JP2003286558A - Method for manufacturing heat-receiving device of nuclear fusion apparatus - Google Patents

Method for manufacturing heat-receiving device of nuclear fusion apparatus

Info

Publication number
JP2003286558A
JP2003286558A JP2002089191A JP2002089191A JP2003286558A JP 2003286558 A JP2003286558 A JP 2003286558A JP 2002089191 A JP2002089191 A JP 2002089191A JP 2002089191 A JP2002089191 A JP 2002089191A JP 2003286558 A JP2003286558 A JP 2003286558A
Authority
JP
Japan
Prior art keywords
heat
thermal spray
receiving plate
pool
heat receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002089191A
Other languages
Japanese (ja)
Other versions
JP4045114B2 (en
Inventor
Hiroshi Yanagi
寛 柳
Masanao Shibui
正直 澁井
Kazuyoshi Sato
和義 佐藤
Koichiro Esato
幸一郎 江里
Masaki Taniguchi
正樹 谷口
Satoru Suzuki
哲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP2002089191A priority Critical patent/JP4045114B2/en
Publication of JP2003286558A publication Critical patent/JP2003286558A/en
Application granted granted Critical
Publication of JP4045114B2 publication Critical patent/JP4045114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat-receiving device of a nuclear fusion apparatus, which has improved quality and reliability of heat-receiving plate. <P>SOLUTION: The method for manufacturing the heat-receiving device comprises preparing a pool type structure made of a thermal spray material having a channel, thermally spraying a mixture of a material of the heat-receiving plate 11, tungsten for instance, and a material of a heat sink, copper for instance, and forming a content- inclined sprayed film 20 to form the heat-receiving plate 11. Then, the method forms a content-inclined sprayed film 20, without making a free margin exist on an interface between the content-inclined sprayed film 20 of the heat-receiving plate 11 and the thermal spray material of a heat sink 12, and improves quality and reliability of the heat-receiving plate 11, because peeling and cracking are inhibited from occurring on the interfaces in the content-inclined sprayed film 20, of which the material mixed ratios vary. In addition, the method contributes to thickening of the content-inclined sprayed film 20 to be formed into several millimeters or thicker, and reduction of the manufacturing cost for the heat-receiving device 10 of the nuclear fusion apparatus, because the content-inclined sprayed film 20 can be stably formed over a wide area. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、核融合装置受熱機
器の製造方法に係り、特にプール型溶射基材に溶射を用
いて受熱板を形成した核融合装置受熱機器の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat receiving device for a nuclear fusion device, and more particularly to a method for manufacturing a heat receiving device for a fusion device in which a heat receiving plate is formed on a pool type thermal spray substrate by using thermal spraying.

【0002】[0002]

【従来の技術】従来の核融合装置の受熱機器1を図8に
示す。核融合装置の受熱機器1は、核融合装置が稼動し
ている際、高い熱負荷を受けるため、耐熱性および高い
除熱性能を有する必要がある。また、高エネルギの水素
や核融合反応で生ずるヘリウムが受熱板2へ衝突するた
め、受熱板2は耐熱性および耐スパッタリング性が必要
とされる。
2. Description of the Related Art A conventional heat receiving device 1 of a nuclear fusion device is shown in FIG. Since the heat receiving device 1 of the nuclear fusion device receives a high heat load when the nuclear fusion device is operating, it must have heat resistance and high heat removal performance. Further, since high-energy hydrogen and helium generated by a nuclear fusion reaction collide with the heat receiving plate 2, the heat receiving plate 2 is required to have heat resistance and sputtering resistance.

【0003】このような観点から核融合装置の受熱機器
1は、図8に示されるように耐熱性および耐スパッタリ
ング性能を有する受熱板2に高い除熱作用を有するヒー
トシンク3を取り付け、このヒートシンク3に核融合装
置の受熱機器1を冷却するための冷却管4を取り付けて
構成される。また、受熱板2は機能上の要求から通常数
mmオーダもしくは数mmオーダ以上の板厚が必要であ
る。
From this point of view, in the heat receiving device 1 of the nuclear fusion device, as shown in FIG. 8, a heat sink 3 having a high heat removal effect is attached to a heat receiving plate 2 having heat resistance and sputtering resistance, and this heat sink 3 is attached. And a cooling pipe 4 for cooling the heat receiving device 1 of the fusion device. Further, the heat receiving plate 2 is usually required to have a plate thickness on the order of several mm or several mm or more due to functional requirements.

【0004】核融合装置の受熱機器1の製造方法には製
造基材としてのヒートシンク3に受熱板2の材料を用い
て溶射し、製造基材のヒートシンク3上に受熱板2の材
料を成膜することで、受熱板2を形成する方法が考えら
れている。核融合装置受熱機器1の製造基材の形状とし
ては、例えば図9(A)および(B)に示される平板型
の製造基材を使用する。
In the method of manufacturing the heat receiving device 1 of the nuclear fusion device, the material of the heat receiving plate 2 is sprayed on the heat sink 3 as the manufacturing base material, and the material of the heat receiving plate 2 is formed on the heat sink 3 of the manufacturing base material. By doing so, a method of forming the heat receiving plate 2 is considered. As a shape of the manufacturing base material of the nuclear fusion device heat receiving device 1, for example, a flat plate-shaped manufacturing base material shown in FIGS. 9A and 9B is used.

【0005】ここで図9(A)は受熱板成膜前の核融合
装置受熱機器の斜視図、図9(B)は図9(A)におけ
るE−E線に沿う断面図である。
Here, FIG. 9A is a perspective view of the heat receiving device of the fusion device before film formation of the heat receiving plate, and FIG. 9B is a sectional view taken along line EE in FIG. 9A.

【0006】図9に示される平板型の製造基材であるヒ
ートシンク3には、冷却管4が取付けられている。この
冷却管4はヒートシンク3の対向する面を貫通して取り
付けられている。図9(A)に示される平板型の製造基
材であるヒートシンク3において、冷却管4が貫通して
いる面を側面とした場合の上面には受熱板2を形成する
受熱板形成面6があり、この受熱板形成面6に受熱板2
の材料を成膜することで、受熱板2を形成し、図8に示
される核融合装置の受熱機器1は製造される。
A cooling pipe 4 is attached to the heat sink 3 which is a flat plate type manufacturing substrate shown in FIG. The cooling pipe 4 is attached so as to penetrate the opposing surface of the heat sink 3. In the heat sink 3 which is the flat plate type manufacturing substrate shown in FIG. 9A, the heat receiving plate forming surface 6 for forming the heat receiving plate 2 is formed on the upper surface when the surface through which the cooling pipe 4 penetrates is defined as the side surface. There is a heat receiving plate 2 on the heat receiving plate forming surface 6.
The heat receiving plate 2 is formed by depositing the material of (1), and the heat receiving device 1 of the nuclear fusion device shown in FIG. 8 is manufactured.

【0007】溶射による成膜方法は、工業材料の表面改
質等の目的で、一般的に使用されている方法である。こ
の成膜方法は、単独材料を溶射皮膜材料として使用する
のが一般的である。また、この成膜方法により成膜する
膜厚は通常数十〜数百μmオーダである。
The film-forming method by thermal spraying is a method generally used for the purpose of surface modification of industrial materials. This film forming method generally uses a single material as a thermal spray coating material. The film thickness formed by this film forming method is usually on the order of tens to hundreds of μm.

【0008】核融合装置の受熱機器1では、受熱板2と
なる溶射材料と製造基材であるヒートシンク3との線膨
張係数が大きく異なる。このような異材料同士で溶射に
よる成膜を行う際には、溶射施工中や溶射施工後に、形
成した溶射皮膜と溶射基材との界面の端部から剥離や割
れが生じやすい。
In the heat receiving device 1 of the nuclear fusion device, the thermal expansion material of the heat receiving plate 2 and the heat sink 3 of the manufacturing base material are greatly different in linear expansion coefficient. When performing film formation by thermal spraying between such different materials, peeling or cracking is likely to occur from the end of the interface between the formed thermal spray coating and the thermal spray base material during or after thermal spraying.

【0009】一方、受熱機器1は、受熱板2の表面から
冷却管4までの間に大きな温度差があり、大きな熱応力
を生じる。この熱応力を緩和するため、溶射材料および
溶射基材を混合して溶射を行う方法が考えられている。
核融合装置の受熱機器1の製造においては、受熱板2の
材料とヒートシンク3の材料とを混合して溶射を行うこ
とにより、溶射皮膜を成膜し、受熱板2を形成するので
ある。
On the other hand, in the heat receiving device 1, there is a large temperature difference between the surface of the heat receiving plate 2 and the cooling pipe 4, and a large thermal stress is generated. In order to alleviate this thermal stress, a method of mixing a thermal spray material and a thermal spray base material and performing thermal spray has been considered.
In the manufacture of the heat receiving device 1 of the nuclear fusion device, the material of the heat receiving plate 2 and the material of the heat sink 3 are mixed and sprayed to form a thermal spray coating to form the heat receiving plate 2.

【0010】混合溶射による受熱機器1の製造方法は、
例えば、受熱板2の材料となるタングステンと、ヒート
シンク3の材料となる銅との材料混合比を、連続的に変
化させながら溶射を実施する。材料混合比は受熱板2側
ではタングステン100%、ヒートシンク3側では銅1
00%となるように連続的あるいは段階的に変化させな
がら傾斜溶射を実施する。そして、受熱板2側では10
0%タングステン、ヒートシンク3側では100%銅と
なるように受熱板2を形成していく方法である。
The manufacturing method of the heat receiving device 1 by the mixed spraying is as follows:
For example, thermal spraying is performed while continuously changing the material mixing ratio of tungsten, which is the material of the heat receiving plate 2, and copper, which is the material of the heat sink 3. The material mixing ratio is 100% tungsten on the heat receiving plate 2 side and 1 copper on the heat sink 3 side.
Gradient thermal spraying is carried out while continuously or stepwise changing so as to be 00%. And on the heat receiving plate 2 side, 10
This is a method of forming the heat receiving plate 2 so that 0% tungsten and 100% copper are formed on the heat sink 3 side.

【0011】しかし、異種材料を混合して行う傾斜溶射
により成膜する方法は、単独材料での溶射とは異なる問
題点を有する。例えば、銅とタングステンのような低融
点材料と高融点材料で実施する場合、溶射皮膜材料の材
料混合比が変化する界面および溶射基材と溶射皮膜との
界面で剥離や割れが生じやすいという問題点がある。
However, the method of forming a film by gradient thermal spraying in which different kinds of materials are mixed has a problem different from the thermal spraying of a single material. For example, when using a low melting point material and a high melting point material such as copper and tungsten, the problem that peeling or cracking easily occurs at the interface where the material mixing ratio of the thermal spray coating material changes and the interface between the thermal spray base material and the thermal spray coating There is a point.

【0012】従って、受熱機器1を異種材料を混合した
溶射により成膜する場合、例えば、受熱板2の材料とし
てのタングステンを、線膨張係数が異なるヒートシンク
3の材料である銅へ溶射して成膜する場合、溶射施工中
や溶射施工後に、形成された溶射皮膜と溶射基材との界
面の端部から剥離や割れが生じやすい。また、溶射皮膜
材料の材料混合比が変化する界面および溶射基材と溶射
皮膜との界面でも剥離や割れが生じやすい。さらに、数
mmオーダもしくは数mmオーダ以上の膜厚を有する溶
射皮膜の形成は困難であった。
Therefore, when depositing the heat-receiving device 1 by thermal spraying with a mixture of different materials, for example, tungsten as the material of the heat-receiving plate 2 is sprayed onto copper which is the material of the heat sink 3 having different linear expansion coefficients. When a film is formed, peeling or cracking is likely to occur from the end portion of the interface between the formed sprayed coating and the sprayed base material during or after the spraying. Further, peeling and cracking are likely to occur also at the interface where the material mixing ratio of the thermal spray coating material changes and the interface between the thermal spray base material and the thermal spray coating. Further, it has been difficult to form a thermal spray coating having a film thickness on the order of several mm or several mm.

【0013】これらの点から、形成された受熱板2の品
質および信頼性が低下する可能性も否めなかった。ま
た、図9(A)に示される平板型の製造基材だけではな
く、例えば受熱板形成面6が湾曲した形状の核融合装置
受熱機器1の製造基材でも、同様の現象が発生しやす
く、形成された受熱板2の品質および信頼性が低下する
可能性も否めない。
From these points, it is undeniable that the quality and reliability of the heat receiving plate 2 formed may be deteriorated. The same phenomenon is likely to occur not only in the flat plate-type manufacturing base material shown in FIG. 9A but also in the manufacturing base material of the nuclear fusion device heat-receiving device 1 in which the heat-receiving plate forming surface 6 is curved, for example. It is undeniable that the quality and reliability of the formed heat receiving plate 2 may deteriorate.

【0014】[0014]

【発明が解決しようとする課題】従来の溶射による核融
合装置受熱機器1の製造方法では、上述した受熱板2の
剥離や割れが異材料同士の組み合わせの溶射において顕
著に現れる。これは、混合溶射により成膜される皮膜同
士の材料混合比が変化する界面や溶射皮膜と溶射基材と
の界面に自由縁が存在することに起因するところが大き
い。
In the conventional method of manufacturing the heat receiving device 1 of the nuclear fusion apparatus by thermal spraying, the above-mentioned peeling and cracking of the heat receiving plate 2 are prominent in the thermal spraying of a combination of different materials. This is largely due to the presence of free edges at the interface where the material mixing ratio of the coatings formed by mixed spraying changes and the interface between the sprayed coating and the sprayed base material.

【0015】本発明は、上述した事情を考慮してなされ
たもので、受熱板である溶射皮膜とヒートシンクである
溶射基材との界面や異種材料が混合した溶射皮膜間に、
自由縁を存在させること無く溶射を実施して、剥離や割
れの無い安定した溶射皮膜を成膜し、受熱板を形成する
ことで、受熱板の品質向上および信頼性向上を図った核
融合装置受熱機器を製造する方法を提供することを目的
とする。
The present invention has been made in consideration of the above-mentioned circumstances, and includes an interface between a thermal spray coating that is a heat receiving plate and a thermal spray base material that is a heat sink, or between thermal spray coatings in which different materials are mixed.
A fusion device that improves the quality and reliability of the heat receiving plate by performing thermal spraying without the presence of free edges to form a stable thermal spray coating with no peeling or cracking, and forming the heat receiving plate. It is an object of the present invention to provide a method for manufacturing a heat receiving device.

【0016】また、本発明の他の目的は、溶射を用い
て、剥離や割れの無い安定した数mmオーダもしくは数
mmオーダ以上の溶射皮膜にて受熱板を形成する核融合
装置受熱機器の製造方法を提供するにある。
Another object of the present invention is to manufacture a heat receiving device for a fusion device in which a heat receiving plate is formed by a stable spray coating of several mm order or several mm order or more without peeling or cracking by using thermal spraying. There is a way to provide.

【0017】さらに、本発明の他の目的は、溶射を用い
て、剥離や割れの無い安定した溶射皮膜を広範囲にわた
って形成することで、核融合装置受熱機器の製造コスト
低減を図った核融合装置受熱機器の製造方法を提供する
にある。
Still another object of the present invention is to form a stable thermal spray coating free from peeling and cracking over a wide range by using thermal spraying, thereby reducing the manufacturing cost of the nuclear fusion device heat receiving device. A method of manufacturing a heat receiving device is provided.

【0018】[0018]

【課題を解決するための手段】本発明に係る核融合装置
受熱機器の製造方法は、上述した課題を解決するため
に、請求項1に記載したように、溶射によって受熱板を
製造する核融合装置受熱機器の製造方法において、前記
核融合装置受熱機器を構成する溶射基材をプール型形状
に凹設してプール型溶射基材を形成し、このプール型溶
射基材の凹部に溶射皮膜を成膜して受熱板を形成するこ
とを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a heat-receiving device for a nuclear fusion device according to the present invention, as set forth in claim 1, is a nuclear fusion process for manufacturing a heat-receiving plate by thermal spraying. In the manufacturing method of the apparatus heat-receiving device, the thermal spray substrate constituting the nuclear fusion device heat-receiving device is recessed into a pool-type shape to form a pool-type thermal spray substrate, and a thermal spray coating is formed in the recess of this pool-type thermal spray substrate. It is characterized by forming a film to form a heat receiving plate.

【0019】上述した課題を解決するために、本発明に
係る核融合装置受熱機器の製造方法は、請求項2に記載
したように、溶射の前処理として、前記プール型溶射基
材の凹部の内側面に粗面化作業及び酸化膜除去作業を実
施し、前記プール型溶射基材と溶射皮膜の密着力を高め
た溶射皮膜を成膜して受熱板を形成することを特徴とす
る。
In order to solve the above-mentioned problems, the method of manufacturing a heat receiving device for a fusion device according to the present invention, as described in claim 2, as a pretreatment for thermal spraying, A heat receiving plate is formed by performing a roughening operation and an oxide film removing operation on the inner side surface to form a thermal spray coating having enhanced adhesion between the pool type thermal spray base material and the thermal spray coating.

【0020】上述した課題を解決するために、本発明に
係る核融合装置受熱機器の製造方法は、請求項3に記載
したように、前記プール型溶射基材の凹部をテーパ形状
を有する皿状に形成し、前記プール型溶射基材の凹設面
に溶射皮膜を成膜して受熱板を形成することを特徴とす
る。
In order to solve the above-mentioned problems, in the method for manufacturing a heat-receiving device for a nuclear fusion device according to the present invention, as described in claim 3, the concave portion of the pool-type thermal spray substrate has a dish shape having a taper shape. The heat-receiving plate is formed by forming a thermal spray coating on the concave surface of the pool-type thermal spray substrate.

【0021】上述した課題を解決するために、本発明に
係る核融合装置受熱機器の製造方法は、請求項4に記載
したように、前記受熱板を前記プール型溶射基材の凹部
内側面部分で切断し、前記受熱板を最終的な形状として
仕上げることを特徴とする。
In order to solve the above-mentioned problems, a method for manufacturing a heat-receiving device for a nuclear fusion device according to the present invention is characterized in that, as described in claim 4, the heat-receiving plate is provided on the inner surface of the recess of the pool-type thermal spray substrate. It is characterized in that the heat receiving plate is cut into a final shape to be finished.

【0022】上述した課題を解決するために、本発明に
係る核融合装置受熱機器の製造方法は、請求項5に記載
したように、前記受熱板を前記プール型溶射基材の凹部
内側面部分を切断し、その切断位置は、前記プール型溶
射基材の凹部の底面の端部よりも内側にて切断し、最終
的な受熱板形状として仕上げることを特徴とする。
In order to solve the above-mentioned problems, a method for manufacturing a heat-receiving device for a nuclear fusion device according to the present invention is characterized in that, as described in claim 5, the heat-receiving plate is provided on the inner surface of the recess of the pool-type thermal spray substrate. Is cut, and the cutting position is cut inside the end of the bottom surface of the concave portion of the pool-type spray-coated base material to complete the final heat-receiving plate shape.

【0023】このような核融合装置受熱機器の製造方法
においては、受熱板である溶射皮膜とヒートシンクであ
る溶射基材の界面に自由縁を存在させることなく、異種
材料を混合した溶射、例えば、ヒートシンク材料である
銅と受熱板材料であるタングステンとの溶射を実施する
事ができる。従って、プール型溶射基材と溶射皮膜の密
着力が高くなり、溶射皮膜と溶射基材との界面および異
種材料が混合した溶射皮膜の材料混合比が変化する界面
において、剥離や割れの発生を抑制できる。そして、溶
射皮膜の品質および信頼性が向上し、受熱板の品質向上
および信頼性向上を図ることができる。
In such a method for manufacturing a nuclear fusion device heat-receiving device, a thermal spray mixed with different kinds of materials without a free edge at the interface between the thermal-spray coating as a heat-receiving plate and the thermal-spray base material as a heat sink, for example, It is possible to perform thermal spraying of copper as a heat sink material and tungsten as a heat receiving plate material. Therefore, the adhesion between the pool-type thermal spray base material and the thermal spray coating increases, and the occurrence of peeling or cracking occurs at the interface between the thermal spray coating and the thermal spray base material and at the interface where the material mixing ratio of the thermal spray coating mixed with different materials changes. Can be suppressed. The quality and reliability of the thermal spray coating are improved, and the quality and reliability of the heat receiving plate can be improved.

【0024】また、このような核融合装置受熱機器の製
造方法においては、プール型溶射基材の凹部と溶射皮膜
との界面付近にて、受熱板に小さな割れ等が発生してい
た場合であっても、その部分を切断できるため、受熱板
となる溶射皮膜の品質向上および信頼性向上を図ること
ができる。そして、最終寸法に加工した核融合装置受熱
機器では、受熱板の健全性を確保したまま核融合装置へ
適用する事ができる。
Further, in such a method of manufacturing a heat receiving device for a nuclear fusion apparatus, there is a case where a small crack or the like is generated in the heat receiving plate near the interface between the recess of the pool type thermal spray substrate and the thermal spray coating. However, since that portion can be cut, it is possible to improve the quality and reliability of the thermal spray coating serving as the heat receiving plate. The heat receiving device of the fusion device processed to the final size can be applied to the fusion device while ensuring the soundness of the heat receiving plate.

【0025】さらに、このような核融合装置受熱機器の
製造方法においては、溶射皮膜と溶射基材との界面や異
種材料混合溶射皮膜の材料混合比が変化する界面におい
て、剥離や割れの発生を抑制できるため、受熱板となる
溶射皮膜を数mmオーダもしくは数mmオーダ以上に成
膜でき、溶射皮膜の厚膜化を図ることができる。さらに
また、広範囲にわたり安定した溶射皮膜の成膜が可能と
なり、核融合装置受熱機器の製造コストの低減にも繋が
る。
Further, in such a method for manufacturing a nuclear fusion apparatus heat receiving device, peeling or cracking occurs at the interface between the thermal spray coating and the thermal spray base material or at the interface where the material mixing ratio of the different material mixed thermal spray coating changes. Since it can be suppressed, the thermal spray coating to be the heat receiving plate can be formed on the order of several mm or several mm or more, and the thermal spray coating can be made thicker. Furthermore, it becomes possible to form a stable thermal spray coating over a wide range, which leads to a reduction in the manufacturing cost of the nuclear fusion device heat receiving device.

【0026】[0026]

【発明の実施の形態】以下、本発明に関する核融合装置
受熱機器の製造方法の実施形態を添付図面を参照して説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method of manufacturing a heat receiving device for a nuclear fusion device according to the present invention will be described below with reference to the accompanying drawings.

【0027】[第1実施形態]本発明の第1実施形態を
図1〜図4を参照して説明する。
[First Embodiment] A first embodiment of the present invention will be described with reference to FIGS.

【0028】図1は本発明の製造方法によって製造され
た核融合装置の受熱機器10の斜視図である。
FIG. 1 is a perspective view of a heat receiving device 10 of a nuclear fusion device manufactured by the manufacturing method of the present invention.

【0029】この受熱機器10は、受熱板11とヒート
シンク12と冷却管14とを具備している。受熱板11
は、ヒートシンク12の表面と接合され、1枚または複
数枚、例えば3枚が受熱機器10に具備されている。受
熱板11は、核融合炉が稼動している際、高い熱負荷を
受けるため、セラミックや高融点金属、例えばタングス
テンで形成されている。ヒートシンク12には受熱板1
1を上面として受熱機器10を見た場合の平面視で側面
方向に冷却管14が貫通している。また、ヒートシンク
12は受熱板11の熱を除熱する役割を担っているた
め、高い除熱効果を有する材料、例えば銅で形成されて
いる。
The heat receiving device 10 includes a heat receiving plate 11, a heat sink 12, and a cooling pipe 14. Heat receiving plate 11
Is joined to the surface of the heat sink 12 and one or a plurality of sheets, for example, three sheets are provided in the heat receiving device 10. The heat receiving plate 11 is formed of ceramic or a refractory metal, for example, tungsten, because it receives a high heat load when the fusion reactor is operating. The heat sink 12 has a heat receiving plate 1
When the heat receiving device 10 is viewed with 1 as the upper surface, the cooling pipe 14 penetrates in the side direction in a plan view. Further, since the heat sink 12 plays a role of removing the heat of the heat receiving plate 11, it is made of a material having a high heat removing effect, for example, copper.

【0030】一方、図1に示される受熱機器10は、図
2(A)および(B)に示されるプール型形状あるいは
凹設形状をした溶射基材(以下、プール型溶射基材とす
る)15から溶射前処理工程、図3に示される溶射工
程、図4に示される成形工程を経て製造される。この受
熱機器10の製造工程について製造手順を追いながら図
2〜図4を参照し、説明する。
On the other hand, the heat-receiving device 10 shown in FIG. 1 has a pool-shaped or recessed thermal spray base material shown in FIGS. 2 (A) and 2 (B) (hereinafter referred to as pool-type thermal spray base material). 15 through the thermal spray pretreatment step, the thermal spray step shown in FIG. 3, and the molding step shown in FIG. The manufacturing process of the heat receiving device 10 will be described with reference to FIGS. 2 to 4 while following the manufacturing procedure.

【0031】図2(A)および(B)は、核融合装置の
受熱機器10の製造工程において、受熱機器10の製造
基材であるプール型溶射基材15を示す。すなわち、受
熱板11を形成する前のプール型溶射基材15を示して
いる。このプール型溶射基材15は、方体形状あるいは
ブロック形状に形成され、ヒートシンク12と冷却管1
4とを具備している。また、プール型溶射基材15のヒ
ートシンク12部は、任意の一面が凹設されており、受
熱板11を形成するための凹部16が設けられている。
そして、上記凹部16を上面とした側面方向に冷却管1
4が貫通している。尚、図2(A)はプール型溶射基材
15の斜視図、図2(B)は図2(A)におけるA−A
線に沿う断面図である。
2 (A) and 2 (B) show a pool-type spray base material 15 which is a base material for manufacturing the heat receiving device 10 in the manufacturing process of the heat receiving device 10 of the nuclear fusion device. That is, the pool-type spray-coated base material 15 before forming the heat receiving plate 11 is shown. The pool-type spray-coated base material 15 is formed in a rectangular shape or a block shape, and has a heat sink 12 and a cooling pipe 1.
4 and. Further, the heat sink 12 portion of the pool-type thermal spray base material 15 is provided with a recess on any one surface, and is provided with a recess 16 for forming the heat receiving plate 11.
Then, the cooling pipe 1 is provided in the lateral direction with the recess 16 as the upper surface.
4 penetrates. 2A is a perspective view of the pool-type spray-coated base material 15, and FIG. 2B is AA in FIG. 2A.
It is sectional drawing which follows the line.

【0032】核融合装置の受熱機器10の製造手順は、
まず、溶射前処理工程にてプール型溶射基材15に形成
された凹部16の表面を粗面化する。そして、粗面化し
た凹部16の表面の酸化膜を除去する。
The manufacturing procedure of the heat receiving device 10 of the fusion device is as follows.
First, the surface of the concave portion 16 formed in the pool-type thermal spray base material 15 is roughened in the thermal spray pretreatment process. Then, the oxide film on the surface of the roughened concave portion 16 is removed.

【0033】次に、溶射前処理工程を終えたプール型溶
射基材15の凹部16に受熱板11の材料、例えばタン
グステンとヒートシンク12の材料、例えば銅を混合し
た材料をプラズマ溶射する。
Next, the material of the heat receiving plate 11, for example, the material of tungsten and the heat sink 12, for example, the material of which copper is mixed, is plasma sprayed into the recess 16 of the pool type thermal spraying base material 15 which has undergone the thermal spraying pretreatment process.

【0034】図3は、溶射工程後のプール型溶射基材1
5、すなわち、溶射皮膜付プール型溶射基材(以下、皮
膜付溶射基材とする)17を示している。図3(A)は
皮膜付溶射基材17の斜視図、図3(B)は図3(A)
におけるB−B線に沿う断面図である。尚、図3(B)
中の矢印は溶射工程での溶射材料(以下、混合溶滴とす
る)18をプラズマ溶射する向きを示している。混合溶
滴18をプラズマ溶射する際の材料混合比は、連続的あ
るいは段階的に変化させながら実施する。受熱板11側
では100%タングステン、ヒートシンク12側では1
00%銅となるように材料混合比を連続的あるいは段階
的に皮膜肉厚方向に変化させながら受熱板11となる傾
斜溶射皮膜20を成膜していく。図3(B)中の矢印の
方向より混合溶滴18をプラズマ溶射すると、プール型
溶射基材15の凹設した面(以下、上面とする)一面に
混合溶滴18が傾斜溶射皮膜20として成膜される。溶
射工程後は、図2に示されるプール型溶射基材15は、
図3に示される皮膜付溶射基材17となる。
FIG. 3 shows a pool type thermal spray substrate 1 after the thermal spray process.
5, that is, a pool type thermal spray coating substrate with a thermal spray coating (hereinafter referred to as a thermal spray coating substrate with a coating) 17. FIG. 3A is a perspective view of the thermal spray coating base material 17, and FIG. 3B is FIG.
It is sectional drawing which follows the BB line in. Incidentally, FIG. 3 (B)
The arrow inside indicates the direction of plasma spraying of the spray material (hereinafter referred to as mixed droplets) 18 in the spray process. The material mixing ratio at the time of plasma spraying the mixed droplets 18 is carried out while continuously or stepwise changing. 100% tungsten on the heat receiving plate 11 side, 1 on the heat sink 12 side
The gradient thermal spray coating 20 to be the heat receiving plate 11 is formed while changing the material mixing ratio continuously or stepwise in the thickness direction of the coating so as to be 00% copper. When plasma spraying the mixed droplets 18 from the direction of the arrow in FIG. 3 (B), the mixed droplets 18 serve as the gradient thermal spray coating 20 on one surface of the pool-type thermal spray substrate 15 (hereinafter referred to as the upper surface). It is formed into a film. After the thermal spraying process, the pool-type thermal spray substrate 15 shown in FIG.
The coating-coated thermal spray substrate 17 shown in FIG. 3 is obtained.

【0035】その次に、成形工程にて成形手段、例えば
機械加工にて皮膜付溶射基材17の周囲の凸部を冷却管
14の軸方向と平行に切断する。図4は、成形工程にて
皮膜付溶射基材17の周囲の凸部を切断する位置を破線
で示している。この破線は皮膜付溶射基材17の切断線
21を示す。図4によれば、切断位置は、プール型溶射
基材15の凹部16の底面の端部よりも冷却管14の中
心軸方向側で切断を行っている。
Then, in a molding step, a convex portion around the thermal spray coating base material 17 is cut in parallel with the axial direction of the cooling pipe 14 by a molding means, for example, machining. In FIG. 4, the broken line shows the position where the convex portion around the thermal spray coated base material 17 is cut in the molding step. This broken line shows a cutting line 21 of the thermal spray coating base material 17. According to FIG. 4, the cutting position is such that the cutting is performed on the central axis direction side of the cooling pipe 14 with respect to the end portion of the bottom surface of the recess 16 of the pool-type thermal spray substrate 15.

【0036】さらに、冷却管14の軸方向と垂直方向の
面を冷却管14を残して切断し、受熱板2に溝入れを行
い、最終形態である図1の受熱機器10に仕上げる。
Further, the surface of the cooling pipe 14 in the direction perpendicular to the axial direction is cut while leaving the cooling pipe 14, and the heat receiving plate 2 is grooved to complete the final form of the heat receiving device 10 of FIG.

【0037】核融合装置の受熱機器10の製造方法は、
製造着手前の溶射基材にプール型溶射基材15を採用す
ることで、溶射工程の際に、プール型溶射基材15の凹
部16が傾斜溶射皮膜20を成膜する際に周囲を覆う壁
となる。つまり、プール型溶射基材15と受熱板11と
なる傾斜溶射皮膜20との界面において、自由縁を作ら
ずに傾斜溶射皮膜20を成膜することが可能となる。さ
らに、タングステンおよび銅を混合した傾斜溶射皮膜2
0を成膜する際にも、皮膜肉厚方向に材料混合比が連続
的あるいは段階的に変化する界面において、自由縁を作
らずに傾斜溶射皮膜20を成膜することが可能となる。
The manufacturing method of the heat receiving device 10 of the nuclear fusion device is as follows.
By adopting the pool-type thermal spray base material 15 as the thermal spray base material before the start of manufacturing, the recess 16 of the pool-type thermal spray base material 15 covers the surroundings when the inclined thermal spray coating 20 is formed during the thermal spray process. Becomes That is, it is possible to form the gradient thermal spray coating 20 without forming a free edge at the interface between the pool-type thermal spray base material 15 and the gradient thermal spray coating 20 serving as the heat receiving plate 11. Furthermore, a gradient spray coating 2 in which tungsten and copper are mixed
Even when 0 is formed, the gradient sprayed coating 20 can be formed without forming a free edge at the interface where the material mixing ratio changes continuously or stepwise in the thickness direction of the coating.

【0038】また、溶射前処理工程において、予めプー
ル型溶射基材15の凹部16の粗面化作業および酸化膜
除去作業を実施することで、プール型溶射基材15と傾
斜溶射皮膜20との密着力をさらに向上させることがで
きる。
In the thermal spray pretreatment process, the pool type thermal spray base material 15 and the gradient thermal spray coating 20 are formed by performing the roughening work and the oxide film removing work of the recess 16 of the pool type thermal spray base material 15 in advance. The adhesion can be further improved.

【0039】さらに、溶射工程の際に、プール型溶射基
材15の凹部16において、プール型溶射基材15と受
熱板11となる傾斜溶射皮膜20の部分との界面におい
て、小さな割れ等が発生していた場合であっても、成形
工程では、プール型溶射基材15の凹部16の底面の端
部よりも冷却管14の中心軸方向側で切断するため、小
さな割れ等が存在する部位ごと切断することができる。
Further, during the thermal spraying process, in the recess 16 of the pool type thermal spraying base material 15, small cracks or the like are generated at the interface between the pool type thermal spraying base material 15 and the portion of the gradient thermal spray coating 20 which becomes the heat receiving plate 11. Even if it has been done, in the molding step, since the cutting is performed on the central axis direction side of the cooling pipe 14 rather than the end of the bottom surface of the concave portion 16 of the pool-type thermal spraying base material 15, each portion where a small crack exists Can be cut.

【0040】本発明の第1実施形態によれば、プラズマ
溶射中やプラズマ溶射後に、受熱板11である傾斜溶射
皮膜20とヒートシンク12である溶射基材との界面お
よび異種材料を混合して行う溶射時の材料混合比が皮膜
肉厚方向に連続的あるいは段階的に変化する界面におい
て、傾斜溶射皮膜20に割れや剥離の発生を抑制でき
る。従って、傾斜溶射皮膜20より形成される受熱板1
1の品質向上や信頼性向上を図ることができる。また、
それぞれの界面からの剥離や割れが発生する事が無いた
め、受熱板11である傾斜溶射皮膜20を数mmオーダ
で成膜でき、傾斜溶射皮膜20の厚膜化が可能となる。
さらに、広範囲にわたるプラズマ溶射が可能となるた
め、核融合装置受熱機器10の製作コストを低減する事
が可能となる。
According to the first embodiment of the present invention, during the plasma spraying or after the plasma spraying, the interface between the gradient sprayed coating 20 as the heat receiving plate 11 and the sprayed base material as the heat sink 12 and the different materials are mixed. It is possible to suppress the occurrence of cracking or peeling of the gradient thermal spray coating 20 at the interface where the material mixture ratio during thermal spraying changes continuously or stepwise in the thickness direction of the coating. Therefore, the heat receiving plate 1 formed of the gradient spray coating 20
It is possible to improve the quality and reliability of item 1. Also,
Since no peeling or cracking occurs from each interface, the gradient thermal spray coating 20 that is the heat receiving plate 11 can be formed on the order of several mm, and the gradient thermal spray coating 20 can be thickened.
Further, since plasma spraying over a wide range is possible, it is possible to reduce the manufacturing cost of the nuclear fusion device heat receiving device 10.

【0041】一方、溶射工程後に受熱板11となる溶射
皮膜に小さな割れ等が発生していた場合であっても、成
形工程にて小さな割れ等が存在する部位ごと切断してし
まうため、最終寸法に加工した核融合装置の受熱機器1
0では、受熱板11の健全性を確保したまま核融合装置
へ適用する事が可能となる。
On the other hand, even if a small crack or the like is formed in the thermal spray coating which becomes the heat receiving plate 11 after the thermal spraying step, the portion having the small crack or the like is cut in the forming step, so that the final dimension is obtained. Heat receiving device of fusion device processed into 1
At 0, the heat receiving plate 11 can be applied to a nuclear fusion device while ensuring its soundness.

【0042】[第2実施形態]本発明の第2実施形態を
図5〜図7を参照して説明する。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS.

【0043】図5は、第2実施形態における核融合装置
受熱機器1としてのプール型溶射基材22を示す。図5
(A)はプール型溶射基材22の斜視図、図5(B)は
図5(A)のC−C線に沿う断面図である。また、図6
は、第2実施形態における皮膜付溶射基材23を示す。
図6(A)は、皮膜付溶射基材23の斜視図、図6
(B)は、図6(A)のD−D線に沿う断面図である。
FIG. 5 shows a pool-type thermal spray substrate 22 as the nuclear fusion device heat receiving device 1 in the second embodiment. Figure 5
5A is a perspective view of the pool-type thermal spray substrate 22, and FIG. 5B is a cross-sectional view taken along the line C-C of FIG. 5A. In addition, FIG.
Shows the coating-coated thermal spraying base material 23 in the second embodiment.
FIG. 6 (A) is a perspective view of the thermal spray coating substrate 23, and FIG.
FIG. 6B is a sectional view taken along the line D-D in FIG.

【0044】第2実施形態の核融合装置受熱機器1にお
いては、プール型溶射基材22および皮膜付溶射基材2
3の形状が第1実施形態と異なっているため、異なる符
号を付し差別化を図る。また、プール型溶射基材22お
よび皮膜付溶射基材23以外は第1実施形態と異ならな
いため、同一の構成部品については、同一の符号を付し
て、その説明を省略する。
In the nuclear fusion device heat receiving device 1 of the second embodiment, the pool-type thermal spray substrate 22 and the film-coated thermal spray substrate 2 are used.
Since the shape of 3 is different from that of the first embodiment, different reference numerals are given to differentiate them. Further, since the components other than the pool-type thermal spraying base material 22 and the coating thermal spraying base material 23 are the same as those in the first embodiment, the same components are designated by the same reference numerals and the description thereof will be omitted.

【0045】本実施形態において、プール型溶射基材2
2の凹部24は、底部から表面に向かって拡開するテー
パ形状を有する皿状に設けられている。図2に示される
プール型溶射基材17では、凹部16は、例えば、方体
形状に形成され、凹部16の内側壁面は垂直となってい
るが、この実施形態では、垂直に限定されない。図5に
示されるプール型溶射基材22のように凹部24をテー
パ形状を有する皿状に設けてもよい。
In this embodiment, the pool type thermal spraying base material 2 is used.
The second recess 24 is provided in the shape of a dish having a tapered shape that widens from the bottom toward the surface. In the pool-type thermal spraying base material 17 shown in FIG. 2, the recess 16 is formed in, for example, a rectangular shape, and the inner wall surface of the recess 16 is vertical, but in this embodiment, it is not limited to being vertical. The recess 24 may be provided in the shape of a dish having a taper shape like the pool-type thermal spray substrate 22 shown in FIG.

【0046】また、図6に示される皮膜付溶射基材23
は、核融合装置の受熱機器10を製造する際に、プール
型溶射基材22を製造基材として、溶射前処理作業、溶
射作業を実施して、プール型溶射基材22の上面に傾斜
溶射皮膜20Bが成膜されたプール型溶射基材22であ
る。そして、この皮膜付溶射基材23を成形工程にて周
囲の凸部を冷却管14Bの軸方向に切断する。
Further, the thermal spray coating base material 23 shown in FIG.
When the heat-receiving device 10 of the fusion device is manufactured, the pool-type thermal spray base material 22 is used as a manufacturing base material to perform the thermal spray pretreatment work and the thermal spray work, and the inclined thermal spray is performed on the upper surface of the pool type thermal spray base material 22. It is the pool-type spray-coated base material 22 on which the coating film 20B is formed. Then, in the molding process, the peripheral projections of the thermal spray coating base material 23 are cut in the axial direction of the cooling pipe 14B.

【0047】図7は、成形工程にて皮膜付溶射基材23
の周囲の凸部を切断する位置を示している。尚、図7中
の破線は切断線21Bを示す。図7によれば、切断位置
は、プール型溶射基材23の凹部24の底面の端部より
も冷却管14Bの中心軸方向側で切断を行う。また、冷
却管14Bの軸方向と垂直方向の面を冷却管14Bを残
して切断し、受熱板2に溝入れを行い、最終形態である
図1の受熱機器10に仕上げる点は、第1実施形態と同
様である。
FIG. 7 shows the sprayed base material 23 with a coating in the molding process.
The position where the convex portion around is cut. The broken line in FIG. 7 indicates the cutting line 21B. According to FIG. 7, the cutting position is such that the cutting is performed on the side closer to the central axis of the cooling pipe 14B than the end of the bottom surface of the recess 24 of the pool-type thermal spray substrate 23. The first embodiment is that the surface of the cooling pipe 14B in the direction perpendicular to the axial direction is cut while leaving the cooling pipe 14B, and the heat receiving plate 2 is grooved to finish the heat receiving device 10 of FIG. 1 in the final form. It is similar to the form.

【0048】一方、受熱機器10の製造において、受熱
機器10の製造基材を図2に示されるプール型溶射基材
15と図5に示されるプール型溶射基材22とを比較し
た場合、図5に示されるプール型溶射基材22の方が溶
射基材と溶射皮膜との密着力が向上している。従って、
上述した実施形態よりも、割れや剥離の発生を抑制する
事ができる。
On the other hand, in the manufacture of the heat receiving device 10, when the pool type thermal spraying base material 15 shown in FIG. 2 and the pool type thermal spraying base material 22 shown in FIG. The pool-type thermal spray base material 22 shown in FIG. 5 has an improved adhesion between the thermal spray base material and the thermal spray coating. Therefore,
The occurrence of cracking and peeling can be suppressed more than in the above-described embodiment.

【0049】以上のような第2実施形態では、第1実施
形態と同様の作用および効果を実現する事が可能なた
め、第2実施形態における作用および効果についてはそ
の説明を割愛する。
Since the second embodiment as described above can realize the same operation and effect as the first embodiment, the description of the operation and effect in the second embodiment will be omitted.

【0050】尚、本実施形態では溶射についてプラズマ
溶射を例に説明してきた。しかし、溶射の種類はプラズ
マでなくても良い。ガス溶射、電気溶射等あらゆる溶射
方法について適用が可能である。また、受熱板11の材
料としてタングステン、そしてヒートシンク12の材料
として銅を例に説明してきた。しかし、受熱板11の材
料およびヒートシンク12の材料はこれらに限定しな
い。同様の機能を有する材料に置換しても良い。
In this embodiment, plasma spraying has been described by way of example. However, the type of thermal spraying need not be plasma. It can be applied to all spraying methods such as gas spraying and electric spraying. Further, the description has been made by taking tungsten as the material of the heat receiving plate 11 and copper as the material of the heat sink 12. However, the material of the heat receiving plate 11 and the material of the heat sink 12 are not limited to these. It may be replaced with a material having a similar function.

【0051】さらに、核融合装置の受熱機器10の最終
形状は、図1に示される核融合装置の受熱機器10に限
定されない。溶射工程後の成形工程において、冷却管1
4のある面を成形する際、第1実施形態を示すプール型
溶射基材の凹部16および第2実施形態を示すプール型
溶射基材の凹部24の周壁を形成するヒートシンク12
が受熱板11となる傾斜溶射皮膜20と切り離されてい
れば、部分切断または溝入れでも良い。
Further, the final shape of the heat receiving device 10 of the nuclear fusion device is not limited to the heat receiving device 10 of the nuclear fusion device shown in FIG. In the molding process after the thermal spraying process, the cooling pipe 1
4 is formed, the heat sink 12 that forms the peripheral wall of the recess 16 of the pool-type thermal spray substrate showing the first embodiment and the recess 24 of the pool-type thermal spray substrate showing the second embodiment.
Partial cutting or grooving may be used as long as it is separated from the gradient sprayed coating 20 serving as the heat receiving plate 11.

【0052】[0052]

【発明の効果】以上に述べたように、本発明によれば、
溶射基材を凹設する事により、溶射基材と溶射皮膜の材
料を用いた異種材料を混合した溶射において、溶射中や
溶射後に、溶射皮膜と溶射基材との界面および材料混合
比が変化する界面での割れや剥離の発生を抑制できる。
また、受熱板を形成する際に、溶射基材の凹部におい
て、溶射基材と溶射皮膜との界面付近に小さな割れ等が
発生していた場合であっても、成形工程にて小さな割れ
等が存在する部位ごと切断できる。従って、受熱板の健
全性は確保され、受熱板の品質向上および信頼性向上を
図ることができる。
As described above, according to the present invention,
By making the thermal spray base material concave, the interface between the thermal spray coating and the thermal spray base material and the material mixing ratio change during and after thermal spraying when mixing different materials using the materials of the thermal spray base material and the thermal spray coating. It is possible to suppress the occurrence of cracks and peeling at the interfaces that are formed.
Further, when forming the heat receiving plate, even if small cracks or the like are generated near the interface between the thermal spray base material and the thermal spray coating in the recesses of the thermal spray base material, small cracks or the like are generated in the molding process. Can be cut at all existing sites. Therefore, the soundness of the heat receiving plate is secured, and the quality and reliability of the heat receiving plate can be improved.

【0053】さらに、溶射皮膜と溶射基材との界面およ
び材料混合比が変化する界面において、剥離や割れが発
生を抑制できるため、広範囲にわたり安定した溶射皮膜
の成膜が可能となる。従って、受熱板である溶射皮膜を
数mmオーダに成膜する溶射皮膜の厚膜化および核融合
装置受熱機器の製造コスト低減に貢献できる。
Furthermore, since peeling and cracking can be suppressed at the interface between the thermal spray coating and the thermal spray base material and at the interface where the material mixing ratio changes, it is possible to form a stable thermal spray coating over a wide range. Therefore, it is possible to contribute to the thickening of the thermal spray coating for forming the thermal spray coating, which is the heat receiving plate, on the order of several mm, and the reduction of the manufacturing cost of the heat receiving device of the fusion device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した核融合装置受熱機器の斜視
図。
FIG. 1 is a perspective view of a nuclear fusion device heat receiving device to which the present invention is applied.

【図2】(A)及び(B)は、本発明に係る第1実施形
態にて製造した核融合装置受熱機器において、製造着手
前の製造基材の斜視図及びA−A線に沿う断面図。
2 (A) and 2 (B) are perspective views and cross-sections taken along line AA of the production base material before the start of production in the nuclear fusion device heat-receiving device produced in the first embodiment according to the present invention. Fig.

【図3】(A)及び(B)は、本発明に係る第1実施形
態にて製造した核融合装置受熱機器において、溶射工程
後の製造基材の斜視図及びB−B線に沿う断面図。
3 (A) and 3 (B) are perspective views of a manufacturing base material after a thermal spraying process and a cross-section taken along line BB in the nuclear fusion device heat receiving device manufactured in the first embodiment according to the present invention. Fig.

【図4】本発明に係る第1実施形態にて製造した核融合
装置受熱機器の成形工程において、切断位置を示す製造
基材の断面図。
FIG. 4 is a cross-sectional view of a manufacturing base material showing a cutting position in a molding process of the nuclear fusion device heat receiving device manufactured in the first embodiment according to the present invention.

【図5】(A)及び(B)は、本発明に係る第2実施形
態にて製造した核融合装置受熱機器において、製造着手
前の製造基材の斜視図及びC−C線に沿う断面図。
5 (A) and 5 (B) are perspective views of a production base material before the start of production and a cross-section taken along line C-C in the nuclear fusion device heat-receiving device produced in the second embodiment according to the present invention. Fig.

【図6】(A)及び(B)は、本発明に係る第2実施形
態にて製造した核融合装置受熱機器において、溶射工程
後の製造基材の斜視図及びD−D線に沿う断面図。
6 (A) and 6 (B) are perspective views of a manufacturing base material after a thermal spraying process and a cross section taken along the line D-D in the nuclear fusion device heat-receiving device manufactured in the second embodiment according to the present invention. Fig.

【図7】本発明に係る第2実施形態にて製造した核融合
装置受熱機器の成形工程において、切断位置を示す製造
基材の断面図。
FIG. 7 is a cross-sectional view of a manufacturing base material showing a cutting position in a molding process of the nuclear fusion device heat receiving device manufactured in the second embodiment according to the present invention.

【図8】一般的な核融合装置受熱機器の一例を示す斜視
図。
FIG. 8 is a perspective view showing an example of a general nuclear fusion device heat receiving device.

【図9】(A)及び(B)は、従来の実施例を示す受熱
板成膜前の核融合装置受熱機器の斜視図及びE−E線に
沿う断面図。
9 (A) and 9 (B) are a perspective view and a cross-sectional view taken along the line EE of a nuclear fusion device heat receiving device before heat receiving plate deposition showing a conventional example.

【符号の説明】[Explanation of symbols]

10 核融合装置受熱機器 11 受熱板 12 ヒートシンク 14 冷却管 15 プール型溶射基材 16 プール型溶射基材の凹部 17 皮膜付溶射基材 18 混合溶滴 20 傾斜溶射皮膜 21 切断線 22 プール型溶射基材 23 皮膜付溶射基材 24 プール型溶射基材の凹部 10 Nuclear fusion device Heat receiving device 11 Heat receiving plate 12 heat sink 14 Cooling pipe 15 Pool-type spray base material 16 Pool-type thermal spray substrate recess 17 Coating thermal spray base material 18 mixed droplets 20 Graded spray coating 21 cutting line 22 Pool-type spray base material 23 Thermal spray base material with coating 24 Pool-type thermal spray substrate recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澁井 正直 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 佐藤 和義 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 (72)発明者 江里 幸一郎 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 (72)発明者 谷口 正樹 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 (72)発明者 鈴木 哲 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所 那珂研究所内 Fターム(参考) 4K031 AA04 BA01 CB10 CB34 CB35 FA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hon Shibui             2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Office (72) Inventor Kazuyoshi Sato             1 801 Mukaiyama, Naka-cho, Naka-cho, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Naka Research Institute (72) Inventor Koichiro Eri             1 801 Mukaiyama, Naka-cho, Naka-cho, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Naka Research Institute (72) Inventor Masaki Taniguchi             1 801 Mukaiyama, Naka-cho, Naka-cho, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Naka Research Institute (72) Inventor Satoshi Suzuki             1 801 Mukaiyama, Naka-cho, Naka-cho, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Naka Research Institute F term (reference) 4K031 AA04 BA01 CB10 CB34 CB35                       FA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶射によって受熱板を製造する核融合装
置受熱機器の製造方法において、前記核融合装置受熱機
器を構成する溶射基材をプール型形状に凹設してプール
型溶射基材を形成し、このプール型溶射基材の凹部に溶
射皮膜を成膜して受熱板を形成することを特徴とする核
融合装置受熱機器の製造方法。
1. A method for manufacturing a fusion device heat-receiving device for producing a heat-receiving plate by thermal spraying, wherein a thermal spray substrate constituting the nuclear fusion device heat-receiving device is recessed into a pool shape to form a pool thermal spray substrate. Then, a method for manufacturing a heat receiving device of a nuclear fusion device, comprising forming a thermal spray coating on a recess of the pool type thermal spray substrate to form a heat receiving plate.
【請求項2】 溶射の前処理として、前記プール型溶射
基材の凹部の内側面に粗面化作業及び酸化膜除去作業を
実施し、前記プール型溶射基材と溶射皮膜の密着力を高
めた溶射皮膜を成膜して受熱板を形成することを特徴と
する請求項1に記載の核融合装置受熱機器の製造方法。
2. As a pretreatment for thermal spraying, a roughening operation and an oxide film removing operation are performed on the inner surface of the recess of the pool type thermal spraying base material to enhance the adhesion between the pool type thermal spraying base material and the thermal spray coating. The method for manufacturing a nuclear fusion device heat-receiving device according to claim 1, wherein the heat-receiving plate is formed by forming a thermal spray coating.
【請求項3】 前記プール型溶射基材の凹部をテーパ形
状を有する皿状に形成し、前記プール型溶射基材の凹設
面に溶射皮膜を成膜して受熱板を形成することを特徴と
する請求項2に記載の核融合装置受熱機器の製造方法。
3. The heat-receiving plate is formed by forming the recess of the pool-type thermal spray base material into a dish shape having a taper shape, and forming a thermal spray coating on the recessed surface of the pool-type thermal spray base material. The method for manufacturing a nuclear fusion device heat receiving device according to claim 2.
【請求項4】 前記受熱板を前記プール型溶射基材の凹
部内側面部分で切断し、前記受熱板を最終的な形状とし
て仕上げることを特徴とする請求項2に記載の核融合装
置受熱機器の製造方法。
4. The nuclear fusion device heat-receiving device according to claim 2, wherein the heat-receiving plate is cut along the inner surface of the concave portion of the pool-type thermal spray substrate to finish the heat-receiving plate into a final shape. Manufacturing method.
【請求項5】 前記受熱板を前記プール型溶射基材の凹
部内側面部分を切断し、その切断位置は、前記プール型
溶射基材の凹部の底面の端部よりも内側にて切断し、最
終的な受熱板形状として仕上げることを特徴とする請求
項2に記載の核融合装置受熱機器の製造方法。
5. The heat receiving plate is cut along the inner surface of the recess of the pool-type thermal spray substrate, and the cutting position is cut inside the bottom end of the recess of the pool-type thermal spray substrate. The method for manufacturing a nuclear fusion device heat-receiving device according to claim 2, wherein the final heat-receiving plate shape is finished.
JP2002089191A 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device Expired - Lifetime JP4045114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089191A JP4045114B2 (en) 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089191A JP4045114B2 (en) 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device

Publications (2)

Publication Number Publication Date
JP2003286558A true JP2003286558A (en) 2003-10-10
JP4045114B2 JP4045114B2 (en) 2008-02-13

Family

ID=29234839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089191A Expired - Lifetime JP4045114B2 (en) 2002-03-27 2002-03-27 Method for manufacturing fusion device heat receiving device

Country Status (1)

Country Link
JP (1) JP4045114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016375A1 (en) 2007-03-31 2008-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Components for heat sinks
US8580383B2 (en) 2005-12-23 2013-11-12 Plansee Se First-wall component for a fusion reactor with a heat sink of a copper alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580383B2 (en) 2005-12-23 2013-11-12 Plansee Se First-wall component for a fusion reactor with a heat sink of a copper alloy
DE102007016375A1 (en) 2007-03-31 2008-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Components for heat sinks

Also Published As

Publication number Publication date
JP4045114B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US6875477B2 (en) Method for coating internal surface of plasma processing chamber
US7716802B2 (en) Method for machining using sacrificial supports
KR101897594B1 (en) Chemistry compatible coating material for advanced device on-wafer particle performance
TWI351444B (en)
US20160375515A1 (en) Use of atomic layer deposition coatings to protect brazing line against corrosion, erosion, and arcing
EP3156514B1 (en) Method for producing laminate
JP2007247043A (en) Method for producing ceramic-coated member for semiconductor working apparatus
US6134785A (en) Method of fabricating an article of manufacture such as a heat exchanger
CN103058699A (en) Method for selective metallization on ceramic substrate
WO2007020769A1 (en) Metal mold for optical device forming and process for producing the same
JP2943634B2 (en) Surface treatment method for vacuum chamber member made of Al or Al alloy
CN107604342A (en) Its manufacture method of hardware and the process chamber with hardware
TW201731668A (en) Metal mold and method for manufacturing drawn can
US20180076010A1 (en) Textured skin for chamber components
US20070259204A1 (en) Diamond Thin Film Coating Method and Diamond-Coated Cemented Carbide Member
JP2003286558A (en) Method for manufacturing heat-receiving device of nuclear fusion apparatus
US20080006964A1 (en) Method of producing dies for extrusion molding of honeycomb structure bodies
KR102353957B1 (en) Suceptor
KR101790394B1 (en) Internal member applying apparatus for depositing thin film and method for the same
JPH1161410A (en) Vacuum chamber member and its production
JPH10204604A (en) Member for thin coating forming device and its production
CN106457471A (en) Method to eliminate recast material
JP2022171973A (en) Method for manufacturing thermal spray member
KR20200047602A (en) Cloth tool and cutting tool provided with the same
JP2006521666A (en) Method for producing a layer system comprising a metallic support and an anode functional layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Ref document number: 4045114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term