JP4050363B2 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
JP4050363B2
JP4050363B2 JP22416697A JP22416697A JP4050363B2 JP 4050363 B2 JP4050363 B2 JP 4050363B2 JP 22416697 A JP22416697 A JP 22416697A JP 22416697 A JP22416697 A JP 22416697A JP 4050363 B2 JP4050363 B2 JP 4050363B2
Authority
JP
Japan
Prior art keywords
meth
acrylic acid
composite material
ionomer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22416697A
Other languages
Japanese (ja)
Other versions
JPH1134230A (en
Inventor
英郎 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP22416697A priority Critical patent/JP4050363B2/en
Publication of JPH1134230A publication Critical patent/JPH1134230A/en
Application granted granted Critical
Publication of JP4050363B2 publication Critical patent/JP4050363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、層間接着性、制振性、貫通衝撃強度等の優れた繊維強化複合材料に関する。
【0002】
【従来の技術】
ガラス繊維や炭素繊維などの強化繊維で強化した熱硬化性樹脂複合材料は、軽量で剛性が高く、また強度も優れているので、スポーツ用品、自動車産業、航空機産業などにおいて幅広く使用されている。例えば、テニスラケットにおいては重量当たりの面積を大きくできることから、またゴルフクラブにおいては軽量でしなるところから、このような複合材料が好んで用いられている。また最近では、人工衛星やロケットの構造部材としても使用されるようになってきた。
【0003】
このような用途において、さらに強度を高めるとともに振動減衰性を高めた材料が求められている。例えば、テニスラケットやゴルフクラブにおいては、打球時の感触の点から制振性が求められ、ロケットの構造部材においてはより高強度で、また打ち上げ時の電子機器の共振破壊を抑えるために制振性が求められている。
【0004】
【発明が解決しようとする課題】
そこで本発明者は、高強度で制振特性の優れた繊維強化複合材料を得るべく検討を行った。その結果、特定のエチレン共重合体との積層複合材料にすれば、そのような性能を付与できることを見いだすに至った。
【0005】
【課題を解決するための手段】
すなわち本発明は、強化繊維と熱硬化性樹脂とからなるプリプレグ層と、エチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体のアイオノマーであって、その中和度が5〜95%であり、該共重合体のエチレン含量が50〜98重量%、(メタ)アクリル酸含量が1〜25重量%および(メタ)アクリル酸エステル含量が1〜40重量%であるアイオノマーからなる層とを、交互に積層し、加熱、硬化してなる複合材料に関する。
【0006】
【発明の実施の態様】
本発明において用いられるプリプレグを構成する強化繊維としては、ガラス繊維、炭素繊維、アルミナ繊維、ボロン繊維、炭化珪素繊維、チタン酸カリ繊維、ステンレス繊維のような無機繊維、アラミド繊維、超高分子量ポリエチレン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維のような有機繊維などを例示することができる。中でも、ガラス繊維や炭素繊維の使用がもっとも好ましい。このような強化繊維は、通常クロス状やマット状で使用される。
【0007】
プリプレグを構成する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂などを挙げることができるが、とくにエチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体のアイオノマーとの反応性に富むエポキシ樹脂の使用がもっとも好ましい。
【0008】
プリプレグにおける強化繊維と熱硬化性樹脂の比率は、例えば重量比で10/90〜90/10、好ましくは30/70〜70/30程度である。またプリプレグ厚みは任意であるが、例えば10μm〜1mm程度が一般的である。
【0009】
本発明で用いることのできるエチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体は、エチレン含量50〜98重量%、好ましくは65〜93重量%、(メタ)アクリル酸含量が1〜25重量%、好ましくは4〜15重量%、(メタ)アクリル酸エステル含量が1〜40重量%、好ましくは2〜30重量%の重合組成を有するものである。ここに(メタ)アクリル酸とは、アクリル酸、メタクリル酸のことを指す。
【0010】
また(メタ)アクリル酸エステルとして具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸2−エチルヘキシル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、メタクリル酸nブチルなどを例示することができる
【0011】
さらに任意成分として、一酸化炭素や二酸化硫黄のようなものが共重合されたものであってもよい。
【0012】
このような共重合体は、一般の高圧ラジカル重合法によって得ることができる。
【0013】
本発明においては、上記エチレン共重合体のアイオノマーを用いる。アイオノマーとしては、リチウム、ナトリウム、カリウムのような1価金属、マグネシウム、カルシウム、亜鉛、銅、鉛、ニッケル、コバルトアルミニウム、鉄などの多価金属などの1種又は2種以上の金属イオンをイオン種とするものを使用することができる。アイオノマーとしては、中和度が5〜95%、とくに10〜80%のものを使用するのがよい。すなわち中和度が適度のものを使用すると、熱硬化性樹脂と反応が容易となり、物性改良が容易に達成することができる様になるためである。また中和度があまり高くなりすぎると、フィルム成形が容易でなく、また制振性が損なわれることがあるためである。
【0014】
エチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体のアイオノマーとしてはまた、190℃、2160g荷重におけるメルトフローレートが0.01〜1000g/10分、とくに0.1〜500g/10分程度のものを使用するのがよい。また0℃、10ヘルツにおける損失正接(tanδ)が0.1以上のものを使用するのがよい。
【0015】
本発明においては強化繊維及び熱硬化性樹脂からなるプリプレグと、上記エチレン共重合体のアイオノマーとは交互に重ね合わせ積層し、加熱、加圧下に硬化、一体化させる。エチレン共重合体のアイオノマーは、フィルム状で使用するのがよく、例えば厚みが5〜200μm程度、とくに10〜50μm程度のものを使用するのがよい。重ね合わせ回数は任意であり、例えば2〜100回程度交互に重ね合わせ、0.5〜50mm程度の厚みの複合成形品とすることができる。
【0016】
【発明の効果】
本発明によれば、上記エチレン共重合体のアイオノマーを使用することにより、層間の接着性が優れるとともに、制振性、衝撃強度等が優れた複合材料を得ることができる。
【0017】
【実施例】
以下、本発明を実施例により説明する。
【0018】
プリプレグは東レ製T700(エポキシ樹脂ベース炭素繊維含有量65体積%、130℃硬化タイプ)を用いた。
【0019】
(複合材料の調整)
プリプレグのみあるいはプリプレグと樹脂フィルムを積層し、140℃、1MPaで10分間加熱・加圧した。
【0020】
(減衰特性の測定)
中央加振式機械インピーダンス法(CF−6400 4chインテリジェントFFTアナライザー)で測定し、得られた信号から半値幅法により減衰比を測定した(振動数400Hz)。
【0021】
(貫通衝撃強度測定)
落錘衝撃試験機Dynatup−8250(General Resear−ch Co.製)を用い、ストライカー形状6mm半球、衝撃速度3m/s、測定雰囲気温度23℃で測定し、破壊エネルギーを求めた。
【0022】
[対象例]
プリプレグを16枚同繊維方向に重ね、加熱・加圧して硬化させた。減衰特性と貫通衝撃試験結果を表−1に示す。
【0023】
[実施例−1](参考例)
メタクリル酸8%、アクリル酸nブチル19%のエチレン−メタクリル酸−アクリル酸nブチル共重合体のフィルム(厚み30ミクロン)15枚をプリプレグ16枚の間に交互に挟み(プリプレグは同繊維方向)、加熱・加圧して硬化させた。減衰特性と貫通衝撃試験結果を表−1に示す。
【0024】
[実施例−2]
メタクリル酸10%、アクリル酸イソブチル10%、中和度70%の亜鉛アイオノマーのフィルム(厚み50μm)15枚をプリプレグ16枚の間に交互に挟み(プリプレグは同繊維方向)、加熱・加圧して硬化させた。減衰特性と貫通衝撃試験結果を表−1に示す。
【0025】
[比較例−1]
メタクリル酸15%、中和度20%の亜鉛アイオノマーのフィルム(厚み50μm)15枚をプリプレグ16枚の間に交互に挟み(プリプレグは同繊維方向)、加熱・加圧して硬化させた。減衰特性と貫通衝撃試験結果を表−1に示す。
【0026】
【表1】

Figure 0004050363
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber reinforced composite material having excellent interlayer adhesion, vibration damping properties, penetration impact strength, and the like.
[0002]
[Prior art]
Thermosetting resin composite materials reinforced with reinforcing fibers such as glass fibers and carbon fibers are lightweight, high in rigidity, and excellent in strength, and thus are widely used in sports goods, the automobile industry, the aircraft industry, and the like. For example, such a composite material is preferably used because the area per weight can be increased in a tennis racket and the weight is reduced in a golf club. Recently, it has also been used as a structural member for satellites and rockets.
[0003]
In such applications, there is a demand for materials that have higher strength and vibration damping. For example, tennis rackets and golf clubs are required to have vibration damping properties in terms of feel when hitting, while rocket structural members have higher strength and vibration suppression to suppress resonance destruction of electronic equipment during launch. Sex is required.
[0004]
[Problems to be solved by the invention]
Accordingly, the present inventor has studied to obtain a fiber-reinforced composite material having high strength and excellent vibration damping characteristics. As a result, it has been found that such a performance can be imparted if a laminated composite material with a specific ethylene copolymer is used.
[0005]
[Means for Solving the Problems]
That is, the present invention is a prepreg layer composed of a reinforcing fiber and a thermosetting resin, and an ionomer of an ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer , having a neutralization degree of 5 to 95. A layer of an ionomer having an ethylene content of 50 to 98% by weight, a (meth) acrylic acid content of 1 to 25% by weight and a (meth) acrylic acid ester content of 1 to 40% by weight. And a composite material obtained by alternately laminating, heating and curing.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Reinforcing fibers constituting the prepreg used in the present invention include glass fibers, carbon fibers, alumina fibers, boron fibers, silicon carbide fibers, potassium titanate fibers, inorganic fibers such as stainless steel fibers, aramid fibers, and ultrahigh molecular weight polyethylene. Examples thereof include organic fibers such as fibers, polyester fibers, polyamide fibers, and polyvinyl alcohol fibers. Among these, the use of glass fiber or carbon fiber is most preferable. Such reinforcing fibers are usually used in the form of cloth or mat.
[0007]
Examples of the thermosetting resin constituting the prepreg include epoxy resin, phenol resin, unsaturated polyester resin, diallyl phthalate resin, etc., especially ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer It is most preferable to use an epoxy resin that is highly reactive with the combined ionomer.
[0008]
The ratio of the reinforcing fiber and the thermosetting resin in the prepreg is, for example, about 10/90 to 90/10, preferably about 30/70 to 70/30, by weight. Moreover, although prepreg thickness is arbitrary, about 10 micrometers-about 1 mm are common, for example.
[0009]
Ethylene (meth) acrylic acid (meth) acrylic acid ester copolymer that can be used in the present invention, et styrene content 50 to 98 wt%, preferably 65-93 wt%, (meth) acrylic acid content It has a polymerization composition of 1 to 25% by weight, preferably 4 to 15% by weight, and a (meth) acrylic acid ester content of 1 to 40% by weight, preferably 2 to 30% by weight. Here, (meth) acrylic acid refers to acrylic acid and methacrylic acid.
[0010]
The addition (meth) concrete and acrylic acid esters, methyl acrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, can be exemplified etc. methacrylic acid n butyl Le.
[0011]
Further, as an optional component, a material such as carbon monoxide or sulfur dioxide may be copolymerized.
[0012]
Such a copolymer can be obtained by a general high-pressure radical polymerization method.
[0013]
In the present invention, the ionomer of the ethylene copolymer is used. The ionomer ionizes one or more metal ions such as monovalent metals such as lithium, sodium and potassium, and polyvalent metals such as magnesium, calcium, zinc, copper, lead, nickel, cobalt aluminum and iron. A seed can be used. As an ionomer, a neutralization degree of 5 to 95%, particularly 10 to 80% is preferably used. That is, if a material having an appropriate degree of neutralization is used, the reaction with the thermosetting resin is facilitated, and the physical properties can be easily improved. Further, if the degree of neutralization is too high, film formation is not easy and vibration damping properties may be impaired.
[0014]
As an ionomer of an ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer, a melt flow rate at 190 ° C. under a load of 2160 g is 0.01 to 1000 g / 10 minutes, particularly 0.1 to 500 g / 10. It is good to use the thing of about a minute. It is preferable to use one having a loss tangent (tan δ) of 0.1 or more at 0 ° C. and 10 hertz.
[0015]
In the present invention, the prepreg composed of the reinforcing fiber and the thermosetting resin and the ionomer of the ethylene copolymer are alternately stacked and laminated, and cured and integrated under heating and pressure. The ionomer of the ethylene copolymer is preferably used in the form of a film. For example, it is preferable to use an ionomer having a thickness of about 5 to 200 μm, particularly about 10 to 50 μm. The number of times of superposition is arbitrary, and for example, it is possible to obtain a composite molded product having a thickness of about 0.5 to 50 mm by alternately superposing about 2 to 100 times.
[0016]
【The invention's effect】
According to the present invention, by using the ionomer of the ethylene copolymer , it is possible to obtain a composite material having excellent adhesion between layers and excellent vibration damping and impact strength.
[0017]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0018]
As the prepreg, Toray T700 (epoxy resin-based carbon fiber content 65% by volume, 130 ° C. curing type) was used.
[0019]
(Adjustment of composite materials)
Only the prepreg or the prepreg and the resin film were laminated, and heated and pressurized at 140 ° C. and 1 MPa for 10 minutes.
[0020]
(Measurement of attenuation characteristics)
Measurement was performed by a central excitation mechanical impedance method (CF-6400 4ch intelligent FFT analyzer), and an attenuation ratio was measured from the obtained signal by a half-width method (frequency: 400 Hz).
[0021]
(Penetration impact strength measurement)
Using a falling weight impact tester Dynapup-8250 (manufactured by General Research-ch Co.), measurement was performed at a striker shape 6 mm hemisphere, impact velocity 3 m / s, and measurement ambient temperature 23 ° C., and the fracture energy was determined.
[0022]
[Example]
Sixteen prepregs were stacked in the same fiber direction and cured by heating and pressing. The damping characteristics and penetration impact test results are shown in Table-1.
[0023]
[Example-1] (Reference Example)
15 films of ethylene-methacrylic acid-nbutyl acrylate copolymer (thickness 30 microns) of 8% methacrylic acid and 19% nbutyl acrylate are alternately sandwiched between 16 prepregs (prepreg is in the same fiber direction) And cured by heating and pressing. The damping characteristics and penetration impact test results are shown in Table-1.
[0024]
[Example-2]
15 zinc ionomer films (thickness 50 μm) with 10% methacrylic acid, 10% isobutyl acrylate and 70% neutralization are alternately sandwiched between 16 prepregs (the prepreg is in the same fiber direction), heated and pressed. Cured. The damping characteristics and penetration impact test results are shown in Table-1.
[0025]
[Comparative Example-1]
15 films of zinc ionomer (thickness 50 μm) with 15% methacrylic acid and 20% neutralization were alternately sandwiched between 16 prepregs (the prepreg was in the same fiber direction), and cured by heating and pressing. The damping characteristics and penetration impact test results are shown in Table-1.
[0026]
[Table 1]
Figure 0004050363

Claims (4)

強化繊維と熱硬化性樹脂とからなるプリプレグ層と、エチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体のアイオノマーであって、その中和度が5〜95%であり、該共重合体のエチレン含量が50〜98重量%、(メタ)アクリル酸含量が1〜25重量%および(メタ)アクリル酸エステル含量が1〜40重量%であるアイオノマーからなる層とを、交互に積層し、加熱、硬化してなる複合材料。A prepreg layer composed of a reinforcing fiber and a thermosetting resin, and an ionomer of an ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer , the degree of neutralization of which is 5 to 95%, Alternating layers of ionomers in which the copolymer has an ethylene content of 50 to 98% by weight, a (meth) acrylic acid content of 1 to 25% by weight and a (meth) acrylic acid ester content of 1 to 40% by weight , A composite material that is laminated, heated and cured. エチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体のアイオノマーが、0℃、10ヘルツにおける損失係数(tanδ)が0.1以上のものである請求項1に記載の複合材料。The composite material according to claim 1, wherein the ionomer of the ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer has a loss coefficient (tan δ) at 0 ° C. and 10 hertz of 0.1 or more. エチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体のアイオノマーを5〜200μm厚みのフィルム状で使用することを特徴とする請求項1または2に記載の複合材料。The composite material according to claim 1 or 2, wherein an ionomer of ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer is used in the form of a film having a thickness of 5 to 200 μm. プリプレグ層における強化繊維と熱硬化性樹脂の比率が、重量比で10/90〜90/10である請求項1〜のいずれかに記載の複合材料。The composite material according to any one of claims 1 to 3 , wherein a ratio of the reinforcing fiber and the thermosetting resin in the prepreg layer is 10/90 to 90/10 in weight ratio.
JP22416697A 1997-07-17 1997-07-17 Composite material Expired - Fee Related JP4050363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22416697A JP4050363B2 (en) 1997-07-17 1997-07-17 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22416697A JP4050363B2 (en) 1997-07-17 1997-07-17 Composite material

Publications (2)

Publication Number Publication Date
JPH1134230A JPH1134230A (en) 1999-02-09
JP4050363B2 true JP4050363B2 (en) 2008-02-20

Family

ID=16809573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22416697A Expired - Fee Related JP4050363B2 (en) 1997-07-17 1997-07-17 Composite material

Country Status (1)

Country Link
JP (1) JP4050363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716550B2 (en) * 2000-09-29 2011-07-06 東邦テナックス株式会社 Paper-free prepreg and method for producing the same

Also Published As

Publication number Publication date
JPH1134230A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP6132363B2 (en) Composite laminates with improved impact strength and uses thereof
Wambua et al. The response of natural fibre composites to ballistic impact by fragment simulating projectiles
TWI447028B (en) Prepreg,fiber-reinforced composite material and method for manufacturing prepreg
JP5068944B2 (en) Method for manufacturing sandwich structure and adhesive film used therefor
TW201333084A (en) Carbon fiber base material, prepreg and carbon fiber reinforced composite material
Gilbert et al. Interlayer toughened unidirectional carbon prepreg systems: effect of preformed particle morphology
JP5354095B2 (en) Prepreg, fiber reinforced composite material, and method for producing prepreg
WO2009014486A1 (en) High-strength material product comprising a layer of steel and a layer of carbon fibre composite
Park et al. Impact behavior of aramid fiber/glass fiber hybrid composites: the effect of stacking sequence
JP2013139511A (en) Tubular body made of fiber-reinforced epoxy resin material
JP5508434B2 (en) Composite material surface film
JP2003320060A (en) Golf club head
JP4050363B2 (en) Composite material
US6647856B1 (en) Turbine compressor armor shield
JPH0770406A (en) Low temperature curing epoxy resin for prepreg and prepreg using the same
JP6180204B2 (en) Golf club shaft
Szabo et al. Effect of fibre surface treatment on the mechanical response of ceramic fibre mat-reinforced interpenetrating vinylester/epoxy resins
JP6198568B2 (en) Prepreg, fiber reinforced epoxy resin molded body, and tubular body made of fiber reinforced epoxy resin material
JP6198569B2 (en) Fiber-reinforced epoxy resin material and tubular body formed therefrom
JPH0768679A (en) Impact-resistant laminated structure
Kumar et al. Characterization of toughened bonded interface against fracture and impact loads
Wang et al. Deformation and fracture mechanisms of advanced polymer composites under impact loading
JP3519350B2 (en) Racket frame
JP4218416B2 (en) Laminated body and tubular body using the same
JP2016087460A (en) Fiber reinforced plastic molding and golf club shaft

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees