JP4048871B2 - Ultrasonic flow measuring device - Google Patents

Ultrasonic flow measuring device Download PDF

Info

Publication number
JP4048871B2
JP4048871B2 JP2002229738A JP2002229738A JP4048871B2 JP 4048871 B2 JP4048871 B2 JP 4048871B2 JP 2002229738 A JP2002229738 A JP 2002229738A JP 2002229738 A JP2002229738 A JP 2002229738A JP 4048871 B2 JP4048871 B2 JP 4048871B2
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement
flow
ultrasonic wave
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229738A
Other languages
Japanese (ja)
Other versions
JP2004069527A (en
Inventor
肇 宮田
行夫 長岡
善紀 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002229738A priority Critical patent/JP4048871B2/en
Publication of JP2004069527A publication Critical patent/JP2004069527A/en
Application granted granted Critical
Publication of JP4048871B2 publication Critical patent/JP4048871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波により気体や液体の流量や流速の計測を行う超音波流量計測装置に関するものである。
【0002】
【従来の技術】
従来この種超音波流量計測装置としては、例えば特開平9−18591号公報や特開平11−351926号公報が知られている。
【0003】
図5,6はその具体的な構成を示し、被計測流体を流す計測流路51の中心線を挟んで対向し、かつ中心線に対して所定角度をもって一対の超音波送受信器52,53を設けると共に、計測流路51の流体流入口54には整流体55を設けている。
【0004】
そして、流体の流れに対して順方向と逆方向に超音波を超音波送受信器52,53間で送受信して、両方向の伝搬時間差から流速を計測し、配管の断面積より流量を算出している。
【0005】
このとき、計測流路51に入る流れは整流体55によりその流れ方向が整えられようにしてあるため、計測部での流線の傾きを低減したり、渦の発生を抑制して流れの乱れの境界面での超音波の反射や屈曲による超音波の受信レベルの変動を低減して測定精度の悪化を防止している。
【0006】
【発明が解決しようとする課題】
しかしながら前記従来の構成では、計測流路部分の断面形状が矩形形状をしているため、図6に示すように超音波送受信器52,53の設置壁の高さと超音波の振動子幅とが一致しない場合、超音波の伝搬路において超音波が通過しない領域が生じる。
【0007】
すなわち、流体通過部分を超音波が全てを伝搬する事ができないので、測定値に誤差が生じる。
【0008】
さらに述べると、計測流路内の断面全域を超音波が伝搬していれば、基準流量と計測流量は1対1の関係にあるが、計測流路内を通過する流体で非計測部分があると、計測誤差を生じるので、この誤差分を補正してやる必要が生じることになる。
【0009】
また、超音波振動子の幅を壁面高さあるいはそれ以上した場合は、超音波の伝搬は計測流路の断面の全体を網羅するが、超音波振動子から放射された超音波が送信側の超音波振動子の近傍壁での反射が顕著になり、受信側で受ける超音波の信号が反射波を多く含んだ複雑な合成波形になり、正確な伝搬時間を見出すのが難しくなり測定精度が落ちる要因になる。
【0010】
本発明は上記課題を解決するもので、計測流路内の流体通過部全体を超音波が伝搬するような計測流路断面形状とすることにより、計測精度を上げるとともに流量計測誤差を無くし、計測値を補正するなどの必要性を無くすことを実現する
ことを目的とする。
【0011】
【課題を解決するための手段】
前記従来の課題の流量計測装置を解決するために、本発明の流量計測装置は、超音波が流体の流れを斜めに横切るように対向壁面に少なくとも一対の超音波送受信器を配置した計測流路と、前記超音波送受信器間の超音波の伝搬時間を計測する計測制御手段と、前記計測制御手段からの信号に基づいて流量を算出する演算手段とを具備し、前記計測流路の超音波伝搬方向に垂直方向の超音波伝搬壁は、前記相対向する超音波振動子間の中心線に対して傾斜角を持つ傾斜面を形成しており、かつこの傾斜角を超音波振動子の超音波の拡散角度に近似するように設定したものである。
【0012】
これによって、計測流路の流体流れの全体を超音波が伝搬することが可能となり計測精度を上げ、流量計測誤差を無くし、計測値を補正するなどの必要性を無くすことを実現できる。
【0013】
【発明の実施の形態】
本発明は、超音波が流体の流れを斜めに横切るように対向壁面に少なくとも一対の超音波送受信器を配置した計測流路と、前記超音波送受信器間の超音波の伝搬時間を計測する計測制御手段と、前記計測制御手段からの信号に基づいて流量を算出する演算手段とを具備し、前記計測流路の超音波伝搬方向に垂直方向の超音波伝搬壁は、前記相対向する超音波振動子間の中心線に対して傾斜角を持つ傾斜面を形成しており、かつこの傾斜角を超音波振動子の超音波の拡散角度に近似するように設定したものである。
【0014】
これによって、計測流路の流体流れの全体を超音波が伝搬することが可能となり計測精度を上げ、流量計測誤差を無くし、計測値を補正するなどの必要性を無くすことを実現できる。
【0015】
具体的には、超音波振動子の径をd、超音波の波長をλとした時、傾斜面の傾斜角θは式θ≒sin -1 (1.22λ/d)に設定する。
【0016】
【実施例】
以下本発明の実施例について、図面を参照しながら説明をする。
【0017】
(実施例)
図1,2に於いて、1は被計測流体の導入路であり、流入口2、電磁式またはステッピングモーター式などの開閉弁3、駆動部4、開閉弁下流側流路5で構成されている。
【0018】
開閉弁下流側流路5は開閉弁3の弁座開口部6より下流側であり、矩形の断面形状を有する。
【0019】
開閉弁3の開閉中心線と開閉弁下流側流路5の中心軸とはほぼ90度の角度を持っている。
【0020】
計測路7は曲げ部8、計測流路入口9、この計測流路入口9に設けた整流手段10、計測流路11、排出曲げ部12よりなる。
【0021】
曲げ部8は、導入路1の開閉弁下流側流路5と接続しており、断面が矩形で、開閉弁下流側流路5に対向する壁面には窪み13が設けてある。
【0022】
計測流路11は導入路1の開閉弁下流側流路5の中心軸とほぼ直角をなしている。
【0023】
整流手段10は流れの乱れに応じて所望の方向に傾斜させた仕切り板で構成した流れ方向規制手段14と、微細通路を有するメッシュなどで構成した変動抑止手段15で構成されている。
【0024】
計測流路11において、導入路1の方向と直角方向にある壁面には流路を挟んで一対の超音波送受信器16,17が流路の上流側と下流側で斜めに対向して装着されている。
【0025】
18は排出路であり、排出曲げ部12に接続している。
【0026】
排出路18の流出口19から被測定流体は流れ出す。また導入路1の開閉弁下流側流路5と計測路7と排出路18はコの字型をしている。
【0027】
20は計測制御手段であり、超音波送受信器16,17間で交互に超音波を送受信させて流体の流れに対して順方向と逆方向の超音波の伝搬時間の差を一定間隔を置いて計り、伝搬時間差信号として出力する働きを持つ。
【0028】
また、21は演算手段で、前記計測制御手段20からの伝搬時間差信号を受けて被計測流体の流速及び流量を算出するものである。
【0029】
更に、22はリチウム電池などで構成される電源手段である。
【0030】
計測制御手段20、演算手段21、電源手段22の一部と開閉弁3の駆動部4はコの字型で構成される被計測流体の流路の内側の空間に装着されている。
【0031】
以上のように構成された超音波流量計測装置について、以下その動作、作用を説明する。まず、計測を受ける流体は、導入路1の流入口2から図示しない外部配管を経由して流入する。
【0032】
さらに、開放されている開閉弁3から弁座開口部6を通り、開閉弁下流側流路5の対向壁23に突き当たり、方向を変え対向壁面23に沿って流れ、下流側の計測流路11へ流れ込む。
【0033】
計測流路11の壁面に設けた一対の超音波送受信器16,17の一方から送信した超音波は、被計測流体の流速の影響を受けて、流れと順方向に伝搬する時は早く、流れと逆方向に伝搬する時は遅く他方の送受信器で受信される。
【0034】
一般に超音波振動子から放出された超音波は式(1)で示される角度で拡散して伝搬する。
【0035】
θ=sin -1 (1.22λ/d) (1)
本実施の形態では超音波の周波数500kHz,超音波振動子の直径が10mmであるので角度θは約4.5度である。
【0036】
図3に示すように、計測流路11は略4.5度の傾斜を有した超音波の伝搬路壁となっている。
【0037】
つまり、計測流路11の断面が単なる矩形の場合は、同計測流路11内の流体通過部分に超音波が伝搬しない不計測部ができると共に、超音波振動子からでた超音波の拡散した部分が超音波振動子に近い超音波伝搬壁部分反射し、受信側の超音波振動子に到達する超音波の波形は多重の反射波が合成されたものとなり、計測が不安定となる。
【0038】
本実施例では、計測流路11の断面が前記したように超音波の放射拡散に沿うような傾斜面24を有することにより、計測流路11内の流体通過部分の大半を超音波が伝搬するようにすることができ、その流体を全て測定することが可能となる。
【0039】
この超音波の送受信は計測制御手段20で制御されて一対の超音波送受信器16,17間で交互に行われ、すなわち、流体の流れの順方向と逆方向に行われ、電気信号に変換される。
【0040】
伝搬時間差は流体の流速に比例するのでこれを演算手段21へ伝達する。この演算手段21は計測制御手段20からの信号と、内部に記憶している計測流路11の断面積と、機器固有の係数とを演算して被計測流体の流量を演算する。
【0041】
以上のように本実施例においては、計測流路の流体流れの全体を超音波が伝搬することが可能となるとともに、超音波自体の反射の影響も減るので計測精度を上げるとともに流量計測誤差を無くし、計測値を補正するなどの修正処理を無くすことが可能となる。
【0042】
なお、本実施例では超音波振動子として、周波数500kHz、振動子の径が10mmの物を使用しているが、この仕様は測定する流体や流量により違う物と変更することは可能であり、その時の超音波伝搬壁の傾斜角は式(1)で計算可能である。
【0043】
また、図4に示すように超音波伝搬壁の傾斜面24を内部に気泡を多く内包しているような発泡性の樹脂などの超音波吸収部材25で形成することにより、さらに超音波伝搬壁での超音波の反射がへるので、傾斜面24との効果と相乗してより流体流速の超音波計測精度を上げることが可能となる。
【0044】
加えて、超音波伝搬壁に発泡性の樹脂などを塗布するまたは、金網などを張り付けても超音波反射防止に効果があり、傾斜面との効果と相乗してより流体流速の超音波計測精度を上げることが可能となる。
【0045】
【発明の効果】
以上のように、本発明によれば、計測流路の超音波伝搬方向に垂直方向の超音波伝搬壁を、前記相対向する超音波振動子間の中心線に対して傾斜角を持つ傾斜面を形成し、かつこの傾斜角を超音波振動子の超音波の拡散角度に近似するように設定したことにより、計測流路の流体流れの全体を超音波が伝搬することとなり、計測精度を上げるとともに流量計測誤差を無くし、計測値を補正するなどの修正処理を無くすことができる。
【図面の簡単な説明】
【図1】 本発明の実施例における超音波流量計測装置の断面図
【図2】 本発明の実施例における計測流路の上面図
【図3】 本発明の実施例における計測流路の断面図
【図4】 本発明の実施例における計測流路の他の実施形態を示す断面図
【図5】 従来の超音波流量計測装置の断面図
【図6】 従来の計測流路の断面図
【符号の説明】
1 導入路
3 開閉弁
5 開閉弁下流側流路
9 計測流路入口部
11 計測流路
16,17 超音波送受信器
20 計測制御手段
21 演算手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flow rate measuring apparatus that measures the flow rate and flow velocity of a gas or liquid by ultrasonic waves.
[0002]
[Prior art]
Conventionally, as this kind of ultrasonic flow measuring device, for example, Japanese Patent Application Laid-Open No. 9-18591 and Japanese Patent Application Laid-Open No. 11-351926 are known.
[0003]
5 and 6 show the specific configuration, and a pair of ultrasonic transmitters and receivers 52 and 53 are opposed to each other with a predetermined angle with respect to the center line, with the center line of the measurement channel 51 through which the fluid to be measured flows. In addition, a rectifier 55 is provided at the fluid inlet 54 of the measurement channel 51.
[0004]
Then, ultrasonic waves are transmitted / received between the ultrasonic transmitters / receivers 52 and 53 in the forward direction and the reverse direction with respect to the fluid flow, the flow velocity is measured from the propagation time difference in both directions, and the flow rate is calculated from the cross-sectional area of the pipe. Yes.
[0005]
At this time, since the flow direction of the flow entering the measurement flow path 51 is adjusted by the rectifying body 55, the flow turbulence is reduced by reducing the inclination of the streamline in the measurement unit or suppressing the generation of vortices. The measurement accuracy is prevented from deteriorating by reducing the fluctuation of the reception level of the ultrasonic wave due to the reflection and bending of the ultrasonic wave at the boundary surface.
[0006]
[Problems to be solved by the invention]
However, in the conventional configuration, since the cross-sectional shape of the measurement channel portion is rectangular, the height of the installation walls of the ultrasonic transmitters / receivers 52 and 53 and the ultrasonic transducer width are as shown in FIG. If they do not match, a region where the ultrasonic wave does not pass in the ultrasonic wave propagation path is generated.
[0007]
Chi words, since the fluid passage portion ultrasound can not be propagated all, an error occurs in the measurement value.
[0008]
Further, if the ultrasonic wave propagates through the entire cross section in the measurement channel, the reference flow rate and the measurement flow rate have a one-to-one relationship, but there is a non-measurement portion in the fluid passing through the measurement channel. As a result, a measurement error occurs, and it is necessary to correct this error.
[0009]
In addition, when the width of the ultrasonic transducer is greater than or equal to the wall height, the propagation of the ultrasonic wave covers the entire cross section of the measurement channel, but the ultrasonic wave radiated from the ultrasonic transducer is transmitted on the transmission side. Reflection on the wall near the ultrasonic transducer becomes noticeable, and the ultrasonic signal received on the receiving side becomes a complex composite waveform containing a lot of reflected waves, making it difficult to find an accurate propagation time and measuring accuracy. It becomes a factor to fall.
[0010]
The present invention solves the above-mentioned problems. By making the measurement channel cross-sectional shape such that the ultrasonic wave propagates through the entire fluid passage part in the measurement channel, the measurement accuracy is improved and the flow measurement error is eliminated. The purpose is to eliminate the necessity of correcting the value.
[0011]
[Means for Solving the Problems]
In order to solve the conventional flow measurement device, the flow measurement device of the present invention is a measurement flow path in which at least a pair of ultrasonic transmitters / receivers are arranged on opposite walls so that ultrasonic waves cross the flow of the fluid diagonally. Measurement control means for measuring the propagation time of ultrasonic waves between the ultrasonic transceivers, and calculation means for calculating a flow rate based on a signal from the measurement control means, The ultrasonic wave propagation wall perpendicular to the propagation direction forms an inclined surface having an inclination angle with respect to the center line between the ultrasonic transducers facing each other, and this inclination angle is the supersonic wave of the ultrasonic transducer. It is set so as to approximate the sound wave diffusion angle .
[0012]
As a result, ultrasonic waves can propagate through the entire fluid flow in the measurement flow path, thereby improving measurement accuracy, eliminating flow measurement error, and eliminating the need for correcting measurement values.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a measurement channel in which at least a pair of ultrasonic transmitters / receivers are arranged on opposite wall surfaces so that ultrasonic waves cross a fluid flow diagonally, and measurement for measuring the propagation time of ultrasonic waves between the ultrasonic transmitters / receivers. A control means and a calculation means for calculating a flow rate based on a signal from the measurement control means, and an ultrasonic wave propagation wall perpendicular to the ultrasonic wave propagation direction of the measurement flow path An inclined surface having an inclination angle with respect to the center line between the transducers is formed, and this inclination angle is set to approximate the ultrasonic wave diffusion angle of the ultrasonic transducer .
[0014]
As a result, ultrasonic waves can propagate through the entire fluid flow in the measurement flow path, thereby improving measurement accuracy, eliminating flow measurement error, and eliminating the need for correcting measurement values.
[0015]
Specifically, when the diameter of the ultrasonic transducer is d and the wavelength of the ultrasonic wave is λ, the inclination angle θ of the inclined surface is set to the equation θ≈sin −1 (1.22λ / d).
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
(Example)
In FIGS. 1 and 2, reference numeral 1 denotes an introduction path for a fluid to be measured, which is composed of an inlet 2, an on-off valve 3 such as an electromagnetic or stepping motor type, a drive unit 4, and an on-off valve downstream flow path 5. Yes.
[0018]
The on-off valve downstream channel 5 is downstream of the valve seat opening 6 of the on-off valve 3 and has a rectangular cross-sectional shape.
[0019]
The opening / closing center line of the opening / closing valve 3 and the central axis of the opening / closing valve downstream channel 5 have an angle of approximately 90 degrees.
[0020]
The measurement path 7 includes a bending portion 8, a measurement channel inlet 9, a rectifying means 10 provided at the measurement channel inlet 9, a measurement channel 11, and a discharge bending portion 12.
[0021]
The bending portion 8 is connected to the on-off valve downstream flow path 5 of the introduction path 1, has a rectangular cross section, and has a recess 13 on the wall surface facing the on-off valve downstream flow path 5.
[0022]
The measurement channel 11 is substantially perpendicular to the central axis of the on-off valve downstream channel 5 of the introduction channel 1.
[0023]
The rectifying means 10 is composed of a flow direction restricting means 14 constituted by a partition plate inclined in a desired direction according to a flow disturbance, and a fluctuation suppressing means 15 constituted by a mesh having a fine passage.
[0024]
In the measurement channel 11, a pair of ultrasonic transmitters / receivers 16, 17 are mounted on a wall surface perpendicular to the direction of the introduction channel 1 so as to be opposed to each other diagonally on the upstream side and the downstream side of the channel. ing.
[0025]
A discharge path 18 is connected to the discharge bending portion 12.
[0026]
The fluid to be measured flows out from the outlet 19 of the discharge path 18. Further, the on-off valve downstream flow path 5, the measurement path 7, and the discharge path 18 of the introduction path 1 have a U-shape.
[0027]
Reference numeral 20 denotes a measurement control means, which transmits and receives ultrasonic waves alternately between the ultrasonic transmitters and receivers 16 and 17, and sets a difference in the propagation time of the ultrasonic waves in the forward direction and the reverse direction with respect to the fluid flow at regular intervals. Measures and outputs as a propagation time difference signal.
[0028]
Reference numeral 21 denotes a calculation means which receives the propagation time difference signal from the measurement control means 20 and calculates the flow velocity and flow rate of the fluid to be measured.
[0029]
Furthermore, 22 is a power supply means comprised of a lithium battery or the like.
[0030]
A part of the measurement control means 20, the calculation means 21, the power supply means 22, and the drive unit 4 of the on-off valve 3 are mounted in a space inside the flow path of the fluid to be measured that is configured in a U shape.
[0031]
The operation and action of the ultrasonic flow rate measuring apparatus configured as described above will be described below. First, the fluid to be measured flows from the inlet 2 of the introduction path 1 via an external pipe (not shown).
[0032]
Further, the open on-off valve 3 passes through the valve seat opening 6, hits the opposing wall 23 of the on-off valve downstream channel 5, changes direction, flows along the opposing wall 23, and the downstream measuring channel 11. Flow into.
[0033]
The ultrasonic waves transmitted from one of the pair of ultrasonic transmitters / receivers 16 and 17 provided on the wall surface of the measurement channel 11 are affected by the flow velocity of the fluid to be measured, and flow quickly when propagating in the forward direction. When it propagates in the opposite direction, it is received later by the other transceiver.
[0034]
In general, an ultrasonic wave emitted from an ultrasonic transducer diffuses and propagates at an angle represented by Equation (1).
[0035]
θ = sin −1 (1.22λ / d) (1)
In this embodiment, since the ultrasonic frequency is 500 kHz and the ultrasonic transducer has a diameter of 10 mm, the angle θ is about 4.5 degrees.
[0036]
As shown in FIG. 3, the measurement flow path 11 is an ultrasonic wave propagation path wall having an inclination of about 4.5 degrees.
[0037]
That is, when the cross section of the measurement flow path 11 is a simple rectangle, a non-measurement portion where the ultrasonic wave does not propagate to the fluid passage portion in the measurement flow path 11 is formed and the ultrasonic wave from the ultrasonic transducer is diffused. The ultrasonic wave that is partly reflected by the ultrasonic propagation wall close to the ultrasonic transducer and reaches the receiving ultrasonic transducer is a composite of multiple reflected waves, which makes measurement unstable.
[0038]
In the present embodiment, since the cross section of the measurement channel 11 has the inclined surface 24 along the ultrasonic radiation diffusion as described above, the ultrasonic wave propagates most of the fluid passage portion in the measurement channel 11. And all of the fluid can be measured.
[0039]
This ultrasonic transmission / reception is controlled by the measurement control means 20 and is alternately performed between the pair of ultrasonic transmitters / receivers 16, 17, that is, in the forward direction and the reverse direction of the fluid flow, and converted into an electric signal. The
[0040]
Since the propagation time difference is proportional to the flow velocity of the fluid, this is transmitted to the computing means 21. The calculation means 21 calculates the flow rate of the fluid to be measured by calculating the signal from the measurement control means 20, the cross-sectional area of the measurement channel 11 stored therein, and the coefficient specific to the device.
[0041]
As described above, in this embodiment, the ultrasonic wave can propagate through the entire fluid flow in the measurement flow path, and the influence of reflection of the ultrasonic wave itself is reduced, so that the measurement accuracy is improved and the flow measurement error is reduced. It is possible to eliminate the correction process such as correcting the measurement value.
[0042]
In this example, an ultrasonic vibrator having a frequency of 500 kHz and a vibrator having a diameter of 10 mm is used, but this specification can be changed to a different one depending on the fluid to be measured and the flow rate. The inclination angle of the ultrasonic wave propagation wall at that time can be calculated by equation (1).
[0043]
Further, as shown in FIG. 4, the ultrasonic wave propagation wall is further formed by forming the inclined surface 24 of the ultrasonic wave propagation wall with an ultrasonic absorbing member 25 such as a foaming resin that contains many bubbles inside. Therefore, the ultrasonic measurement accuracy of the fluid flow velocity can be further increased in synergy with the effect of the inclined surface 24.
[0044]
In addition, even if foaming resin or the like is applied to the ultrasonic wave propagation wall, or even if a wire mesh is attached, it is effective in preventing ultrasonic reflection, and in combination with the effect of the inclined surface, the ultrasonic measurement accuracy of the fluid flow velocity is improved. Can be raised.
[0045]
【The invention's effect】
As described above, according to the present invention, the ultrasonic wave propagation wall perpendicular to the ultrasonic wave propagation direction of the measurement channel is inclined with respect to the center line between the opposed ultrasonic transducers. And the inclination angle is set so as to approximate the ultrasonic diffusion angle of the ultrasonic transducer, so that the ultrasonic wave propagates through the entire fluid flow in the measurement channel, thereby increasing the measurement accuracy. At the same time, the flow measurement error can be eliminated, and correction processing such as correcting the measurement value can be eliminated.
[Brief description of the drawings]
1 is a cross-sectional view of an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention. FIG. 2 is a top view of a measurement flow path according to an embodiment of the present invention. FIG . 3 is a cross-sectional view of a measurement flow path according to an embodiment of the present invention . FIG. 4 is a cross-sectional view showing another embodiment of the measurement flow channel in the embodiment of the present invention. FIG. 5 is a cross-sectional view of a conventional ultrasonic flow measuring device. FIG. 6 is a cross-sectional view of a conventional measurement flow channel. Explanation of]
1 Introduction route
3 On-off valve
5 On-off valve downstream flow path
9 Measurement channel inlet
11 Measurement channel
16, 17 Ultrasonic transceiver
20 Measurement control means
21 Calculation means

Claims (2)

超音波が流体の流れを斜めに横切るように対向壁面に少なくとも一対の超音波送受信器を配置した計測流路と、前記超音波送受信器間の超音波の伝搬時間を計測する計測制御手段と、前記計測制御手段からの信号に基づいて流量を算出する演算手段とを具備し、前記計測流路の超音波伝搬方向に垂直方向の超音波伝搬壁は、前記相対向する超音波振動子間の中心線に対して傾斜角を持つ傾斜面を形成しており、かつこの傾斜角を超音波振動子の超音波の拡散角度に近似するように設定した超音波流量計測装置。 A measurement flow path in which at least a pair of ultrasonic transmitters / receivers are arranged on the opposite wall so that the ultrasonic waves obliquely cross the fluid flow, and a measurement control means for measuring the propagation time of the ultrasonic waves between the ultrasonic transmitters / receivers, Computing means for calculating a flow rate based on a signal from the measurement control means, and an ultrasonic wave propagation wall perpendicular to the ultrasonic wave propagation direction of the measurement flow path is between the ultrasonic transducers facing each other. An ultrasonic flow rate measuring device that forms an inclined surface having an inclination angle with respect to the center line, and that the inclination angle is set to approximate the ultrasonic wave diffusion angle of the ultrasonic transducer. 超音波送受信器の径をdとし、前記超音波送受信器から発せられる超音波の波長をλとした時、傾斜面の傾斜角は、式θ=sin -1 (1.22λ/d)で計算される角度θの±1度の範囲内に設定した請求項1記載の超音波流量計測装置。 When the diameter of the ultrasonic transmitter / receiver is d and the wavelength of the ultrasonic wave emitted from the ultrasonic transmitter / receiver is λ, the inclination angle of the inclined surface is calculated by the equation θ = sin −1 (1.22λ / d). The ultrasonic flow measuring device according to claim 1, wherein the ultrasonic flow rate measuring device is set within a range of ± 1 degree of the angle θ .
JP2002229738A 2002-08-07 2002-08-07 Ultrasonic flow measuring device Expired - Fee Related JP4048871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229738A JP4048871B2 (en) 2002-08-07 2002-08-07 Ultrasonic flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229738A JP4048871B2 (en) 2002-08-07 2002-08-07 Ultrasonic flow measuring device

Publications (2)

Publication Number Publication Date
JP2004069527A JP2004069527A (en) 2004-03-04
JP4048871B2 true JP4048871B2 (en) 2008-02-20

Family

ID=32016024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229738A Expired - Fee Related JP4048871B2 (en) 2002-08-07 2002-08-07 Ultrasonic flow measuring device

Country Status (1)

Country Link
JP (1) JP4048871B2 (en)

Also Published As

Publication number Publication date
JP2004069527A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US7363174B2 (en) Apparatus and method for measuring a fluid flow rate profile using acoustic doppler effect
WO2010070891A1 (en) Ultrasonic flowmeter
WO2000055581A1 (en) Ultrasonic flowmeter
WO2004074783A1 (en) Ultrasonic type fluid measuring device
WO2020031622A1 (en) Ultrasonic flow meter
JPH06249690A (en) Ultrasonic flowmeter
CA2557099A1 (en) Doppler type ultrasonic flow meter
JP4048871B2 (en) Ultrasonic flow measuring device
JPH0943016A (en) Flow-rate measuring apparatus
JP3922078B2 (en) Ultrasonic flow measuring device
JPH09287989A (en) Ultrasonic flowmeter
JP2008014829A (en) Ultrasonic flowmeter
JP3824236B2 (en) Ultrasonic flow measuring device
JPH09189589A (en) Flow rate measuring apparatus
JP3689975B2 (en) Ultrasonic flow meter
JP4084236B2 (en) Ultrasonic flow meter
JP2005257611A (en) Apparatus for measuring flow of fluid
JPH09287990A (en) Ultrasonic flowmeter
JP3438713B2 (en) Ultrasonic flow meter
JP3436247B2 (en) Ultrasonic flow meter
JP4092977B2 (en) Flow measuring device
JP4087648B2 (en) Ultrasonic fluid measuring device
JPH08313316A (en) Ultrasonic wave type flow meter
JP3514259B1 (en) Ultrasonic flow meter
JP2021124358A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees