JP4045114B2 - Method for manufacturing fusion device heat receiving device - Google Patents

Method for manufacturing fusion device heat receiving device Download PDF

Info

Publication number
JP4045114B2
JP4045114B2 JP2002089191A JP2002089191A JP4045114B2 JP 4045114 B2 JP4045114 B2 JP 4045114B2 JP 2002089191 A JP2002089191 A JP 2002089191A JP 2002089191 A JP2002089191 A JP 2002089191A JP 4045114 B2 JP4045114 B2 JP 4045114B2
Authority
JP
Japan
Prior art keywords
heat receiving
thermal spray
receiving plate
base material
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002089191A
Other languages
Japanese (ja)
Other versions
JP2003286558A (en
Inventor
寛 柳
正直 澁井
和義 佐藤
幸一郎 江里
正樹 谷口
哲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002089191A priority Critical patent/JP4045114B2/en
Publication of JP2003286558A publication Critical patent/JP2003286558A/en
Application granted granted Critical
Publication of JP4045114B2 publication Critical patent/JP4045114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【0001】
【発明の属する技術分野】
本発明は、核融合装置受熱機器の製造方法に係り、特にプール型溶射基材に溶射を用いて受熱板を形成した核融合装置受熱機器の製造方法に関する。
【0002】
【従来の技術】
従来の核融合装置の受熱機器1を図8に示す。核融合装置の受熱機器1は、核融合装置が稼動している際、高い熱負荷を受けるため、耐熱性および高い除熱性能を有する必要がある。また、高エネルギの水素や核融合反応で生ずるヘリウムが受熱板2へ衝突するため、受熱板2は耐熱性および耐スパッタリング性が必要とされる。
【0003】
このような観点から核融合装置の受熱機器1は、図8に示されるように耐熱性および耐スパッタリング性能を有する受熱板2に高い除熱作用を有するヒートシンク3を取り付け、このヒートシンク3に核融合装置の受熱機器1を冷却するための冷却管4を取り付けて構成される。また、受熱板2は機能上の要求から通常数mmオーダもしくは数mmオーダ以上の板厚が必要である。
【0004】
核融合装置の受熱機器1の製造方法には製造基材としてのヒートシンク3に受熱板2の材料を用いて溶射し、製造基材のヒートシンク3上に受熱板2の材料を成膜することで、受熱板2を形成する方法が考えられている。核融合装置受熱機器1の製造基材の形状としては、例えば図9(A)および(B)に示される平板型の製造基材を使用する。
【0005】
ここで図9(A)は受熱板成膜前の核融合装置受熱機器の斜視図、図9(B)は図9(A)におけるE−E線に沿う断面図である。
【0006】
図9に示される平板型の製造基材であるヒートシンク3には、冷却管4が取付けられている。この冷却管4はヒートシンク3の対向する面を貫通して取り付けられている。図9(A)に示される平板型の製造基材であるヒートシンク3において、冷却管4が貫通している面を側面とした場合の上面には受熱板2を形成する受熱板形成面6があり、この受熱板形成面6に受熱板2の材料を成膜することで、受熱板2を形成し、図8に示される核融合装置の受熱機器1は製造される。
【0007】
溶射による成膜方法は、工業材料の表面改質等の目的で、一般的に使用されている方法である。この成膜方法は、単独材料を溶射皮膜材料として使用するのが一般的である。また、この成膜方法により成膜する膜厚は通常数十〜数百μmオーダである。
【0008】
核融合装置の受熱機器1では、受熱板2となる溶射材料と製造基材であるヒートシンク3との線膨張係数が大きく異なる。このような異材料同士で溶射による成膜を行う際には、溶射施工中や溶射施工後に、形成した溶射皮膜と溶射基材との界面の端部から剥離や割れが生じやすい。
【0009】
一方、受熱機器1は、受熱板2の表面から冷却管4までの間に大きな温度差があり、大きな熱応力を生じる。この熱応力を緩和するため、溶射材料および溶射基材を混合して溶射を行う方法が考えられている。核融合装置の受熱機器1の製造においては、受熱板2の材料とヒートシンク3の材料とを混合して溶射を行うことにより、溶射皮膜を成膜し、受熱板2を形成するのである。
【0010】
混合溶射による受熱機器1の製造方法は、例えば、受熱板2の材料となるタングステンと、ヒートシンク3の材料となる銅との材料混合比を、連続的に変化させながら溶射を実施する。材料混合比は受熱板2側ではタングステン100%、ヒートシンク3側では銅100%となるように連続的あるいは段階的に変化させながら傾斜溶射を実施する。そして、受熱板2側では100%タングステン、ヒートシンク3側では100%銅となるように受熱板2を形成していく方法である。
【0011】
しかし、異種材料を混合して行う傾斜溶射により成膜する方法は、単独材料での溶射とは異なる問題点を有する。例えば、銅とタングステンのような低融点材料と高融点材料で実施する場合、溶射皮膜材料の材料混合比が変化する界面および溶射基材と溶射皮膜との界面で剥離や割れが生じやすいという問題点がある。
【0012】
従って、受熱機器1を異種材料を混合した溶射により成膜する場合、例えば、受熱板2の材料としてのタングステンを、線膨張係数が異なるヒートシンク3の材料である銅へ溶射して成膜する場合、溶射施工中や溶射施工後に、形成された溶射皮膜と溶射基材との界面の端部から剥離や割れが生じやすい。また、溶射皮膜材料の材料混合比が変化する界面および溶射基材と溶射皮膜との界面でも剥離や割れが生じやすい。さらに、数mmオーダもしくは数mmオーダ以上の膜厚を有する溶射皮膜の形成は困難であった。
【0013】
これらの点から、形成された受熱板2の品質および信頼性が低下する可能性も否めなかった。また、図9(A)に示される平板型の製造基材だけではなく、例えば受熱板形成面6が湾曲した形状の核融合装置受熱機器1の製造基材でも、同様の現象が発生しやすく、形成された受熱板2の品質および信頼性が低下する可能性も否めない。
【0014】
【発明が解決しようとする課題】
従来の溶射による核融合装置受熱機器1の製造方法では、上述した受熱板2の剥離や割れが異材料同士の組み合わせの溶射において顕著に現れる。これは、混合溶射により成膜される皮膜同士の材料混合比が変化する界面や溶射皮膜と溶射基材との界面に自由縁が存在することに起因するところが大きい。
【0015】
本発明は、上述した事情を考慮してなされたもので、受熱板である溶射皮膜とヒートシンクである溶射基材との界面や異種材料が混合した溶射皮膜間に、自由縁を存在させること無く溶射を実施して、剥離や割れの無い安定した溶射皮膜を成膜し、受熱板を形成することで、受熱板の品質向上および信頼性向上を図った核融合装置受熱機器を製造する方法を提供することを目的とする。
【0016】
また、本発明の他の目的は、溶射を用いて、剥離や割れの無い安定した数mmオーダもしくは数mmオーダ以上の溶射皮膜にて受熱板を形成する核融合装置受熱機器の製造方法を提供するにある。
【0017】
さらに、本発明の他の目的は、溶射を用いて、剥離や割れの無い安定した溶射皮膜を広範囲にわたって形成することで、核融合装置受熱機器の製造コスト低減を図った核融合装置受熱機器の製造方法を提供するにある。
【0018】
【課題を解決するための手段】
本発明に係る核融合装置受熱機器の製造方法は、上述した課題を解決するために、請求項1に記載したように、溶射によって受熱板を製造する核融合装置受熱機器の製造方法において、前記核融合装置受熱機器を構成する溶射基材をプール型形状に凹設してプール型溶射基材を形成し、このプール型溶射基材の凹部に溶射皮膜を成膜して受熱板を形成し、前記受熱板を前記プール型溶射基材の凹部内側面部分で切断し、前記受熱板を最終的な形状として仕上げることを特徴とする。
【0019】
上述した課題を解決するために、本発明に係る核融合装置受熱機器の製造方法は、請求項2に記載したように、溶射の前処理として、前記プール型溶射基材の凹部の内側面に粗面化作業及び酸化膜除去作業を実施し、前記プール型溶射基材と溶射皮膜の密着力を高めた溶射皮膜を成膜して受熱板を形成することを特徴とする。
【0020】
上述した課題を解決するために、本発明に係る核融合装置受熱機器の製造方法は、請求項3に記載したように、前記プール型溶射基材の凹部をテーパ形状を有する皿状に形成し、前記プール型溶射基材の凹設面に溶射皮膜を成膜して受熱板を形成することを特徴とする。
【0022】
上述した課題を解決するために、本発明に係る核融合装置受熱機器の製造方法は、請求項に記載したように、前記受熱板を前記プール型溶射基材の凹部内側面部分を切断するその切断位置は、前記プール型溶射基材の凹部の底面の端部よりも内側にて切断し、最終的な受熱板形状として仕上げることを特徴とする。
【0023】
このような核融合装置受熱機器の製造方法においては、受熱板である溶射皮膜とヒートシンクである溶射基材の界面に自由縁を存在させることなく、異種材料を混合した溶射、例えば、ヒートシンク材料である銅と受熱板材料であるタングステンとの溶射を実施する事ができる。従って、プール型溶射基材と溶射皮膜の密着力が高くなり、溶射皮膜と溶射基材との界面および異種材料が混合した溶射皮膜の材料混合比が変化する界面において、剥離や割れの発生を抑制できる。そして、溶射皮膜の品質および信頼性が向上し、受熱板の品質向上および信頼性向上を図ることができる。
【0024】
また、このような核融合装置受熱機器の製造方法においては、プール型溶射基材の凹部と溶射皮膜との界面付近にて、受熱板に小さな割れ等が発生していた場合であっても、その部分を切断できるため、受熱板となる溶射皮膜の品質向上および信頼性向上を図ることができる。そして、最終寸法に加工した核融合装置受熱機器では、受熱板の健全性を確保したまま核融合装置へ適用する事ができる。
【0025】
さらに、このような核融合装置受熱機器の製造方法においては、溶射皮膜と溶射基材との界面や異種材料混合溶射皮膜の材料混合比が変化する界面において、剥離や割れの発生を抑制できるため、受熱板となる溶射皮膜を数mmオーダもしくは数mmオーダ以上に成膜でき、溶射皮膜の厚膜化を図ることができる。さらにまた、広範囲にわたり安定した溶射皮膜の成膜が可能となり、核融合装置受熱機器の製造コストの低減にも繋がる。
【0026】
【発明の実施の形態】
以下、本発明に関する核融合装置受熱機器の製造方法の実施形態を添付図面を参照して説明する。
【0027】
[第1実施形態]
本発明の第1実施形態を図1〜図4を参照して説明する。
【0028】
図1は本発明の製造方法によって製造された核融合装置の受熱機器10の斜視図である。
【0029】
この受熱機器10は、受熱板11とヒートシンク12と冷却管14とを具備している。受熱板11は、ヒートシンク12の表面と接合され、1枚または複数枚、例えば3枚が受熱機器10に具備されている。受熱板11は、核融合炉が稼動している際、高い熱負荷を受けるため、セラミックや高融点金属、例えばタングステンで形成されている。ヒートシンク12には受熱板11を上面として受熱機器10を見た場合の平面視で側面方向に冷却管14が貫通している。また、ヒートシンク12は受熱板11の熱を除熱する役割を担っているため、高い除熱効果を有する材料、例えば銅で形成されている。
【0030】
一方、図1に示される受熱機器10は、図2(A)および(B)に示されるプール型形状あるいは凹設形状をした溶射基材(以下、プール型溶射基材とする)15から溶射前処理工程、図3に示される溶射工程、図4に示される成形工程を経て製造される。この受熱機器10の製造工程について製造手順を追いながら図2〜図4を参照し、説明する。
【0031】
図2(A)および(B)は、核融合装置の受熱機器10の製造工程において、受熱機器10の製造基材であるプール型溶射基材15を示す。すなわち、受熱板11を形成する前のプール型溶射基材15を示している。このプール型溶射基材15は、方体形状あるいはブロック形状に形成され、ヒートシンク12と冷却管14とを具備している。また、プール型溶射基材15のヒートシンク12部は、任意の一面が凹設されており、受熱板11を形成するための凹部16が設けられている。そして、上記凹部16を上面とした側面方向に冷却管14が貫通している。尚、図2(A)はプール型溶射基材15の斜視図、図2(B)は図2(A)におけるA−A線に沿う断面図である。
【0032】
核融合装置の受熱機器10の製造手順は、まず、溶射前処理工程にてプール型溶射基材15に形成された凹部16の表面を粗面化する。そして、粗面化した凹部16の表面の酸化膜を除去する。
【0033】
次に、溶射前処理工程を終えたプール型溶射基材15の凹部16に受熱板11の材料、例えばタングステンとヒートシンク12の材料、例えば銅を混合した材料をプラズマ溶射する。
【0034】
図3は、溶射工程後のプール型溶射基材15、すなわち、溶射皮膜付プール型溶射基材(以下、皮膜付溶射基材とする)17を示している。図3(A)は皮膜付溶射基材17の斜視図、図3(B)は図3(A)におけるB−B線に沿う断面図である。尚、図3(B)中の矢印は溶射工程での溶射材料(以下、混合溶滴とする)18をプラズマ溶射する向きを示している。混合溶滴18をプラズマ溶射する際の材料混合比は、連続的あるいは段階的に変化させながら実施する。受熱板11側では100%タングステン、ヒートシンク12側では100%銅となるように材料混合比を連続的あるいは段階的に皮膜肉厚方向に変化させながら受熱板11となる傾斜溶射皮膜20を成膜していく。図3(B)中の矢印の方向より混合溶滴18をプラズマ溶射すると、プール型溶射基材15の凹設した面(以下、上面とする)一面に混合溶滴18が傾斜溶射皮膜20として成膜される。溶射工程後は、図2に示されるプール型溶射基材15は、図3に示される皮膜付溶射基材17となる。
【0035】
その次に、成形工程にて成形手段、例えば機械加工にて皮膜付溶射基材17の周囲の凸部を冷却管14の軸方向と平行に切断する。図4は、成形工程にて皮膜付溶射基材17の周囲の凸部を切断する位置を破線で示している。この破線は皮膜付溶射基材17の切断線21を示す。図4によれば、切断位置は、プール型溶射基材15の凹部16の底面の端部よりも冷却管14の中心軸方向側で切断を行っている。
【0036】
さらに、冷却管14の軸方向と垂直方向の面を冷却管14を残して切断し、受熱板2に溝入れを行い、最終形態である図1の受熱機器10に仕上げる。
【0037】
核融合装置の受熱機器10の製造方法は、製造着手前の溶射基材にプール型溶射基材15を採用することで、溶射工程の際に、プール型溶射基材15の凹部16が傾斜溶射皮膜20を成膜する際に周囲を覆う壁となる。つまり、プール型溶射基材15と受熱板11となる傾斜溶射皮膜20との界面において、自由縁を作らずに傾斜溶射皮膜20を成膜することが可能となる。さらに、タングステンおよび銅を混合した傾斜溶射皮膜20を成膜する際にも、皮膜肉厚方向に材料混合比が連続的あるいは段階的に変化する界面において、自由縁を作らずに傾斜溶射皮膜20を成膜することが可能となる。
【0038】
また、溶射前処理工程において、予めプール型溶射基材15の凹部16の粗面化作業および酸化膜除去作業を実施することで、プール型溶射基材15と傾斜溶射皮膜20との密着力をさらに向上させることができる。
【0039】
さらに、溶射工程の際に、プール型溶射基材15の凹部16において、プール型溶射基材15と受熱板11となる傾斜溶射皮膜20の部分との界面において、小さな割れ等が発生していた場合であっても、成形工程では、プール型溶射基材15の凹部16の底面の端部よりも冷却管14の中心軸方向側で切断するため、小さな割れ等が存在する部位ごと切断することができる。
【0040】
本発明の第1実施形態によれば、プラズマ溶射中やプラズマ溶射後に、受熱板11である傾斜溶射皮膜20とヒートシンク12である溶射基材との界面および異種材料を混合して行う溶射時の材料混合比が皮膜肉厚方向に連続的あるいは段階的に変化する界面において、傾斜溶射皮膜20に割れや剥離の発生を抑制できる。従って、傾斜溶射皮膜20より形成される受熱板11の品質向上や信頼性向上を図ることができる。また、それぞれの界面からの剥離や割れが発生する事が無いため、受熱板11である傾斜溶射皮膜20を数mmオーダで成膜でき、傾斜溶射皮膜20の厚膜化が可能となる。さらに、広範囲にわたるプラズマ溶射が可能となるため、核融合装置受熱機器10の製作コストを低減する事が可能となる。
【0041】
一方、溶射工程後に受熱板11となる溶射皮膜に小さな割れ等が発生していた場合であっても、成形工程にて小さな割れ等が存在する部位ごと切断してしまうため、最終寸法に加工した核融合装置の受熱機器10では、受熱板11の健全性を確保したまま核融合装置へ適用する事が可能となる。
【0042】
[第2実施形態]
本発明の第2実施形態を図5〜図7を参照して説明する。
【0043】
図5は、第2実施形態における核融合装置受熱機器1としてのプール型溶射基材22を示す。図5(A)はプール型溶射基材22の斜視図、図5(B)は図5(A)のC−C線に沿う断面図である。また、図6は、第2実施形態における皮膜付溶射基材23を示す。図6(A)は、皮膜付溶射基材23の斜視図、図6(B)は、図6(A)のD−D線に沿う断面図である。
【0044】
第2実施形態の核融合装置受熱機器1においては、プール型溶射基材22および皮膜付溶射基材23の形状が第1実施形態と異なっているため、異なる符号を付し差別化を図る。また、プール型溶射基材22および皮膜付溶射基材23以外は第1実施形態と異ならないため、同一の構成部品については、同一の符号を付して、その説明を省略する。
【0045】
本実施形態において、プール型溶射基材22の凹部24は、底部から表面に向かって拡開するテーパ形状を有する皿状に設けられている。図2に示されるプール型溶射基材17では、凹部16は、例えば、方体形状に形成され、凹部16の内側壁面は垂直となっているが、この実施形態では、垂直に限定されない。図5に示されるプール型溶射基材22のように凹部24をテーパ形状を有する皿状に設けてもよい。
【0046】
また、図6に示される皮膜付溶射基材23は、核融合装置の受熱機器10を製造する際に、プール型溶射基材22を製造基材として、溶射前処理作業、溶射作業を実施して、プール型溶射基材22の上面に傾斜溶射皮膜20Bが成膜されたプール型溶射基材22である。そして、この皮膜付溶射基材23を成形工程にて周囲の凸部を冷却管14Bの軸方向に切断する。
【0047】
図7は、成形工程にて皮膜付溶射基材23の周囲の凸部を切断する位置を示している。尚、図7中の破線は切断線21Bを示す。図7によれば、切断位置は、プール型溶射基材23の凹部24の底面の端部よりも冷却管14Bの中心軸方向側で切断を行う。また、冷却管14Bの軸方向と垂直方向の面を冷却管14Bを残して切断し、受熱板2に溝入れを行い、最終形態である図1の受熱機器10に仕上げる点は、第1実施形態と同様である。
【0048】
一方、受熱機器10の製造において、受熱機器10の製造基材を図2に示されるプール型溶射基材15と図5に示されるプール型溶射基材22とを比較した場合、図5に示されるプール型溶射基材22の方が溶射基材と溶射皮膜との密着力が向上している。従って、上述した実施形態よりも、割れや剥離の発生を抑制する事ができる。
【0049】
以上のような第2実施形態では、第1実施形態と同様の作用および効果を実現する事が可能なため、第2実施形態における作用および効果についてはその説明を割愛する。
【0050】
尚、本実施形態では溶射についてプラズマ溶射を例に説明してきた。しかし、溶射の種類はプラズマでなくても良い。ガス溶射、電気溶射等あらゆる溶射方法について適用が可能である。また、受熱板11の材料としてタングステン、そしてヒートシンク12の材料として銅を例に説明してきた。しかし、受熱板11の材料およびヒートシンク12の材料はこれらに限定しない。同様の機能を有する材料に置換しても良い。
【0051】
さらに、核融合装置の受熱機器10の最終形状は、図1に示される核融合装置の受熱機器10に限定されない。溶射工程後の成形工程において、冷却管14のある面を成形する際、第1実施形態を示すプール型溶射基材の凹部16および第2実施形態を示すプール型溶射基材の凹部24の周壁を形成するヒートシンク12が受熱板11となる傾斜溶射皮膜20と切り離されていれば、部分切断または溝入れでも良い。
【0052】
【発明の効果】
以上に述べたように、本発明によれば、溶射基材を凹設する事により、溶射基材と溶射皮膜の材料を用いた異種材料を混合した溶射において、溶射中や溶射後に、溶射皮膜と溶射基材との界面および材料混合比が変化する界面での割れや剥離の発生を抑制できる。また、受熱板を形成する際に、溶射基材の凹部において、溶射基材と溶射皮膜との界面付近に小さな割れ等が発生していた場合であっても、成形工程にて小さな割れ等が存在する部位ごと切断できる。従って、受熱板の健全性は確保され、受熱板の品質向上および信頼性向上を図ることができる。
【0053】
さらに、溶射皮膜と溶射基材との界面および材料混合比が変化する界面において、剥離や割れが発生を抑制できるため、広範囲にわたり安定した溶射皮膜の成膜が可能となる。従って、受熱板である溶射皮膜を数mmオーダに成膜する溶射皮膜の厚膜化および核融合装置受熱機器の製造コスト低減に貢献できる。
【図面の簡単な説明】
【図1】本発明を適用した核融合装置受熱機器の斜視図。
【図2】(A)及び(B)は、本発明に係る第1実施形態にて製造した核融合装置受熱機器において、製造着手前の製造基材の斜視図及びA−A線に沿う断面図。
【図3】(A)及び(B)は、本発明に係る第1実施形態にて製造した核融合装置受熱機器において、溶射工程後の製造基材の斜視図及びB−B線に沿う断面図。
【図4】本発明に係る第1実施形態にて製造した核融合装置受熱機器の成形工程において、切断位置を示す製造基材の断面図。
【図5】(A)及び(B)は、本発明に係る第2実施形態にて製造した核融合装置受熱機器において、製造着手前の製造基材の斜視図及びC−C線に沿う断面図。
【図6】(A)及び(B)は、本発明に係る第2実施形態にて製造した核融合装置受熱機器において、溶射工程後の製造基材の斜視図及びD−D線に沿う断面図。
【図7】本発明に係る第2実施形態にて製造した核融合装置受熱機器の成形工程において、切断位置を示す製造基材の断面図。
【図8】一般的な核融合装置受熱機器の一例を示す斜視図。
【図9】(A)及び(B)は、従来の実施例を示す受熱板成膜前の核融合装置受熱機器の斜視図及びE−E線に沿う断面図。
【符号の説明】
10 核融合装置受熱機器
11 受熱板
12 ヒートシンク
14 冷却管
15 プール型溶射基材
16 プール型溶射基材の凹部
17 皮膜付溶射基材
18 混合溶滴
20 傾斜溶射皮膜
21 切断線
22 プール型溶射基材
23 皮膜付溶射基材
24 プール型溶射基材の凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a heat receiving device for a nuclear fusion apparatus, and more particularly to a method of manufacturing a heat receiving apparatus for a nuclear fusion device in which a heat receiving plate is formed on a pool type thermal spray base using thermal spraying.
[0002]
[Prior art]
A conventional heat receiving device 1 of a fusion apparatus is shown in FIG. Since the heat receiving device 1 of the fusion apparatus receives a high heat load when the fusion apparatus is operating, it is necessary to have heat resistance and high heat removal performance. In addition, since high energy hydrogen and helium generated by the fusion reaction collide with the heat receiving plate 2, the heat receiving plate 2 is required to have heat resistance and sputtering resistance.
[0003]
From this point of view, the heat receiving device 1 of the nuclear fusion apparatus attaches a heat sink 3 having a high heat removal action to a heat receiving plate 2 having heat resistance and sputtering resistance as shown in FIG. A cooling pipe 4 for cooling the heat receiving device 1 of the apparatus is attached. Further, the heat receiving plate 2 usually requires a thickness of several mm order or more than several mm order due to functional requirements.
[0004]
In the method of manufacturing the heat receiving device 1 of the fusion apparatus, the material of the heat receiving plate 2 is sprayed on the heat sink 3 as the manufacturing base material, and the material of the heat receiving plate 2 is formed on the heat sink 3 of the manufacturing base material. A method of forming the heat receiving plate 2 is considered. As a shape of the manufacturing base material of the fusion apparatus heat receiving device 1, for example, a flat plate-type manufacturing base material shown in FIGS. 9A and 9B is used.
[0005]
Here, FIG. 9A is a perspective view of the fusion apparatus heat receiving device before film formation of the heat receiving plate, and FIG. 9B is a cross-sectional view taken along line EE in FIG. 9A.
[0006]
A cooling pipe 4 is attached to the heat sink 3 which is a flat plate-shaped manufacturing base shown in FIG. The cooling pipe 4 is attached through the opposing surface of the heat sink 3. In the heat sink 3 which is a flat plate-shaped manufacturing substrate shown in FIG. 9A, the heat receiving plate forming surface 6 for forming the heat receiving plate 2 is formed on the upper surface when the surface through which the cooling pipe 4 penetrates is the side surface. Yes, the heat receiving plate 2 is formed by depositing the material of the heat receiving plate 2 on the heat receiving plate forming surface 6, and the heat receiving device 1 of the fusion apparatus shown in FIG. 8 is manufactured.
[0007]
The film formation method by thermal spraying is a method generally used for the purpose of surface modification of industrial materials. In this film forming method, a single material is generally used as a spray coating material. The film thickness formed by this film forming method is usually on the order of several tens to several hundreds of μm.
[0008]
In the heat receiving device 1 of the nuclear fusion apparatus, the linear expansion coefficients of the thermal spray material that becomes the heat receiving plate 2 and the heat sink 3 that is the manufacturing base material are greatly different. When film formation by thermal spraying is performed between such different materials, peeling or cracking is likely to occur from the end of the interface between the thermal spray coating formed and the thermal spray base during or after thermal spraying.
[0009]
On the other hand, the heat receiving device 1 has a large temperature difference between the surface of the heat receiving plate 2 and the cooling pipe 4 and generates a large thermal stress. In order to alleviate this thermal stress, a method of performing thermal spraying by mixing a thermal spray material and a thermal spray base material has been considered. In the manufacture of the heat receiving device 1 of the nuclear fusion apparatus, the material of the heat receiving plate 2 and the material of the heat sink 3 are mixed and sprayed to form a thermal spray coating to form the heat receiving plate 2.
[0010]
In the method for manufacturing the heat receiving device 1 by the mixed spraying, for example, the thermal spraying is performed while continuously changing the material mixing ratio of tungsten as the material of the heat receiving plate 2 and copper as the material of the heat sink 3. Inclined thermal spraying is performed while changing the material mixing ratio continuously or stepwise so that the material mixing ratio is 100% tungsten on the heat receiving plate 2 side and 100% copper on the heat sink 3 side. Then, the heat receiving plate 2 is formed so as to be 100% tungsten on the heat receiving plate 2 side and 100% copper on the heat sink 3 side.
[0011]
However, the method of forming a film by the gradient spraying performed by mixing different materials has a problem different from the spraying of a single material. For example, when implemented with a low melting point material such as copper and tungsten and a high melting point material, there is a problem that peeling or cracking is likely to occur at the interface where the material mixing ratio of the thermal spray coating material changes and at the interface between the thermal spray substrate and the thermal spray coating. There is a point.
[0012]
Therefore, in the case where the heat receiving device 1 is formed by thermal spraying with a mixture of different materials, for example, when tungsten as the material of the heat receiving plate 2 is sprayed on copper which is the material of the heat sink 3 having a different linear expansion coefficient, the heat receiving device 1 is formed. During or after thermal spraying, peeling or cracking is likely to occur from the end of the interface between the thermal spray coating formed and the thermal spray base. Further, peeling and cracking are likely to occur at the interface where the material mixing ratio of the thermal spray coating material changes and at the interface between the thermal spray base and the thermal spray coating. Furthermore, it is difficult to form a sprayed coating having a film thickness on the order of several millimeters or several millimeters.
[0013]
From these points, there is no denying the possibility that the quality and reliability of the heat receiving plate 2 formed will be lowered. In addition to the flat plate-shaped manufacturing substrate shown in FIG. 9A, for example, the same phenomenon is likely to occur even in the manufacturing substrate of the fusion apparatus heat receiving device 1 in which the heat receiving plate forming surface 6 is curved. There is no denying the possibility that the quality and reliability of the heat receiving plate 2 formed will deteriorate.
[0014]
[Problems to be solved by the invention]
In the conventional method for manufacturing a fusion apparatus heat receiving device 1 by thermal spraying, the above-described peeling or cracking of the heat receiving plate 2 appears remarkably in thermal spraying of a combination of different materials. This is largely due to the presence of free edges at the interface where the material mixing ratio of coatings formed by mixed spraying changes or at the interface between the sprayed coating and the sprayed substrate.
[0015]
The present invention has been made in consideration of the above-described circumstances, and there is no free edge between the interface between the thermal spray coating as the heat receiving plate and the thermal spray base as the heat sink or between the thermal spray coatings in which different materials are mixed. A method of manufacturing a heat receiving device for a fusion device that improves the quality and reliability of a heat receiving plate by performing thermal spraying to form a stable thermal spray coating without peeling or cracking and forming a heat receiving plate. The purpose is to provide.
[0016]
Another object of the present invention is to provide a method of manufacturing a heat receiving device for a fusion apparatus that uses thermal spraying to form a heat receiving plate with a stable thermal spray coating of several mm order or more than several mm order without peeling or cracking. There is.
[0017]
Furthermore, another object of the present invention is to provide a fusion device heat receiving device that reduces the manufacturing cost of the fusion device heat receiving device by forming a stable thermal spray coating without peeling or cracking over a wide range using thermal spraying. To provide a manufacturing method.
[0018]
[Means for Solving the Problems]
In order to solve the above-described problem, a method for manufacturing a fusion device heat receiving device according to the present invention is the method for manufacturing a fusion device heat receiving device for manufacturing a heat receiving plate by thermal spraying, as described in claim 1, The thermal spray base material constituting the fusion device heat receiving device is recessed in a pool type shape to form a pool type thermal spray base material, and a thermal spray coating is formed on the concave portion of the pool type thermal spray base material to form a heat receiving plate. The heat receiving plate is cut at the inner surface portion of the concave portion of the pool type thermal spray base material to finish the heat receiving plate as a final shape .
[0019]
In order to solve the above-described problem, a method for manufacturing a heat receiving device for a nuclear fusion apparatus according to the present invention includes, as described in claim 2, a pretreatment for thermal spraying on an inner surface of a concave portion of the pool type thermal spray substrate. A heat receiving plate is formed by performing a roughening operation and an oxide film removal operation, and forming a thermal spray coating with improved adhesion between the pool type thermal spray base and the thermal spray coating.
[0020]
In order to solve the above-described problem, a method for manufacturing a heat receiving device for a nuclear fusion apparatus according to the present invention is such that, as described in claim 3, the concave portion of the pool-type thermal spray base is formed in a dish shape having a tapered shape. The heat-receiving plate is formed by forming a thermal spray coating on the concave surface of the pool type thermal spray base material.
[0022]
In order to solve the above-described problems, a method for manufacturing a heat receiving device of a fusion apparatus according to the present invention cuts the inner surface portion of a concave portion of the pool-type thermal spray base with the heat receiving plate as described in claim 4. The cutting position is characterized in that cutting is performed on the inner side of the end of the bottom surface of the concave portion of the pool type thermal spray base material, and the final heat receiving plate shape is finished.
[0023]
In such a method of manufacturing a fusion device heat receiving device, a thermal spray mixed with different materials, for example, a heat sink material, without the presence of a free edge at the interface between the thermal spray coating as the heat receiving plate and the thermal spray base as the heat sink. Thermal spraying of certain copper and tungsten, which is a heat receiving plate material, can be performed. Therefore, the adhesion between the pool-type sprayed substrate and the sprayed coating is increased, and peeling and cracking occur at the interface between the sprayed coating and the sprayed substrate and at the interface where the material mixing ratio of the sprayed coating mixed with different materials changes. Can be suppressed. And the quality and reliability of a thermal spray coating improve, and the quality improvement and reliability improvement of a heat receiving plate can be aimed at.
[0024]
Further, in such a method for manufacturing a fusion device heat receiving device, even if a small crack or the like has occurred in the heat receiving plate near the interface between the concave portion of the pool type thermal spray base and the thermal spray coating, Since the portion can be cut, it is possible to improve the quality and reliability of the thermal spray coating to be the heat receiving plate. The fusion device heat receiving device processed to the final dimensions can be applied to the fusion device while ensuring the soundness of the heat receiving plate.
[0025]
Furthermore, in such a method for manufacturing a fusion device heat receiving device, it is possible to suppress the occurrence of peeling and cracking at the interface between the thermal spray coating and the thermal spray base or the interface where the material mixing ratio of the different material mixed thermal spray coating changes. In addition, the thermal spray coating serving as the heat receiving plate can be formed on the order of several millimeters or several millimeters or more, and the thickness of the thermal spray coating can be increased. Furthermore, it is possible to form a stable thermal spray coating over a wide range, which leads to a reduction in the manufacturing cost of the fusion device heat receiving device.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method for manufacturing a fusion device heat receiving device according to the present invention will be described below with reference to the accompanying drawings.
[0027]
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
[0028]
FIG. 1 is a perspective view of a heat receiving device 10 of a fusion apparatus manufactured by the manufacturing method of the present invention.
[0029]
The heat receiving device 10 includes a heat receiving plate 11, a heat sink 12, and a cooling pipe 14. The heat receiving plate 11 is bonded to the surface of the heat sink 12, and one or a plurality of, for example, three pieces are provided in the heat receiving device 10. The heat receiving plate 11 is made of ceramic or a refractory metal such as tungsten in order to receive a high heat load when the fusion reactor is operating. In the heat sink 12, the cooling pipe 14 penetrates in the lateral direction in a plan view when the heat receiving device 10 is viewed with the heat receiving plate 11 as the upper surface. Moreover, since the heat sink 12 plays a role of removing heat from the heat receiving plate 11, it is made of a material having a high heat removal effect, for example, copper.
[0030]
On the other hand, the heat receiving device 10 shown in FIG. 1 is sprayed from a thermal spray base material (hereinafter referred to as a pool type thermal spray base material) 15 having a pool shape or a concave shape shown in FIGS. 2 (A) and 2 (B). It is manufactured through a pretreatment process, a thermal spraying process shown in FIG. 3, and a molding process shown in FIG. The manufacturing process of the heat receiving device 10 will be described with reference to FIGS.
[0031]
FIGS. 2A and 2B show a pool-type thermal spray base material 15 that is a base material for manufacturing the heat receiving device 10 in the manufacturing process of the heat receiving device 10 of the fusion apparatus. That is, the pool type thermal spray base material 15 before the heat receiving plate 11 is formed is shown. The pool-type sprayed substrate 15 is formed in a rectangular shape or a block shape, and includes a heat sink 12 and a cooling pipe 14. Further, the heat sink 12 part of the pool type thermal spray base material 15 has a concave surface on one side, and a concave part 16 for forming the heat receiving plate 11 is provided. And the cooling pipe 14 has penetrated in the side surface direction which made the said recessed part 16 the upper surface. 2A is a perspective view of the pool type thermal spray base material 15, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A.
[0032]
In the manufacturing procedure of the heat receiving device 10 of the fusion apparatus, first, the surface of the concave portion 16 formed in the pool type sprayed base material 15 is roughened in the thermal spraying pretreatment process. Then, the oxide film on the surface of the roughened recess 16 is removed.
[0033]
Next, plasma spraying is performed on the material of the heat receiving plate 11, for example, a material of the tungsten and the heat sink 12, for example, a material in which copper is mixed, in the recess 16 of the pool type sprayed base material 15 that has undergone the thermal spraying pretreatment process.
[0034]
FIG. 3 shows a pool type sprayed substrate 15 after the spraying process, that is, a pool type sprayed substrate with a sprayed coating (hereinafter referred to as a sprayed substrate with a coating) 17. 3A is a perspective view of the thermal spray coated substrate 17 with coating, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A. In addition, the arrow in FIG. 3 (B) has shown the direction which plasma-sprays the spraying material (henceforth a mixed droplet) 18 in a spraying process. The material mixing ratio at the time of plasma spraying the mixed droplets 18 is changed continuously or stepwise. The gradient sprayed coating 20 that becomes the heat receiving plate 11 is formed while changing the material mixing ratio continuously or stepwise in the film thickness direction so that the heat receiving plate 11 side is 100% tungsten and the heat sink 12 side is 100% copper. I will do it. When the mixed droplet 18 is plasma sprayed from the direction of the arrow in FIG. 3B, the mixed droplet 18 forms a gradient sprayed coating 20 on the entire surface of the pool-type sprayed substrate 15 (hereinafter referred to as the upper surface). A film is formed. After the thermal spraying process, the pool type thermal spray base material 15 shown in FIG. 2 becomes the thermal spray base material 17 with a coating shown in FIG.
[0035]
Then, in the molding step, the convex portion around the sprayed substrate 17 with coating is cut in parallel with the axial direction of the cooling pipe 14 by a machining means, for example, machining. FIG. 4 shows by broken lines the positions at which the protrusions around the coated thermal spray base material 17 are cut in the molding process. This broken line shows the cutting line 21 of the sprayed substrate 17 with coating. According to FIG. 4, the cutting position is cutting on the central axis direction side of the cooling pipe 14 from the end of the bottom surface of the concave portion 16 of the pool type thermal spray base material 15.
[0036]
Further, the surface of the cooling pipe 14 in the direction perpendicular to the axial direction is cut leaving the cooling pipe 14, and the heat receiving plate 2 is grooved to finish the heat receiving apparatus 10 of FIG. 1 which is the final form.
[0037]
The method of manufacturing the heat receiving device 10 of the fusion apparatus employs the pool-type sprayed substrate 15 as the sprayed substrate before the start of manufacture, so that the concave portion 16 of the pool-type sprayed substrate 15 is inclined sprayed during the spraying process. It becomes a wall that covers the periphery when the film 20 is formed. That is, the gradient sprayed coating 20 can be formed without forming a free edge at the interface between the pool-type sprayed substrate 15 and the gradient sprayed coating 20 serving as the heat receiving plate 11. Further, when forming the gradient sprayed coating 20 in which tungsten and copper are mixed, the gradient sprayed coating 20 is formed without forming a free edge at the interface where the material mixing ratio changes continuously or stepwise in the coating thickness direction. Can be formed.
[0038]
Further, in the pre-spraying treatment step, the adhesion between the pool-type sprayed base material 15 and the gradient sprayed coating 20 can be increased by carrying out the roughening operation and the oxide film removal work on the concave portion 16 of the pool-type sprayed base material 15 in advance. Further improvement can be achieved.
[0039]
Further, during the thermal spraying process, a small crack or the like occurred at the interface between the pool thermal spray base material 15 and the portion of the gradient thermal spray coating 20 serving as the heat receiving plate 11 in the recess 16 of the pool thermal spray base material 15. Even in this case, in the molding process, since the cutting is performed on the central axis direction side of the cooling pipe 14 with respect to the end portion of the bottom surface of the concave portion 16 of the pool type thermal spray base material 15, cutting is performed for each portion where a small crack or the like exists. Can do.
[0040]
According to the first embodiment of the present invention, during plasma spraying or after plasma spraying, the interface between the gradient sprayed coating 20 that is the heat receiving plate 11 and the sprayed base material that is the heat sink 12 and different materials are mixed. At the interface where the material mixing ratio changes continuously or stepwise in the thickness direction of the coating, it is possible to suppress the occurrence of cracks and peeling in the gradient sprayed coating 20. Therefore, the quality improvement and reliability improvement of the heat receiving plate 11 formed from the gradient sprayed coating 20 can be aimed at. Further, since there is no occurrence of peeling or cracking from each interface, the gradient sprayed coating 20 that is the heat receiving plate 11 can be formed on the order of several mm, and the gradient sprayed coating 20 can be made thick. Furthermore, since it is possible to perform plasma spraying over a wide range, it is possible to reduce the manufacturing cost of the fusion apparatus heat receiving device 10.
[0041]
On the other hand, even if a small crack or the like has occurred in the thermal spray coating to be the heat receiving plate 11 after the thermal spraying process, it is cut into the final dimensions because the part where the small crack or the like exists in the molding process is cut. The heat receiving device 10 of the fusion apparatus can be applied to the fusion apparatus while ensuring the soundness of the heat receiving plate 11.
[0042]
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS.
[0043]
FIG. 5 shows a pool type thermal spray base material 22 as the fusion apparatus heat receiving device 1 in the second embodiment. FIG. 5A is a perspective view of the pool type thermal spray base material 22, and FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A. Moreover, FIG. 6 shows the thermal spray base material 23 with a film in 2nd Embodiment. 6A is a perspective view of the thermal spray coated substrate 23 with coating, and FIG. 6B is a cross-sectional view taken along the line DD in FIG. 6A.
[0044]
In the fusion apparatus heat receiving device 1 of the second embodiment, the shapes of the pool-type thermal spray base material 22 and the coated thermal spray base material 23 are different from those of the first embodiment, and therefore, different symbols are attached to achieve differentiation. Moreover, since it is not different from 1st Embodiment except the pool type | mold thermal spray base material 22 and the coating-coated thermal spray base material 23, about the same component, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0045]
In this embodiment, the recessed part 24 of the pool type thermal spray base material 22 is provided in the dish shape which has the taper shape expanded toward the surface from a bottom part. In the pool type sprayed substrate 17 shown in FIG. 2, the recess 16 is formed in a rectangular shape, for example, and the inner wall surface of the recess 16 is vertical, but in this embodiment, it is not limited to vertical. You may provide the recessed part 24 in the dish shape which has a taper shape like the pool-type thermal spray base material 22 shown by FIG.
[0046]
Moreover, when the thermal spray base material 23 with a film shown in FIG. 6 manufactures the heat receiving device 10 of the fusion apparatus, the pre-spraying treatment operation and the thermal spraying operation are performed using the pool type thermal spray base material 22 as the manufacturing base material. The pool-type thermal spray base material 22 is a pool-type thermal spray base material 22 having an inclined thermal spray coating 20B formed on the upper surface of the pool-type thermal spray base material 22. And the surrounding convex part is cut | disconnected to the axial direction of the cooling pipe 14B by the formation process of this thermal spray base material 23 with a film | membrane.
[0047]
FIG. 7 shows a position at which the convex portion around the coated thermal spray base material 23 is cut in the molding process. In addition, the broken line in FIG. 7 shows the cutting line 21B. According to FIG. 7, the cutting position is performed on the central axis direction side of the cooling pipe 14 </ b> B with respect to the end portion of the bottom surface of the concave portion 24 of the pool type thermal spray base material 23. Further, the surface of the cooling pipe 14B in the direction perpendicular to the axial direction is cut leaving the cooling pipe 14B, grooved in the heat receiving plate 2, and finished in the heat receiving device 10 of FIG. It is the same as the form.
[0048]
On the other hand, in the manufacture of the heat receiving device 10, the manufacturing base material of the heat receiving device 10 is shown in FIG. 5 when the pool type thermal spray base material 15 shown in FIG. 2 and the pool type thermal spray base material 22 shown in FIG. 5 are compared. In the case of the pool type thermal spray base material 22, the adhesion between the thermal spray base material and the thermal spray coating is improved. Therefore, it is possible to suppress the occurrence of cracking and peeling as compared with the above-described embodiment.
[0049]
In the second embodiment as described above, the same operations and effects as those in the first embodiment can be realized. Therefore, the description of the operations and effects in the second embodiment is omitted.
[0050]
In the present embodiment, plasma spraying has been described as an example of thermal spraying. However, the type of thermal spraying need not be plasma. Any spraying method such as gas spraying or electric spraying can be applied. Further, tungsten has been described as an example of the heat receiving plate 11 and copper as the material of the heat sink 12 as an example. However, the material of the heat receiving plate 11 and the material of the heat sink 12 are not limited to these. A material having a similar function may be substituted.
[0051]
Further, the final shape of the heat receiving device 10 of the fusion apparatus is not limited to the heat receiving device 10 of the fusion apparatus shown in FIG. In the molding step after the thermal spraying process, when the surface with the cooling pipe 14 is molded, the peripheral wall of the concave portion 16 of the pool type thermal spray base material showing the first embodiment and the concave portion 24 of the pool type thermal spray base material showing the second embodiment As long as the heat sink 12 that forms the surface is separated from the inclined sprayed coating 20 that becomes the heat receiving plate 11, partial cutting or grooving may be used.
[0052]
【The invention's effect】
As described above, according to the present invention, by spraying the thermal spray base material, in the thermal spraying of different materials using the thermal spray base material and the thermal spray coating material, during the thermal spraying or after the thermal spraying, the thermal spray coating is performed. It is possible to suppress the occurrence of cracking and peeling at the interface between the thermal spray base and the interface where the material mixing ratio changes. Further, when forming the heat receiving plate, even if a small crack or the like has occurred near the interface between the sprayed substrate and the sprayed coating in the recess of the sprayed substrate, there is a small crack or the like in the molding process. Each existing site can be cut. Therefore, the soundness of the heat receiving plate is ensured, and the quality and reliability of the heat receiving plate can be improved.
[0053]
Furthermore, since the occurrence of peeling and cracking can be suppressed at the interface between the thermal spray coating and the thermal spray base and the interface where the material mixing ratio changes, it is possible to form a stable thermal spray coating over a wide range. Therefore, it is possible to contribute to the increase in the thickness of the thermal spray coating, which forms the thermal spray coating as a heat receiving plate on the order of several millimeters, and the reduction in the manufacturing cost of the fusion device heat receiving device.
[Brief description of the drawings]
FIG. 1 is a perspective view of a fusion apparatus heat receiving device to which the present invention is applied.
FIGS. 2A and 2B are a perspective view and a cross section taken along the line AA of the manufacturing base material before starting manufacturing in the heat receiving device of the fusion device manufactured in the first embodiment according to the present invention. Figure.
FIGS. 3A and 3B are a perspective view of a manufacturing base material after a thermal spraying process and a cross section taken along line BB in the fusion apparatus heat receiving device manufactured in the first embodiment according to the present invention; FIGS. Figure.
FIG. 4 is a cross-sectional view of a manufacturing substrate showing a cutting position in the molding process of the fusion apparatus heat receiving device manufactured in the first embodiment according to the present invention.
FIGS. 5A and 5B are a perspective view and a cross-section taken along the line CC of a manufacturing base material before starting manufacturing in the heat receiving device of the fusion apparatus manufactured in the second embodiment according to the present invention. FIGS. Figure.
FIGS. 6A and 6B are a perspective view of a manufacturing base material after a thermal spraying process and a cross section taken along a line DD in a fusion apparatus heat receiving device manufactured in a second embodiment according to the present invention. Figure.
FIG. 7 is a cross-sectional view of a manufacturing substrate showing a cutting position in a molding process of a fusion apparatus heat receiving device manufactured in a second embodiment according to the present invention.
FIG. 8 is a perspective view showing an example of a general nuclear fusion apparatus heat receiving device.
FIGS. 9A and 9B are a perspective view and a cross-sectional view taken along line E-E of a fusion apparatus heat receiving device before film formation of a heat receiving plate according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Fusion apparatus heat receiving apparatus 11 Heat receiving plate 12 Heat sink 14 Cooling tube 15 Pool type sprayed base material 16 Recessed part 17 of pool type sprayed base material 18 Sprayed base material with coating 18 Mixed spray 20 Gradient spray coating 21 Cutting line 22 Pool type spray base Material 23 Sprayed Substrate with Coating 24 Recessed part of pool type sprayed substrate

Claims (4)

溶射によって受熱板を製造する核融合装置受熱機器の製造方法において、前記核融合装置受熱機器を構成する溶射基材をプール型形状に凹設してプール型溶射基材を形成し、このプール型溶射基材の凹部に溶射皮膜を成膜して受熱板を形成し、前記受熱板を前記プール型溶射基材の凹部内側面部分で切断し、前記受熱板を最終的な形状として仕上げることを特徴とする核融合装置受熱機器の製造方法。In the method of manufacturing a heat receiving device for a nuclear fusion apparatus for manufacturing a heat receiving plate by thermal spraying, a thermal spray base material constituting the nuclear fusion apparatus heat receiving device is recessed in a pool type shape to form a pool type thermal spray base material. Forming a heat-receiving plate by forming a thermal spray coating on the concave portion of the thermal spray base, cutting the heat-receiving plate at the inner surface of the concave portion of the pool-type thermal spray base, and finishing the heat-receiving plate as a final shape A method for manufacturing a heat receiving device of a nuclear fusion device. 溶射の前処理として、前記プール型溶射基材の凹部の内側面に粗面化作業及び酸化膜除去作業を実施し、前記プール型溶射基材と溶射皮膜の密着力を高めた溶射皮膜を成膜して受熱板を形成することを特徴とする請求項1に記載の核融合装置受熱機器の製造方法。  As a pretreatment for thermal spraying, a roughening operation and an oxide film removal operation are performed on the inner surface of the concave portion of the pool type thermal spray base material, thereby forming a thermal spray coating with improved adhesion between the pool type thermal spray base material and the thermal spray coating. The method of manufacturing a heat receiving device for a nuclear fusion apparatus according to claim 1, wherein the heat receiving plate is formed by forming a film. 前記プール型溶射基材の凹部をテーパ形状を有する皿状に形成し、前記プール型溶射基材の凹設面に溶射皮膜を成膜して受熱板を形成することを特徴とする請求項1または2に記載の核融合装置受熱機器の製造方法。Claim 1, characterized in that the recesses pooled sprayed substrate was formed into a dish shape having a tapered shape to form a heat receiving plate by forming a thermal spray coating on the recessed surface of the pool type spraying substrate Or the manufacturing method of the fusion apparatus heat receiving apparatus of 2 . 前記受熱板を前記プール型溶射基材の凹部内側面部分を切断するその切断位置は、前記プール型溶射基材の凹部の底面の端部よりも内側にて切断し、最終的な受熱板形状として仕上げることを特徴とする請求項1または2に記載の核融合装置受熱機器の製造方法。The cutting position for cutting the inner surface portion of the concave portion of the pool type thermal spray base is cut inside the end of the bottom surface of the concave portion of the pool type thermal spray base, and the final heat receiving plate shape The method for manufacturing a heat receiving device for a nuclear fusion apparatus according to claim 1, wherein:
JP2002089191A 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device Expired - Lifetime JP4045114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089191A JP4045114B2 (en) 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089191A JP4045114B2 (en) 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device

Publications (2)

Publication Number Publication Date
JP2003286558A JP2003286558A (en) 2003-10-10
JP4045114B2 true JP4045114B2 (en) 2008-02-13

Family

ID=29234839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089191A Expired - Lifetime JP4045114B2 (en) 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device

Country Status (1)

Country Link
JP (1) JP4045114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT9000U1 (en) 2005-12-23 2007-03-15 Plansee Se HEAT SINKS FROM A COPPER ALLOY
DE102007016375A1 (en) 2007-03-31 2008-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Components for heat sinks

Also Published As

Publication number Publication date
JP2003286558A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
US6899798B2 (en) Reusable ceramic-comprising component which includes a scrificial surface layer
EP3156514B1 (en) Method for producing laminate
EP3632591B1 (en) Additive manufacturing method for producing a component and support structures
US20130098867A1 (en) Method for Selective Metallization on a Ceramic Substrate
CN104416281B (en) Target assembly and manufacturing method thereof
US20190232372A1 (en) Method for the tool-free removal of support structures in the additive manufacturing of components
TW201636192A (en) 3D printed chamber components configured for lower film stress and lower operating temperature
US20170239756A1 (en) Laser manufacturing of solder preforms
JP6052137B2 (en) Target material for cylindrical sputtering target, cylindrical sputtering target and method for manufacturing the same
CN111889869A (en) Welding method for high-purity rare earth and alloy target
EP1636833B1 (en) Method of joining silicon parts with plasma spraying ; corresponding structure
JP4045114B2 (en) Method for manufacturing fusion device heat receiving device
CN110405204A (en) The preparation method of dissimilar metal components
CN113272468A (en) Sputtering target product and method for producing recycled product of sputtering target product
EP3530399A1 (en) Indirect surface finishing during hybrid manufacturing
JP2022171973A (en) Method for manufacturing thermal spray member
CN106457471A (en) Method to eliminate recast material
US20230380062A1 (en) Beveled overburden for vias and method of making the same
EP2775100B1 (en) Turbine blade cooling channel formation by etching
CN110418882B (en) Method for machining cylinder
TW201629266A (en) Internal member for a plasma treatment apparatus and method of manufacturing the same
JP6624585B2 (en) Sputtering target-backing plate assembly
CN117680802B (en) Titanium alloy microchannel heat exchanger manufacturing method
CN215183847U (en) Protective coating for semiconductor parts
CN116246927A (en) Etching chamber with auxiliary window and etching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Ref document number: 4045114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term