and 34 is water supply for hot water supply. The first pump to circulate. The heat pump unit 32 includes a heat pump circuit in which a compressor 35, a hot water supply heat exchanger 36, an expansion valve 37, and an outdoor heat exchanger 38 are sequentially connected by a refrigerant pipe 39 and filled with refrigerant and a fan 40. . Here, in this embodiment, carbon dioxide refrigerant was used as the refrigerant. The hot water supply heat exchanger 36 is a radiator that exchanges heat between the high-pressure gas refrigerant discharged from the compressor 35 and hot water supply water, and has a refrigerant passage 36a through which the refrigerant flows and a hot water supply water passage 36b through which the hot water supply flows. is doing. The expansion valve 37 is a decompression unit that decompresses the refrigerant flowing out of the hot water supply heat exchanger 36 according to the valve opening degree, and the outdoor heat exchanger 38 blows the refrigerant decompressed by the expansion valve 37 by the fan 40. Evaporate by heat exchange with outside air.
[0015]
  The flowing water pipe 33 is composed of an inflow pipe 33a and an outflow pipe 33b connected to the hot water supply water passage 36b of the hot water supply heat exchanger 36, the upstream end of the inflow pipe 33a is connected to the bottom surface of the tank 31, and the outflow pipe 33b. Is connected to the top surface of the tank 31. The first pump 34 is provided in an inflow pipe 33 a (or the outflow pipe 33 b) in the heat pump unit 32, and is energized and rotated to circulate hot water supply water in the tank 31 through the flowing water pipe 33. The flow direction of the hot water supply water flows from the lower part of the tank 31 to the inflow pipe 33a → the hot water supply water passage 36b of the hot water supply heat exchanger 36, as shown by the arrows in the figure, where it is heated by the heat pump unit 32. The hot water flows into the hot water supply passage 36 b → the outflow pipe 33 b → the upper part in the tank 31, and the hot water is stored in the tank 31. In addition, a water supply pipe 41 for supplying city water to the tank 31 while applying a supply water pressure is connected to the bottom surface of the tank 31, and hot water supply water (warm water) stored in the tank 31 is connected to the top surface of the tank 31. ) Is supplied to the user, and a plurality of faucets 43 such as a kitchen, a bathroom, a bathroom, etc. are provided at the tip.
[0016]
  On the wall surface of the tank 31, three thermistors 44, 45, and 46 as temperature detecting means are arranged at different heights. Specifically, the first thermistor 44, the second thermistor 45, and the third thermistor 46 are arranged in this order from the upper part to the lower part in the drawing. Further, an outlet thermistor 47 is provided in the vicinity of the outlet of the hot water supply heat exchanger 36 in the outflow pipe 33b, and an inlet thermistor 48 is provided in the inlet side of the hot water supply heat exchanger 36 in the inflow pipe 33a, and the thermistors 44, 45, The detection signals 46, 47, and 48 are respectively input to control means 49 configured using a microcomputer (not shown) having a CPU, a memory, an input / output interface, and the like. Reference numeral 50 denotes a remote controller for remotely operating the heat pump water heater. The remote controller 50 is connected to the control means 49 via a signal cable 51 by wire.
[0017]
  Of the operation of the heat pump water heater having the above-described configuration, a water heater operation will be described. First, the control means 49 drives the compressor 35 in the refrigerant circuit to which it is electrically connected, so that the hot water supply heat exchanger 36 functions as a radiator and the outdoor heat exchanger 38 functions as an evaporator. Next, the first pump 34 in the water system circuit is operated. Then, the stored water flows out from the bottom of the tank 31, and flows through the water passage 36 b of the hot water supply heat exchanger 36 through the inflow pipe 33 a as described above. At this time, the water is heated by the hot water supply heat exchanger 36 functioning as a radiator and returned to the upper portion of the tank 31 through the outflow pipe 33b. And by performing such operation | movement continuously, it is comprised so that high temperature hot water may be stored gradually from the upper end side of the tank 31 to a lower end side. In this hot water operation, the outlet thermistor 47 detects the temperature of the hot water heated by the hot water supply heat exchanger 36, and the electrically connected control means 49 determines the temperature of the hot water (for example, dioxide dioxide). Operation control is performed based on this detection signal so that the heating temperature is set to 85 ° C. for a carbon refrigerant. When the inlet thermistor 48 detects the temperature of the water flowing in from the tank 31 and the inflow temperature from the tank becomes higher than a predetermined heating end temperature (for example, 75 ° C. obtained by subtracting 10 degrees from the set heating temperature 85 ° C.) Based on the signal, the control means 49 determines that the entire amount of the tank 31 has become hot water, and stops the water boiling operation. This water heater operation is usually performed at late-night hours when electricity charges are cheap using the late-night electricity rate system, and hot water is boiled and stored so as to cover the amount of hot water supply during the day. .
[0018]
  In the heat pump water heater configured as described above, from the state in which the entire amount of the tank 31 (for example, 300 liters in the case of a 300 liter tank) is stored as high temperature hot water by using the hot water heating operation as described above, The amount of hot water decreases. When using hot water, the user operates the nearest remote controller 50 to request hot water. Then, this hot water supply request signal is transmitted to the control means 49 via the cable 51. In the case of hot water from the faucet, when the faucet 43 is opened, hot water of about 85 ° C. stored in the tank 31 is pushed up by the feed pressure of the water flowing through the feed water pipe 41, and the faucet 43 used through the hot water supply pipe 42. To be supplied. In the tank 31 after use of hot water supply, due to the specific gravity difference due to the water temperature, the upper part of the tank is the high temperature layer W1 of the high temperature hot water, and the lower part is the low temperature layer W3 where the water supply is not heated and remains between the high temperature layer W1 and the low temperature layer W3. It is naturally separated into an intermediate temperature medium temperature layer W2 forming a thin layer sandwiched between the layers, and has a three-layer structure of a high temperature layer W1, a medium temperature layer W2, and a low temperature layer W3 from above.
[0019]
  By the way, as shown above, the thermistors 44, 45, and 46 are arranged at different height positions in the tank 31, so that the temperature of the hot water can be detected by dividing the inside of the tank 31 into three. It has become. That is, from the upper part toward the lower part in the figure, the first thermistor 44 is provided to detect the minimum remaining hot water amount, the second thermistor 45 is provided to detect the large hot water, and the third thermistor 46 is provided to detect the maximum hot water storage amount. The temperature of the hot water is detected. Further, the detection signals of the thermistors 44, 45, 46 and 47 are configured to be input to the control means 49, respectively. The control means 49 can appropriately detect the temperature change of each detection signal input within a predetermined time. It has a function of selecting hot water supply operation control and issuing an operation command. Then, when the remaining hot water amount becomes a predetermined minimum hot water amount (for example, 100 liters in the case of the 300 liter tank), the heat pump unit 32 is operated to increase boiling. Specifically, when the hot water temperature tw detected by the first thermistor 44 of the tank 31 becomes lower than a reference temperature ts0 (for example, 50 ° C.), the control means 49 receives the detection signal and starts the operation. Make a decision. And the control means 49 requests | requires the driving | operation of the heat pump unit 32, drives the 1st pump 34 and the compressor 35, and performs a boiling increase operation. Then, when the hot water temperature tw detected by the first thermistor 44 reaches a set heating temperature (for example, 85 ° C.), the above-described constant remaining hot water amount is maintained by repeatedly performing control such as stopping the operation. Be controlled.
[0020]
  Next, a characteristic stirring channel in the tank of the embodiment of the present invention and its control will be described. 52 is an agitation channel, the upstream end is connected to the bottom surface of the tank 31, the second pump 53 provided in the middle, the downstream end is connected to the top surface of the tank 31, the lower and upper parts in the tank It is communicated. The agitation channel 52 drives the second pump 53 to transport the low temperature water flowing from the water supply pipe 41 and stored in the lower part of the tank 31 to the upper part of the tank 31, and the hot water in the upper part of the tank is supplied. It can be stirred while cooling. The control means 49 is provided with a clock 54 for outputting the current time, and when the user finishes using the hot water supply for one day, the remote controller 50 determines the end of the hot water supply use and sets the stirring permission in the tank. A hot water supply end switch 55 which is hot water supply end setting means is provided.
[0021]
  When the user finishes using the hot water supply of the day and presses the hot water supply end switch 55 of the remote controller 50, the control means 49 enters the standby mode of the stirring operation and waits until the output of the clock 54 reaches the midnight time zone. . At the time of the night when the use of the hot water supply for one day is finished, the amount of hot water exceeding the minimum remaining hot water amount is left in the tank 31 by performing the heating operation as described above. Immediately before the start of the water heating operation at midnight, the temperature of the remaining hot water is lowered due to heat radiation from the tank. In particular, at the bottom of the position where the first thermistor 44 used in the water heating operation is provided, Some hot water has been radiated for about a day after being boiled, and the temperature is somewhat lower than the set heating temperature (for example, 85 ° C.). Therefore, when time passes and the midnight time zone is entered, the control means 49 detects that the detection temperature tm of the second thermistor 45 that is the hot water temperature detection means in the tank 31 is a predetermined temperature ts0 (for example, a set heating temperature of 85 ° C.). In the case of tm <ts0, which is lower than 75 ° C., which is 10 ° C.), since the reheating is necessary to cover the hot water supply load, the stirring operation is permitted, and the second pump 53 is driven to operate the stirring channel. To start. Due to the operation of the stirring channel, the low temperature water in the lower part of the tank 31 that has flowed in from the water supply pipe 41 is conveyed to the upper part of the tank, and is mixed with the relatively hot remaining hot water in the upper part of the tank by the water flow. The temperature of the hot water at the top of the tank decreases. For example, if the detected temperature tm of the second thermistor 45 is 50 ° C., the average temperature in the upper half of the tank is 65 ° C., and the temperature in the lower half is 5 ° C. which is substantially equal to the feed water temperature, When homogenized, the temperature becomes 35 ° C. When the operation efficiency COP of the heat pump unit 32 in this embodiment takes a COP value as shown in FIG. 2 with respect to the water temperature of the inlet thermistor 48, the boiling water operation after stirring is performed with 300 liters at COP 1.5. Since the amount of power consumption is calculated by (amount of boiling water × (set heating temperature−water temperature) ÷ COP ÷ 860), 300 × (85−35) ÷ 1.5 ÷ 860 = 11.6 kWh. On the other hand, when the water heater is operated without stirring, the lower half of the tank is boiled with COP2.5 to 5.6 kWh, the upper half of the tank is boiled with COP0.5 to 7.0 kWh, and the total is 12.6 kWh Then, about 9% extra power is consumed. As another example, when the upper 50 liters of the tank 31 is 65 ° C. and the lower 250 liters is 5 ° C., the difference due to the stirring is more remarkable, and the difference in power consumption is less than 30%. Thus, the water in the tank 31 is circulated between the lower part and the upper part to agitate the water in the tank 31 and substantially uniformize the temperature in the tank. Even if the remaining hot water remains in the tank before heating at midnight, the remaining hot water is not reheated in the boiling water operation at a high temperature, and the remaining hot water is cooled at a low temperature below the tank by the operation of the second pump 53 of the stirring channel 52. Since the entire tank can be boiled after the temperature has been sufficiently lowered by mixing with the water supply, the supply temperature when heating by the heat pump unit 32 is lowered, the operation efficiency is improved, and the power consumption of the operation can be reduced. The utility cost can be reduced.
[0022]
  During the operation of the stirring channel, in the above-described three-layer structure of W1, W2, and W3, the mixed hot water stirred and mixed with the low temperature water at the upper part of the tank is somewhat higher than the water temperature in the W3 region. Stirring due to the operation of the stirring channel 52 occurs in the region from W1 to W2 without descending to the large W3 region. On the other hand, since the water of the W3 area | region which is low temperature among 3 layer structures is conveyed to a tank upper part, the low temperature layer W3 reduces. When all of the water in the low temperature layer W3 region has been transported to the upper part of the tank for stirring, the low temperature water disappears at the position of the third thermistor 46 provided at the lower part of the tank 31 and turns into mixed hot water. The detected temperature t1 rises. When t1 exceeds a predetermined temperature ts1 (for example, 30 ° C.) and t1> ts1, the control unit 49 ends the stirring operation and stops the second pump 53. As described above, when the high temperature layer W1, the intermediate temperature layer W2, and the low temperature layer W3 are formed, the mixed hot water having a temperature higher than that of the low temperature water does not descend to the W3 region where the specific gravity is large. Since the agitation is caused by the operation, the second pump serving as the conveying means detects the completion of the agitation by completing the conveyance of the water in the low temperature layer W3 region to the upper part of the tank through the agitation flow path 52 for the agitation. Since the drive of 53 can be stopped, the drive power of the conveying means can be saved without continuing the operation of the stirring channel 52 more than necessary, the operation of the water heater can be made more efficient, and the operation cost for hot water supply can be saved.
[0023]
  When the stirring operation is finished, the midnight water heater operation is started. The flowing water pipe 33 takes out water from the lower part in the tank 31 and supplies it to the heat pump unit 32. The water is heated by the heat pump unit 32 and returned to the upper part in the tank. In the process of boiling water after the temperature of the hot water in the entire area has been lowered, water is taken out from the lower part of the tank, heated with a heat pump heat source and returned to the upper part of the tank, so that the hot upper layer and the lower temperature in the tank Since the temperature stratification can be formed to divide into the lower layer, the hot water heated once through the heat pump heat source is reheated, and only the low-temperature water is reliably heated to improve the operation efficiency and take the hot water supply. The utility cost can be reduced.
[0024]
  Then, by using carbon dioxide as the refrigerant sealed in the heat pump circuit, the hot water can be stored in the boiling tank with high efficiency. In addition, when the temperature of the supply water to the hot water supply heat exchanger 36 before heating is high, the operation efficiency of the carbon dioxide refrigerant is remarkably reduced. Therefore, the effect of improving the operation efficiency is greatly reduced by reducing the temperature by stirring in the tank. Thus, the utility cost for hot water supply can be reduced.
[0025]
  In the present embodiment, the control method for ending the stirring operation of the stirring channel 52 when the detected temperature t1, which is the water temperature in the lower part of the tank, exceeds the predetermined temperature ts1 when t1> ts1, is described. The control means 49 calculates the required heating time for the boiling water operation of the tank, and finishes the stirring operation giving priority to the required heating time so that the boiling water operation is completed at midnight, that is, if the required heating time is sufficiently short, the tank The operation of the agitation channel 52 is terminated based on the water temperature at the inner and lower parts. If the required heating time is long, the agitation operation is terminated even if the agitation operation is insufficient and the water heating operation is preferentially terminated within the midnight time zone. May be.
[0026]
  Further, in this embodiment, the low-temperature water flowing in the stirring channel 52 from the water supply pipe 41 and stored in the lower portion of the tank 31 is driven to the upper portion of the tank 31 by driving the second pump 53. Although the high-temperature hot water in the upper part of the tank can be stirred while being cooled, the inside of the tank can be maintained even if the second pump 53 is provided so that water is taken out from the upper part of the tank and returned to the lower part of the tank. Stir and mix.
[0027]
  Further, the heat pump unit 32 is operated by the flowing water pipe 33 as the heating passage and the first pump 34 as the conveying means B instead of the stirring flow path 52 and the second pump 53 as the conveying means A. The inside of the tank 31 may be agitated by driving without any operation. In this case, the equipment cost can be reduced.
[0028]
  (Example 2)
  FIG. 3 shows a schematic diagram of a configuration of a heat pump water heater that is a water heater in the second embodiment of the present invention, and FIG. 4 shows a control flowchart for explaining the operation in the heat pump water heater of the embodiment. It is.
[0029]
  3, components having the same reference numerals as those in FIG. 1 are corresponding components, and detailed description thereof is omitted. In the figure, a flowing water pipe 56 that doubles as a heating passage in the heat pump heat source and a stirring passage of the tank 31 is composed of an inflow pipe 56a and an outflow pipe 56b connected to the hot water supply water path 36b of the hot water supply heat exchanger 36. The upstream end of the inflow pipe 56 a is connected to the bottom surface of the tank 31, and the downstream end of the outflow pipe 56 b is connected to the top surface of the tank 31. The third pump 57 is provided in the inflow pipe 56 a (or the outflow pipe 56 b) in the heat pump unit 32 and is energized and rotated to circulate the hot water supply water in the tank 31 through the flowing water pipe 56. 58 is a bath heat exchanger provided in the upper part of the tank 31. The forward pipe 60 connected to the bathtub 59, the return pipe 61 and the bath pump 62 constitute a circulation path, and the bath pump 62 is driven. Heat exchange between the hot water in the bathtub 59 and the hot water in the upper part of the tank 31 can be performed. 63 is a bath chasing operation A, in which the hot water in the bathtub 59 is caused to flow to the bath heat exchanger 58 via the bath pump 62 and chasing operation is performed. Reference numeral 64 denotes a bath chasing operation B, in which high-temperature hot water in the upper part of the hot water storage tank 31 is discharged into the bathtub 59 through the hot water supply pipe 42 and the electromagnetic opening / closing valve 65. Reference numeral 66 denotes a chasing operation command means provided in the remote controller 50.
[0030]
  In the heat pump water heater configured as described above, the reheating operation for raising the hot water temperature of the bathtub among the operations and functions will be described below. When the user operates the command means 66 during bathing and the control means 49 detects a follow-up command, each of the predetermined positions of the tank 31 is detected by the first thermistor 44 and the second thermistor 45 which are the remaining hot water amount detection means. The amount of remaining hot water is obtained from the temperature, and based on this remaining amount of hot water, either bath reheating operation A63 or bath renewal operation B64 is selected. Specifically, when the detected temperature of the first thermistor 44 and the detected temperature of the second thermistor 45 are both high (for example, both about 85 ° C.), the remaining hot water amount is sufficiently larger than the set hot water amount, so B is selected, the electromagnetic on-off valve 65 is opened, and the hot water in the tank 31 is poured into the bathtub 59 via the hot water supply pipe 42 and the electromagnetic on-off valve 65 to carry out a chasing operation. On the other hand, when the detected temperature of the first thermistor 44 is high, but the detected temperature of the second thermistor 45 is low (for example, 40 ° C.), the remaining hot water amount is smaller than the set hot water amount, so the bath reheating operation A is selected. To do. Then, the bath pump 62 is operated to flow the hot water in the bathtub 59 to the bath heat exchanger 58 to exchange heat with the high-temperature hot water in the tank 31, return to the bathtub 59 and return to the bathtub 59 for a chasing operation. When this bath reheating operation A is performed, the hot water temperature in the tank 31 subjected to heat exchange decreases. When the amount of hot water used per day is small, or when the bath water that has been cooled to the previous day is boiled again and used, a large amount of hot water remains in the tank 31. In particular, when the bath water that has become low temperature the previous day is boiled and used again, there is a large amount of remaining hot water because no hot water is discharged from the tank 31 to the bathtub 59. When the bath reheating operation A is performed in these cases, a large amount of hot water having an intermediate temperature remains in the tank 31 after reheating, and thus the efficiency becomes extremely low when the water heating operation is performed with the heat pump unit 33 that is a heat pump heat source. However, in the present invention, when the amount of hot water is larger than the set amount of hot water, the remaining hot water in the tank 31 is first poured into the bathtub 59 and used for reheating, thereby reducing the remaining hot water in the tank 31. Then, by repeating this chasing operation B together with the bathing of the family, when the remaining hot water amount in the tank 31 decreases and the remaining hot water amount reaches the set hot water amount or less, then when the instruction of the chasing operation of the bathtub 59 is detected, Since the bath reheating operation A is performed, the amount of hot water at the intermediate temperature remaining in the tank 31 before the water boiling operation is reduced. In this way, when there is a bath replenishment command when there is a large amount of hot water remaining in the day and there is a large amount of hot water remaining, first the hot water (for example, 85 ° C.) in the tank is poured into the bathtub 59 and the bathtub is poured. Raise the water temperature. Then, the remaining hot water is reduced while performing bath rebirth operation A and bath rebirth operation B, so that a large amount of hot water at intermediate temperature by bath rebirth operation A using bath heat exchanger 58 does not remain in the tank. As a result, the temperature reduction effect due to the operation of the third pump 57 in the stirring channel is increased, resulting in the reheating of the cooler water, thereby improving the operation efficiency and reducing the utility cost for hot water supply. Can do.
[0031]
  In addition, since the bath heat exchanger 58 for heating the bathtub is provided, it becomes possible to retreat the bathtub using the heat of the hot water stored in the tank 31 by using a heat pump heat source using the power at midnight. The electricity cost is low and the heating operation efficiency is high, so the utility cost for bathing can be reduced. Then, in the case of a boiling operation in which the inside of the tank 31 is reheated at midnight after using the hot water supply, the remaining hot water in the tank 31 that has radiated heat from the high temperature to the intermediate temperature by heat exchange with the hot water in the bathtub 59 is operated by the operation of the stirring channel. Since the temperature can be lowered, the operating efficiency is improved as compared with reheating hot water at an intermediate temperature, and the utility cost for hot water supply can be further reduced.
[0032]
  When the use of the hot water supply for one day is completed including the bath reheating operation described above, the user presses the hot water supply end switch 55, and the control means 49 enters the standby mode of the stirring operation until the output of the clock 54 reaches the midnight time zone. . Then, before the midnight water boiling operation, the control means 49 detects that the detected temperature t2 before boiling of the first thermistor 44, which is the hot water temperature detecting means in the tank 31, is higher than a predetermined temperature ts2 (for example, a set heating temperature of 45 ° C.). When t2> ts2, the stirring operation is permitted, and the third pump 57 is driven to start the operation of the stirring channel. The remaining hot water in the tank 31 is lowered to an intermediate temperature when the above-described bath reheating operation A is performed, and the temperature and amount of the remaining hot water at this time are 150 L at 50 ° C., for example. Assuming that the half temperature is 5 ° C. which is substantially equal to the feed water temperature, the temperature in the tank 31 becomes 27.5 ° C. when the temperature in the tank 31 becomes uniform. When the operation efficiency COP of the heat pump unit 32 in the present embodiment takes a COP value as shown in FIG. 2 with respect to the water temperature of the inlet thermistor 48, the boiling water operation after stirring is performed at a power consumption of 11.5 kilowatt hours. Become. On the other hand, when the water heater is operated without stirring, the lower half of the tank is boiled with COP2.5 to 5.6 kWh, the upper half of the tank is boiled with COP1.0 to 6.1 kWh, and the total is 11.7 kWh And it will consume a little extra power. If the temperature of the remaining hot water is higher than this example, the effect of reducing the power consumption due to the stirring will become more remarkable. As described above, when the remaining hot water in the tank 31 is relatively low-temperature water lower than the predetermined value ts2, the deterioration of the operation efficiency COP when reheating with the heat pump heat source is slight. The average COP of the portion heated in step 1 and the amount reheated of the remaining hot water is more efficient than the case of stirring and heating operation. On the other hand, when the remaining hot water in the tank is higher than ts2, which is a predetermined value, when t2> ts2, the efficiency of the heating operation is improved by the effect of the temperature drop due to the operation of the stirring channel, and the power consumption of the operation can be reduced. Can save the operating cost.
[0033]
  And since the stirring flow path is the flowing water pipe 56 that also serves as the heating passage, the circuit configuration for heating the heat pump heat source can be used as it is without providing a new member as a stirring means, and the utility cost is not increased without increasing the equipment price. An economical heat pump water heater that can be reduced can be provided.
[0034]
  In the present embodiment, as the remaining hot water amount detecting means, the first thermistor 44 and the second thermistor 45 have been described for obtaining the remaining hot water amount from the respective detected temperatures at predetermined positions of the tank 31. However, a large number of temperature detecting means are installed. A thing with a close interval, a thing with a flow sensor provided for detection, and the like may be used.
[0035]
  (Example 3)
  FIG. 5 shows a configuration diagram of a main part of a heat pump water heater that is a water heater in the third embodiment of the present invention.
[0036]
  5, components having the same reference numerals as those in FIGS. 1 and 3 are corresponding components, and detailed description thereof will be omitted. In the figure, 67 is a bath heat exchanger provided outside the tank 31, and the tank side is connected to a pipe 69 provided with a fourth pump 68 to form a circulation path with the tank upper part. On the other hand, on the bathtub side, a circulation path is constituted by the forward pipe 60 connected to the bathtub 59, the return pipe 61, and the bath pump 62, and the hot water in the bathtub 59 and the high temperature in the upper portion of the tank 31 are driven by driving the bath pump 62. Heat can be exchanged with hot water.
[0037]
  The operation and action of the heat pump water heater configured as described above will be described below. When the user operates the command means 66 during bathing and the control means 49 detects a reheating command, the control means 49 selects the bath renewal operation A63 or the bath renewal operation B64 based on the remaining hot water amount. When the bath renewal operation B is selected, the regenerative operation is performed by opening the electromagnetic on-off valve 65 and pouring the hot water in the tank 31 into the bathtub 59. On the other hand, when the bath reheating operation A is selected, the fourth pump 68 and the bath pump 62 are operated, and the hot water in the upper portion of the tank 31 and the hot water in the bathtub 59 are allowed to flow to the bath heat exchanger 67 to exchange heat. The hot water in the bathtub 59 is returned to the bathtub 59 and the chasing operation is performed. When the bath reheating operation A is performed, the hot water temperature in the tank 31 that has been subjected to heat exchange is radiated by the bath heat exchanger 67 and the temperature is lowered and returned to the tank, so that the hot water in the tank 31 is brought to an intermediate temperature. descend. However, in the present invention, when there is a bath replenishment instruction when there is a large amount of hot water remaining in a day and there is a large amount of hot water remaining, hot water (for example, 85 ° C.) in the tank is first discharged to the bathtub 59. The temperature of the bathtub water is raised by the chasing operation B. Then, the remaining hot water is reduced while performing the bath chase operation A and the bath chase operation B, so that a large amount of hot water at the intermediate temperature by the bath chase operation A using the bath heat exchanger 67 does not remain in the tank. Therefore, since the effect of the temperature drop by the operation of the stirring channel is increased, the operation efficiency is improved, and the utility cost for hot water supply can be reduced.
[0038]
  In addition, since the bath heat exchanger 67 for heating the bathtub is provided, the bath can be reheated using the heat of hot water using midnight power, and the utility cost for bath reheating can be reduced. And, in the case of midnight water heating operation after using hot water supply, the temperature of the remaining hot water in the tank 31 radiated to the intermediate temperature can be lowered by the operation of the stirring flow path, so that the operation efficiency is improved and the utility cost for hot water supply is increased. Can be further reduced.
[0039]
【The invention's effect】
  As aboveBookAccording to the invention, even if the remaining hot water after daytime hot water supply is left in the tank before heating at midnight, the remaining hot water is not reheated at a high temperature by the stirring channel, and the low temperature water supply below the tank is used. The entire tank can be boiled after the temperature has been sufficiently lowered by stirring and mixing, so that the supply temperature when heating with a heat pump heat source is lowered, the power consumption of the operation can be reduced by improving efficiency, and the utility cost for hot water supply is reduced. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump water heater according to a first embodiment of the present invention.
FIG. 2 is an operational efficiency characteristic diagram of the heat pump water heater according to the first embodiment of the present invention.
FIG. 3 is a configuration diagram of a heat pump water heater according to a second embodiment of the present invention.
FIG. 4 is a flowchart illustrating the operation of the heat pump water heater according to the second embodiment of the present invention.
FIG. 5 is a configuration diagram of a main part of a heat pump water heater according to a third embodiment of the present invention.
FIG. 6 is a configuration diagram of a conventional heat pump water heater
[Fig. 7] Operating efficiency characteristic diagram of a conventional heat pump water heater
[Explanation of symbols]
  31 tanks
  32 Heat pump unit (heat pump heat source)
  33 Flowing water piping (heating passage)
  33a Inflow pipe
  33b Outflow pipe
  34 First pump (stirring means B)
  35 Compressor
  36 Heat exchanger for hot water supply (heat radiator)
  37 Expansion valve (pressure reduction means)
  38 Outdoor heat exchanger (evaporator)
  44 1st thermistor (hot water temperature detection means, remaining hot water amount detection means)
  45 Second thermistor (remaining hot water detection means)
  46 Third thermistor (water temperature detection means)
  49 Control means
  52 Stirring channel
  53 Second pump (conveying means A)
  56 Flowing water piping (heating passage, stirring passage)
  57 Third pump (conveying means B)
  58 Bath heat exchanger
  59 Bathtub
  60 Outward pipe
  61 Return pipe

Claims (2)

貯湯用のタンクと、圧縮機、放熱器、減圧手段、蒸発器を有し前記タンク内の水を加熱するヒートポンプ熱源と、第一のポンプを有して前記ヒートポンプ熱源で加熱された水を前記タンク内の上部へ戻す加熱通路と、第二のポンプを有して前記タンク内の下部と上部を連通し水を循環攪拌する攪拌流路と、使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手段とを備え、深夜時間帯になると前記第二のポンプを駆動することにより前記攪拌流路を通じて攪拌運転を実行するヒートポンプ給湯機。A tank for hot water storage, a heat pump heat source that heats the water in the tank having a compressor, a radiator, a decompression means, an evaporator, and water heated by the heat pump heat source having a first pump A heating passage for returning to the upper part of the tank, a stirring passage for circulating and stirring the water through the lower part and the upper part of the tank with a second pump , and hot water supply when the user finishes using the hot water for one day A hot water supply end setting means for confirming the end of use and setting the stirring permission in the tank, and when the midnight time zone is reached, the heat pump hot water supply that performs the stirring operation through the stirring channel by driving the second pump Machine. 貯湯用のタンクと、圧縮機、放熱器、減圧手段、蒸発器を有し前記タンク内の水を加熱するヒートポンプ熱源と、第一のポンプを有して前記ヒートポンプ熱源で加熱された水を前記タンク内の上部へ戻す加熱通路と、使用者が一日の給湯使用が終了すると給湯使用の終了を確定してタンク内の攪拌許可を設定する給湯終了設定手段とを備え、ヒートポンプ熱源を動作させずに前記第一のポンプを駆動することにより前記加熱流路を通じて攪拌運転を実行するヒートポンプ給湯機。 A tank for hot water storage, a heat pump heat source that heats the water in the tank having a compressor, a radiator, a decompression means, an evaporator, and water heated by the heat pump heat source having a first pump A heating passage returning to the upper part of the tank and a hot water supply end setting means for confirming the end of use of the hot water supply and setting agitation permission in the tank when the user finishes using the hot water supply for one day, and operates the heat pump heat source. A heat pump water heater that performs a stirring operation through the heating flow path by driving the first pump .
JP2002087836A 2002-03-27 2002-03-27 Heat pump water heater Expired - Lifetime JP3778115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087836A JP3778115B2 (en) 2002-03-27 2002-03-27 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087836A JP3778115B2 (en) 2002-03-27 2002-03-27 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2003287278A JP2003287278A (en) 2003-10-10
JP3778115B2 true JP3778115B2 (en) 2006-05-24

Family

ID=29233882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087836A Expired - Lifetime JP3778115B2 (en) 2002-03-27 2002-03-27 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3778115B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147499A (en) * 2003-11-14 2005-06-09 Matsushita Electric Ind Co Ltd Bath hot water supply device
JP4389566B2 (en) * 2003-12-03 2009-12-24 ダイキン工業株式会社 Water heater
JP4329732B2 (en) * 2005-06-10 2009-09-09 パナソニック株式会社 Heat pump water heater
JP4679548B2 (en) * 2007-05-23 2011-04-27 三菱電機株式会社 Hot water storage water heater
JP6974690B2 (en) * 2016-11-30 2021-12-01 ダイキン工業株式会社 Water heater
JP7125001B2 (en) * 2018-03-26 2022-08-24 株式会社ノーリツ Hot water storage water heater
CN110822711A (en) * 2019-11-22 2020-02-21 珠海格力电器股份有限公司 Water heater and hot water tank, control method and controller thereof
JP7294087B2 (en) * 2019-11-26 2023-06-20 三菱電機株式会社 heat pump water heater

Also Published As

Publication number Publication date
JP2003287278A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP3977382B2 (en) Hot water storage water heater
JP4778299B2 (en) Hot water storage type hot water supply device and method for changing standby opening of hot water mixing valve
JP3778106B2 (en) Heat pump water heater
JP2004286307A (en) Storage type water heater
JP3778115B2 (en) Heat pump water heater
JP3977241B2 (en) Hot water storage water heater
JP4053451B2 (en) Hot water storage water heater
JP4448488B2 (en) Hot water storage water heater
JP3632651B2 (en) Water heater
JP2007139258A (en) Hot water storage type water heater
JP3950031B2 (en) Hot water storage water heater
JP4037781B2 (en) Hot water storage water heater
JP5326890B2 (en) Thermal storage system
JP3935103B2 (en) Hot water storage water heater
JP3950032B2 (en) Hot water storage water heater
JP2005076892A (en) Cogeneration system
JP4351967B2 (en) Hot water storage water heater
JP4148909B2 (en) Heat pump water heater / heater
JP2008304153A (en) Heat pump water heater
JP2006162101A (en) Heat pump water heater
JP4354389B2 (en) Hot water storage water heater
JP4155162B2 (en) Hot water storage water heater
JP6734450B2 (en) Heat pump water heater
JP7310690B2 (en) Storage hot water heater
JP3958541B2 (en) Hot water storage hot water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7