JP4046485B2 - Nitride compound semiconductor light emitting device - Google Patents

Nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP4046485B2
JP4046485B2 JP2001168910A JP2001168910A JP4046485B2 JP 4046485 B2 JP4046485 B2 JP 4046485B2 JP 2001168910 A JP2001168910 A JP 2001168910A JP 2001168910 A JP2001168910 A JP 2001168910A JP 4046485 B2 JP4046485 B2 JP 4046485B2
Authority
JP
Japan
Prior art keywords
substrate
light
back surface
unevenness
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001168910A
Other languages
Japanese (ja)
Other versions
JP2002368261A (en
Inventor
健作 山本
俊雄 幡
正毅 辰巳
麻祐子 筆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001168910A priority Critical patent/JP4046485B2/en
Publication of JP2002368261A publication Critical patent/JP2002368261A/en
Application granted granted Critical
Publication of JP4046485B2 publication Critical patent/JP4046485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化物系半導体素子に関し、特に窒化物系III−V族半導体を用いた外部光取り出し効率を向上させ、光出力が増大した半導体発光素子に関する。
【0002】
【従来の技術】
図8は、特開平9−298313号公報の半導体発光素子のLEDチップをリードボンディングした状態の説明図である。図において発光素子800は、基板801の上にn型半導体層805、p型半導体層804が設けられ、基板801の裏面側に光反射膜802が設けられている。この発光素子800をリードフレーム808Aのダイパッド806上に銀ペーストなどからなる接着剤807で台座に固定する。そして、n型電極809とダイパット806とを、また、p型電極810とリードフレーム808Bを金線によりワイヤーボンディングする。このように、基板裏面に、反射率の高い反射膜を設けることで、基板側に出た光を基板表面、すなわち半導体成長面側に戻すことによって、基板表面からの光取り出しを効率良く行える。
【0003】
【発明が解決しようとする課題】
従来例によれば、基板裏面に反射膜を形成し外部光取りだしを改善しようとしている。しかし、この構造では、基板裏面の反射膜で反射した光は、まっすぐ上に返っていくため、最終的には成長膜表面の透光性電極を通って外部へと出て行くことになる。そのため、透光性電極による外部光取り出しの損失が避けられない。
【0004】
【課題を解決するための手段】
以上の点に鑑み、本発明の発光素子は、サファイア基板、炭化珪素基板または、GaN基板という発光波長に対して透光性を有する基板を用いることを特徴とし、この基板上に窒化物系半導体膜を成長して、基板裏面に凹凸を研削研磨により形成することにより外部光取り出し効率のよい発光素子を得ることを目的とする。この時、凹凸の平均間隔(Sm)は、発光層の発光波長をλnmとしたとき、10λ以上、なおかつ、30μm以下にし、凹凸の中心線平均粗さ(Ra)は、300nm以上なおかつ10μm以下にし、Smと凹凸のRaの比Sm:Raが0.3以上6以下にすることで、台座及び、成長層、透光性電極、保護膜に特殊な細工をすることなく、外部取り出し効率を向上させる窒化物系化合物半導体発光素子を提供することができる。
【0005】
より具体的には次のような発光素子である。
【0006】
本発明の窒化物系化合物半導体発光素子は、発光波長に対して透明基板と、前記基板とは反対側に透光性電極を有する窒化物系化合物半導体発光素子において、前記基板の裏面に凹凸が形成されており、前記窒化物系化合物半導体発光素子の発光層から前記基板の裏面に到達した光が前記凹凸で反射し、前記基板の側面から取出されるように前記凹凸の粗さ及び平均間隔が制御されていることを特徴とする窒化物系化合物半導体発光素子。
【0007】
本発明の窒化物系化合物半導体発光素子は、一つ以上形成され、凹凸の平均間隔Smは、発光波長λnmとしたときに、10λ以上10μm以下であることを特徴とする。
【0008】
本発明の窒化物系化合物半導体発光素子は、前記凹凸は、一つ以上形成され、平均粗さRaは300nm以上10μm以下であることを特徴とする。
【0009】
本発明の窒化物系化合物半導体発光素子は、前記凹凸は、凹凸の平均間隔をSm、平均粗さをRaとしたときに、Sm:Raが0.3以上6以下であることを特徴とする。
【0010】
本発明の窒化物系化合物半導体発光素子は、前記基板は、凹凸を形成した後にさらに反射膜を形成することを特徴とする。
【0011】
本発明の窒化物系化合物半導体発光素子は、前記基板は、サファイア基板、GaN基板であることを特徴とする。
【0012】
なお、本明細書において凹凸の平均間隔(Sm)とは、測定部分において一つの凸及びそれに隣り合う一つの凹に対応する平均線の長さの和を求め、この多数の凹凸平均間隔の算術平均を表したものであり、一つの凹凸の平均線の長さをF(x)として凹凸の個数をl個としたとき、
【0013】
【数1】

Figure 0004046485
【0014】
で表される。ここで、例えば、一つの凸及びそれに隣り合う一つの凹とは、図1においてaを表す。
【0015】
また、本明細書において粗さとは、凸から凹までの高さを表している。例えば図1においてbにあたる。凹凸の平均粗さ(Ra)とは、一般に、断面曲線から得られる粗さ曲線からその中心線の方向に測定長さ1の部分を抜き取り、この部分の中心線をx軸、粗さ曲線をy=f(x)、凹凸の個数をl個で表わした時、
【0016】
【数2】
Figure 0004046485
【0017】
という式で求められる値である。
【0018】
また、本明細書において、凹凸の凸部の角度とは、図1におけるcの角度を表す。
【0019】
また、本明細書において、基板裏面の凹凸の平均間隔(Sm)と基板裏面の凹凸中心線平均粗さ(Ra)については、段差計(VEECO社Sloan技術部製DEKTAK3ST)を用いて測定した値であり、平均粗さについては、長さ350μmに渡って3500ポイントの測定点から求めた算術平均値を表している。平均間隔については、段差計のデータをもとに算出している。このときの針圧は10mgであり、走査速度は43.75μm/秒であった。
【0020】
【発明の実施の形態】
以下、本発明を具体的な実施の形態に基づいて説明する。
(実施例1)
図1に本発明に係わる半導体発光素子構造を示す。サファイア基板上101に、GaNバッファ層102を成長させ、n型GaN層103、ノンドープのIn0.02Ga0.98N活性層104、p型Al0.08Ga0.92N層105、Mgドープp型GaN層106を順に積層させる。p型透光性電極107には、Pdからなる金属薄膜を用い、その後Au電極パッド108を設ける。また、n型電極109は、n型GaN層103を露出させて設けている。次に、電極の保護膜として複数の半導体層を覆うようにSiO2誘電体膜(図示せず)を形成する。
【0021】
その後、基板裏面よりダイヤモンド製砥粒を含む砥石で基板厚が100μm以下になるように削った。さらに、スクライブ、またはダイシング装置により350μm□のチップを作製した。この素子の発光波長λは、460nmであった。
【0022】
基板裏面の凹凸は、基板を所望の厚さに研削する際に形成した。この時、ダイヤモンド製砥粒を含む砥石の粗さを変えて研削を行うことで、基板裏面の凹凸の粗さ及び平均間隔を制御した。この方法により作製された基板裏面の凹凸は、個々の凹凸におけるaとbは一定でなく、さまざまな値の混在したものであった。基板裏面に作製された平均間隔Raは0.5μmで平均粗さSmは5μmのもので構成されていた。
【0023】
図6に本発明の半導体発光素子の光出力の駆動電流依存性を示す。61が従来例、62が本実施例の素子を表している。これによれば、実施例1に基づいた発光素子は、従来例による発光素子の光出力よりも高くなった。これは、凹凸の形成を基板裏面に行うことにより、発光層から基板裏面へ到達した光は、基板側面に向かって反射し、従来例より多く基板側面を通して光が外部へ取り出されたためである。
【0024】
更に実施例1の素子の光出力とSmの関係を検討した結果を図7に示す。これによれば、Smが10λよりも小さいときは、Raに依存せず、一様に光出力が弱かった。また、Smが、30μmよりも大きくなると、基板が等価的に平坦になってしまうため、基板裏面に凹凸を作製することによる光取り出しの効果が見られなかった。故に、基板裏面に作製した凹凸のSmは10λ以上なおかつ30μm以下が望ましい。
【0025】
次に、図7において、基板裏面のRaによる光出力特性は、Raが0.3μmより小さいときでは、基板裏面の凹凸の粗さが個々で小さいときか、または、基板裏面に凹凸の粗さの大きい部分が、少ないときであるため、結果として平坦な裏面状態と等しくなった。このため基板裏面を凹凸にした効果による外部への光取り出しの向上はなかった。
【0026】
また、Raが10μmよりも大きいときは、凹凸の凸部にあたる角度が極端に小さいものが基板裏面中に多く存在するため、基板裏面で反射した発光層からの光は、基板裏面の凹凸内で散乱させられた形になり、側面を通らず、基板内部へ反射する光が増加するので外部へ光を効率良く取り出せなかった。よって、Raは0.3以上10μm以下であることが望ましい。
【0027】
次にSmとRaの比について検討したところ、Sm:Raは、0.3以上で凹凸による外部への光取り出し効率が大きくなるため好ましく、Sm:Raが6より大きいものは、凹凸の凸部の角度が大きくなり、基板裏面が等価的に平坦になってしまい、凹凸作製により効率良く側面を通って外部へ光が取り出せず、基板裏面を凹凸にした効果がえられなかったため、基板裏面に形成した凹凸のSmとRaの比Sm:Raは、0.3以上6以下が好ましい。
【0028】
実施例において、活性層は、単一及び多重量子井戸層で構成されていてもよく、ノンドーブでもSi、As、Pドープでも良い。また多重量子井戸層のウェルとバリア層はInGaNのみからなってもInGaNとGaNからなっても良い。
【0029】
また、基板裏面に凹凸面を形成すると、基板裏面が鏡面のときと比べ、台座との密着性の向上が確認された。
【0030】
また、基板裏面の凹凸は、エピタキシャル成長を行う前に形成しても同様の効果がえられ、検討の結果基板の大きさは200μm□及び300μm□でも同様の効果がえられた。
(実施例2)
図2に本発明に係わる半導体発光素子構造を示す。サファイア基板201上に、GaNバッファ層202を成長させ、n型GaN層203、SiまたはノンドープのIn0.02Ga0.98N活性層204、p型Al0.08Ga0.92N層205、Mgドープp型GaN層206を順に積層させる。p型透光性電極207には、Pdからなる金属薄膜を用い、その後Au電極パッド208を設ける。また、n型電極209は、n型GaN層203を露出させて設けている。次に、電極の保護膜として複数の半導体層を覆うようにSiO2誘電体膜(図示せず)を形成する。この素子の発光波長λは、実施例1と同じ460nmであった。
【0031】
その後、ダイヤモンド製砥粒を含む砥石で基板裏面より基板厚が100μm以下になるように削った。次に、スクライブ、またはダイシング装置により350μm□のチップを作製した。基板裏面の凹凸は、基板を所望の厚さに研削する際に形成する。この時、ダイヤモンド製砥粒を含む砥石の粗さを変えて研削を行うことで、基板裏面の凹凸の粗さ及び平均間隔を制御した。形成された凹凸は図2に示すようにすべての凹凸の高さと間隔が一定になり、Smは4μmでRaは1μmであった。
【0032】
図6の63に本実施例の素子の光出力の電流依存性を表している。これによれば、実施例2に基づいた発光素子は、従来例による発光素子よりも、光出力が高くなった。これは、実施例1と同様、凹凸の形成を基板裏面に行うことにより、発光層から基板裏面へ到達した光は、基板側面に向かって反射し、従来例より多く基板側面を通して光が外部へ取り出されたためである。
【0033】
そして、なおかつ実施例1より光出力が高くなったのは、基板裏面の凹凸を整え、揃えることで、基板裏面へ到達した発光層の光が更に効率良く、透光性電極を経由せず、基板側面を通して外へ出たためと考える。
【0034】
実施例2において、活性層は、単一及び多重量子井戸層で構成されていてもよく、ノンドープでもSi、As、Pドープでも良い。また多重量子井戸層のウェルとバリア層はInGaNのみからなってもInGaNとGaNからなっても良い。
【0035】
また、基板裏面の凹凸は、エピタキシャル成長を行う前に形成しても同様の効果がえられた。
(実施例3)
図3に本発明に係わる発光半導体素子構造を示す。サファイア基板301上に、GaNバッファ層302を成長させ、n型GaN層303、ノンドープのIn0.02Ga0.98N活性層304、p型Al0.08Ga0.92N層305、Mgドープp型GaN層306を順に積層させる。p型透光性電極307には、Pdからなる金属薄膜を用い、その後Au電極パッド308を設ける。また、n型電極309は、n型GaN層を露出させて設けている。次に、電極の保護膜として複数の半導体層を覆うようにSiO2誘電体膜(図示せず)を形成する。本実施例の素子の発光波長は460nmである。
【0036】
その後、基板裏面よりダイヤモンド製砥粒を含む砥石で基板厚が100μm以下になるように削った。基板裏面の凹凸は、基板を所望の厚さに研削する際に形成した。この時、ダイヤモンド製砥粒を含む砥石の粗さを変えて研削を行うことで、基板裏面の凹凸の粗さを制御し、実施例2と同様凹凸は形のそろったものとなった。これにより基板裏面に作製された凹凸の形状を測定した所、Smは10μmでRaは3μmであった。その後、基板裏面に反射膜310を形成するためにアルミニウムを蒸着した。その後、スクライブ、またはダイシング装置により350μm□のチップを作製した。
【0037】
図6の64は本実施例の光出力の駆動電流依存性である。これによれば、実施例3に基づいた発光素子は従来例による発光素子の光出力特性よりも、光出力比が高くなった。これは、凹凸の形成を基板裏面に行うことにより、発光層から基板裏面へ到達した光は、基板側面に向かって反射し、従来例より多く基板側面を通して光が外部へ取り出されたためである。
【0038】
そして、なおかつ実施例1及び実施例2より高くなったのは、基板裏面の凹凸を整え、さらに、基板裏面に光反射率の高い金属膜を形成することにより、基板裏面へ到達した発光層の光の反射が高反射率の反射膜により効率良く行なわれ、なおかつ、基板裏面の凹凸によって透光性電極を経由せず、基板側面から効率良く外へ出たものと考える。
【0039】
本実施例3においては、実施例2と同様、裏面の凹凸の形状のそろった基板にさらに反射膜を設けているが、実施例1のように、凹凸形状のそろっていない基板裏面に反射膜を形成した場合においても、反射膜のない場合よりも光出力の増大が観察された。
【0040】
実施例3において、活性層は、単一及び多重量子井戸層で構成されていてもよく、ノンドープでもSi、As、Pドープでも良い。また多重量子井戸層のウェルとバリア層はInGaNのみからなってもInGaNとGaNからなっても良い。
【0041】
また、基板裏面の凹凸は、エピタキシャル成長を行う前に形成しても同様の効果がえられた。
【0042】
また、反射膜としては、光反射率の高い銀、酸化アルミニウム、硫酸バリウム、酸化マグネシウム、酸化チタンといった金属や、金属酸化物を蒸着やスパッ夕によって用いても同様の効果がえられた。
(実施例4)
図4に本発明に係わる発光半導体素子構造を示す。サファイア基板401上に、GaNバッファ層402を成長させ、n型GaN層403、SiまたはノンドープのIn0.02Ga0.98N活性層404、p型Al0.08Ga0.92N層405、Mgドープp型GaN層406を順に積層させる。p型透光性電極407には、Pdからなる金属薄膜を用い、その後Au電極パッド408を設ける。また、n型電極409は、n型GaN層403を露出させて設けている。次に、電極の保護膜として複数の半導体層を覆うようにSiO2誘電体膜(図示せず)を形成する。
【0043】
その後、ダイヤモンド製砥粒を含む砥石で基板裏面より基板厚が60μm以下になるように削り、その後、裏面を研磨により鏡面にした。次に、スクライブ、またはダイシング装置により350μm□のチップを作製した。
【0044】
その後、接着剤410としてエポキシ樹脂を用いて、裏面に凹凸を形成した貼り付け用基板411であるGaN基板と張り合わせることでチップを形成した。この時形成した凹凸は、測定の結果、Smは5μmでRaは5μmであった。
【0045】
図6の65は本実施例素子の光出力の駆動電流依存性である。これによれば、実施例4に基づいた発光素子は従来例による発光素子の光出力よりも、高くなった。これは、発光層からの光が、貼り付け用基板の凹凸面で反射し、発光素子上の透光性電極を通らずに、基板側面を通って素子外部へ出て行ったためである。
【0046】
実施例1から3の素子より光出力がさらに高くなっているのは、サファイア基板を薄くして、その分、サファイア基板よりも発光波長の透過率の高いGaN基板を貼り付けることで、発光層からの光を更に効率良く貼り付け用基板を通して光を外部へ取り出せたためと考える。
【0047】
実施例4において、活性層は、単一及び多重量子井戸層で構成されていてもよく、ノンドープでもSi、As、Pドープでも良い。また多重量子井戸層のウェルとバリア層はInGaNのみからなってもInGaNとGaNからなっても良い。
(実施例5)
図5に本発明に係わる半導体発光素子構造を示す。GaN基板501上に、n型GaN層502、ノンドープのIn0.02Ga0.98N活性層503、p型Al0.08Ga0.92N:Mg層504、p型GaN:Mg層505を順に積層させる。その後、ダイヤモンド製砥粒を含む砥石で基板裏面より基板厚が100μmになるように研削した。
【0048】
基板裏面の凹凸は、基板を所望の厚さに研削する際に形成した。この時、ダイヤモンド製砥粒を含む砥石の粗さを変えて研削を行うことで、基板裏面の凹凸の粗さを制御した。このとき、基板裏面に作製された凹凸は、測定の結果、Raは4μmで、Smは6μmであった。
【0049】
p型透光性電極506には、Pdからなる金属膜を用い、その後、Au電極パッド507を設ける。n型電極508は、凹凸を形成した後のGaN基板裏面に設けている。次に、電極の保護膜として複数の半導体層を覆うようにSiO2誘電体膜(図示せず)を形成する。
【0050】
その後、ウェハをシートに固定し、ダイアモンドスクライブ装置によりチップが350μm□になるようにウェハを表面よりスクライブを行った。次に、素子を分離するために、ブレーキング装置により、スクライブした線に沿ってブレークを行った。
【0051】
図6の66は、従来例及び実施例における基板厚の光出力依存性である。これによれば、実施例5は、他の従来例や、実施例1〜4と比べ光出力が高くなった。これは、凹凸の形成を基板裏面に行うことにより、発光層から基板裏面へ到達した光は、基板側面に向かって反射し、従来例より多く基板側面を通して光が外部へ取り出されたためである。そして、実施例1と比較して、サファイア基板より、GaN基板の方が光透過率が高いためにより効率が良くなったものと考えられる。
【0052】
本実施の形態の半導体発光素子においては、基板裏面に凹凸面と、GaN基板を用いることにより、従来例よりも、外部への光の取り出しを向上できた。実施例において、活性層は、単一及び多重量子井戸層で構成されていてもよく、ノンドープでもSi、As、Pドープでも良い。また多重量子井戸層のウェルとバリア層はInGaNのみからなってもInGaNとGaNからによりなっても良い。また基板裏面の凹凸はエピタキシャル成長を行う前に形成しても、n型電極を形成する直前に形成しても同様の効果がえられた。
【0053】
なお、本発明において用いられる発光素子は、その基板として、サファイアやGaNに限定されず、SiC、等からなる、発光波長に対して透明な基板を用いたものでも良い。
【0054】
【発明の効果】
従来の窒化ガリウム系化合物半導体発光素子、特にLEDでは、透光性電極として金属膜が用いられており、発光層からの発光は、この透光性電極を通して行うことが必要であった。このため、外部への光取り出しは、金属膜の材料と、膜厚による透過率に依存していた。そこで、基板裏面に凹凸を形成することで従来と比較して、基板側面より光を取り出せるようにすることで容易にかつ歩留良く発光素子を提供することができた。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる発光ダイオードの概略模式図である。
【図2】本発明の第2の実施形態に係わる発光ダイオードの概略模式図である。
【図3】本発明の第3の実施形態に係わる発光ダイオードの概略模式図である。
【図4】本発明の第4の実施形態に係わる発光ダイオードの概略模式図である。
【図5】本発明の第5の実施形態に係わる発光ダイオードの概略模式図である。
【図6】本発明の半導体発光素子の光出力の駆動電圧依存性である。
【図7】本発明の実施例1の半導体発光素子の光出力のSm依存性である。
【図8】従来例による発光ダイオードの概略模式図である。
【符号の説明】
101 サファイア基板
102 GaNバッファ層
103 n型GaN層
104 InGaN活性層
105 p型AlGaN層
106 p型GaN層
107 透光性電極
108 Au電極パツド
109 n型電極
a 一つの凸及びそれに隣り合う一つの凹
b 凹凸の粗さ
c 凹凸の凸部の角度
201 サファイア基板
202 GaNバッファ層
203 n型GaN層
204 InGaN活性層
205 p型AlGaN層
206 p型GaN層
207 透光性電極
208 Au電極パツド
209 n型電極
301 サファイア基板
302 GaNバッファ層
303 n型GaN層
304 InGaN活性層
305 p型AlGaN層
306 p型GaN層
307 透光性電極
308 Au電極パッド
309 n型電極
310 反射膜
401 サファイア基板
402 GaNバッファ層
403 n型GaN層
404 InGaN活性層
405 p型AlGaN層
406 p型GaN層
407 透光性電極
408 Au電極パッド
409 n型電極
410 接着剤
411 貼り付け用基板
501 GaN基板
502 n型GaN層
503 InGaN活性層
504 p型AlGaN層
505 p型GaN層
506 透光性電極
507 Au電極パツド
508 n型電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitride-based semiconductor device, and more particularly to a semiconductor light-emitting device using a nitride-based III-V group semiconductor with improved external light extraction efficiency and increased light output.
[0002]
[Prior art]
FIG. 8 is an explanatory view showing a state in which the LED chip of the semiconductor light emitting element disclosed in Japanese Patent Laid-Open No. 9-298313 is lead-bonded. In the drawing, the light-emitting element 800 includes an n-type semiconductor layer 805 and a p-type semiconductor layer 804 provided over a substrate 801, and a light reflecting film 802 provided on the back side of the substrate 801. The light emitting element 800 is fixed to the base with an adhesive 807 made of silver paste or the like on the die pad 806 of the lead frame 808A. Then, the n-type electrode 809 and the die pad 806 are wire-bonded to each other, and the p-type electrode 810 and the lead frame 808B are wire-bonded with a gold wire. In this way, by providing a reflective film having a high reflectance on the back surface of the substrate, light extracted from the substrate surface can be efficiently extracted by returning the light emitted to the substrate side to the substrate surface, that is, the semiconductor growth surface side.
[0003]
[Problems to be solved by the invention]
According to the conventional example, a reflection film is formed on the back surface of the substrate to improve the external light extraction. However, in this structure, since the light reflected by the reflective film on the back surface of the substrate returns straight up, it finally goes out through the translucent electrode on the surface of the growth film. Therefore, the loss of external light extraction due to the translucent electrode is inevitable.
[0004]
[Means for Solving the Problems]
In view of the above points, the light-emitting element of the present invention is characterized by using a sapphire substrate, a silicon carbide substrate, or a GaN substrate that has a light-transmitting property with respect to an emission wavelength, and a nitride-based semiconductor on the substrate. An object is to obtain a light-emitting element with good external light extraction efficiency by growing a film and forming irregularities on the back surface of the substrate by grinding and polishing. At this time, when the emission wavelength of the light emitting layer is λ nm, the average interval (Sm) of the unevenness is 10λ or more and 30 μm or less, and the center line average roughness (Ra) of the unevenness is 300 nm or more and 10 μm or less. The ratio of Sm to uneven Ra Sm: Ra is 0.3 or more and 6 or less, improving external extraction efficiency without special work on the pedestal, growth layer, translucent electrode and protective film A nitride-based compound semiconductor light emitting device can be provided.
[0005]
More specifically, the light emitting element is as follows.
[0006]
Nitride-based compound semiconductor light-emitting device of the present invention includes a substrate transparent to the emission wavelength, the nitride-based compound semiconductor light emitting device having a light-transmitting electrode on the side opposite to the substrate, unevenness on the back surface of the substrate There are formed, the light reaching the back surface of the front Kimoto plate from the light-emitting layer of the nitride-based compound semiconductor light-emitting element is reflected by the concavo-convex roughness of the uneven as taken from a side of the substrate And a nitride-based compound semiconductor light-emitting device characterized in that an average interval is controlled.
[0007]
One or more nitride-based compound semiconductor light emitting devices of the present invention are formed, and the average interval Sm of the unevenness is 10λ or more and 10 μm or less when the emission wavelength is λnm.
[0008]
The nitride-based compound semiconductor light-emitting device of the present invention is characterized in that one or more of the irregularities are formed, and an average roughness Ra is 300 nm or more and 10 μm or less.
[0009]
The nitride-based compound semiconductor light-emitting device of the present invention is characterized in that the unevenness has Sm: Ra of 0.3 or more and 6 or less, where Sm is the average interval between the unevenness and Ra is the average roughness. .
[0010]
The nitride-based compound semiconductor light-emitting device according to the present invention is characterized in that the substrate is further formed with a reflective film after forming irregularities.
[0011]
Nitride-based compound semiconductor light-emitting device of the present invention, before Kimoto plate is characterized by a sapphire substrate, a GaN substrate.
[0012]
In this specification, the average interval of unevenness (Sm) means the sum of the lengths of the average lines corresponding to one protrusion and one adjacent recess in the measurement part, and the arithmetic of the multiple unevenness average intervals. When the average length of one unevenness is F (x) and the number of unevenness is l,
[0013]
[Expression 1]
Figure 0004046485
[0014]
It is represented by Here, for example, one convex and one concave adjacent thereto represent a in FIG.
[0015]
Further, in this specification, the roughness represents a height from a convex to a concave. For example, it corresponds to b in FIG. The average roughness (Ra) of the unevenness is generally obtained by extracting a portion having a measurement length of 1 in the direction of the center line from the roughness curve obtained from the cross-sectional curve, and taking the center line of this portion as the x axis and the roughness curve. When y = f (x) and the number of irregularities is represented by l,
[0016]
[Expression 2]
Figure 0004046485
[0017]
It is a value calculated by the formula.
[0018]
Moreover, in this specification, the angle of the convex part of an unevenness | corrugation represents the angle of c in FIG.
[0019]
Moreover, in this specification, about the average space | interval (Sm) of the unevenness | corrugation of the back surface of a board | substrate, and the unevenness | corrugation centerline average roughness (Ra) of a back surface of a board | substrate, the value measured using the level difference meter (DEKTAK3ST by Sloan engineering part of VEECO). The average roughness represents an arithmetic average value obtained from 3500 measurement points over a length of 350 μm. The average interval is calculated based on the data from the level difference meter. The needle pressure at this time was 10 mg, and the scanning speed was 43.75 μm / second.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on specific embodiments.
Example 1
FIG. 1 shows a semiconductor light emitting device structure according to the present invention. A GaN buffer layer 102 is grown on a sapphire substrate 101, an n-type GaN layer 103, a non-doped In 0.02 Ga 0.98 N active layer 104, a p-type Al 0.08 Ga 0.92 N layer 105, and an Mg-doped p-type GaN layer 106 in this order. Laminate. For the p-type translucent electrode 107, a metal thin film made of Pd is used, and then an Au electrode pad 108 is provided. The n-type electrode 109 is provided with the n-type GaN layer 103 exposed. Next, a SiO 2 dielectric film (not shown) is formed so as to cover a plurality of semiconductor layers as a protective film for the electrodes.
[0021]
Thereafter, the substrate was shaved from the back surface with a grindstone containing diamond abrasive grains so that the substrate thickness was 100 μm or less. Furthermore, a 350 μm square chip was produced using a scribe or dicing apparatus. The light emission wavelength λ of this device was 460 nm.
[0022]
The irregularities on the back surface of the substrate were formed when the substrate was ground to a desired thickness. At this time, by changing the roughness of the grindstone including the diamond abrasive grains, the roughness of the irregularities on the back surface of the substrate and the average interval were controlled. The unevenness of the back surface of the substrate produced by this method was such that a and b in each unevenness were not constant and various values were mixed. The average interval Ra produced on the back surface of the substrate was 0.5 μm, and the average roughness Sm was 5 μm.
[0023]
FIG. 6 shows the drive current dependence of the optical output of the semiconductor light emitting device of the present invention. 61 represents a conventional example, and 62 represents an element of this example. According to this, the light emitting element based on Example 1 was higher than the light output of the light emitting element according to the conventional example. This is because the light reaching the back surface of the substrate from the light emitting layer is reflected toward the back surface of the substrate by forming irregularities on the back surface of the substrate, and light is extracted outside through the side surface of the substrate more than in the conventional example.
[0024]
Furthermore, the result of having examined the relationship between the light output of the element of Example 1 and Sm is shown in FIG. According to this, when Sm is smaller than 10λ, the light output is uniformly weak without depending on Ra. In addition, when Sm is larger than 30 μm, the substrate is equivalently flattened, and thus the light extraction effect by forming irregularities on the back surface of the substrate was not seen. Therefore, the unevenness Sm produced on the back surface of the substrate is desirably 10λ or more and 30 μm or less.
[0025]
Next, in FIG. 7, the light output characteristics due to Ra on the back surface of the substrate indicate that when Ra is smaller than 0.3 μm, the roughness of the unevenness on the back surface of the substrate is small individually, or the roughness of the unevenness on the back surface of the substrate. Since the portion with a large portion is small, as a result, it became equal to a flat back surface state. For this reason, there was no improvement in light extraction to the outside due to the effect of making the back surface of the substrate uneven.
[0026]
In addition, when Ra is larger than 10 μm, since there are many in the back surface of the substrate where the angle corresponding to the convex portion of the unevenness is extremely small, the light from the light emitting layer reflected on the back surface of the substrate is within the unevenness of the back surface of the substrate. Since the light is scattered and does not pass through the side surface, the light reflected to the inside of the substrate increases, so that the light cannot be efficiently extracted to the outside. Therefore, Ra is desirably 0.3 to 10 μm.
[0027]
Next, when the ratio of Sm and Ra was examined, Sm: Ra is preferably 0.3 or more, because the light extraction efficiency to the outside due to the unevenness is increased, and those having Sm: Ra larger than 6 are uneven protrusions. Since the angle of the substrate becomes larger, the back surface of the substrate becomes equivalently flat, and light is not efficiently extracted through the side surface by making the unevenness, and the effect of making the back surface of the substrate uneven is not obtained. The ratio Sm: Ra of Sm and Ra of the formed irregularities is preferably 0.3 or more and 6 or less.
[0028]
In the embodiment, the active layer may be composed of single and multiple quantum well layers, and may be non-dope or Si, As, P doped. Further, the well and barrier layer of the multiple quantum well layer may be made of only InGaN or InGaN and GaN.
[0029]
Moreover, when the uneven surface was formed on the back surface of the substrate, it was confirmed that the adhesion with the pedestal was improved as compared with the case where the back surface of the substrate was a mirror surface.
[0030]
Further, the same effect can be obtained even if the unevenness on the back surface of the substrate is formed before the epitaxial growth. As a result of the examination, the same effect was obtained even when the size of the substrate was 200 μm □ and 300 μm □.
(Example 2)
FIG. 2 shows a semiconductor light emitting device structure according to the present invention. A GaN buffer layer 202 is grown on the sapphire substrate 201, an n-type GaN layer 203, an Si or non-doped In 0.02 Ga 0.98 N active layer 204, a p-type Al 0.08 Ga 0.92 N layer 205, and an Mg-doped p-type GaN layer 206. Are sequentially stacked. As the p-type translucent electrode 207, a metal thin film made of Pd is used, and then an Au electrode pad 208 is provided. The n-type electrode 209 is provided with the n-type GaN layer 203 exposed. Next, a SiO 2 dielectric film (not shown) is formed so as to cover a plurality of semiconductor layers as a protective film for the electrodes. The emission wavelength λ of this element was 460 nm, which is the same as in Example 1.
[0031]
Then, it grind | polished so that the board | substrate thickness might be set to 100 micrometers or less from the board | substrate back surface with the grindstone containing a diamond-made abrasive grain. Next, a 350 μm square chip was produced by a scribe or dicing apparatus. The unevenness on the back surface of the substrate is formed when the substrate is ground to a desired thickness. At this time, by changing the roughness of the grindstone including the diamond abrasive grains, the roughness of the irregularities on the back surface of the substrate and the average interval were controlled. As shown in FIG. 2, the formed unevenness had a constant height and interval of all the unevenness, and Sm was 4 μm and Ra was 1 μm.
[0032]
Reference numeral 63 in FIG. 6 represents the current dependency of the optical output of the element of this embodiment. According to this, the light output of the light emitting device based on Example 2 was higher than that of the light emitting device according to the conventional example. This is because, as in Example 1, the unevenness is formed on the back surface of the substrate, so that the light reaching the back surface of the substrate from the light emitting layer is reflected toward the side surface of the substrate, and light is transmitted to the outside through the side surface of the substrate more than in the conventional example. It was because it was taken out.
[0033]
And, the light output was higher than that of Example 1 by arranging and aligning the unevenness of the back surface of the substrate, so that the light of the light emitting layer that reached the back surface of the substrate was more efficient without passing through the translucent electrode, This is considered to have gone out through the side of the board.
[0034]
In Example 2, the active layer may be composed of single and multiple quantum well layers, and may be non-doped, Si, As, or P-doped. Further, the well and barrier layer of the multiple quantum well layer may be made of only InGaN or InGaN and GaN.
[0035]
Moreover, the same effect was obtained even if the unevenness on the back surface of the substrate was formed before epitaxial growth.
(Example 3)
FIG. 3 shows a light emitting semiconductor device structure according to the present invention. A GaN buffer layer 302 is grown on the sapphire substrate 301, and an n-type GaN layer 303, a non-doped In 0.02 Ga 0.98 N active layer 304, a p-type Al 0.08 Ga 0.92 N layer 305, and an Mg-doped p-type GaN layer 306 are sequentially formed. Laminate. A metal thin film made of Pd is used for the p-type translucent electrode 307, and then an Au electrode pad 308 is provided. The n-type electrode 309 is provided with the n-type GaN layer exposed. Next, a SiO 2 dielectric film (not shown) is formed so as to cover a plurality of semiconductor layers as a protective film for the electrodes. The light emission wavelength of the device of this example is 460 nm.
[0036]
Thereafter, the substrate was shaved from the back surface with a grindstone containing diamond abrasive grains so that the substrate thickness was 100 μm or less. The irregularities on the back surface of the substrate were formed when the substrate was ground to a desired thickness. At this time, the roughness of the irregularities on the back surface of the substrate was controlled by changing the roughness of the grindstone containing the diamond abrasive grains, and the irregularities were uniform in shape as in Example 2. As a result of measuring the shape of the irregularities formed on the back surface of the substrate, Sm was 10 μm and Ra was 3 μm. Thereafter, aluminum was deposited to form a reflective film 310 on the back surface of the substrate. Thereafter, a 350 μm square chip was produced by a scribe or dicing apparatus.
[0037]
Reference numeral 64 in FIG. 6 represents the drive current dependency of the optical output of this embodiment. According to this, the light output ratio of the light emitting device based on Example 3 was higher than the light output characteristics of the light emitting device according to the conventional example. This is because the light reaching the back surface of the substrate from the light emitting layer is reflected toward the back surface of the substrate by forming irregularities on the back surface of the substrate, and light is extracted outside through the side surface of the substrate more than in the conventional example.
[0038]
And it became higher than Example 1 and Example 2, and the unevenness | corrugation of the back surface of a board | substrate was prepared, and also the light emitting layer which reached | attained the back surface of a board | substrate by forming a metal film with high light reflectivity on the back surface of a board | substrate. It is considered that light is efficiently reflected by the reflective film having a high reflectivity, and that the light is efficiently removed from the side surface of the substrate without passing through the translucent electrode due to the unevenness on the back surface of the substrate.
[0039]
In the third embodiment, as in the second embodiment, a reflective film is further provided on the substrate having the uneven surface on the back surface. However, as in the first embodiment, the reflective film is provided on the back surface of the substrate having no uneven surface. Even in the case of forming the film, an increase in light output was observed as compared with the case without the reflective film.
[0040]
In Example 3, the active layer may be composed of single and multiple quantum well layers, and may be non-doped, Si, As, or P-doped. Further, the well and barrier layer of the multiple quantum well layer may be made of only InGaN or InGaN and GaN.
[0041]
Moreover, the same effect was obtained even if the unevenness on the back surface of the substrate was formed before epitaxial growth.
[0042]
Moreover, the same effect was obtained even when a metal such as silver, aluminum oxide, barium sulfate, magnesium oxide, and titanium oxide having a high light reflectivity or a metal oxide was used for the reflective film by vapor deposition or sputtering.
Example 4
FIG. 4 shows a light emitting semiconductor device structure according to the present invention. A GaN buffer layer 402 is grown on the sapphire substrate 401, an n-type GaN layer 403, a Si or non-doped In 0.02 Ga 0.98 N active layer 404, a p-type Al 0.08 Ga 0.92 N layer 405, and an Mg-doped p-type GaN layer 406. Are sequentially stacked. For the p-type translucent electrode 407, a metal thin film made of Pd is used, and then an Au electrode pad 408 is provided. The n-type electrode 409 is provided with the n-type GaN layer 403 exposed. Next, a SiO 2 dielectric film (not shown) is formed so as to cover a plurality of semiconductor layers as a protective film for the electrodes.
[0043]
Then, it grind | polished so that the board | substrate thickness might be 60 micrometers or less from the back surface of a board | substrate with the grindstone containing a diamond-made abrasive grain, and made the back surface into the mirror surface by grinding | polishing after that. Next, a 350 μm square chip was produced by a scribe or dicing apparatus.
[0044]
Thereafter, an epoxy resin was used as the adhesive 410, and a chip was formed by bonding to a GaN substrate which is a bonding substrate 411 having irregularities formed on the back surface. As a result of measurement, the unevenness formed at this time was 5 μm in Sm and 5 μm in Ra.
[0045]
Reference numeral 65 in FIG. 6 represents the drive current dependence of the optical output of the device of this example. According to this, the light emitting element based on Example 4 was higher than the light output of the light emitting element according to the conventional example. This is because the light from the light emitting layer was reflected by the uneven surface of the attaching substrate and went out of the device through the side surface of the substrate without passing through the translucent electrode on the light emitting device.
[0046]
The light output is higher than that of the elements of Examples 1 to 3 because the sapphire substrate is thinned, and a GaN substrate having a higher emission wavelength transmittance than that of the sapphire substrate is attached to the light emitting layer. This is considered to be because the light from the light can be extracted to the outside through the attaching substrate more efficiently.
[0047]
In Example 4, the active layer may be composed of single and multiple quantum well layers, and may be non-doped, Si, As, or P-doped. Further, the well and barrier layer of the multiple quantum well layer may be made of only InGaN or InGaN and GaN.
(Example 5)
FIG. 5 shows a semiconductor light emitting device structure according to the present invention. On the GaN substrate 501, an n-type GaN layer 502, a non-doped In 0.02 Ga 0.98 N active layer 503, a p-type Al 0.08 Ga 0.92 N: Mg layer 504, and a p-type GaN: Mg layer 505 are sequentially stacked. Then, it grind | polished so that the board | substrate thickness might be set to 100 micrometers from the board | substrate back surface with the grindstone containing a diamond abrasive grain.
[0048]
The irregularities on the back surface of the substrate were formed when the substrate was ground to a desired thickness. At this time, the roughness of the back surface of the substrate was controlled by changing the roughness of the grindstone containing the diamond abrasive grains. At this time, as for the unevenness produced on the back surface of the substrate, Ra was 4 μm and Sm was 6 μm as a result of measurement.
[0049]
A metal film made of Pd is used for the p-type translucent electrode 506, and then an Au electrode pad 507 is provided. The n-type electrode 508 is provided on the back surface of the GaN substrate after forming the irregularities. Next, a SiO 2 dielectric film (not shown) is formed so as to cover a plurality of semiconductor layers as a protective film for the electrodes.
[0050]
Thereafter, the wafer was fixed to a sheet, and the wafer was scribed from the surface so that the chip became 350 μm □ by a diamond scribe device. Next, in order to isolate | separate an element, the break was performed along the scribed line with the braking device.
[0051]
Reference numeral 66 in FIG. 6 represents the light output dependency of the substrate thickness in the conventional example and the example. According to this, the optical output of Example 5 was higher than that of other conventional examples and Examples 1 to 4. This is because the light reaching the back surface of the substrate from the light emitting layer is reflected toward the back surface of the substrate by forming irregularities on the back surface of the substrate, and light is extracted outside through the side surface of the substrate more than in the conventional example. And compared with Example 1, it is thought that efficiency was improved because the GaN substrate had higher light transmittance than the sapphire substrate.
[0052]
In the semiconductor light emitting device of the present embodiment, the use of a concavo-convex surface and a GaN substrate on the back surface of the substrate can improve the extraction of light to the outside as compared with the conventional example. In the embodiment, the active layer may be composed of single and multiple quantum well layers, and may be non-doped or Si, As, P-doped. Further, the well and barrier layer of the multiple quantum well layer may be made of only InGaN or of InGaN and GaN. The same effect was obtained whether the irregularities on the back surface of the substrate were formed before epitaxial growth or just before the n-type electrode was formed.
[0053]
The light-emitting element used in the present invention is not limited to sapphire or GaN, but may be a substrate made of SiC or the like and transparent to the emission wavelength.
[0054]
【The invention's effect】
In a conventional gallium nitride-based compound semiconductor light-emitting device, particularly an LED, a metal film is used as a light-transmitting electrode, and light emission from the light-emitting layer must be performed through the light-transmitting electrode. For this reason, light extraction to the outside depends on the material of the metal film and the transmittance depending on the film thickness. Accordingly, it has been possible to provide a light emitting element easily and with high yield by forming irregularities on the back surface of the substrate so that light can be extracted from the side surface of the substrate as compared with the conventional case.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a light emitting diode according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of a light emitting diode according to a second embodiment of the present invention.
FIG. 3 is a schematic diagram of a light emitting diode according to a third embodiment of the present invention.
FIG. 4 is a schematic diagram of a light emitting diode according to a fourth embodiment of the present invention.
FIG. 5 is a schematic diagram of a light emitting diode according to a fifth embodiment of the present invention.
FIG. 6 shows the drive voltage dependence of the light output of the semiconductor light emitting device of the present invention.
FIG. 7 shows the Sm dependence of the light output of the semiconductor light emitting device of Example 1 of the present invention.
FIG. 8 is a schematic diagram of a light emitting diode according to a conventional example.
[Explanation of symbols]
101 sapphire substrate 102 GaN buffer layer 103 n-type GaN layer 104 InGaN active layer 105 p-type AlGaN layer 106 p-type GaN layer 107 translucent electrode 108 Au electrode pad 109 n-type electrode a one convex and one concave adjacent to it b Unevenness of roughness c Angle of protrusions of unevenness 201 Sapphire substrate 202 GaN buffer layer 203 n-type GaN layer 204 InGaN active layer 205 p-type AlGaN layer 206 p-type GaN layer 207 translucent electrode 208 Au electrode pad 209 n-type Electrode 301 Sapphire substrate 302 GaN buffer layer 303 n-type GaN layer 304 InGaN active layer 305 p-type AlGaN layer 306 p-type GaN layer 307 Translucent electrode 308 Au electrode pad 309 n-type electrode 310 Reflective film 401 Sapphire substrate 402 GaN buffer layer 403 n Type GaN layer 404 InGaN active layer 405 p type AlGaN layer 406 p type GaN layer 407 translucent electrode 408 Au electrode pad 409 n type electrode 410 adhesive 411 bonding substrate 501 GaN substrate 502 n type GaN layer 503 InGaN active layer 504 p-type AlGaN layer 505 p-type GaN layer 506 translucent electrode 507 Au electrode pad 508 n-type electrode

Claims (6)

発光波長に対して透明基板と、前記基板とは反対側に透光性電極を有する窒化物系化合物半導体発光素子において、前記基板の裏面に凹凸が形成されており、前記窒化物系化合物半導体発光素子の発光層から前記基板の裏面に到達した光が前記凹凸で反射し、前記基板の側面から取出されるように前記凹凸の粗さ及び平均間隔が制御されていることを特徴とする窒化物系化合物半導体発光素子。And a substrate transparent to the emission wavelength, the nitride-based compound semiconductor light emitting device having a light-transmitting electrode on the side opposite to the substrate, the is unevenness on the rear surface is formed of a substrate, the nitride-based compound semiconductor and characterized in that the light from the light emitting layer of a light-emitting element on the back of the front Kimoto plate is reflected by the concave and convex, the roughness and average interval of irregularities are controlled to be removed from the side of the substrate Nitride-based compound semiconductor light emitting device. 前記凹凸は、一つ以上形成され、凹凸の平均間隔Smは、発光波長λnmとしたときに、10λ以上10μm以下であることを特徴とする請求項1に記載の窒化物系化合物半導体発光素子。  2. The nitride-based compound semiconductor light-emitting element according to claim 1, wherein at least one unevenness is formed, and an average interval Sm between the unevennesses is 10λ or more and 10 μm or less when the emission wavelength is λnm. 前記凹凸は、一つ以上形成され、平均粗さRaは300nm以上10μm以下であることを特徴とする請求項1または2に記載の窒化物系化合物半導体発光素子。  3. The nitride-based compound semiconductor light-emitting element according to claim 1, wherein at least one unevenness is formed, and an average roughness Ra is not less than 300 nm and not more than 10 μm. 前記凹凸は、凹凸の平均間隔をSm、平均粗さをRaとしたときに、Sm:Raが0.3以上6以下であることを特徴とする請求項1から3のいずれかに記載の窒化物系化合物半導体発光素子。  4. The nitriding according to claim 1, wherein the unevenness has an Sm: Ra of 0.3 or more and 6 or less, where Sm is an average interval of the unevenness and Ra is an average roughness. Physical compound semiconductor light emitting device. 前記基板は、凹凸を形成した後にさらに反射膜を形成することを特徴とする請求項1から4のいずれかに記載の窒化物系化合物半導体発光素子。  5. The nitride-based compound semiconductor light-emitting element according to claim 1, wherein a reflective film is further formed on the substrate after forming irregularities. 記基板は、サファイア基板、GaN基板であることを特徴とする請求項1から5のいずれかに記載の窒化物系化合物半導体発光素子。Before Kimoto plate, a sapphire substrate, a nitride-based compound semiconductor light-emitting device according to any one of claims 1 to 5, characterized in that a GaN substrate.
JP2001168910A 2001-06-05 2001-06-05 Nitride compound semiconductor light emitting device Expired - Fee Related JP4046485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168910A JP4046485B2 (en) 2001-06-05 2001-06-05 Nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168910A JP4046485B2 (en) 2001-06-05 2001-06-05 Nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2002368261A JP2002368261A (en) 2002-12-20
JP4046485B2 true JP4046485B2 (en) 2008-02-13

Family

ID=19011048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168910A Expired - Fee Related JP4046485B2 (en) 2001-06-05 2001-06-05 Nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4046485B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244542B2 (en) * 2001-08-28 2009-03-25 日亜化学工業株式会社 Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP2004056088A (en) * 2002-05-31 2004-02-19 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light-emitting element
JP2004260111A (en) * 2003-02-27 2004-09-16 Sharp Corp Semiconductor light-emitting element and semiconductor light-emitting device using the same
JP4155847B2 (en) * 2003-03-12 2008-09-24 三洋電機株式会社 Multilayer light emitting diode element
JP4593890B2 (en) * 2003-07-28 2010-12-08 京セラ株式会社 Manufacturing method of semiconductor light emitting device
JP4587675B2 (en) * 2004-01-23 2010-11-24 京セラ株式会社 Light emitting element storage package and light emitting device
KR100568297B1 (en) 2004-03-30 2006-04-05 삼성전기주식회사 Nitride semiconductor light emitting device and manufacturing method thereof
CN100356593C (en) * 2004-03-30 2007-12-19 晶元光电股份有限公司 High efficient nitride series light-emitting element
JP2005347637A (en) * 2004-06-04 2005-12-15 Shurai Kagi Kofun Yugenkoshi Light emitting device having increased luminous efficiency
JP4614773B2 (en) * 2005-01-11 2011-01-19 パナソニック株式会社 Semiconductor light emitting device
KR101081146B1 (en) * 2005-01-11 2011-11-07 엘지이노텍 주식회사 Semiconductor light emitting diode package of heat conduction type
KR100650990B1 (en) 2005-03-21 2006-11-29 주식회사 이츠웰 GaN-based light emitting diode and Manufacturing method of the same
JP4244953B2 (en) * 2005-04-26 2009-03-25 住友電気工業株式会社 Light emitting device and manufacturing method thereof
KR100697829B1 (en) 2005-05-23 2007-03-20 (주)더리즈 Manufacturing method of light emitting element and light emitting element manufactured by this method
JP2007019099A (en) * 2005-07-05 2007-01-25 Sumitomo Electric Ind Ltd Light-emitting device and its manufacturing method
JP4696886B2 (en) * 2005-12-08 2011-06-08 日立電線株式会社 Method for manufacturing self-supporting gallium nitride single crystal substrate and method for manufacturing nitride semiconductor device
JP4942996B2 (en) * 2005-12-22 2012-05-30 昭和電工株式会社 Light emitting diode
WO2007073001A1 (en) 2005-12-22 2007-06-28 Showa Denko K.K. Light-emitting diode and method for fabricant thereof
JP4930081B2 (en) * 2006-04-03 2012-05-09 住友電気工業株式会社 GaN crystal substrate
KR101229830B1 (en) * 2006-04-14 2013-02-04 서울옵토디바이스주식회사 Light emitting diode for an alternating current and method for fabricating the same
US7928447B2 (en) 2006-07-17 2011-04-19 Sumitomo Electric Industries, Ltd. GaN crystal substrate, fabricating method of GaN crystal substrate, and light-emitting device
KR100850667B1 (en) * 2007-05-22 2008-08-07 서울옵토디바이스주식회사 Light emitting diode and method of fabricating the same
JP2009200178A (en) * 2008-02-20 2009-09-03 Hitachi Cable Ltd Semiconductor light-emitting device
JP5287467B2 (en) * 2009-04-21 2013-09-11 信越半導体株式会社 Method for manufacturing light emitting device
JP5275276B2 (en) 2010-03-08 2013-08-28 株式会社東芝 Semiconductor light emitting device
KR101259482B1 (en) * 2010-09-24 2013-05-06 서울옵토디바이스주식회사 Light Emitting Diode with high efficiency
CN103035799B (en) * 2011-10-07 2015-08-26 清华大学 Light-emitting diode
US20130140592A1 (en) * 2011-12-01 2013-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light emitting diode with improved light extraction efficiency and methods of manufacturing same
JP6062431B2 (en) 2012-06-18 2017-01-18 シャープ株式会社 Semiconductor light emitting device
KR102415075B1 (en) * 2015-09-30 2022-06-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
JP6892909B2 (en) * 2017-11-16 2021-06-23 ローム株式会社 Light emitting element and light emitting element package
DE102018111954B4 (en) * 2018-05-17 2022-02-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE WITH INSULATING SUBSTRATE AND A SEMICONDUCTOR DEVICE WITH INSULATING SUBSTRATE AND OPTOELECTRONIC DEVICE COMPRISING THESE

Also Published As

Publication number Publication date
JP2002368261A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
JP4046485B2 (en) Nitride compound semiconductor light emitting device
JP4516749B2 (en) Method for manufacturing a diode having a reflective layer
US9136424B2 (en) Diode having high brightness and method thereof
JP5727320B2 (en) AlGaInN-based LED with epitaxial layer
TWI247437B (en) Light-emitting semiconductor device, manufacturing method thereof, and electrode forming method
JP3439063B2 (en) Semiconductor light emitting device and light emitting lamp
KR101370257B1 (en) Optoelectronic semiconductor component
US6759685B2 (en) High-brightness light emitting diode
US20090141502A1 (en) Light output enhanced gallium nitride based thin light emitting diode
CN105009308B (en) Method and apparatus for creating porous reflective contact part
JPH08102549A (en) Semiconductor light emitting element
JP2003532298A (en) Light emitting semiconductor device
JP2009524918A (en) Photoelectric semiconductor chip
KR20060066618A (en) Thin gan light emitting diode device
US7352009B2 (en) Light emitting nitride semiconductor device and method of fabricating the same
JP2003086843A (en) Semiconductor light emitting element and semiconductor light emitting device
US7078319B2 (en) Laser separated die with tapered sidewalls for improved light extraction
KR100550847B1 (en) Method for manufacturing GaN LED
KR20060120947A (en) Manufacturing method of light emitting element and light emitting element manufactured by this method
JP2005302804A (en) Light emitting diode and its manufacturing method
KR100726966B1 (en) Gallium nitride based semiconductor light emitting device and method for manufacturing thereof using surface morphology of homogeneous nitride substrates
KR100550846B1 (en) GaN Light Emitting Diode of flip-chip bonding type
WO2012091007A1 (en) Semiconductor light-emitting element
KR100832301B1 (en) Semiconductor Light Emitting Device Having Surface Roughness Of Homogeneous Substrates And Method For Manufacturing Thereof
KR100945984B1 (en) Method for manufacturing semiconductor light emitting diode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees