JP4044714B2 - High-pressure control valve for supercritical vapor compression refrigeration cycle equipment - Google Patents

High-pressure control valve for supercritical vapor compression refrigeration cycle equipment Download PDF

Info

Publication number
JP4044714B2
JP4044714B2 JP2000056840A JP2000056840A JP4044714B2 JP 4044714 B2 JP4044714 B2 JP 4044714B2 JP 2000056840 A JP2000056840 A JP 2000056840A JP 2000056840 A JP2000056840 A JP 2000056840A JP 4044714 B2 JP4044714 B2 JP 4044714B2
Authority
JP
Japan
Prior art keywords
valve
radiator
refrigerant
pressure control
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000056840A
Other languages
Japanese (ja)
Other versions
JP2001241809A (en
Inventor
優 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2000056840A priority Critical patent/JP4044714B2/en
Publication of JP2001241809A publication Critical patent/JP2001241809A/en
Application granted granted Critical
Publication of JP4044714B2 publication Critical patent/JP4044714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、炭酸ガス等による冷媒を用いて超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置において使用される高圧制御弁に関するものである。
【0002】
【従来の技術】
炭酸ガス(CO2 )等の冷媒を超臨界域で使用する超臨界蒸気圧縮冷凍サイクル装置では、放熱器の出口側の冷媒の圧力と温度とが最適制御線に沿うように制御されるよう、特開平9−264622号公報に示されているように、放熱器出口側の冷媒温度による冷媒封入のダイヤフラム室あるいはベローズ内の密閉室の内圧(封入冷媒の体積変化)変化により動作する高圧制御弁(圧力制御弁)を放熱器より蒸発器へ至る冷媒通路の途中に設け、この高圧制御弁による放熱器−蒸発器間の冷媒通路の連通度制御によって放熱器の出口側の冷媒の圧力制御を行うものが知られている。
【0003】
また、特開平11−63740号公報に示されているように、高圧制御弁のベローズの耐座屈性(耐久性)を向上させるために、ベローズの外側に冷媒封入の密閉室を画定し、ベローズの外側に放熱器出口側の冷媒温度が及ぶようにした高圧制御弁が提案されている。
【0004】
【発明が解決しようとする課題】
超臨界蒸気圧縮冷凍サイクル装置で使用される従来の高圧制御弁は、何れも、低負荷時には、弁体が最大閉弁位置に位置して弁ポートを完全に締切り、高圧側と低圧側とを完全遮断する構造になっているため、完全閉弁状態では冷媒流れが完全遮断されてしまい、放熱器出口の温度を感度良く感知できない。
【0005】
この発明は、上述の如き問題点を解消するためになされたもので、冷媒流れを完全遮断することを回避して超臨界蒸気圧縮冷凍サイクル装置の制御性を確保する超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁を提供することを目的としている。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、請求項1に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁は、圧縮機と放熱器と蒸発器とアーキュムレータとを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器の出口側の冷媒温度・圧力に感応して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御して放熱器出口側の圧力制御を行う高圧制御弁であって、ベローズ外側に冷媒封入の密閉室を画定し、ベローズ内側に前記放熱器の出口側の冷媒温度・圧力を及ぼされ、前記放熱器の出口側の冷媒温度・圧力に応じて伸縮するベローズ装置と、前記ベローズ装置に接続され、前記ベローズ装置の伸長により開弁方向に駆動されて弁ハウジングに形成された弁ポートと共働して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御する弁体とを有し、前記弁体は、最大閉弁位置において、前記弁ポートより微少量離れた箇所に位置して完全締切を行わず、微少流量の冷媒流量を確保し、前記弁体はねじ係合によって前記弁ハウジングに固定される筒状のカセット部材に組み込まれて当該カセット部材に設けられたストッパにより閉弁方向の移動を制限され、前記カセット部材の前記弁ハウジングに対するねじ係合位置の調整により、最大閉弁位置での前記弁体の前記弁ポートよりの離間量が調整可能であり、前記ベローズ装置は、前記カセット部材の筒内に配置され、弁ポート側の一端部を前記カセット部材に固着されて前記カセット部材との間に前記密閉室を画定し、前記弁体は前記ベローズ装置の他端部に固定連結されていることを特徴とする
【0009】
また、請求項2に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁は、請求項1記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁であって、前記密閉室に前記放熱器の出口側の冷媒の温度を感知する感温筒が接続されているものである。
【0010】
請求項1に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、弁体はねじ係合によって弁ハウジングに固定される筒状のカセット部材に組み込まれて当該カセット部材に設けられたストッパにより閉弁方向の移動を制限されるので、弁体は、最大閉弁位置においても、弁ポートより微少量離れた箇所に位置して完全締切を行わず、微少流量の冷媒流量を確保する。
【0011】
また、カセット部材の弁ハウジングに対するねじ係合位置の調整により、最大閉弁位置での弁体の弁ポートよりの離間量が調整可能であるので、この離間量調整により、弁体が最大閉弁位置に位置している状態、すなわち、弁体がストッパにより閉弁方向の移動を制限された状態での冷媒流量(必要最小流量)が調整される。
【0012】
さらに、ベローズ装置はカセット部材の筒内に配置され、弁ポート側の一端部をカセット部材に固着されてカセット部材との間に密閉室を画定し、弁体はベローズ装置の他端部に固定連結されている。
【0013】
また、請求項2に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、密閉室に接続された感温筒が放熱器の出口側の冷媒の温度を感知する。
【0014】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。
【0015】
図1はこの発明による高圧制御弁が組み込まれる超臨界蒸気圧縮冷凍サイクル装置を示している。この冷凍サイクル装置は、圧縮機1と、放熱器(ガスクーラ)2と、蒸発器3と、アキュムレータ4が冷媒通路(配管)5、6、7により閉ループ状に連通接続され、この閉ループを炭酸ガス(CO2 )等による冷媒が循環する。
【0016】
放熱器2より蒸発器3へ至る冷媒通路6の途中には、放熱器2の出口側の冷媒温度・圧力に感応して放熱器2と蒸発器3との連通・遮断および連通度を定量的に制御して放熱器出口側の圧力制御を行う高圧制御弁8と、放熱器2の出口側の冷媒の圧力が所定値以上の場合に開弁する逃し弁9とが互いに並列に設けられている。
【0017】
つぎに、本発明による高圧制御弁8の詳細構造を図2を参照して説明する。高圧制御弁8は弁ハウジング10を有している。弁ハウジング10は、放熱器出口側に接続される入口ポート(高圧側ポート)11と、蒸発器3の入口側の冷媒通路9を接続される出口ポート(低圧側ポート)12と、連通孔13によって入口ポート11に連通するボア14と、ボア14の底部に開口してボア14を出口ポート12に連通接続する弁ポート15とを形成されている。
【0018】
ボア14にはカセット部材20が挿入され、カセット部材20は、ねじ部16によって、図2の上下方向に、ねじ止め位置調整可能に弁ハウジング10にねじ止めされている。
【0019】
カセット部材20は、上下開口の筒状のカセット本体21と、カセット本体21の上端部のねじ部22にねじ係合してカセット本体21の上端開口を閉じる調整ねじ部材23とにより構成されている。なお、カセット部材20と弁ハウジング10との嵌合部と、カセット本体21と調整ねじ部材23との間には各々、気密シール用のOリング24、25が設けられている。
【0020】
カセット部材20の筒内にはベローズ本体26が配置されている。ベローズ本体26は弁ポート15側の一端部(下端部)にフランジ付き接続リング27を電子ビーム溶接等により気密に固着され、フランジ付き接続リング27がカセット本体21の下端フランジ部28に接合した状態で、電子ビーム溶接等によりカセット本体21に気密に固着されている。
【0021】
ベローズ本体26の他端部(上端部)はカセット部材20の筒内にあり、この端部にニードル弁体29の基部フランジ30が電子ビーム溶接等により気密に固定連結され、基部フランジ30によってベローズ本体26の上端が気密に閉じられている。
【0022】
上述の接続構造により、ベローズ本体26は、フランジ付き接続リング27およびニードル弁体29の基部フランジ30と共働してベローズ外側に、カセット本体21と調整ねじ部材23との間に密閉室31を画定しており、ベローズ内側32は、フランジ付き接続リング27による下端開口33によってボア14の底部および入口ポート11に連通しており、このベローズ内側32に放熱器出口側に冷媒温度・圧力を及ぼされる。
【0023】
調整ねじ部材23には、密閉室31にガスを封入するためのガス導入孔34が形成されている共に、ガス導入孔34に連通している封入ガス管35がろう付け等により気密に取り付けられている。
【0024】
図3は二酸化炭素の飽和蒸気線と、例としての最適制御線とを示している。このような特性を得るために、密閉室31には、CO2 ガスあるいはCO2 ガスとN2 ガスとの混合冷媒が所定量封入されている。なお、封入冷媒の密度は調整ねじ部材23により調整することができる。
【0025】
カセット本体21の内筒部にはストッパ段差部36が形成されており、ストッパ段差部36にニードル弁体29の基部フランジ30が当接することにより、ニードル弁体29の最降下位置、換言すれば、ニードル弁体29の最大閉弁位置を規定している。また、ニードル弁体29の基部フランジ30が調整ねじ部材23の先端面に当接することにより、ニードル弁体29の最大開弁位置(ベローズの最大伸長量)が規定されている。
【0026】
ストッパ段差部36により定められるニードル弁体29の最大閉弁位置(弁リフト量=0)は、図示されているように、ニードル弁体29が弁ポート15より微少量離れた箇所であって、弁ポート15を完全には締切らない箇所であり、ニードル弁体29は、図4に示されているように、最大閉弁位置において、弁ポート15に微少な流路開口面積ΔAを持ち、微少流量の冷媒流量を確保する。
【0027】
上述のような構成による高圧制御弁8では、{(高圧側圧力−低圧側圧力)×ベローズ有効面積}+ベローズ圧縮荷重が、(ベローズ外圧(封入冷媒圧力)×ベローズ有効面積)を上回ると、ベローズ本体26が伸長してニードル弁体29が開弁方向に駆動され、高圧側圧力を最適圧力に制御する。
【0028】
ニードル弁体29は、最大閉弁位置においても、弁ポート15より微少量離れた箇所に位置して完全締切を行わず、微少流量の冷媒流量を確保するから、放熱器出口側の冷媒温度を感度良く感知することができ、超臨界蒸気圧縮冷凍サイクル装置を効率良く運転することができる。
【0029】
カセット部材20の弁ハウジング10に対するねじ係合位置の調整によってカセット部材20全体が弁ハウジング10に対して上下変位し、最大閉弁位置でのニードル弁体29の弁ポート15よりの離間量を容易に調整することができる。この離間量調整により、ニードル弁体29が最大閉弁位置にある状態での冷媒流量(必要最小流量)を微調整でき、必要最小流量を最適値に設定できる。また、調整ねじ部材23のねじ係合位置の調整により、ニードル弁体29の最大開弁位置を調整することもできる。なお、調整後は、ねじのゆるみ止めとして接着剤処理又は止ねじによる処理等が施される。
【0030】
また、図5、図6に示されているように、封入ガス管35に感温筒37を連通接続し、感温筒37を放熱器出口近傍に配置することにより、放熱器出口側の冷媒温度をベローズ内側32と感温筒37の両方で敏感に感知することができる。
【0031】
なお、ボア14(弁ハウジング10)を放熱器2のブロックの一部に形成、組み込む構成することもできる。
【0032】
また、冷凍サイクル装置で使用する冷媒は、二酸化炭素に限られることはなく、メタン、エタン、プロパン等の流体を冷媒として使用することもできる。
【0033】
【発明の効果】
以上の説明から理解される如く、請求項1に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁によれば、ベローズ本体の外側に密閉室が設けられているので、循環冷媒圧力が作用しない状態においてベローズが縮む方向に圧力が作用するから、ベローズ内側から圧力が作用する場合に比してベローズ本体が座屈しにくくなる。また、弁体は、ストッパにより閉弁方向の移動を制限された状態で、弁ポートより微少量離れた箇所に位置して完全締切を行わず、微少流量の冷媒流量を確保するから、冷媒流れが完全遮断されてしまうことが回避され、超臨界蒸気圧縮冷凍サイクル装置の制御性を確保することができる。
【0034】
また、カセット部材の弁ハウジングに対するねじ係合位置の調整によって最大閉弁位置での弁体の弁ポートよりの離間量が調整されるから、この離間量調整により、弁体のベローズ本体の一端からの突出量が規制された状態での冷媒流量(必要最小流量)が容易に調整され、必要最小流量を最適値に設定できる。
【0035】
また、ベローズ本体はカセット部材の筒内に配置され、弁ポート側の一端部をカセット部材に固着されてカセット部材との間に密閉室を画定し、弁体はベローズ装置の他端部に固定連結されているから、コンパクトな設計が可能になる。
【0036】
請求項2に記載の発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁は、密閉室に接続された感温筒が放熱器の出口側の冷媒の温度を感知するから、放熱器出口側の冷媒温度をベローズ内側と感温筒の両方で敏感に感知することができる。
【図面の簡単な説明】
【図1】この発明による高圧制御弁が組み込まれる超臨界蒸気圧縮冷凍サイクル装置の一つの実施の形態を示す回路図である。
【図2】この発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁の一つの実施の形態を示す断面図である。
【図3】二酸化炭素の飽和蒸気線と、理想とされる高圧制御弁特性を示すグラフである。
【図4】この発明による高圧制御弁の弁開特性を示す弁リフト−流路開口面積特性図である。
【図5】この発明による高圧制御弁が組み込まれる超臨界蒸気圧縮冷凍サイクル装置の他の実施の形態を示す回路図である。
【図6】この発明による超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁の他の実施の形態を示す断面図である。
【符号の説明】
1 圧縮機
2 放熱器
3 蒸発器
4 アキュムレータ
8 高圧制御弁
9 逃し弁
10 弁ハウジング
11 入口ポート
12 出口ポート
14 ボア
15 弁ポート
16 ねじ部
20 カセット部材
26 ベローズ本体
29 ニードル弁体
31 密閉室
32 ベローズ内側
36 ストッパ段差部
37 感温筒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-pressure control valve used in a supercritical vapor compression refrigeration cycle apparatus operated in a supercritical region using a refrigerant such as carbon dioxide gas.
[0002]
[Prior art]
In the supercritical vapor compression refrigeration cycle apparatus using a refrigerant such as carbon dioxide (CO 2 ) in the supercritical region, the pressure and temperature of the refrigerant on the outlet side of the radiator are controlled so as to follow the optimal control line. As disclosed in Japanese Patent Laid-Open No. 9-264622, a high-pressure control valve that operates according to a change in the internal pressure (volume change of the enclosed refrigerant) of a diaphragm chamber or a sealed chamber in a bellows due to the refrigerant temperature on the radiator outlet side. (Pressure control valve) is provided in the middle of the refrigerant passage from the radiator to the evaporator, and the pressure control of the refrigerant on the outlet side of the radiator is performed by controlling the degree of communication of the refrigerant passage between the radiator and the evaporator by this high pressure control valve. What to do is known.
[0003]
Further, as disclosed in JP-A-11-63740, in order to improve the buckling resistance (durability) of the bellows of the high-pressure control valve, a sealed chamber enclosed with a refrigerant is defined outside the bellows, A high-pressure control valve has been proposed in which the refrigerant temperature on the radiator outlet side extends outside the bellows.
[0004]
[Problems to be solved by the invention]
All of the conventional high-pressure control valves used in the supercritical vapor compression refrigeration cycle system have a valve element that is located at the maximum valve closing position and fully shuts off the valve port when the load is low. Since the structure is completely shut off, the refrigerant flow is completely shut off in the fully closed state, and the temperature at the radiator outlet cannot be sensed with high sensitivity.
[0005]
The present invention has been made to solve the above-described problems, and avoids complete interruption of the refrigerant flow to ensure controllability of the supercritical vapor compression refrigeration cycle apparatus. The purpose is to provide a high-pressure control valve.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the first aspect of the present invention includes a compressor, a radiator, an evaporator, and an accumulator that is made of a refrigerant such as carbon dioxide gas. Circulating in order and provided in the middle of the refrigerant path from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle apparatus operated in the supercritical region, and is sensitive to the refrigerant temperature and pressure on the outlet side of the radiator. A high-pressure control valve for controlling the degree of communication of the refrigerant passage between the radiator and the evaporator to control the pressure on the outlet side of the radiator, and defining a refrigerant-sealed sealed chamber outside the bellows, The refrigerant temperature and pressure on the outlet side of the radiator are exerted on the inside, and the bellows device expands and contracts according to the refrigerant temperature and pressure on the outlet side of the radiator, and is connected to the bellows device. In the valve opening direction Is moving and a valve body for controlling communication of the refrigerant passage between the evaporator and the radiator cooperates with a valve port formed in the valve housing, said valve body is maximum close A cylindrical cassette that is positioned at a position slightly away from the valve port in the position, does not completely close, ensures a very small refrigerant flow rate, and the valve body is fixed to the valve housing by screw engagement. Movement in the valve closing direction is restricted by a stopper provided in the cassette member incorporated in the member, and by adjusting the screw engagement position of the cassette member with respect to the valve housing, the valve body in the maximum valve closing position is adjusted. The distance from the valve port can be adjusted, and the bellows device is disposed in the cylinder of the cassette member, and one end portion on the valve port side is fixed to the cassette member, and the close contact between the cassette member and the cassette member. Defining a chamber, said valve body, characterized in that fixedly connected to the other end of the bellows arrangement.
[0009]
Further, supercritical vapor compression refrigeration cycle device for a high pressure control valve according to the invention described in claim 2 is the supercritical vapor compression refrigeration cycle device for a high pressure control valve according to the invention of claim 1 Symbol placement, in the sealed chamber A temperature sensing cylinder for detecting the temperature of the refrigerant on the outlet side of the radiator is connected.
[0010]
According to the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the first aspect of the present invention, the valve body is incorporated in a cylindrical cassette member fixed to the valve housing by screw engagement, and is provided in the cassette member. Since the movement in the valve closing direction is restricted by the stopper, the valve body is located at a position slightly away from the valve port even at the maximum valve closing position, and does not fully close, and the refrigerant flow rate is very small. Secure.
[0011]
Further, since the amount of separation of the valve body from the valve port at the maximum valve closing position can be adjusted by adjusting the screw engagement position of the cassette member with respect to the valve housing, the valve body can be closed at the maximum valve closing position. The refrigerant flow rate (necessary minimum flow rate) in the state where the valve body is located, that is, in the state where the valve body is restricted from moving in the valve closing direction by the stopper, is adjusted.
[0012]
Furthermore, base rose device is disposed in the cylinder of the cassette member, and defining a sealed chamber between the cassette member is secured to one end portion of the valve port side in the cassette member, the valve body at the other end of the bellows arrangement It is fixedly connected.
[0013]
Further, according to the supercritical vapor compression refrigeration cycle device for a high pressure control valve according to the invention described in claim 2, the temperature sensing tube which is connected to the sealed chamber to sense the temperature of the refrigerant at the outlet side of the radiator.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0015]
FIG. 1 shows a supercritical vapor compression refrigeration cycle apparatus incorporating a high-pressure control valve according to the present invention. In this refrigeration cycle apparatus, a compressor 1, a radiator (gas cooler) 2, an evaporator 3, and an accumulator 4 are connected in a closed loop by refrigerant passages (pipes) 5, 6, and 7, and the closed loop is connected with carbon dioxide gas. A refrigerant such as (CO 2 ) circulates.
[0016]
In the middle of the refrigerant passage 6 from the radiator 2 to the evaporator 3, the communication between the radiator 2 and the evaporator 3 and the degree of communication are quantitatively determined in response to the refrigerant temperature and pressure on the outlet side of the radiator 2. The high-pressure control valve 8 that controls the pressure on the outlet side of the radiator and the relief valve 9 that opens when the pressure of the refrigerant on the outlet side of the radiator 2 exceeds a predetermined value is provided in parallel with each other. Yes.
[0017]
Next, the detailed structure of the high-pressure control valve 8 according to the present invention will be described with reference to FIG. The high pressure control valve 8 has a valve housing 10. The valve housing 10 includes an inlet port (high pressure side port) 11 connected to the radiator outlet side, an outlet port (low pressure side port) 12 connected to the refrigerant passage 9 on the inlet side of the evaporator 3, and a communication hole 13. Thus, a bore 14 communicating with the inlet port 11 and a valve port 15 opening at the bottom of the bore 14 and connecting the bore 14 to the outlet port 12 are formed.
[0018]
A cassette member 20 is inserted into the bore 14, and the cassette member 20 is screwed to the valve housing 10 by a screw portion 16 so that the screwing position can be adjusted in the vertical direction in FIG.
[0019]
The cassette member 20 includes a cylindrical cassette body 21 having an upper and lower opening, and an adjustment screw member 23 that is screw-engaged with a screw portion 22 at the upper end of the cassette body 21 and closes the upper end opening of the cassette body 21. . In addition, O-rings 24 and 25 for hermetic sealing are provided between the fitting portion between the cassette member 20 and the valve housing 10 and between the cassette body 21 and the adjusting screw member 23, respectively.
[0020]
A bellows body 26 is disposed in the cylinder of the cassette member 20. In the bellows body 26, a flanged connection ring 27 is hermetically fixed to one end (lower end) on the valve port 15 side by electron beam welding or the like, and the flanged connection ring 27 is joined to the lower end flange portion 28 of the cassette body 21. Thus, it is airtightly fixed to the cassette body 21 by electron beam welding or the like.
[0021]
The other end portion (upper end portion) of the bellows body 26 is in the cylinder of the cassette member 20, and a base flange 30 of the needle valve body 29 is airtightly connected to the end portion by electron beam welding or the like. The upper end of the main body 26 is hermetically closed.
[0022]
Due to the connection structure described above, the bellows body 26 cooperates with the flanged connection ring 27 and the base flange 30 of the needle valve body 29 to provide a sealed chamber 31 between the cassette body 21 and the adjusting screw member 23 on the outside of the bellows. The bellows inner side 32 communicates with the bottom of the bore 14 and the inlet port 11 by a lower end opening 33 formed by a flanged connection ring 27, and the bellows inner side 32 is subjected to the refrigerant temperature and pressure on the radiator outlet side. It is.
[0023]
A gas introduction hole 34 for enclosing gas in the sealed chamber 31 is formed in the adjustment screw member 23, and an enclosed gas pipe 35 communicating with the gas introduction hole 34 is airtightly attached by brazing or the like. ing.
[0024]
FIG. 3 shows a saturated vapor line of carbon dioxide and an exemplary optimal control line. In order to obtain such characteristics, the sealed chamber 31 is filled with a predetermined amount of CO 2 gas or a mixed refrigerant of CO 2 gas and N 2 gas. The density of the enclosed refrigerant can be adjusted by the adjusting screw member 23.
[0025]
A stopper step portion 36 is formed in the inner cylinder portion of the cassette body 21, and the base flange 30 of the needle valve body 29 abuts on the stopper step portion 36, in other words, the lowermost position of the needle valve body 29. The maximum valve closing position of the needle valve body 29 is defined. Further, when the base flange 30 of the needle valve body 29 comes into contact with the distal end surface of the adjustment screw member 23, the maximum valve opening position (maximum extension amount of the bellows) of the needle valve body 29 is defined.
[0026]
The maximum valve closing position (valve lift amount = 0) of the needle valve body 29 determined by the stopper step 36 is a portion where the needle valve body 29 is slightly separated from the valve port 15 as shown in the figure, As shown in FIG. 4, the needle valve body 29 has a small flow path opening area ΔA in the valve port 15 at the maximum valve closing position. Secure the flow rate of the refrigerant.
[0027]
In the high pressure control valve 8 configured as described above, when {(high pressure side pressure−low pressure side pressure) × bellows effective area} + bellows compression load exceeds (bellows external pressure (encapsulated refrigerant pressure) × bellows effective area), The bellows body 26 extends and the needle valve body 29 is driven in the valve opening direction to control the high-pressure side pressure to the optimum pressure.
[0028]
The needle valve element 29 is located at a position slightly away from the valve port 15 even at the maximum valve closing position, and does not completely close and ensures a very small refrigerant flow rate. Sensitivity can be sensed, and the supercritical vapor compression refrigeration cycle apparatus can be operated efficiently.
[0029]
By adjusting the screw engagement position of the cassette member 20 with respect to the valve housing 10, the entire cassette member 20 is displaced up and down with respect to the valve housing 10, and the distance from the valve port 15 of the needle valve body 29 at the maximum valve closing position is easy. Can be adjusted. By adjusting the separation amount, the refrigerant flow rate (necessary minimum flow rate) in a state where the needle valve body 29 is at the maximum valve closing position can be finely adjusted, and the necessary minimum flow rate can be set to an optimum value. Further, the maximum valve opening position of the needle valve element 29 can be adjusted by adjusting the screw engagement position of the adjustment screw member 23. After the adjustment, an adhesive treatment or a treatment with a set screw is performed as a screw locking prevention.
[0030]
Further, as shown in FIGS. 5 and 6, a temperature sensing cylinder 37 is connected to the sealed gas pipe 35, and the temperature sensing cylinder 37 is disposed in the vicinity of the radiator outlet, whereby a refrigerant on the radiator outlet side is provided. The temperature can be sensitively sensed by both the bellows inner side 32 and the temperature sensing cylinder 37.
[0031]
The bore 14 (valve housing 10) may be formed and incorporated in a part of the block of the radiator 2.
[0032]
In addition, the refrigerant used in the refrigeration cycle apparatus is not limited to carbon dioxide, and fluids such as methane, ethane, and propane can be used as the refrigerant.
[0033]
【The invention's effect】
As understood from the above description, according to the high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the first aspect of the present invention, since the hermetic chamber is provided outside the bellows body, the circulating refrigerant pressure is Since the pressure acts in the direction in which the bellows contracts in a state where it does not act, the bellows body is less likely to buckle than when the pressure acts from the inside of the bellows. In addition, the valve body is located at a position slightly away from the valve port in a state in which movement in the valve closing direction is restricted by the stopper , and does not perform complete cutoff, and ensures a very small refrigerant flow rate. Is prevented from being completely shut off, and the controllability of the supercritical vapor compression refrigeration cycle apparatus can be ensured.
[0034]
In addition, since the amount of separation from the valve port of the valve body at the maximum valve closing position is adjusted by adjusting the screw engagement position of the cassette member with respect to the valve housing, this adjustment of the amount of separation from the end of the bellows body of the valve body. The refrigerant flow rate (required minimum flow rate) in a state in which the amount of protrusion is regulated is easily adjusted, and the required minimum flow rate can be set to an optimum value.
[0035]
Further, base rose body is disposed in the cylinder of the cassette member, and defining a sealed chamber between the cassette member is secured to one end portion of the valve port side in the cassette member, the valve body at the other end of the bellows arrangement Since it is fixedly connected, a compact design is possible.
[0036]
In the high pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the second aspect of the present invention, the temperature sensing cylinder connected to the sealed chamber senses the temperature of the refrigerant on the outlet side of the radiator. The refrigerant temperature can be sensitively sensed both inside the bellows and in the temperature sensing cylinder.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a supercritical vapor compression refrigeration cycle apparatus incorporating a high-pressure control valve according to the present invention.
FIG. 2 is a cross-sectional view showing one embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention.
FIG. 3 is a graph showing carbon dioxide saturated vapor lines and ideal high-pressure control valve characteristics.
FIG. 4 is a valve lift-flow path opening area characteristic diagram showing a valve opening characteristic of the high-pressure control valve according to the present invention.
FIG. 5 is a circuit diagram showing another embodiment of a supercritical vapor compression refrigeration cycle apparatus incorporating a high-pressure control valve according to the present invention.
FIG. 6 is a cross-sectional view showing another embodiment of a high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Evaporator 4 Accumulator 8 High pressure control valve 9 Relief valve 10 Valve housing 11 Inlet port 12 Outlet port 14 Bore 15 Valve port 16 Screw part 20 Cassette member 26 Bellows body 29 Needle valve body 31 Sealing chamber 32 Bellows Inner 36 Stopper step 37 Temperature sensitive cylinder

Claims (2)

圧縮機と放熱器と蒸発器とアーキュムレータとを炭酸ガス等による冷媒が順に循環し、超臨界域で運転される超臨界蒸気圧縮冷凍サイクル装置の前記放熱器より前記蒸発器へ至る冷媒通路の途中に設けられ、前記放熱器の出口側の冷媒温度・圧力に感応して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御して放熱器出口側の圧力制御を行う高圧制御弁であって、
ベローズ外側に冷媒封入の密閉室を画定し、ベローズ内側に前記放熱器の出口側の冷媒温度・圧力を及ぼされ、前記放熱器の出口側の冷媒温度・圧力に応じて伸縮するベローズ装置と、
前記ベローズ装置に接続され、前記ベローズ装置の伸長により開弁方向に駆動されて弁ハウジングに形成された弁ポートと共働して前記放熱器と前記蒸発器との間の冷媒通路の連通度を制御する弁体とを有し、
前記弁体は、最大閉弁位置において、前記弁ポートより微少量離れた箇所に位置して完全締切を行わず、微少流量の冷媒流量を確保し、
前記弁体はねじ係合によって前記弁ハウジングに固定される筒状のカセット部材に組み込まれて当該カセット部材に設けられたストッパにより閉弁方向の移動を制限され、前記カセット部材の前記弁ハウジングに対するねじ係合位置の調整により、最大閉弁位置での前記弁体の前記弁ポートよりの離間量が調整可能であり、
前記ベローズ装置は、前記カセット部材の筒内に配置され、弁ポート側の一端部を前記カセット部材に固着されて前記カセット部材との間に前記密閉室を画定し、前記弁体は前記ベローズ装置の他端部に固定連結されていることを特徴とする超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁。
Refrigerant passage from the radiator to the evaporator of the supercritical vapor compression refrigeration cycle apparatus in which a refrigerant such as carbon dioxide circulates sequentially through the compressor, the radiator, the evaporator, and the accumulator and is operated in the supercritical region. The pressure on the radiator outlet side is controlled by controlling the degree of communication of the refrigerant passage between the radiator and the evaporator in response to the refrigerant temperature and pressure on the outlet side of the radiator. A high pressure control valve,
A bellows device that defines a sealed chamber enclosed with a refrigerant on the outside of the bellows, is subjected to the refrigerant temperature and pressure on the outlet side of the radiator inside the bellows, and expands and contracts according to the refrigerant temperature and pressure on the outlet side of the radiator;
Connected to the bellows device, driven in the valve opening direction by extension of the bellows device, and cooperates with a valve port formed in the valve housing to increase the degree of communication of the refrigerant passage between the radiator and the evaporator. A valve body to be controlled,
The valve body is located at a position slightly away from the valve port at the maximum valve closing position, and does not perform a complete cutoff, ensuring a very small refrigerant flow rate ,
The valve body is incorporated in a cylindrical cassette member fixed to the valve housing by screw engagement, and movement in the valve closing direction is restricted by a stopper provided on the cassette member, and the cassette member is moved relative to the valve housing. By adjusting the screw engagement position, the amount of separation from the valve port of the valve body at the maximum valve closing position can be adjusted,
The bellows device is disposed in a cylinder of the cassette member, and one end portion on the valve port side is fixed to the cassette member to define the sealed chamber between the cassette member, and the valve body is the bellows device. A high-pressure control valve for a supercritical vapor compression refrigeration cycle apparatus, wherein the high-pressure control valve is fixedly connected to the other end of the supercritical vapor compression refrigeration cycle apparatus.
前記密閉室に前記放熱器の出口側の冷媒の温度を感知する感温筒が接続されていることを特徴とする請求項1記載の超臨界蒸気圧縮冷凍サイクル装置用高圧制御弁。The radiator of claim 1 Symbol placement supercritical vapor compression refrigeration cycle device for a high pressure control valve temperature sensing tube for sensing the temperature at the outlet side of the refrigerant, characterized in that it is connected to the sealed chamber.
JP2000056840A 2000-03-02 2000-03-02 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment Expired - Fee Related JP4044714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056840A JP4044714B2 (en) 2000-03-02 2000-03-02 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056840A JP4044714B2 (en) 2000-03-02 2000-03-02 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2001241809A JP2001241809A (en) 2001-09-07
JP4044714B2 true JP4044714B2 (en) 2008-02-06

Family

ID=18577720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056840A Expired - Fee Related JP4044714B2 (en) 2000-03-02 2000-03-02 High-pressure control valve for supercritical vapor compression refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4044714B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003967A1 (en) * 2005-01-27 2006-08-03 Otto Egelhof Gmbh & Co. Kg Expansion valve for a cooling system especially with carbon dioxide as for future motor vehicle climate controls has supply inlet and outlet coupled by expansion pipe with a by pass valve in parallel
DE102005032458A1 (en) * 2005-07-12 2007-01-25 Robert Bosch Gmbh Refrigeration system, in particular motor vehicle air conditioning
JP6281047B2 (en) * 2014-04-22 2018-02-21 株式会社テージーケー Control valve for variable capacity compressor
CN106402443A (en) * 2016-11-02 2017-02-15 北京宇航***工程研究所 Safety valve provided with automatic inflation and deflation device
CN109027273A (en) * 2018-10-23 2018-12-18 广州达意隆包装机械股份有限公司 A kind of flow-limiting valve and filling apparatus
JP7134146B2 (en) * 2019-07-26 2022-09-09 株式会社鷺宮製作所 Expansion valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP2001241809A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP3276936B2 (en) Flow control valve
EP1106829B1 (en) Control valve for variable capacity compressors
JP5071295B2 (en) Expansion valve
MXPA06011910A (en) Asymmetric volume booster arrangement for valve actuators.
JPH06307740A (en) Temperature expansion valve
JP4044714B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
EP0971184A2 (en) Pressure control valve
JP2008138812A (en) Differential pressure valve
US20040036044A1 (en) Differential pressure control valve
JP3949417B2 (en) Expansion valve
KR20000077107A (en) Thermal expansion valve
EP0059599A1 (en) Valve mechanism for low temperature applications
US6971625B2 (en) Pilot operated valve with variable piston orifice
JP4256565B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP4484656B2 (en) Temperature-sensitive control valve and refrigeration cycle device
JP2002071037A (en) Relief valve, high pressure control valve with relief valve and super critical vapor refrigerating cycle device
CA2431871C (en) Flow controlling magnetic valve
JP4445090B2 (en) High-pressure control valve for supercritical vapor compression refrigeration cycle equipment
JP2001324245A (en) High pressure control valve for supercritical vapor compression freezing cycle
US5148684A (en) Injection valve for a refrigeration system
JP4047497B2 (en) Supercritical vapor compression cycle system and pressure control valve with relief valve
US20100229971A1 (en) Back-pressure responsive valve
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP2001263865A (en) Supercritical vapor compression refrigeration cycle and pressure control valve
JP2000186870A (en) Control valve for refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees