JP4041315B2 - Method for manufacturing photoelectric conversion device - Google Patents

Method for manufacturing photoelectric conversion device Download PDF

Info

Publication number
JP4041315B2
JP4041315B2 JP2002020778A JP2002020778A JP4041315B2 JP 4041315 B2 JP4041315 B2 JP 4041315B2 JP 2002020778 A JP2002020778 A JP 2002020778A JP 2002020778 A JP2002020778 A JP 2002020778A JP 4041315 B2 JP4041315 B2 JP 4041315B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor particles
crystal semiconductor
photoelectric conversion
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002020778A
Other languages
Japanese (ja)
Other versions
JP2003224284A (en
Inventor
豪 京田
潤 福田
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002020778A priority Critical patent/JP4041315B2/en
Publication of JP2003224284A publication Critical patent/JP2003224284A/en
Application granted granted Critical
Publication of JP4041315B2 publication Critical patent/JP4041315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は結晶半導体粒子を用いた光電変換装置の製造方法に関し、特に太陽光発電に使用される光電変換装置の製造方法にする。
【0002】
【従来の技術】
従来の結晶半導体粒子を用いた光電変換装置を図5、図6に示す。
図5に示すように、特開昭61−124179号公報には、第1のアルミニウム箔25に開口を形成し、その開口にp形シリコン部26の上にn形表皮部27を持つシリコン球26を結合し、この球26の裏側のn形表皮部27を除去し、アルミニウム箔25上に酸化物層28をコーティングし、この球26の裏側の酸化物層28を除去し、このp型シリコン部26と第2のアルミニウム箔29とを固着する光電変換装置が開示されている。
【0003】
また、図6に示すように、p形基板18の表面にn形を呈する元素を拡散させてn形層19を形成することでpn接合を形成し、裏面にpn接合17を貫通して内部のp形層18と連結するように高濃度にp形不純物が拡散された導電性拡散領域9を形成し、この導電性拡散領域9の周辺にガラス系絶縁材3を塗布して焼成することでpn接合17を分離する方法が開示されている(例えば特公昭61−59678号、特開平10−233518号公報参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、図5に示す従来の光電変換装置では、p形中心核26の上にn形表皮部27をもつシリコン球26を第1のアルミニウム箔25と接合させる際に、第1のアルミニウム箔25に開口部を形成し、その開口部にシリコン球26を落とし込む必要があるが、開口部全てにシリコン球26を落とし込むことは製造上困難であり、またシリコン球26の球径が小さくなればその困難性は更に増すという問題があった。
【0005】
また、図6に示すような従来の光電変換装置の構造を粒状結晶半導体を用いた光電変換装置に適用しようと思えば、例えば中心核がp形で表皮部がn形のpn接合の裏面側をガラス等で分離しなければならないが、pn接合を貫通して内部層と連結した導電性拡散領域9を形成するのは製造上難しく、基板と粒状結晶半導体を接合させる際にpn接合部そのものが熔解して破壊されてしまう。
【0006】
本発明は従来技術における上記のような問題点に鑑みてなされたものであり、その目的は、結晶半導体粒子の球径に関係なく基板表面に結晶半導体粒子を配設する光電変換装置の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る光電変換装置の製造方法は、基板上に中心部が第1導電形から成り、外郭が第2導電形から成ることによってpn接合を有する結晶半導体粒子を配設して固着した光電変換装置の製造方法において、前記基板表面に接着剤を塗布して前記結晶半導体粒子を散布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と前記粒状結晶半導体の反応によって前記基板と前記粒状結晶半導体の接合部周辺の前記絶縁体と接触する部分で前記第2導電形の外郭が除去されることを特徴とする。
【0008】
また、請求項2に係る光電変換装置の製造方法は、基板上に中心部が第1導電形から成り、外郭が第2導電形から成ることによってpn接合を有する結晶半導体粒子を配設して固着した光電変換装置の製造方法において、前記基板表面に接着剤を塗布してこの基板の接着剤を塗布した側を下面にして多数の前記結晶半導体粒子に押し付けることによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と前記粒状結晶半導体の反応によって前記基板と前記粒状結晶半導体の接合部周辺の前記絶縁体と接触する部分で前記第2導電形の外郭が除去されることを特徴とする。
【0009】
また、請求項3に係る光電変換装置の製造方法は、基板上に中心部が第1導電形から成り、外郭が第2導電形から成ることによってpn接合を有する結晶半導体粒子を配設して固着した光電変換装置の製造方法において、前記基板上に前記結晶半導体粒子と接着剤とを混合したペーストを塗布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と前記粒状結晶半導体の反応によって前記基板と前記粒状結晶半導体の接合部周辺の前記絶縁体と接触する部分で前記第2導電形の外郭が除去されることを特徴とする。
【0010】
また、請求項4に係る光電変換装置の製造方法は、基板上に一導電型を呈する結晶半導体粒子を配設して固着し、この結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質して成る光電変換装置の製造方法において、前記基板表面に接着剤を塗布して前記結晶半導体粒子を散布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に前記結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することを特徴とする。
【0011】
また、請求項5に係る光電変換装置の製造方法は、基板上に一導電型を呈する結晶半導体粒子を配設して固着し、この結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質して成る光電変換装置の製造方法において、前記基板表面に接着剤を塗布してこの基板の接着剤を塗布した側を下面にして多数の前記結晶半導体粒子に押し付けることによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に前記結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することを特徴とする。
【0012】
また、請求項6に係る光電変換装置の製造方法は、基板上に一導電型を呈する結晶半導体粒子を配設して固着し、この結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質して成る光電変換装置の製造方法において、前記基板上に前記結晶半導体粒子と接着剤とを混合したペーストを塗布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に前記結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することを特徴とする。
【0013】
また、前記基板上に前記結晶半導体粒子を一時的に接着した後、ローラーで押し付けることを特徴とする。
【0014】
また、前記接着剤が共晶温度より250℃低い温度から〜共晶温度で焼飛する有機樹脂材料から成り、酸素含有雰囲気下で加熱することを特徴とする。前記有機樹脂材料が、ブチラール樹脂、メチルセルロース、エチルセルロース、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)のうちのいずれか一種以上から成ることを特徴とする。
【0015】
また、前記接着剤が前記基板と前記結晶半導体粒子との固着温度以下の沸点を有する有機材料から成り、不活性雰囲気下で加熱することを特徴とする。その有機材料が、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、へキシレングリコール、オクチレングリコール、グリセリン、パーフルオロケロシンのうちのいずれか一種以上から成ることを特徴とする。
【0016】
また、前記結晶半導体粒子を前記基板上面からの投影面積比で70%以上の密度で配設することを特徴とする。
【0017】
また、前記基板がアルミニウムから成り、前記結晶半導体粒子がシリコンから成ることを特徴とする。
【0018】
また、前記結晶半導体粒子の平均粒径が0.2〜0.6mmであることを特徴とする。
【0019】
上記のような方法で結晶半導体粒子を基板上に配設すると結晶半導体粒子を安定して並べることができる。
【0020】
【発明の実施の形態】
以下、図面に基づいて本発明を詳細に説明する。
図1、図2は本発明の製造方法によって製造される光電変換装置の一例を示し、図7に製法の一例を示す。
【0021】
基板1はアルミニウム以上の融点の金属、セラミック、ガラスであればよく、例えばアルミニウム、アルミニウム合金、鉄、ステンレス、ニッケル合金、アルミナ、ガラス等が用いられる。そして基板1がアルミニウム以外の材料の場合は、その材料とアルミニウムから成る層1’の構成とし、アルミニウム層1’には更に第2の添加元素としてシリコン、マグネシウム、マンガン、クロム、チタン、ニッケル、亜鉛、銀、銅から選ばれた1種もしくは複数種の元素を添加してもよく、結晶半導体粒子2の固着時の溶融過多の防止を維持することができる。アルミニウム層1’の膜厚は、20μm以上とする。20μm未満では結晶半導体粒子2との固着を行う際に膜厚が不足して十分な固着ができなくなる。
【0022】
基板1の表面に接着剤(例えば図7a))によって結晶半導体粒子2をランダムに一層以上一時的に接着させる。接着剤は結晶半導体粒子2を基板1の表面に付着させた状態を維持し、後述の処理で基板上から離脱しないようにする効果を持つ。接着剤を用いないと、基板1上に並べた結晶半導体粒子2が不安定な状態となって後述の処理で基板1上から脱離してしまい、結晶半導体粒子2を安定して配設することができなくなる。
【0023】
結晶半導体粒子2を基板1上に一時的に接着させる方法として、第一の方法は、接着剤を基板1上に塗布して接着剤層6(図7a))を設け、その上から結晶半導体粒子2を散布し、結晶半導体粒子2を接着剤層6に付着させる。基板1を傾けて余分な結晶半導体粒子2を落とすことによって、結晶半導体粒子2を粒径の大小によらずに安定して1層以上接着することが可能となる。更に後述の加熱処理によって基板1に接しなかった結晶半導体粒子2は基板1と固着しないために、基板1を傾けて固着しなかった結晶半導体粒子2を取り除くことによって結晶半導体粒子2を基板1上に1層だけ配設することができる。
【0024】
第二の方法は、基板1上に接着剤を塗布して接着剤層6を設け、基板1の接着剤層6を下面にして、バット等の平皿状のものに結晶半導体粒子を多数敷き詰めたところに押し付けることによって基板1に付着させ、基板1を引き上げて余分な結晶半導体粒子2を落とすことによって、結晶半導体粒子2を粒径の大小によらずに安定して1層以上接着することが可能となる。更に後述の加熱処理によって基板1に接しなかった結晶半導体粒子2は基板1と固着しないために、基板1を傾けて固着しなかった結晶半導体粒子2を取り除くことによって結晶半導体粒子2を基板1上に1層だけ配設することができる。
【0025】
第三の方法は、接着剤と結晶半導体粒子を混合したペーストを基板1上にドクターブレード法等で塗布することによって、結晶半導体粒子2を粒径の大小によらずに安定して1層以上接着することが可能となる。更に後述の加熱処理によって基板1に接しなかった結晶半導体粒子2は基板1と固着しないために、基板1を傾けて固着しなかった結晶半導体粒子2を取り除くことによって結晶半導体粒子2を基板1上に1層だけ配設することができる。
【0026】
上記3つの方法で基板1上に結晶半導体粒子2を接着した後、更にローラー等で押し付けることによって結晶半導体粒子2同士の隙間に更に結晶半導体粒子2を敷き詰めて基板1に接する結晶半導体粒子2の密度を向上させることもできる。
【0027】
その後、一定の荷重を結晶半導体粒子2上にかけて、基板1の材料と結晶半導体粒子2の材料との共晶温度以上に加熱することによって、基板1と結晶半導体粒子2の合金層7を介して基板1と結晶半導体粒子2を固着させる。このとき大気中で加熱処理すると、前述の有機系の接着剤層6又は接着剤は分解して一部有機残渣を残しながら揮散し、残存した有機残渣が基板1の表面を覆うために基板1の表面酸化が一時的に防止され、固着が行われる。その後の加熱によって残存した有機残渣は完全に揮散する。
【0028】
接着剤層6又は接着剤の材質としては共晶温度より250℃低い温度〜共晶温度(基板1と結晶半導体粒子2との固着温度)で分解して揮散するものであればよく、基板1がアルミニウムから成り、結晶半導体粒子2がシリコンから成る場合には327〜577℃の範囲となり、ブチラール樹脂、メチルセルロース、エチルセルロース、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)等の樹脂を溶媒で溶解させた有機系の樹脂が上げられ、分解して揮散する温度が共晶温度より250℃以上低い温度では共晶温度までに有機成分が一時的にも残存しないために共晶温度に至る前に基板1の表面が酸化してしまい、酸化膜のために基板1と結晶半導体粒子2との共晶ができなくなってしまう。
【0029】
また、窒素又はアルゴン等の不活性ガス雰囲気下で加熱処理を行う場合は、有機系の接着剤層6又は接着剤は共晶温度未満で完全に蒸発することで揮散し、基板1と結晶半導体粒子2の固着界面で有機残渣を残すことがなく、良好に固着が行われる。
【0030】
接着剤層6又は接着剤の材質としては基板1と結晶半導体粒子2との固着温度以下の沸点を有し、基板1上から流れ出さないためのある程度の粘性があるものであればよく、エチレングリコール(bp.:199℃、粘性率:25cp)、プロピレングリコール(bp.:187℃、粘性率:56cp)、トリメチレングリコール(bp.:214℃、粘性率:0.46St)、1,3−ブチレングリコール(bp.:207℃、粘性率:130cp)、テトラメチレングリコール(bp.:229℃、粘性率:89cp)、ペンタメチレングリコール(bp.:242℃、粘性率:128cp)、へキシレングリコール(bp.:197℃、粘性率:34cp)、オクチレングリコール(bp.:243℃、粘性率:323cp)、グリセリン(bp.:290℃、粘性率:1412cp)、パーフルオロケロシン(bp.:215℃)等の有機材料が上げられ、沸点を有さず酸素雰囲気下で分解して揮散する材料では、共晶温度になっても有機成分が残存してしまい、残存成分のために基板1と結晶半導体粒子2との共晶ができなくなってしまう。
【0031】
接着剤層6の形成方法は、スクリーン印刷法、ドクターブレード法、スプレー法、ディッピング法等で基板1の表面上に10〜100μmの厚みに塗布する。
【0032】
ここで、結晶半導体粒子2の配設密度は、配設された結晶半導体粒子2の基板1上面から見た投影面積比で示される。最大で90.6%の投影面積比となるが、70%以下になると光電変換効率が急激に減少するため、結晶半導体粒子2の充填密度を示す投影面積比は70%以上がよく、上記配設方法によって投影面積比が70%以上の配設が可能となる。
【0033】
基板1上には、前述のように結晶半導体粒子2を多数配設する。この結晶半導体粒子2は、中心部がSi、Geにp形を呈するB、Al、Ga等、又はn形を呈するP、As等が微量含まれているものであり、外郭はSi、Geにn形を呈するP、As等、又はp形を呈するB、Al、Ga等が微量含まれているものである。結晶半導体粒子2の形状としては多角形を持つもの、曲面を持つもの等があり、粒径分布としては均一、不均一を問わないが、均一の場合は粒径を揃えるための工程が必要になるため、より安価にするためには不均一の方が有利である。更に凸曲面を持つことによって光の光線角度の依存性も小さい。結晶半導体粒子2の粒径としては、0.2〜0.8mmがよく、0.8mmを越えると切削部も含めた従来の結晶板型の太陽電池のシリコン使用量と変わらなくなり、結晶半導体粒子を用いるメリットがなくなる。また、0.2mmよりも小さいと基板1へのアッセンブルがしにくくなるという別の問題が発生してしまう。より好適にはシリコン使用量の関係から0.2〜0.6mmがよい。
【0034】
基板1上には、絶縁体3が設けられる。この絶縁体3は、正極と負極の分離を行うための絶縁材料からなり、例えばSiO2、Al23、PbO、B23、ZnO等を任意な成分とするガラススラリーから成り、基板1と結晶半導体粒子2との間でオーミック固着を取る際の加熱温度未満で融解して結晶半導体粒子2を部分的に覆う特性を持つものである。更に、上記加熱温度で絶縁体3が粒状結晶半導体2と接触している部分で絶縁体3と粒状結晶半導体2の表面が反応することにより、粒状結晶半導体2のpn接合部が除去されることにより、粒状結晶半導体2のpn接合を分離する働きを持つ。このことによって、別途エッチング等の手法でpn接合を分離することが不要となる。なお、結晶半導体粒子2上に後述の結晶半導体層4を設けてpn接合を形成する際に、pn接合面積を確保するために絶縁体3を形成する前に、結晶半導体粒子2の上面に上面コート層8を設けて結晶半導体粒子2の上面に絶縁体3が形成されないようにしてもよい。上面コート層8の材料としては絶縁体3をはじく材料であればよく、炭素系、窒化硼素系、有機系のもがある。絶縁体3を形成した後は、上面コート層8をブラッシングや洗浄等で除去する。
【0035】
絶縁体3および結晶半導体粒子2上には導電層4を形成する。導電層4は、Siから成る第二導電形の導電層及び/又は透明導電層から成る。第二導電形の導電層で形成する場合、気相成長法等で例えばシラン化合物の気相にn形を呈するリン系化合物の気相、又はp形を呈するホウ素系化合物の気相を微量導入して形成する。膜質としては結晶質、非晶質、または結晶質と非晶質の混在のどちらでもよい。また、透明導電層で形成する場合、スパッタリング法や気相成長法等の成膜方法あるいは塗布焼成等により形成し、SnO2,In23,ITO,ZnO,TiO2等から選ばれる1種又は複数の酸化物系膜を形成する。透明導電層は膜厚を選べば反射防止膜としての効果も期待できる。なお、導電層4は透明であることが必要であり、粒状結晶半導体2が無い部分で入射光の一部が導電層4を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギ−を効率よく粒状結晶半導体2に照射することが可能となる。なお、粒状結晶半導体2表面に直接形成する導電層4としては第二導電形の導電層がより望ましい。上記加熱温度で絶縁体3と粒状結晶半導体2の表面が反応することにより、粒状結晶半導体2のpn接合部が除去される際に、絶縁体3と粒状結晶半導体2表面の境に若干の不純物準位等の欠陥部が形成される。そして絶縁体3と粒状結晶半導体2表面に透明導電層を形成すると上記欠陥部と透明導電層との間でいくらかのリークが発生すると考えられる。一方、絶縁体3と粒状結晶半導体2表面に第二導電形の導電層4を形成することにより、いくらかのリークが押さえられるためと考えられる。第二導電形の導電層は、導電性の兼ね合いから層中の微量元素の濃度は高くてもよく、例えば1×1016〜1021atm/cm3程度である。
【0036】
導電層4上には保護層5を設ける。保護層5は光学的に透明の特性を持つものがよく、CVD法やPVD法等によって例えば酸化珪素、酸化セシウム、酸化アルミニウム、窒化珪素、酸化チタン、SiO2−TiO2、酸化タンタル、酸化イットリウム等を単一組成又は複数組成で単層又は組み合わせて結晶半導体層4上に形成する。保護層5に電極の役目を担わせることも可能であり、その際はSnO2、In23、ITO、ZnO等の透明導電性の材料を用いればよい。なお、保護層5の膜厚を最適化すれば反射防止膜としての機能も期待できる。
【0037】
図3、図4は本発明の光電変換装置の製造方法によって製造される第二の光電変換装置を示す。結晶半導体粒子2及び導電層4が異なる以外は上記の第一の光電変換装置と同じであり、以下に結晶半導体粒子2及び導電層4について説明する。
【0038】
基板1上には、前述のように第一導電型の結晶半導体粒子2を多数配設する。この結晶半導体粒子2は、Siにp形を呈するB、Al、Ga等、又はn形を呈するP、As等が微量元素含まれているものである。結晶半導体粒子2の形状としては多角形を持つもの、曲面を持つもの等があり、粒径分布としては均一、不均一を問わないが、均一の場合は粒径を揃えるための工程が必要になるため、より安価にするためには不均一の方が有利である。更に凸曲面を持つことによって光の光線角度の依存性も小さい。結晶半導体粒子2の粒径としては、0.2〜0.8mmがよく、0.8mmを越えると切削部も含めた従来の結晶板型の太陽電池のシリコン使用量と変わらなくなり、結晶半導体粒子を用いるメリットがなくなる。また、0.2mmよりも小さいと基板1へのアッセンブルがしにくくなるという別の問題が発生してしまう。より好適にはシリコン使用量の関係から0.2〜0.6mmがよい。
【0039】
絶縁体3を形成した後、導電層4の代わりに結晶半導体粒子2上にn形を呈するリン系化合物又はp形を呈するホウ素化合物を用いて熱拡散、又はリン或いはホウ素をイオン注入することによって結晶半導体粒子2の表面を第二導電形半導体の改質層7を形成させる。導電性の兼ね合いから結晶半導体粒子2の表面の微量元素の濃度は高くてもよく、例えば1×1016〜1021atm/cm3程度である。
【0040】
尚、直列抵抗値を低くするために導電層4又は第二導電形半導体の改質層6又は保護層5の上に一定間隔のフィンガーやバスバーといったパターン電極を設け、変換効率を向上させることも可能である。
【0041】
【実施例】
次に、本発明の光電変換装置の製造方法の具体例を説明する。
〔例1〕
アルミニウム合金をニッケル合金基材上に50μmの厚みで冷間圧着で形成した基板1を用い、表1に示す材料から成る接着剤層をドクターブレード法で塗布した。その上に直径約0.2〜0.6mmの中心がp形で外郭がn形のシリコン粒子2を数回散布して接着剤層にシリコン粒子を十分に接着させ、その後基板1を傾けて余分なシリコン粒子2を取り除いた。その後、加熱処理時にシリコン粒子2が動かないように一定の荷重(15g/cm2程度)をかけて押し付けた状態で、大気中の577℃(アルミニウムとシリコンの共晶温度)以上の温度(640℃〜660℃)で5〜30分加熱してシリコン粒子2をアルミニウム合金に固着させた。シリコン粒子2上に上部コート層を塗布した後、ペースト状の絶縁低融点ガラスの絶縁層3をシリコン粒子2間に充填し、絶縁低融点ガラスの軟化点以上でAlとSiの共晶温度である577℃以下の温度(560〜570℃)で加熱してガラスを溶融し、シリコン粒子2の絶縁層3に接するpn接合部を破壊させた。シリコン粒子上の上面コート層を洗浄して除去した後、n形の結晶質と非晶質の混晶のシリコンの導電層を300nm形成し、更に透明導電層としてITOを400nm形成し、基板と透明導電層から電極をとった。(実施例1〜4)。
【0042】
なお、比較例1として、接着剤層を用いなかった試料は、基板上に直接シリコン粒子を数回散布してそのまま荷重をかけて同様に加熱した。
【0043】
また、実施例5〜8として、バットに乗せた直径約0.2〜0.6mmの中心がp形で外郭がn形のシリコン粒子に基板の接着剤層を下面側にしてシリコン粒子に押し付けて基板の接着剤層に付着させ、その後基板1を傾けて余分なシリコン粒子を取り除いた。その後、実施例1〜4と同様の処理を行って固着させた。
【0044】
なお、比較例2として、基板上に接着剤層を塗布しなかった以外は、実施例5〜8と同様の処理を行った。
【0045】
また、実施例9〜12として、実施例1〜4で用いた接着剤層の材料に中心がp形で外郭がn形のシリコン粒子を混合させたペーストを基板上にドクターブレード法で塗布してシリコン粒子を基板上に一時的に接着して実施例1〜4と同様の処理を行って固着させた。
【0046】
なお、比較例3として、接着剤でペースト化しなかった以外は実施例9〜12と同様の処理を行った。
【0047】
更に、実施例1、3、5、7、9、11で中心がp形で外郭がn形のシリコン粒子を基板上に一時的に接着してテフロン製のローラーで押し付けた後、実施例1〜4と同様の処理を行って固着させた試料を実施例13〜18とした。
【0048】
以上のようにしてシリコン粒子を基板上に配設した試料の固着処理前後のシリコン粒子の投影面積比、及び垂直に光を入射させて測定した光電変換効率を測定した。その結果を表1にまとめる。
【0049】
【表1】

Figure 0004041315
【0050】
比較例1は、接着剤層を形成しなかったためにシリコン粒子が散布した後の作業で基板から脱離してしまい、固着前の投影面積比が43%と悪い状況となった。
【0051】
比較例2は、接着剤層を形成しなかったために、製法上シリコン粒子を基板上に全く固着できなかった。
【0052】
比較例3は、シリコン粒子がその後の作業で基板から脱離してしまい、固着前の投影面積比が54%と悪い状況となった。
【0053】
一方、実施例1〜12では、接着剤層の形成又は接着剤を使ったペーストを用いてシリコン粒子を70%以上の投影面積比で基板上に接着することができ、固着処理後もシリコン粒子の投影面積比を維持することができた。光電変換効率も10%以上となった。
【0054】
更に、ローラーで押し付けた実施例13〜18では、シリコン粒子の投影面積比が80%以上でシリコン粒子が基板上に更に密に固着することができ、変換効率は11%以上となった。
〔例2〕
実施例1〜4と同様の方法で、表2に示す材料から成る各接着剤層を用いて中心がp形で外郭がn形のシリコン粒子2を基板1上に接着させ、大気中でシリコン粒子を基板に固着させたときの固着処理前後でのシリコン粒子の投影面積比、及び垂直に光を入射させて測定した光電変換効率を測定した。その結果を表2にまとめる。
【0055】
接着剤層の材料として分解による揮散温度が327〜577℃(アルミニウムとシリコンの共晶温度)であるブチラール樹脂、メチルセルロース、エチルセルロース、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)を有機溶媒又は水で溶解させ、ドクターブレード法で塗布した。なお、比較例としては、接着剤層の材料として蒸発による揮散温度(沸点)が327℃未満のカルビトール(bp.:196℃、2−(2−ethoxyethoxy)ethanol)、パーフルオロケロシン(bp.:215℃)を用いた。
【0056】
【表2】
Figure 0004041315
【0057】
どの試料も固着前はシリコン粒子を70%以上の投影面積比で基板上に接着することができ、光電変換効率も10%以上となった。
【0058】
しかしながら、比較例20、21では、固着後の状態において、シリコン粒子を基板に固着できないものがあり、シリコン粒子の投影面積比が低いものとなった。これは、接着剤層の材料の揮散温度(沸点)が327℃未満であり、固着時の温度で接着剤層の材料がすぐに揮散(蒸発)してしまったために、基板のアルミニウム合金の表面に酸化膜が形成され、基板のアルミニウムとシリコン粒子の共晶の形成が阻害されたものと考えられる。
【0059】
一方、実施例20〜29では、シリコン粒子の粒子径が0.2mm或いは0.6mmでもシリコン粒子の投影面積比が固着前の状態を維持することができ、光電変換効率も10%以上となった。このことは、固着時の温度で基板のアルミニウム合金の表面を接着剤層が覆っているために表面に酸化膜が形成されず、基板のアルミニウムとシリコン粒子の共晶が良好に形成されたためと考えられる。
〔例3〕
実施例1〜4と同様の方法で、表3に示す材料から成る各接着剤層を用いて中心がp形で外郭がn形のシリコン粒子を基板上に接着させ、窒素又はアルゴン等の不活性ガス雰囲気下でp形シリコン粒子を基板に固着させたときの、固着処理前後でのシリコン粒子の投影面積比、及び垂直に光を入射させて測定した光電変換効率を測定した。その結果を表3にまとめる。
【0060】
接着剤層の材料として沸点が基板と結晶半導体粒子との固着温度以下で、ある程度の粘性を持つエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、へキシレングリコール、オクチレングリコール、グリセリン、パーフルオロケロシンをスクリーン印刷又はドクターブレードで塗布した。なお、比較例としては、接着剤層の材料として沸点を持たず酸素雰囲気下で分解して揮散する有機樹脂材料としてブチラール樹脂、メチルセルロース、エチルセルロース、ポリビニルアルコール(PVA)を有機溶媒で溶解させたものを用いた。
【0061】
【表3】
Figure 0004041315
【0062】
どの試料も固着前ではp形シリコン粒子を70%以上の投影面積比で基板上に接着することができ、変換効率も10%以上となった。
【0063】
しかしながら、比較例30、31、32では、固着後の状態において、シリコン粒子が基板に固着できないものがあり、シリコン粒子の投影面積比が低く、光電変換効率は5%台となった。
【0064】
これは、接着剤層の材料が沸点を持たず、酸素雰囲気下で分解して揮散する材料であるために、固着時の温度で接着剤層の材料が残存してしまい、基板のアルミニウム合金の表面に残存膜が形成され、基板のアルミニウムとシリコン粒子の共晶の形成が阻害されたものと考えられる。
【0065】
一方、実施例30〜49では、シリコン粒子の粒子径が0.2mm或いは0.6mmでもシリコン粒子の投影面積比が固着前の状態を維持することができ、変換効率は10%以上となった。このことは、ある程度の粘性を持った接着剤層を用いることによってシリコン粒子を密に固定することが可能となり、更に固着時の温度未満で蒸発して残存成分を残さないために、基板のアルミニウムとシリコン粒子の共晶が良好に形成されたためと考えられる。
〔例4〕
アルミニウム合金をニッケル合金基材上に50μmの厚みで冷間圧着にて形成した基板を用い、表4に示す材料から成る固着層を、スクリーン印刷又はドクターブレードにて塗布した。その上に直径約0.2〜0.6mmのp形シリコン粒子を数回散布して固着層にp形シリコン粒子を十分に接着させ、その後基板を傾けて余分なp形シリコン粒子を取り除いた。その後、加熱処理時にp形シリコン粒子が動かないように一定の荷重をかけて押し付けた状態で、大気中にてアルミニウムとシリコンの共晶温度である577℃以上の温度で5〜30分加熱してシリコン粒子をアルミニウム合金に接合させた。シリコン粒子2上に上部コート層を塗布した後、ペースト状の低融点ガラスから成る絶縁層3をシリコン粒子2間に充填し、この低融点ガラスの軟化点以上でAlとSiの共晶温度である577℃以下の温度で加熱してガラスを溶融した。シリコン粒子上の上面コート層を洗浄して除去した後、結晶半導体粒子2上にn形を呈するリン系化合物を用いて熱拡散することによって結晶半導体粒子2の表面を第二導電形半導体の改質層6を形成し、更に透明導電層としてITOを400nm形成し、基板と透明導電層から電極をとった(実施例50〜53)。なお、比較例50として固着層を用いなかった試料については、基板上に直接p形シリコン粒子を数回散布してそのまま荷重をかけて同様の加熱処理を行った。また、実施例54〜57としてバットに乗せたp形シリコン粒子に基板の固着層を下面側にして押し付けてp形シリコン粒子を基板の固着層に付着させたあと、実施例50〜53と同様の処理を行って接合させた。なお、比較例51として基板上に固着層を塗布しなかった以外は実施例54〜57と同様の処理を行った。また、実施例58〜61として、実施例50〜53で用いた固着層の材料にp形シリコン粒子を混合させたペーストを基板上にドクターブレード法で塗布してp形シリコン粒子を基板上に固着させた後、実施例50〜53と同様の処理を行って接合させた。なお、比較例52として固着層の材料でペースト化しなかった以外は実施例54〜57と同様の処理を行った。更に、実施例50、52、54、56、58、60でp形シリコン粒子を基板上に固着させた後、テフロン製のローラーで押し付けた後、実施例50〜53と同様の処理を行って接合させた試料を実施例62〜67とした。
【0066】
以上のようにしてp形シリコン粒子を基板上に配設した試料の接合処理前後でのシリコン粒子の投影面積比、及び光を垂直に入射させて測定した光電変換効率の結果を表4にまとめる。
【0067】
【表4】
Figure 0004041315
【0068】
比較例50は、固着層を形成しなかったためにp形シリコン粒子が散布後の作業で基板から脱離してしまい、接合前の投影面積比が43%と悪い状況となった。比較例52も同様にp形シリコン粒子がその後の作業で基板から脱離してしまい、接合前の投影面積比が54%と悪い状況となった。比較例51では、固着層を形成しなかったために、製法上p形シリコン粒子が基板上に全く固着できなかった。
【0069】
一方、実施例50〜61では、固着層の形成又は固着剤を使ったペーストを用いてp形シリコン粒子を70%以上の投影面積比で基板上に固着することができ、接合処理後もp形シリコン粒子の投影面積比を維持することができ、光電変換効率も10%以上となった。
【0070】
更に、ローラーで押し付けた実施例62〜67では、p形シリコン粒子の投影面積比が80%以上でシリコン粒子が基板上に更に密に固着することができ、変換効率は10%以上となった。
【0071】
以上のことから、本発明の光電変換装置の製造方法によれば、高い投影面積比で、シリコン粒子を基板上に配設し、高い光電変換効率を出すことができる光電変換装置を製造することができることが確認できた。
【0072】
【発明の効果】
以上のように、請求項1に係る光電変換装置の製造方法によれば、基板表面に接着剤を塗布して結晶半導体粒子を散布することによってこの基板上に結晶半導体粒子を一時的に接着し、この基板と結晶半導体粒子の共晶温度以上で加熱することによって接着剤を揮散させながら若しくはさせた後にこの基板に結晶半導体粒子を固着し、その後結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と粒状結晶半導体の反応によって基板と粒状結晶半導体の接合部周辺の絶縁体と接触する部分で第2導電形の外郭が除去されることから、基板上面に結晶半導体粒子を高い密度で配設することが可能となり、よって高い変換効率を維持することができる光電変換装置を提供することができる。
【0073】
また、請求項2に係る光電変換装置の製造方法によれば、基板表面に接着剤を塗布してこの基板の接着剤を塗布した側を下面にして多数の結晶半導体粒子に押し付けることによってこの基板上に結晶半導体粒子を一時的に接着し、この基板と結晶半導体粒子の共晶温度以上で加熱することによって接着剤を揮散させながら若しくはさせた後にこの基板に結晶半導体粒子を固着し、その後結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と粒状結晶半導体の反応によって基板と粒状結晶半導体の接合部周辺の絶縁体と接触する部分で第2導電形の外郭が除去されることから、基板上面に結晶半導体粒子を高い密度で配設することが可能となり、よって高い変換効率を維持することができる光電変換装置を提供することができる。
【0074】
また、請求項3に係る光電変換装置の製造方法によれば、基板上に結晶半導体粒子と接着剤とを混合したペーストを塗布することによってこの基板上に結晶半導体粒子を一時的に接着し、この基板と結晶半導体粒子の共晶温度以上で加熱することによって接着剤を揮散させながら若しくはさせた後にこの基板に結晶半導体粒子を固着し、その後結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と粒状結晶半導体の反応によって基板と粒状結晶半導体の接合部周辺の絶縁体と接触する部分で第2導電形の外郭が除去されることから、基板上面に結晶半導体粒子を高い密度で配設することが可能となり、よって高い変換効率を維持することができる光電変換装置を提供することができる。
【0075】
また、請求項4に係る光電変換装置の製造方法によれば、基板表面に接着剤を塗布して結晶半導体粒子を散布することによってこの基板上に結晶半導体粒子を一時的に接着し、この基板と結晶半導体粒子の共晶温度以上で加熱することによって接着剤を揮散させながら若しくはさせた後にこの基板に結晶半導体粒子を固着し、その後結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することから、基板上面に結晶半導体粒子を高い密度で配設することが可能となり、よって高い変換効率を維持することができる光電変換装置を提供することができる。
【0076】
また、請求項5に係る光電変換装置の製造方法によれば、基板表面に接着剤を塗布してこの基板の接着剤を塗布した側を下面にして多数の結晶半導体粒子に押し付けることによってこの基板上に結晶半導体粒子を一時的に接着し、この基板と結晶半導体粒子の共晶温度以上で加熱することによって接着剤を揮散させながら若しくはさせた後にこの基板に結晶半導体粒子を固着し、その後結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することから、基板上面に結晶半導体粒子を高い密度で配設することが可能となり、よって高い変換効率を維持することができる光電変換装置を提供することができる。
【0077】
また、請求項6に係る光電変換装置の製造方法によれば、基板上に結晶半導体粒子と接着剤とを混合したペーストを塗布することによってこの基板上に結晶半導体粒子を一時的に接着し、この基板と結晶半導体粒子の共晶温度以上で加熱することによって接着剤を揮散させながら若しくはさせた後にこの基板に結晶半導体粒子を固着し、その後結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することから、基板上面に結晶半導体粒子を高い密度で配設することが可能となり、よって高い変換効率を維持することができる光電変換装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の方法によって製造される光電変換装置の一実施形態を示す断面図である。
【図2】本発明の方法によって製造される光電変換装置の一実施形態を示す断面図である。
【図3】本発明の方法によって製造される光電変換装置の一実施形態を示す断面図である。
【図4】本発明の方法によって製造される光電変換装置の一実施形態を示す断面図である。
【図5】従来の光電変換装置を示す断面図である。
【図6】従来の光電変換装置を示す断面図である。
【図7】本発明の方法によって製造される光電変換装置の製造法の一実施例を示す断面図である。
【符号の説明】
1・・・・基板
1’・・・アルミニウム層
2・・・・第一導電形結晶質半導体粒子
3・・・・絶縁体層
4・・・・第二導電形半導体層(他方の電極層)
5・・・・保護層
6・・・・接着剤層
7・・・・基板と結晶質半導体粒子の合金層
8・・・・上面コート層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a photoelectric conversion device using crystalline semiconductor particles, and particularly to a method for manufacturing a photoelectric conversion device used for photovoltaic power generation.
[0002]
[Prior art]
A conventional photoelectric conversion device using crystalline semiconductor particles is shown in FIGS.
As shown in FIG. 5, Japanese Patent Laid-Open No. 61-124179 discloses a silicon sphere having an opening in a first aluminum foil 25 and an n-type skin portion 27 on a p-type silicon portion 26 in the opening. 26, the n-type skin 27 on the back side of the sphere 26 is removed, the oxide layer 28 is coated on the aluminum foil 25, the oxide layer 28 on the back side of the sphere 26 is removed, and the p-type A photoelectric conversion device for fixing the silicon portion 26 and the second aluminum foil 29 is disclosed.
[0003]
Further, as shown in FIG. 6, an n-type layer 19 is formed by diffusing an n-type element on the surface of a p-type substrate 18 to form a pn junction, and a pn junction 17 is formed on the back surface to penetrate the pn junction 17. A conductive diffusion region 9 in which p-type impurities are diffused at a high concentration is formed so as to be connected to the p-type layer 18, and a glass-based insulating material 3 is applied around the conductive diffusion region 9 and fired. Discloses a method of separating the pn junction 17 (see, for example, Japanese Patent Publication No. 61-59678 and Japanese Patent Laid-Open No. 10-233518).
[0004]
[Problems to be solved by the invention]
However, in the conventional photoelectric conversion device shown in FIG. 5, when the silicon sphere 26 having the n-type skin portion 27 on the p-type central core 26 is joined to the first aluminum foil 25, the first aluminum foil 25 It is necessary to drop the silicon sphere 26 into the opening, but it is difficult to manufacture the silicon sphere 26 in all the openings, and if the sphere diameter of the silicon sphere 26 is reduced, There was a problem that the difficulty further increased.
[0005]
If the structure of the conventional photoelectric conversion device as shown in FIG. 6 is applied to a photoelectric conversion device using a granular crystal semiconductor, for example, the back side of a pn junction having a p-type central core and an n-type skin. However, it is difficult to manufacture the conductive diffusion region 9 connected to the inner layer through the pn junction, and the pn junction itself is bonded when the substrate and the granular crystal semiconductor are bonded. Will melt and be destroyed.
[0006]
The present invention has been made in view of the above-described problems in the prior art, and an object of the present invention is to provide a method for manufacturing a photoelectric conversion device in which crystalline semiconductor particles are disposed on a substrate surface regardless of the spherical diameter of the crystalline semiconductor particles. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a manufacturing method of a photoelectric conversion device according to claim 1 is a crystalline semiconductor having a pn junction with a central portion made of a first conductivity type and an outer shape made of a second conductivity type on a substrate. In the manufacturing method of the photoelectric conversion device in which the particles are disposed and fixed, the crystal semiconductor particles are temporarily adhered onto the substrate by applying an adhesive to the substrate surface and dispersing the crystal semiconductor particles, After the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystalline semiconductor particles, the crystalline semiconductor particles are fixed to the substrate, and then the glass composition is sandwiched between the crystalline semiconductor particles. By filling the insulator, the glass material of the insulator and the granular crystal semiconductor react to contact the insulator around the junction between the substrate and the granular crystal semiconductor. Wherein the portion of the second conductivity type of the outer is characterized in that it is removed.
[0008]
According to a second aspect of the present invention, there is provided a method for manufacturing a photoelectric conversion device comprising: arranging a crystalline semiconductor particle having a pn junction on a substrate with a central portion made of a first conductivity type and an outer shell made of a second conductivity type. In the method of manufacturing a fixed photoelectric conversion device, an adhesive is applied to the surface of the substrate, and the crystal semiconductor is pressed onto the crystal semiconductor particles by pressing the adhesive on the substrate with the adhesive-coated side of the substrate facing down. The crystal semiconductor particles are fixed to the substrate after volatilizing or bonding the particles by temporarily adhering the particles and heating the substrate at a temperature equal to or higher than the eutectic temperature of the crystal semiconductor particles. By filling an insulator made of a glass composition between semiconductor particles, the substrate and the granular crystal semiconductor are reacted by a reaction between the glass material of the insulator and the granular crystal semiconductor. The outline of the second conductivity type in a portion in contact with said insulator around the junction, characterized in that it is removed.
[0009]
According to a third aspect of the present invention, there is provided a method for manufacturing a photoelectric conversion device comprising: arranging a crystalline semiconductor particle having a pn junction on a substrate with a central portion made of a first conductivity type and an outer shell made of a second conductivity type. In the manufacturing method of the fixed photoelectric conversion device, the crystal semiconductor particles are temporarily bonded onto the substrate by applying a paste obtained by mixing the crystal semiconductor particles and an adhesive onto the substrate, and the substrate and the substrate After the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the crystalline semiconductor particles, the crystalline semiconductor particles are fixed to the substrate, and an insulator made of a glass composition is then interposed between the crystalline semiconductor particles. By filling, the portion in contact with the insulator around the junction between the substrate and the granular crystal semiconductor by the reaction between the glass material of the insulator and the granular crystal semiconductor Wherein the outer shell of the second conductivity type is removed.
[0010]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a photoelectric conversion device, wherein a crystal semiconductor particle exhibiting one conductivity type is disposed and fixed on a substrate, and the surface of the crystal semiconductor particle is diffused or ion-implanted to another conductivity type. In the method of manufacturing a photoelectric conversion device obtained by modifying a semiconductor exhibiting a semiconductor material, the crystalline semiconductor particles are temporarily adhered onto the substrate by applying an adhesive to the substrate surface and dispersing the crystalline semiconductor particles. The crystalline semiconductor particles are fixed to the substrate after the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystalline semiconductor particles, and then the glass composition is interposed between the crystalline semiconductor particles. A surface of the crystalline semiconductor particles is modified by diffusion or ion implantation to form a pn junction after filling with an insulator made of And butterflies.
[0011]
According to a fifth aspect of the present invention, there is provided a method of manufacturing a photoelectric conversion device, wherein crystal semiconductor particles exhibiting one conductivity type are disposed and fixed on a substrate, and the surface of the crystal semiconductor particles is diffused or ion-implanted to another conductivity type. In the method of manufacturing a photoelectric conversion device formed by modifying a semiconductor exhibiting the following, by applying an adhesive to the surface of the substrate and pressing the surface of the substrate to which the adhesive has been applied to a large number of the crystalline semiconductor particles The crystalline semiconductor particles are temporarily adhered on the substrate, and the adhesive is volatilized or heated by heating at or above the eutectic temperature of the substrate and the crystalline semiconductor particles. Then, after filling an insulator made of a glass composition between the crystal semiconductor particles, the surface of the crystal semiconductor particles is diffused or ion-implanted to obtain another conductivity type. It modified the semiconductor exhibiting in and forming a pn junction.
[0012]
According to another aspect of the present invention, there is provided a method of manufacturing a photoelectric conversion device, wherein crystal semiconductor particles exhibiting one conductivity type are arranged and fixed on a substrate, and the surface of the crystal semiconductor particles is diffused or ion-implanted to another conductivity type. In the method of manufacturing a photoelectric conversion device obtained by modifying a semiconductor exhibiting a semiconductor material, the crystal semiconductor particles are temporarily deposited on the substrate by applying a paste in which the crystal semiconductor particles and an adhesive are mixed on the substrate. Adhering and heating the adhesive at a temperature equal to or higher than the eutectic temperature of the substrate and the crystal semiconductor particles while the adhesive is volatilized or after fixing the crystal semiconductor particles to the substrate, and then glass between the crystal semiconductor particles After filling the insulator made of the composition, the surface of the crystalline semiconductor particles is modified to a semiconductor having another conductivity type by diffusion or ion implantation to form a pn junction. And wherein the Rukoto.
[0013]
In addition, the crystalline semiconductor particles are temporarily bonded onto the substrate and then pressed with a roller.
[0014]
The adhesive is made of an organic resin material burned off at a temperature lower than the eutectic temperature by 250 ° C. to a eutectic temperature, and is heated in an oxygen-containing atmosphere. The organic resin material is composed of one or more of butyral resin, methylcellulose, ethylcellulose, polyvinyl alcohol (PVA), and polyethylene glycol (PEG).
[0015]
The adhesive is made of an organic material having a boiling point not higher than a fixing temperature between the substrate and the crystalline semiconductor particles, and is heated in an inert atmosphere. The organic material is at least one of ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, tetramethylene glycol, pentamethylene glycol, hexylene glycol, octylene glycol, glycerin, and perfluorokerosine. It is characterized by comprising.
[0016]
Further, the crystalline semiconductor particles are arranged at a density of 70% or more in terms of a projected area ratio from the upper surface of the substrate.
[0017]
Further, the substrate is made of aluminum, and the crystalline semiconductor particles are made of silicon.
[0018]
The average particle size of the crystalline semiconductor particles is 0.2 to 0.6 mm.
[0019]
When the crystalline semiconductor particles are arranged on the substrate by the method as described above, the crystalline semiconductor particles can be stably arranged.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
1 and 2 show an example of a photoelectric conversion device manufactured by the manufacturing method of the present invention, and FIG. 7 shows an example of a manufacturing method.
[0021]
The substrate 1 may be any metal, ceramic, or glass having a melting point higher than that of aluminum. For example, aluminum, aluminum alloy, iron, stainless steel, nickel alloy, alumina, glass, or the like is used. When the substrate 1 is made of a material other than aluminum, a layer 1 ′ made of the material and aluminum is used, and the aluminum layer 1 ′ further includes silicon, magnesium, manganese, chromium, titanium, nickel, One or more elements selected from zinc, silver and copper may be added, and the prevention of excessive melting at the time of fixing the crystalline semiconductor particles 2 can be maintained. The film thickness of the aluminum layer 1 ′ is 20 μm or more. If the thickness is less than 20 μm, the film thickness is insufficient when the crystalline semiconductor particles 2 are fixed, and sufficient fixing cannot be performed.
[0022]
One or more layers of the crystalline semiconductor particles 2 are temporarily bonded to the surface of the substrate 1 at random by an adhesive (for example, FIG. 7a). The adhesive maintains the state in which the crystalline semiconductor particles 2 are attached to the surface of the substrate 1 and has an effect of preventing the crystalline semiconductor particles 2 from being detached from the substrate in the processing described later. If an adhesive is not used, the crystalline semiconductor particles 2 arranged on the substrate 1 become unstable and are detached from the substrate 1 in the process described later, so that the crystalline semiconductor particles 2 are stably disposed. Can not be.
[0023]
As a method for temporarily adhering the crystalline semiconductor particles 2 on the substrate 1, the first method is to apply an adhesive on the substrate 1 to provide an adhesive layer 6 (FIG. 7 a), and from there on the crystalline semiconductor The particles 2 are dispersed and the crystalline semiconductor particles 2 are adhered to the adhesive layer 6. By tilting the substrate 1 and dropping the extra crystalline semiconductor particles 2, it is possible to stably adhere one or more layers of the crystalline semiconductor particles 2 regardless of the size of the particle size. Further, since the crystalline semiconductor particles 2 that are not in contact with the substrate 1 by the heat treatment described later do not adhere to the substrate 1, the crystalline semiconductor particles 2 are removed from the substrate 1 by removing the crystalline semiconductor particles 2 that are not adhered by tilting the substrate 1. Only one layer can be provided.
[0024]
In the second method, an adhesive is applied on the substrate 1 to provide an adhesive layer 6, and the adhesive layer 6 of the substrate 1 is placed on the lower surface, and a large number of crystalline semiconductor particles are spread on a flat dish such as a bat. However, it is possible to adhere to the substrate 1 by pressing it, and to pull up the substrate 1 and drop the excess crystal semiconductor particles 2 so that one or more layers of the crystal semiconductor particles 2 can be stably bonded regardless of the size. It becomes possible. Further, since the crystalline semiconductor particles 2 that are not in contact with the substrate 1 by the heat treatment described later do not adhere to the substrate 1, the crystalline semiconductor particles 2 are removed from the substrate 1 by removing the crystalline semiconductor particles 2 that are not adhered by tilting the substrate 1. Only one layer can be provided.
[0025]
The third method is to apply the paste mixed with the adhesive and the crystalline semiconductor particles on the substrate 1 by the doctor blade method or the like, so that the crystalline semiconductor particles 2 are stably one or more layers irrespective of the size of the particle size. It becomes possible to adhere. Further, since the crystalline semiconductor particles 2 that are not in contact with the substrate 1 by the heat treatment described later do not adhere to the substrate 1, the crystalline semiconductor particles 2 are removed from the substrate 1 by removing the crystalline semiconductor particles 2 that are not adhered by tilting the substrate 1. Only one layer can be provided.
[0026]
After the crystal semiconductor particles 2 are bonded onto the substrate 1 by the above three methods, the crystal semiconductor particles 2 are further spread over the gaps between the crystal semiconductor particles 2 by pressing with a roller or the like, and the crystal semiconductor particles 2 in contact with the substrate 1 The density can also be improved.
[0027]
Thereafter, a certain load is applied to the crystalline semiconductor particles 2 and heated to a temperature equal to or higher than the eutectic temperature of the material of the substrate 1 and the material of the crystalline semiconductor particles 2, thereby passing through the alloy layer 7 of the substrate 1 and the crystalline semiconductor particles 2. The substrate 1 and the crystalline semiconductor particles 2 are fixed. When the heat treatment is performed in the atmosphere at this time, the organic adhesive layer 6 or the adhesive described above is decomposed and volatilized while leaving a part of the organic residue, and the remaining organic residue covers the surface of the substrate 1 in order to cover the surface of the substrate 1. Oxidation of the surface is temporarily prevented and fixing is performed. The organic residue remaining by the subsequent heating is completely volatilized.
[0028]
The material of the adhesive layer 6 or the adhesive may be any material that decomposes and evaporates at a temperature lower than the eutectic temperature by 250 ° C. to the eutectic temperature (fixing temperature between the substrate 1 and the crystalline semiconductor particles 2). Is made of aluminum and the crystalline semiconductor particles 2 are made of silicon, the temperature ranges from 327 to 577 ° C., and a resin such as butyral resin, methylcellulose, ethylcellulose, polyvinyl alcohol (PVA), polyethylene glycol (PEG) is dissolved in a solvent. If the organic resin is heated and decomposed and volatilized at a temperature lower than the eutectic temperature by 250 ° C or more, the organic component does not remain temporarily up to the eutectic temperature. The surface of 1 is oxidized, and the eutectic of the substrate 1 and the crystalline semiconductor particles 2 becomes impossible due to the oxide film.
[0029]
In addition, when heat treatment is performed in an inert gas atmosphere such as nitrogen or argon, the organic adhesive layer 6 or the adhesive is volatilized by being completely evaporated below the eutectic temperature, and the substrate 1 and the crystalline semiconductor Fixation is performed satisfactorily without leaving an organic residue at the fixing interface of the particles 2.
[0030]
As the material of the adhesive layer 6 or the adhesive, any material may be used as long as it has a boiling point not higher than the fixing temperature between the substrate 1 and the crystalline semiconductor particles 2 and has a certain degree of viscosity so as not to flow out from the substrate 1. Glycol (bp .: 199 ° C., viscosity: 25 cp), propylene glycol (bp .: 187 ° C., viscosity: 56 cp), trimethylene glycol (bp .: 214 ° C., viscosity: 0.46 St), 1, 3 -Butylene glycol (bp .: 207 ° C, viscosity: 130 cp), tetramethylene glycol (bp .: 229 ° C, viscosity: 89 cp), pentamethylene glycol (bp .: 242 ° C, viscosity: 128 cp), hexylene Glycol (bp .: 197 ° C., viscosity: 34 cp), octylene glycol (bp .: 243 ° C., viscosity: 323 cp), glyce (Bp .: 290 ° C., viscosity: 1412 cp), perfluorokerosene (bp .: 215 ° C.), and other organic materials that have no boiling point and decompose and volatilize in an oxygen atmosphere. Even when the crystallization temperature is reached, the organic component remains, and the eutectic between the substrate 1 and the crystalline semiconductor particles 2 becomes impossible due to the remaining component.
[0031]
The adhesive layer 6 is formed by applying a thickness of 10 to 100 μm on the surface of the substrate 1 by a screen printing method, a doctor blade method, a spray method, a dipping method or the like.
[0032]
Here, the arrangement density of the crystalline semiconductor particles 2 is indicated by a projected area ratio of the arranged crystalline semiconductor particles 2 as viewed from the upper surface of the substrate 1. Although the projected area ratio is 90.6% at the maximum, the photoelectric conversion efficiency rapidly decreases when the ratio is 70% or less. Therefore, the projected area ratio indicating the packing density of the crystalline semiconductor particles 2 is preferably 70% or more. Depending on the installation method, it is possible to dispose the projection area ratio of 70% or more.
[0033]
A large number of crystalline semiconductor particles 2 are arranged on the substrate 1 as described above. The crystalline semiconductor particles 2 contain a trace amount of B, Al, Ga or the like having a p-type in Si or Ge at the center, or P or As or the like having an n-type in the center, and the outer shape is in Si or Ge. A trace amount of P, As, etc. exhibiting n-type, or B, Al, Ga, etc. exhibiting p-type is contained. The crystalline semiconductor particles 2 may have a polygonal shape or a curved surface, and the particle size distribution may be uniform or non-uniform. For this reason, non-uniformity is advantageous in order to reduce the cost. Furthermore, by having a convex curved surface, the dependency of the light beam angle is small. The particle size of the crystalline semiconductor particles 2 is preferably 0.2 to 0.8 mm. If the particle size exceeds 0.8 mm, the amount of silicon used in the conventional crystal plate type solar cell including the cut portion is not changed. The advantage of using is lost. On the other hand, if it is smaller than 0.2 mm, another problem that it is difficult to assemble the substrate 1 occurs. More preferably, the thickness is 0.2 to 0.6 mm in view of the amount of silicon used.
[0034]
An insulator 3 is provided on the substrate 1. This insulator 3 is made of an insulating material for separating the positive electrode and the negative electrode, for example, SiO 2 2 , Al 2 O Three , PbO, B 2 O Three , Composed of a glass slurry containing ZnO or the like as an optional component, and has a characteristic of partially covering the crystalline semiconductor particles 2 by melting at a temperature lower than the heating temperature for taking ohmic fixation between the substrate 1 and the crystalline semiconductor particles 2. Is. Further, the surface of the insulator 3 and the granular crystal semiconductor 2 reacts at the portion where the insulator 3 is in contact with the granular crystal semiconductor 2 at the heating temperature, whereby the pn junction of the granular crystal semiconductor 2 is removed. Thus, the pn junction of the granular crystal semiconductor 2 is separated. This eliminates the need to separate the pn junction by a technique such as etching. When a crystal semiconductor layer 4 (to be described later) is provided on the crystal semiconductor particle 2 to form a pn junction, the top surface of the crystal semiconductor particle 2 is formed on the upper surface of the crystal semiconductor particle 2 before forming the insulator 3 in order to secure a pn junction area. The coat layer 8 may be provided so that the insulator 3 is not formed on the upper surface of the crystalline semiconductor particles 2. The material of the top coat layer 8 may be any material that repels the insulator 3 and may be carbon-based, boron nitride-based, or organic-based. After the insulator 3 is formed, the upper surface coat layer 8 is removed by brushing or washing.
[0035]
A conductive layer 4 is formed on the insulator 3 and the crystalline semiconductor particles 2. The conductive layer 4 is made of a second conductive type conductive layer made of Si and / or a transparent conductive layer. When forming with a conductive layer of the second conductivity type, for example, a small amount of a vapor phase of a phosphorus compound exhibiting an n-type or a boron compound exhibiting a p-type is introduced into the gas phase of a silane compound by a vapor deposition method or the like. To form. The film quality may be crystalline, amorphous, or a mixture of crystalline and amorphous. Further, in the case of forming with a transparent conductive layer, it is formed by a film forming method such as a sputtering method or a vapor phase growth method, or coating and baking. 2 , In 2 O Three , ITO, ZnO, TiO 2 One or more oxide films selected from the above are formed. The transparent conductive layer can be expected to have an effect as an antireflection film if the film thickness is selected. The conductive layer 4 needs to be transparent, and a part of incident light is transmitted through the conductive layer 4 in a portion where the granular crystal semiconductor 2 is not present, and is reflected by the lower substrate 1 to irradiate the granular crystal semiconductor 2. By doing so, it becomes possible to efficiently irradiate the granular crystal semiconductor 2 with the light energy applied to the entire photoelectric conversion device. The conductive layer 4 directly formed on the surface of the granular crystal semiconductor 2 is more preferably a second conductivity type conductive layer. When the surface of the insulator 3 and the surface of the granular crystal semiconductor 2 reacts at the heating temperature, when the pn junction portion of the granular crystal semiconductor 2 is removed, some impurities are present at the boundary between the insulator 3 and the surface of the granular crystal semiconductor 2. Defects such as levels are formed. When a transparent conductive layer is formed on the surfaces of the insulator 3 and the granular crystal semiconductor 2, it is considered that some leakage occurs between the defect portion and the transparent conductive layer. On the other hand, it is considered that some leakage is suppressed by forming the conductive layer 4 of the second conductivity type on the surfaces of the insulator 3 and the granular crystal semiconductor 2. In the conductive layer of the second conductivity type, the concentration of trace elements in the layer may be high in view of conductivity, for example, 1 × 10 16 -10 twenty one atm / cm Three Degree.
[0036]
A protective layer 5 is provided on the conductive layer 4. The protective layer 5 preferably has an optically transparent characteristic, and is formed by, for example, silicon oxide, cesium oxide, aluminum oxide, silicon nitride, titanium oxide, SiO2 by CVD or PVD. 2 -TiO 2 A single layer or a combination of tantalum oxide, yttrium oxide, or the like is formed on the crystalline semiconductor layer 4 with a single composition or a plurality of compositions. It is also possible to make the protective layer 5 serve as an electrode, in which case SnO 2 , In 2 O Three A transparent conductive material such as ITO, ZnO or the like may be used. In addition, if the film thickness of the protective layer 5 is optimized, a function as an antireflection film can be expected.
[0037]
3 and 4 show a second photoelectric conversion device manufactured by the method for manufacturing a photoelectric conversion device of the present invention. The crystal semiconductor particle 2 and the conductive layer 4 are the same as those in the first photoelectric conversion device except that the crystal semiconductor particle 2 and the conductive layer 4 are different. The crystal semiconductor particle 2 and the conductive layer 4 will be described below.
[0038]
A large number of first-conductivity-type crystalline semiconductor particles 2 are arranged on the substrate 1 as described above. The crystalline semiconductor particles 2 contain trace elements such as B, Al, Ga, etc. exhibiting p-type in Si, or P, As, etc. exhibiting n-type. The crystalline semiconductor particles 2 may have a polygonal shape or a curved surface, and the particle size distribution may be uniform or non-uniform. For this reason, non-uniformity is advantageous in order to reduce the cost. Furthermore, by having a convex curved surface, the dependency of the light beam angle is small. The particle size of the crystalline semiconductor particles 2 is preferably 0.2 to 0.8 mm. If the particle size exceeds 0.8 mm, the amount of silicon used in the conventional crystal plate type solar cell including the cut portion is not changed. The advantage of using is lost. On the other hand, if it is smaller than 0.2 mm, another problem that it is difficult to assemble the substrate 1 occurs. More preferably, the thickness is 0.2 to 0.6 mm in view of the amount of silicon used.
[0039]
After the insulator 3 is formed, thermal diffusion or ion implantation of phosphorus or boron is performed on the crystalline semiconductor particles 2 using a phosphorus compound exhibiting n-type or a boron compound exhibiting p-type on the crystalline semiconductor particles 2 instead of the conductive layer 4. A modified layer 7 of the second conductivity type semiconductor is formed on the surface of the crystalline semiconductor particles 2. The concentration of trace elements on the surface of the crystalline semiconductor particle 2 may be high in view of conductivity, for example, 1 × 10 16 -10 twenty one atm / cm Three Degree.
[0040]
In order to reduce the series resistance value, pattern electrodes such as fingers and bus bars at regular intervals may be provided on the conductive layer 4 or the modified layer 6 or the protective layer 5 of the second conductivity type semiconductor to improve the conversion efficiency. Is possible.
[0041]
【Example】
Next, the specific example of the manufacturing method of the photoelectric conversion apparatus of this invention is demonstrated.
[Example 1]
An adhesive layer made of a material shown in Table 1 was applied by a doctor blade method using a substrate 1 in which an aluminum alloy was formed by cold pressing with a thickness of 50 μm on a nickel alloy base material. A silicon particle 2 having a p-type center and an n-type outer shell having a diameter of about 0.2 to 0.6 mm is spread on the surface several times to sufficiently adhere the silicon particles to the adhesive layer, and then the substrate 1 is tilted. Excess silicon particles 2 were removed. Thereafter, a constant load (15 g / cm so as not to move the silicon particles 2 during the heat treatment). 2 The silicon particles 2 are fixed to the aluminum alloy by heating at a temperature (640 ° C. to 660 ° C.) higher than 577 ° C. (eutectic temperature of aluminum and silicon) in the atmosphere for 5 to 30 minutes. I let you. After coating the upper coat layer on the silicon particles 2, the insulating layer 3 of paste-like insulating low-melting glass is filled between the silicon particles 2, and at the eutectic temperature of Al and Si above the softening point of the insulating low-melting glass. The glass was melted by heating at a temperature of 577 ° C. or less (560 to 570 ° C.), and the pn junction part in contact with the insulating layer 3 of the silicon particles 2 was broken. After cleaning and removing the top coat layer on the silicon particles, an n-type crystalline and amorphous mixed-crystal silicon conductive layer is formed to 300 nm, ITO is further formed to 400 nm as a transparent conductive layer, An electrode was taken from the transparent conductive layer. (Examples 1-4).
[0042]
As Comparative Example 1, a sample that did not use an adhesive layer was heated in the same manner by applying silicon particles directly on the substrate several times and applying a load as it was.
[0043]
In addition, as Examples 5 to 8, the center of the diameter of 0.2 to 0.6 mm placed on the bat is pressed against the silicon particles with the p-type center and the outer shape n-type silicon particles with the adhesive layer of the substrate on the lower surface side. The substrate 1 was then tilted to remove excess silicon particles. Thereafter, the same treatment as in Examples 1 to 4 was performed and fixed.
[0044]
As Comparative Example 2, the same processing as in Examples 5 to 8 was performed except that the adhesive layer was not applied on the substrate.
[0045]
Also, as Examples 9 to 12, a paste obtained by mixing silicon particles having a p-type center and an n-type center on the adhesive layer material used in Examples 1 to 4 was applied onto a substrate by a doctor blade method. Then, the silicon particles were temporarily adhered onto the substrate and fixed by the same treatment as in Examples 1 to 4.
[0046]
In addition, as Comparative Example 3, the same treatment as in Examples 9 to 12 was performed except that the paste was not formed with an adhesive.
[0047]
Further, in Examples 1, 3, 5, 7, 9, and 11, silicon particles having a p-type center and an n-type outer periphery were temporarily adhered onto a substrate and pressed with a Teflon roller, and then Example 1 Samples fixed by performing the same treatments as in Examples 4 to 4 were designated as Examples 13 to 18.
[0048]
As described above, the projected area ratio of the silicon particles before and after the fixing treatment of the sample in which the silicon particles were arranged on the substrate, and the photoelectric conversion efficiency measured by making light incident perpendicularly were measured. The results are summarized in Table 1.
[0049]
[Table 1]
Figure 0004041315
[0050]
In Comparative Example 1, since the adhesive layer was not formed, it was detached from the substrate in the work after the silicon particles were dispersed, and the projected area ratio before fixation was 43%, which was a bad situation.
[0051]
In Comparative Example 2, since no adhesive layer was formed, silicon particles could not be fixed on the substrate at all due to the manufacturing method.
[0052]
In Comparative Example 3, silicon particles were detached from the substrate in the subsequent work, and the projected area ratio before fixing was 54%, which was a bad situation.
[0053]
On the other hand, in Examples 1 to 12, silicon particles can be bonded onto a substrate with a projected area ratio of 70% or more using an adhesive layer formation or a paste using an adhesive, The projected area ratio could be maintained. The photoelectric conversion efficiency was also 10% or more.
[0054]
Further, in Examples 13 to 18 pressed with a roller, the silicon particles could be more closely fixed on the substrate when the projected area ratio of the silicon particles was 80% or more, and the conversion efficiency was 11% or more.
[Example 2]
In the same manner as in Examples 1 to 4, silicon particles 2 having a p-type center and an n-type outer periphery are bonded onto the substrate 1 using the respective adhesive layers made of the materials shown in Table 2, and silicon in the atmosphere is used. The projected area ratio of the silicon particles before and after the fixing process when the particles were fixed to the substrate and the photoelectric conversion efficiency measured by making light incident perpendicularly were measured. The results are summarized in Table 2.
[0055]
Butylal resin, methylcellulose, ethylcellulose, polyvinyl alcohol (PVA), and polyethylene glycol (PEG) having a volatilization temperature by decomposition of 327 to 577 ° C. (eutectic temperature of aluminum and silicon) as an adhesive layer material with an organic solvent or water It was dissolved and applied by the doctor blade method. In addition, as a comparative example, as a material for the adhesive layer, carbitol (bp. 196 ° C., 2- (2-ethoxyethyl) ethanol) having a volatilization temperature (boiling point) by evaporation of less than 327 ° C., perfluorokerosine (bp. : 215 ° C).
[0056]
[Table 2]
Figure 0004041315
[0057]
Before any sample was fixed, silicon particles could be bonded onto the substrate with a projected area ratio of 70% or more, and the photoelectric conversion efficiency was 10% or more.
[0058]
However, in Comparative Examples 20 and 21, in some cases, the silicon particles cannot be fixed to the substrate in the state after fixing, and the projected area ratio of the silicon particles was low. This is because the volatilization temperature (boiling point) of the material of the adhesive layer is less than 327 ° C., and the material of the adhesive layer immediately volatilizes (evaporates) at the fixing temperature. It is considered that an oxide film was formed on the substrate, and the formation of a eutectic of aluminum and silicon particles on the substrate was hindered.
[0059]
On the other hand, in Examples 20 to 29, even when the particle diameter of the silicon particles is 0.2 mm or 0.6 mm, the projected area ratio of the silicon particles can be maintained in the state before fixing, and the photoelectric conversion efficiency is 10% or more. It was. This is because the surface of the aluminum alloy of the substrate is covered with the adhesive layer at the temperature at the time of fixation, so that an oxide film is not formed on the surface, and the eutectic of the aluminum and silicon particles of the substrate is well formed. Conceivable.
[Example 3]
In the same manner as in Examples 1 to 4, silicon particles having a p-type center and an n-type center are adhered to the substrate using each adhesive layer made of the materials shown in Table 3, and nitrogen or argon or the like is bonded. When the p-type silicon particles were fixed to the substrate in an active gas atmosphere, the projected area ratio of the silicon particles before and after the fixing process and the photoelectric conversion efficiency measured by making light incident perpendicularly were measured. The results are summarized in Table 3.
[0060]
Ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, tetramethylene glycol, pentamethylene glycol having a certain boiling point as a material for the adhesive layer and having a boiling point below the fixing temperature between the substrate and the crystalline semiconductor particles, Hexylene glycol, octylene glycol, glycerin and perfluorokerosine were applied by screen printing or a doctor blade. As a comparative example, butyral resin, methylcellulose, ethylcellulose, polyvinyl alcohol (PVA) dissolved in an organic solvent as an organic resin material that does not have a boiling point as an adhesive layer material and decomposes and volatilizes in an oxygen atmosphere. Was used.
[0061]
[Table 3]
Figure 0004041315
[0062]
Before any sample was fixed, p-type silicon particles could be bonded onto the substrate with a projected area ratio of 70% or more, and the conversion efficiency was 10% or more.
[0063]
However, in Comparative Examples 30, 31, and 32, there were those in which the silicon particles could not be fixed to the substrate in the state after fixing, the projected area ratio of the silicon particles was low, and the photoelectric conversion efficiency was in the 5% range.
[0064]
This is because the material of the adhesive layer does not have a boiling point and decomposes and volatilizes in an oxygen atmosphere, so the material of the adhesive layer remains at the temperature at the time of fixing, and the aluminum alloy of the substrate It is considered that a residual film was formed on the surface and the formation of a eutectic of aluminum and silicon particles on the substrate was hindered.
[0065]
On the other hand, in Examples 30 to 49, even when the particle diameter of the silicon particles was 0.2 mm or 0.6 mm, the projected area ratio of the silicon particles was able to maintain the state before fixing, and the conversion efficiency was 10% or more. . This is because it becomes possible to fix the silicon particles tightly by using an adhesive layer having a certain degree of viscosity, and to evaporate below the temperature at the time of fixing and leave no remaining components, so that the aluminum of the substrate This is probably because the eutectic of silicon particles was formed well.
[Example 4]
Using a substrate in which an aluminum alloy was formed on a nickel alloy base material by cold pressing with a thickness of 50 μm, a fixing layer made of the material shown in Table 4 was applied by screen printing or a doctor blade. The p-type silicon particles having a diameter of about 0.2 to 0.6 mm were dispersed several times thereon to sufficiently adhere the p-type silicon particles to the fixing layer, and then the substrate was tilted to remove excess p-type silicon particles. . Then, in a state of pressing with a certain load so that the p-type silicon particles do not move during the heat treatment, it is heated for 5 to 30 minutes at a temperature of 577 ° C. or more which is the eutectic temperature of aluminum and silicon in the atmosphere. The silicon particles were bonded to the aluminum alloy. After the upper coat layer is applied on the silicon particles 2, an insulating layer 3 made of paste-like low-melting glass is filled between the silicon particles 2, and the eutectic temperature of Al and Si exceeds the softening point of the low-melting glass. The glass was melted by heating at a temperature of 577 ° C. or lower. After cleaning and removing the upper surface coat layer on the silicon particles, the surface of the crystalline semiconductor particles 2 is modified on the crystalline semiconductor particles 2 by thermal diffusion using a phosphorous compound exhibiting n-type on the crystalline semiconductor particles 2. The material layer 6 was formed, ITO was further formed to 400 nm as a transparent conductive layer, and electrodes were taken from the substrate and the transparent conductive layer (Examples 50 to 53). In addition, about the sample which did not use a fixed layer as the comparative example 50, the p-type silicon particle was spread | diffused several times directly on the board | substrate, and the same heat processing was performed by applying a load as it is. Further, as Examples 54 to 57, after pressing the p-type silicon particles placed on the bat with the fixing layer of the substrate facing down to attach the p-type silicon particles to the fixing layer of the substrate, the same as in Examples 50 to 53 The process of was performed and it was made to join. As Comparative Example 51, the same processing as in Examples 54 to 57 was performed, except that the fixing layer was not applied on the substrate. Further, as Examples 58 to 61, a paste obtained by mixing p-type silicon particles with the material of the fixing layer used in Examples 50 to 53 was applied onto a substrate by a doctor blade method, and p-type silicon particles were applied onto the substrate. After being fixed, the same processing as in Examples 50 to 53 was performed and bonded. In addition, the process similar to Examples 54-57 was performed except not making it into the paste with the material of the adhering layer as the comparative example 52. Further, after fixing the p-type silicon particles on the substrate in Examples 50, 52, 54, 56, 58, and 60, pressing with a Teflon roller, the same treatment as in Examples 50 to 53 was performed. The joined samples were designated as Examples 62 to 67.
[0066]
Table 4 summarizes the projected area ratio of the silicon particles before and after the bonding treatment of the sample in which the p-type silicon particles are arranged on the substrate as described above, and the photoelectric conversion efficiency result measured by vertically incident light. .
[0067]
[Table 4]
Figure 0004041315
[0068]
In Comparative Example 50, since the fixed layer was not formed, the p-type silicon particles were detached from the substrate in the operation after the dispersion, and the projected area ratio before bonding was 43%, which was a bad situation. Similarly, in Comparative Example 52, the p-type silicon particles were detached from the substrate in the subsequent work, and the projected area ratio before bonding was as bad as 54%. In Comparative Example 51, since the fixing layer was not formed, p-type silicon particles could not be fixed on the substrate at all due to the manufacturing method.
[0069]
On the other hand, in Examples 50 to 61, p-type silicon particles can be fixed on the substrate with a projected area ratio of 70% or more by using a paste using a fixing layer or a fixing agent. The projected area ratio of the shaped silicon particles can be maintained, and the photoelectric conversion efficiency is 10% or more.
[0070]
Further, in Examples 62 to 67 pressed with a roller, the projected area ratio of the p-type silicon particles was 80% or more, and the silicon particles could be more closely fixed on the substrate, and the conversion efficiency was 10% or more. .
[0071]
From the above, according to the method for manufacturing a photoelectric conversion device of the present invention, it is possible to manufacture a photoelectric conversion device that can provide high photoelectric conversion efficiency by arranging silicon particles on a substrate with a high projected area ratio. I was able to confirm.
[0072]
【The invention's effect】
As described above, according to the method for manufacturing a photoelectric conversion device according to claim 1, the crystalline semiconductor particles are temporarily adhered onto the substrate by applying the adhesive on the substrate surface and dispersing the crystalline semiconductor particles. The insulator comprising the glass composition is fixed between the crystal semiconductor particles after the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystal semiconductor particles. The outer surface of the second conductivity type is removed at the portion in contact with the insulator around the junction between the substrate and the granular crystal semiconductor due to the reaction between the glass material of the insulator and the granular crystal semiconductor. It is possible to dispose crystalline semiconductor particles at a high density on the upper surface, and thus it is possible to provide a photoelectric conversion device that can maintain high conversion efficiency.
[0073]
Further, according to the method of manufacturing a photoelectric conversion device according to claim 2, the substrate is coated with an adhesive, and the substrate is pressed against a large number of crystal semiconductor particles with the side coated with the adhesive as a lower surface. The crystalline semiconductor particles are temporarily bonded onto the substrate and heated at or above the eutectic temperature of the substrate and the crystalline semiconductor particles so that the adhesive is volatilized or after fixing the crystalline semiconductor particles to the substrate. By filling an insulator made of a glass composition between the semiconductor particles, the second conductive material is formed at a portion in contact with the insulator around the junction between the substrate and the granular crystal semiconductor by a reaction between the glass material of the insulator and the granular crystal semiconductor. Since the outer shell of the shape is removed, it is possible to dispose crystal semiconductor particles at a high density on the upper surface of the substrate, and thus it is possible to maintain a high conversion efficiency. It is possible to provide a.
[0074]
In addition, according to the method for manufacturing a photoelectric conversion device according to claim 3, by temporarily applying a paste in which crystal semiconductor particles and an adhesive are mixed on the substrate, the crystal semiconductor particles are temporarily bonded on the substrate, After the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystalline semiconductor particles, the crystalline semiconductor particles are fixed to the substrate, and then an insulator made of a glass composition is formed between the crystalline semiconductor particles. By filling, the outer surface of the second conductivity type is removed at the portion in contact with the insulator around the junction between the substrate and the granular crystal semiconductor due to the reaction between the glass material of the insulator and the granular crystal semiconductor. In addition, it is possible to dispose crystal semiconductor particles at a high density, and thus it is possible to provide a photoelectric conversion device that can maintain high conversion efficiency.
[0075]
According to the method for manufacturing a photoelectric conversion device according to claim 4, the crystal semiconductor particles are temporarily bonded onto the substrate by applying an adhesive to the substrate surface and then dispersing the crystal semiconductor particles. After heating or evaporating the adhesive by heating at a temperature equal to or higher than the eutectic temperature of the crystal semiconductor particles, the crystal semiconductor particles are fixed to the substrate, and then an insulator made of a glass composition is filled between the crystal semiconductor particles. Later, the surface of the crystalline semiconductor particles is modified to a semiconductor having another conductivity type by diffusion or ion implantation to form a pn junction, so that the crystalline semiconductor particles can be disposed at a high density on the upper surface of the substrate. Therefore, a photoelectric conversion device that can maintain high conversion efficiency can be provided.
[0076]
Further, according to the method of manufacturing a photoelectric conversion device according to claim 5, the substrate is coated with an adhesive, and the substrate is coated with the adhesive by applying the adhesive to the surface of the substrate, and pressing the substrate against a large number of crystal semiconductor particles. The crystalline semiconductor particles are temporarily bonded onto the substrate and heated at or above the eutectic temperature of the substrate and the crystalline semiconductor particles so that the adhesive is volatilized or after fixing the crystalline semiconductor particles to the substrate. After filling an insulator made of a glass composition between semiconductor particles, the surface of the crystalline semiconductor particles is modified to a semiconductor having another conductivity type by diffusion or ion implantation to form a pn junction. It is possible to dispose semiconductor particles at a high density, and thus it is possible to provide a photoelectric conversion device that can maintain high conversion efficiency.
[0077]
Moreover, according to the method for manufacturing a photoelectric conversion device according to claim 6, by temporarily applying a paste in which crystal semiconductor particles and an adhesive are mixed on a substrate, the crystal semiconductor particles are temporarily bonded on the substrate, After the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystalline semiconductor particles, the crystalline semiconductor particles are fixed to the substrate, and then an insulator made of a glass composition is formed between the crystalline semiconductor particles. After filling, the surface of the crystalline semiconductor particles is modified to a semiconductor having another conductivity type by diffusion or ion implantation to form a pn junction, so that the crystalline semiconductor particles can be arranged on the upper surface of the substrate at a high density. Therefore, a photoelectric conversion device that can maintain high conversion efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a photoelectric conversion device manufactured by the method of the present invention.
FIG. 2 is a cross-sectional view showing one embodiment of a photoelectric conversion device manufactured by the method of the present invention.
FIG. 3 is a cross-sectional view showing an embodiment of a photoelectric conversion device manufactured by the method of the present invention.
FIG. 4 is a cross-sectional view showing an embodiment of a photoelectric conversion device manufactured by the method of the present invention.
FIG. 5 is a cross-sectional view showing a conventional photoelectric conversion device.
FIG. 6 is a cross-sectional view showing a conventional photoelectric conversion device.
FIG. 7 is a cross-sectional view showing one embodiment of a method for producing a photoelectric conversion device produced by the method of the present invention.
[Explanation of symbols]
1 ... Board
1 '... Aluminum layer
2 ... First conductivity type crystalline semiconductor particles
3. Insulator layer
4. Second conductivity type semiconductor layer (the other electrode layer)
5 ... Protective layer
6 ... Adhesive layer
7... Alloy layer of substrate and crystalline semiconductor particles
8 ... Top coat layer

Claims (14)

基板上に中心部が第1導電形から成り、外郭が第2導電形から成ることによってpn接合を有する結晶半導体粒子を配設して固着した光電変換装置の製造方法において、前記基板表面に接着剤を塗布して前記結晶半導体粒子を散布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と前記粒状結晶半導体の反応によって前記基板と前記粒状結晶半導体の接合部周辺の前記絶縁体と接触する部分で前記第2導電形の外郭が除去されることを特徴とする光電変換装置の製造方法。In a method of manufacturing a photoelectric conversion device in which crystal semiconductor particles having a pn junction are arranged and fixed on a substrate by having a first conductivity type at the center and a second conductivity type at the outer periphery, the substrate is bonded to the substrate surface. The crystal semiconductor particles are temporarily adhered onto the substrate by applying an agent and the crystal semiconductor particles are dispersed, and the adhesive is heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystal semiconductor particles. The crystal semiconductor particles are fixed to the substrate while being volatilized or after being volatilized, and then an insulator made of a glass composition is filled between the crystal semiconductor particles, so that the glass material of the insulator and the granular crystal semiconductor The outer surface of the second conductivity type is removed at a portion in contact with the insulator around the junction between the substrate and the granular crystal semiconductor by a reaction. Manufacturing method of the device. 基板上に中心部が第1導電形から成り、外郭が第2導電形から成ることによってpn接合を有する結晶半導体粒子を配設して固着した光電変換装置の製造方法において、前記基板表面に接着剤を塗布してこの基板の接着剤を塗布した側を下面にして多数の前記結晶半導体粒子に押し付けることによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と前記粒状結晶半導体の反応によって前記基板と前記粒状結晶半導体の接合部周辺の前記絶縁体と接触する部分で前記第2導電形の外郭が除去されることを特徴とする光電変換装置の製造方法。In a method of manufacturing a photoelectric conversion device in which crystal semiconductor particles having a pn junction are arranged and fixed on a substrate by having a first conductivity type at the center and a second conductivity type at the outer periphery, the substrate is bonded to the substrate surface. The crystal semiconductor particles are temporarily adhered onto the substrate by applying an adhesive and pressing the substrate with the adhesive applied side on the bottom surface to press the crystal semiconductor particles. After the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature, the crystalline semiconductor particles are fixed to the substrate, and then an insulator made of a glass composition is filled between the crystalline semiconductor particles. In the portion where the insulating material around the joint between the substrate and the granular crystal semiconductor comes into contact with the insulator due to the reaction between the glass material of the insulator and the granular crystal semiconductor. Method of manufacturing a photoelectric conversion device characterized by outer conductivity type is removed. 基板上に中心部が第1導電形から成り、外郭が第2導電形から成ることによってpn接合を有する結晶半導体粒子を配設して固着した光電変換装置の製造方法において、前記基板上に前記結晶半導体粒子と接着剤とを混合したペーストを塗布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填することで、この絶縁体のガラス材料と前記粒状結晶半導体の反応によって前記基板と前記粒状結晶半導体の接合部周辺の前記絶縁体と接触する部分で前記第2導電形の外郭が除去されることを特徴とする光電変換装置の製造方法。In a method of manufacturing a photoelectric conversion device in which crystalline semiconductor particles having a pn junction are disposed and fixed on a substrate by having a central portion of the first conductivity type and an outer shape of the second conductivity type on the substrate. The crystal semiconductor particles are temporarily bonded onto the substrate by applying a paste in which crystal semiconductor particles and an adhesive are mixed, and the bonding is performed by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystal semiconductor particles. The crystal semiconductor particles are fixed to the substrate while the agent is volatilized or after the agent is volatilized, and then an insulator made of a glass composition is filled between the crystal semiconductor particles, whereby the glass material of the insulator and the granular crystals are filled. The outline of the second conductivity type is removed at a portion in contact with the insulator around the junction between the substrate and the granular crystal semiconductor by a semiconductor reaction. Method of manufacturing that the photoelectric conversion device. 基板上に一導電型を呈する結晶半導体粒子を配設して固着し、この結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質して成る光電変換装置の製造方法において、前記基板表面に接着剤を塗布して前記結晶半導体粒子を散布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に前記結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することを特徴とする光電変換装置の製造方法。Method of manufacturing photoelectric conversion device comprising crystal semiconductor particles having one conductivity type disposed and fixed on a substrate, and modifying the surface of the crystal semiconductor particles to a semiconductor having another conductivity type by diffusion or ion implantation In this case, the crystal semiconductor particles are temporarily adhered onto the substrate by applying an adhesive to the substrate surface and then spraying the crystal semiconductor particles, and heated at a temperature equal to or higher than the eutectic temperature of the substrate and the crystal semiconductor particles. After the adhesive is volatilized or after being adhered, the crystalline semiconductor particles are fixed to the substrate, and after that, an insulator made of a glass composition is filled between the crystalline semiconductor particles, and then the surface of the crystalline semiconductor particles is formed. A method of manufacturing a photoelectric conversion device, wherein a pn junction is formed by modifying a semiconductor having another conductivity type by diffusion or ion implantation. 基板上に一導電型を呈する結晶半導体粒子を配設して固着し、この結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質して成る光電変換装置の製造方法において、前記基板表面に接着剤を塗布してこの基板の接着剤を塗布した側を下面にして多数の前記結晶半導体粒子に押し付けることによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に前記結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することを特徴とする光電変換装置の製造方法。Method of manufacturing photoelectric conversion device comprising crystal semiconductor particles having one conductivity type disposed and fixed on a substrate, and modifying the surface of the crystal semiconductor particles to a semiconductor having another conductivity type by diffusion or ion implantation In this case, the crystal semiconductor particles are temporarily adhered onto the substrate by applying an adhesive to the substrate surface and pressing the adhesive on the substrate with a large number of the crystal semiconductor particles on the lower surface. After the adhesive is volatilized or heated by heating at a temperature equal to or higher than the eutectic temperature of the substrate and the crystalline semiconductor particles, the crystalline semiconductor particles are fixed to the substrate, and then the glass composition is sandwiched between the crystalline semiconductor particles. After filling the insulator, the surface of the crystalline semiconductor particles is modified to a semiconductor having another conductivity type by diffusion or ion implantation to form a pn junction. Process for producing a photovoltaic device according to claim. 基板上に一導電型を呈する結晶半導体粒子を配設して固着し、この結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質して成る光電変換装置の製造方法において、前記基板上に前記結晶半導体粒子と接着剤とを混合したペーストを塗布することによってこの基板上に前記結晶半導体粒子を一時的に接着し、この基板と前記結晶半導体粒子の共晶温度以上で加熱することによって前記接着剤を揮散させながら若しくはさせた後にこの基板に前記結晶半導体粒子を固着し、その後前記結晶半導体粒子間にガラス組成物から成る絶縁体を充填した後に前記結晶半導体粒子の表面を拡散又はイオン注入によって他の導電型を呈する半導体に改質してpn接合を形成することを特徴とする光電変換装置の製造方法。Method of manufacturing photoelectric conversion device comprising crystal semiconductor particles having one conductivity type disposed and fixed on a substrate, and modifying the surface of the crystal semiconductor particles to a semiconductor having another conductivity type by diffusion or ion implantation In this case, the crystal semiconductor particles are temporarily adhered on the substrate by applying a paste in which the crystal semiconductor particles and an adhesive are mixed on the substrate, and the eutectic temperature of the substrate and the crystal semiconductor particles is higher than the eutectic temperature. After the adhesive is volatilized or heated by heating at the substrate, the crystalline semiconductor particles are fixed to the substrate, and after that, an insulator made of a glass composition is filled between the crystalline semiconductor particles. A method for manufacturing a photoelectric conversion device, comprising forming a pn junction by modifying a surface to a semiconductor having another conductivity type by diffusion or ion implantation. 前記基板上に前記結晶半導体粒子を一時的に接着した後、ローラーで押し付けることを特徴とする請求項1または請求項4のいずれかに記載の光電変換装置の製造方法。The method for manufacturing a photoelectric conversion device according to claim 1, wherein the crystalline semiconductor particles are temporarily bonded onto the substrate and then pressed with a roller. 前記接着剤が共晶温度より250℃低い温度〜共晶温度で焼飛する有機樹脂材料から成り、酸素含有雰囲気下で加熱することを特徴とする請求項1乃至6のいずれかに記載の光電変換装置の製造方法。The photoelectric according to any one of claims 1 to 6, wherein the adhesive is made of an organic resin material burned off at a temperature lower than the eutectic temperature by 250 ° C to the eutectic temperature, and is heated in an oxygen-containing atmosphere. A method for manufacturing a conversion device. 前記有機樹脂材料が、ブチラール樹脂、メチルセルロース、エチルセルロース、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)のうちのいずれか一種以上から成ることを特徴とする請求項8に記載の光電変換装置の製造方法。The method for producing a photoelectric conversion device according to claim 8, wherein the organic resin material is one or more of butyral resin, methyl cellulose, ethyl cellulose, polyvinyl alcohol (PVA), and polyethylene glycol (PEG). . 前記接着剤が前記基板と前記結晶半導体粒子との固着温度以下の沸点を有する有機材料から成り、不活性雰囲気下で加熱することを特徴とする請求項1乃至5のいずれかに記載の光電変換装置の製造方法。6. The photoelectric conversion according to claim 1, wherein the adhesive is made of an organic material having a boiling point equal to or lower than a fixing temperature between the substrate and the crystalline semiconductor particles, and is heated in an inert atmosphere. Device manufacturing method. 前記有機材料が、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブチレングリコール、テトラメチレングリコール、ペンタメチレングリコール、へキシレングリコール、オクチレングリコール、グリセリン、パーフルオロケロシンのうちのいずれか一種以上から成ることを特徴とする請求項10に記載の光電変換装置の製造方法。The organic material is at least one of ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, tetramethylene glycol, pentamethylene glycol, hexylene glycol, octylene glycol, glycerin and perfluorokerosine. The method for manufacturing a photoelectric conversion device according to claim 10, comprising: 前記結晶半導体粒子を前記基板上面からの投影面積比で70%以上の密度で配設することを特徴とする請求項1乃至6のいずれかに記載の光電変換装置の製造方法。The method for manufacturing a photoelectric conversion device according to claim 1, wherein the crystal semiconductor particles are disposed at a density of 70% or more in terms of a projected area ratio from the upper surface of the substrate. 前記基板がアルミニウムから成り、前記結晶半導体粒子がシリコンから成ることを特徴とする請求項1乃至6のいずれかに記載の光電変換装置の製造方法。The method for manufacturing a photoelectric conversion device according to claim 1, wherein the substrate is made of aluminum, and the crystalline semiconductor particles are made of silicon. 前記結晶半導体粒子の平均粒径が0.2〜0.6mmであることを特徴とする請求項1乃至6のいずれかに記載の光電変換装置の製造方法。The method for manufacturing a photoelectric conversion device according to claim 1, wherein the crystal semiconductor particles have an average particle size of 0.2 to 0.6 mm.
JP2002020778A 2002-01-29 2002-01-29 Method for manufacturing photoelectric conversion device Expired - Fee Related JP4041315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020778A JP4041315B2 (en) 2002-01-29 2002-01-29 Method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020778A JP4041315B2 (en) 2002-01-29 2002-01-29 Method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2003224284A JP2003224284A (en) 2003-08-08
JP4041315B2 true JP4041315B2 (en) 2008-01-30

Family

ID=27744181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020778A Expired - Fee Related JP4041315B2 (en) 2002-01-29 2002-01-29 Method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4041315B2 (en)

Also Published As

Publication number Publication date
JP2003224284A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP5734304B2 (en) Conductive paste for solar cell and method for producing solar cell element using the same
TW200908360A (en) Method for cleaning a solar cell surface opening made with a solar etch paste
US20020036009A1 (en) Photoelectric conversion device and manufacturing method thereof
JP4041315B2 (en) Method for manufacturing photoelectric conversion device
JP4105863B2 (en) Method for manufacturing photoelectric conversion device
JP2004146154A (en) Paste for silver electrode, and solar battery cell using the same
JP4153814B2 (en) Method for manufacturing photoelectric conversion device
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2006332095A (en) Photoelectric converter and photovoltaic generator device employing it
JP3940047B2 (en) Method for manufacturing photoelectric conversion device
JP4926101B2 (en) Photoelectric conversion device
JP4127365B2 (en) Method for manufacturing photoelectric conversion device
JP4127362B2 (en) Method for manufacturing photoelectric conversion device
JP2004259835A (en) Photoelectric converter and its manufacturing method
JP2002329874A (en) Manufacturing method of photoelectric conversion device
JP2008159997A (en) Manufacturing method for solar cell element, and conductive paste
JP2002353480A (en) Production method for photoelectric converter
JP4132019B2 (en) Method for manufacturing photoelectric conversion device
JP2004031742A (en) Photoelectric converter and its manufacturing method
JP2002261304A (en) Method for manufacturing photoelectric converter
JP2004172550A (en) Solar cell and its manufacturing method
JP2003017720A (en) Photo-electric conversion device
JP2002076395A (en) Photoelectric conversion device
JP3627952B2 (en) Manufacturing method of semiconductor film for solar cell and solar cell using the same
JP2005019733A (en) Manufacturing method of photoelectric transducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees